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Using the gauge invariant flow equation for quantum gravity we compute how the strength of gravity
depends on the length or energy scale. The fixed point value of the scale-dependent Planck mass in units of
the momentum scale has an important impact on the question, which parameters of the Higgs potential can
be predicted in the asymptotic safety scenario for quantum gravity? For the standard model and a large class
of theories with additional particles the quartic Higgs coupling is an irrelevant parameter at the ultraviolet
fixed point. This makes the ratio between the Higgs boson and the top-quark mass predictable.
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I. INTRODUCTION

The asymptotic safety scenario [1,2] realizes quantum
gravity as a nonperturbatively renormalizable quantum
field theory, as summarized in [3–10]. If a particle physics
model coupled to quantum gravity can be extended to an
infinitely short distance, the free parameters of the model
correspond to the relevant parameters at the ultraviolet
(UV) fixed point. On the other hand, one can predict every
renormalizable coupling of the effective low energy theory
of particle physics at length scales much larger than the
Planck length that corresponds to an irrelevant parameter at
the fixed point. More precisely, for n relevant parameters at
the UV-fixed point and m renormalizable couplings of the
low energy theory below the Planck mass, there existm − n
constraints relating the low energy couplings.
Within this general setting the mass of the Higgs boson

has been predicted to be 126 GeV with a few giga-electron-
volt uncertainty [11]. This prediction is based on three
assumptions: (i) The quartic scalar coupling λH is an
irrelevant coupling at the UV-fixed point. (ii) The fixed
point value λH� is close to zero. (iii) The flow equations for
λH for momenta below the Planck scale do not deviate
much from the ones for the standard model. The present
paper addresses the first assumption (i). We want to know
for which type of particle physics models, specified by the
number of (almost) massless scalars, fermions, and gauge
bosons at the fixed point, the quartic Higgs coupling is an
irrelevant parameter.
A previous detailed investigation [12] of this question by

the use of the gauge invariant flow equation for quantum

gravity has been performed with the strength of gravity at
the fixed point w−1 taken as an unknown parameter. The
question of which parameters of the Higgs potential are
relevant or irrelevant depends in an important way on the
value of w at the fixed point, possibly being influenced as
well by a nonminimal coupling ξH of the Higgs doublet to
gravity. By taking w and ξH as fixed parameters also the
stability matrix for the flow away from the fixed point is
reduced to the parameters in the scalar potential. This
approximation influences the critical exponents θi, which
are the eigenvalues of the stability matrix. The critical
exponents decide if a coupling is relevant (θi > 0) or
irrelevant (θi < 0). The present paper computes the flow
equations for w and ξH and determines their values at the
fixed point. The stability matrix at the fixed point is
extended to include these parameters. Within the
Einstein-Hilbert truncation for gravity we compute the
critical exponents in dependence on the number of massless
scalars, fermions, and gauge bosons at the fixed point.
In a quantum field theory for gravity the Planck mass

MpðkÞ depends on the renormalization scale k, which is a
typical inverse length scale at which the effective laws are
investigated. Fluctuations with wave length shorter than
k−1 are included in the scale-dependent effective action (or
effective average action) Γk. Lowering k includes addi-
tional fluctuations and induces a scale dependent MpðkÞ.
The flow equation for M2

pðkÞ takes the general form

k∂kM2
pðkÞ ¼ 4cMk2: ð1Þ

The gravitational interactions are universal and all particles
contribute to cM. In particular, the contribution of free
massless scalars, fermions, or vector bosons yield constant
contributions to cM since no mass scale is present besides k,
and dimensionless coupling constants are absent. The
structure of the flow equation (1) is very general and does

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 100, 066017 (2019)

2470-0010=2019=100(6)=066017(44) 066017-1 Published by the American Physical Society

https://orcid.org/0000-0002-1013-8631
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.066017&domain=pdf&date_stamp=2019-09-16
https://doi.org/10.1103/PhysRevD.100.066017
https://doi.org/10.1103/PhysRevD.100.066017
https://doi.org/10.1103/PhysRevD.100.066017
https://doi.org/10.1103/PhysRevD.100.066017
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


not need the contribution from metric fluctuations. While
the metric fluctuations do not change the structure (1), they
induce a quantitatively important part of cM that depends
on the value of the (dimensionless) effective scalar potential
or “cosmological constant.”
For the dimensionless ratio w ¼ M2

pðkÞ=ð2k2Þ the flow
equation (1) shows a fixed point for w� ¼ cM. In the
presence of additional dimensionless couplings cM has to
be evaluated for the fixed point values of these couplings.
At the fixed point MpðkÞ scales according to its canonical
dimension [2]

M2
pðkÞ ¼ 2w�k2; ð2Þ

while for k much smaller than the observed reduced Planck
mass M̄p ¼ 2.435 × 1018 GeV the running of the Planck
mass stops,

M2
pðkÞ ¼ M̄2

p þ 2w�k2 ¼ 2wðkÞk2: ð3Þ

Here M̄2
p may depend on fields, being independent of k. We

are interested in the UV regime for which we want to
compute the fixed point value w�. For this purpose we need
the flow equation for the dependence of wðkÞ on k.
Functional renormalization [2,13,14] permits one to

compute the flow equation for wðkÞ, both for pure quantum
gravity [2] and for gravity coupled to matter [15]. We need
cM in dependence on the number of massless real scalars
NS, massless Weyl or Majorana fermions NF, and massless
gauge bosonsNV . There is already a rather substantial body
of work for the computation of cM in various truncations for
the effective action of gravity [2,16–62]. The existing
quantitative results are, however, more widely scattered
than needed for our purpose.
To increase the robustness of the result for

cMðNS; NF; NVÞ, we employ here the gauge invariant flow
equation for a single metric field [63]. It has the important
advantage that all physical information is contained in the
gauge invariant or diffeomorphism symmetric effective
action Γ̄k which depends on a single macroscopic metric
field gμν. Diffeomorphism invariance imposes an important
restriction on the allowed couplings, reducing greatly the
number of possible couplings as compared to an effective
action without gauge invariance, or with gauge invariance
only realized by simultaneous transformations of a back-
ground field ḡμν and an independent macroscopic metric
gμν. For example, keeping only up to two derivatives the
gauge invariant effective action for scalars coupled to
gravity reads

Γ̄k ¼
Z
x

ffiffiffi
g

p �
−
F
2
Rþ U þ

XNS

i¼1

Ki

2
∂μφi∂μφi

�
; ð4Þ

where we use the shorthand convention
R
x ¼

R
d4x, and F,

U, and K depend on k and are functions of the scalar fields

φi. Here R is the curvature scalar and g ¼ det gμν. We will
work in this truncation, setting further Ki ¼ 1.
We investigate the flow of UðρÞ, as embodied in the

dimensionless quantity uðρ̃Þ ¼ U=k4, with ρ a suitable
bilinear of scalar fields and ρ̃ ¼ ρ=k2. Similarly, we
establish flow equations for FðρÞ or wðρ̃Þ ¼ F=2k2. For
the gauge invariant flow equation one finds a rather simple
result:

k∂ku ¼ 2ρ̃∂ ρ̃u − 4uþ 1

32π2

�
NS − 2NF þ 2NV −

8

3

�

þ 5

24π2

�
1 −

u
w

�
−1

ð5Þ

and

k∂kw ¼ 2ρ̃∂ ρ̃w − 2wþ 1

96π2

�
−NS − NF þ 4NV þ 43

6

�

þ 25

64π2

�
1 −

u
w

�
−1
: ð6Þ

This result uses the Litim cutoff function [64] and makes a
mild simplification in the sector of scalar fluctuations.
Constant scaling solutions for an UV-fixed point are found
by setting ∂ku ¼ ∂ ρ̃u ¼ ∂kw ¼ ∂ ρ̃w ¼ 0.
Within our truncation we find an acceptable UV-fixed

point with stable gravity for a large region in “theory space”
ðNS; NF; NVÞ. This region includes pure gravity, the
standard model, and many grand unified models. Our
truncation becomes doubtful for large positive values of
NS þ NF − 4NV . Discarding this doubtful extreme region
the quartic scalar coupling is found to be an irrelevant
parameter. It can therefore be predicted, giving support to
the prediction of the Higgs boson mass [11]. The validity
for a large positive value of NS þ NF − 4NV may be
enlarged by extending the truncation for the gravity system.
The limitation of the truncation will be discussed in
Sec. V B.
In Sec. II we briefly recapitulate the gauge invariant flow

equation for the effective average action for quantum
gravity. Subsequently, we discuss separately the different
contributions to the flow of the effective scalar potential
UðρÞ and the effective squared Planck mass FðρÞ. We start
in Sec. III A with the fluctuations of massless scalars and
continue in Sec. III B with massless gauge bosons. The
gauge boson fluctuations alone are sufficient to generate an
acceptable UV-fixed point for quantum gravity. Section III
C addresses the coupled system of gauge bosons and
scalars for nonvanishing gauge couplings, and Sec. III D
includes fermionic fluctuations. Matter fluctuations alone
generate an UV-fixed point with stable gravity pro-
vided NS þ NF < 4NV .
In Sec. IV we discuss the flow contributions from

fluctuations of the metric. The gauge invariant flow
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equation offers the advantage that the contributions from
physical fluctuations are independent of the ones from
gauge modes and the regularized Faddeev-Popov determi-
nant. Section IVA describes the dominant graviton con-
tribution from the traceless transverse metric fluctuations.
In Sec. IV B we discuss the combined “measure contribu-
tion” from gauge modes and the Faddeev-Popov determi-
nant. Section IV C presents a simplified version of the
subleading contribution from the physical scalar metric
fluctuation. The full contribution is displayed in the
Appendixes A and D.
In Sec. V we discuss in detail the UV-fixed point solution

for ρ-independentU andF. An approximate treatment of the
subleading physical scalar metric fluctuations and their
mixing with other scalar fluctuations allows us to discuss
many aspects analytically. The contributions from matter
fluctuations, as well as the measure contribution and the
contribution from the physical scalar metric fluctuations can
be combined into two effective parameters Ñ U ¼ NS −
2NF þ 2NV − 8=3 and ÑM ¼ −NS − NF þ 4NV þ 43=6.
For all these contributions the propagator is the one for
massless fields. Only for the graviton contribution does the
value of U, corresponding to a cosmological constant,
influence the propagator.
Section VI addresses the consequences of our inves-

tigation for the predictability of the parameters of the Higgs
potential. This issue depends on the particle physics model
coupled to quantum gravity. The precise number of mass-
less scalars, fermions, and vector bosons for the UV
completion of the standard model influences Ñ U and
ÑM and therefore the precise location and properties of
the fixed point.
Many of the particles may acquire a mass proportional to

the Planck mass M̄p as the flow of couplings moves away
from the fixed point. This is typically the case for grand
unified theories (GUTs). The effective low energy theory
below the Planck mass may be only the standard model.
Nevertheless, predictions for the fixed point and critical
exponents for small deviations from it depend on the
complete microphysical particle model. If the microscopic
model remains the standard model, the quartic Higgs
coupling is an irrelevant parameter and can be predicted.
In contrast, the mass term is a relevant parameter such that
the gauge hierarchy is a free parameter that cannot be
predicted. This is similar for a minimal GUT based on
SU(5). For microscopic GUTs with a large number of
scalar NS the gravity induced anomalous dimension for the
scalar mass term and quartic coupling increases due to the
graviton propagator moving close to the onset of instability.
This is the region where our truncation becomes doubtful.
Unfortunately, at the present stage no robust statement is
possible on the question if the mass term for the Higgs
scalar becomes irrelevant (self-induced criticality) in GUTs
with large NS as SO(10). In Sec. VII we present our
conclusions.

II. GAUGE INVARIANT FLOW EQUATION

The gauge invariant flow equation for the gauge invariant
effective average action Γ̄k takes the form [63,65]

k∂kΓ̄k ¼ ∂tΓ̄k ¼ πk − δk; ð7Þ

with πk the contribution of physical fluctuations that
depends on Γ̄k, and δk a universal measure contribution
that is independent of Γ̄k. The contribution from physical
fluctuations takes the one-loop form

πk ¼
1

2
Strf∂tRPGPg; ð8Þ

where Str denotes a momentum integration and summation
over internal indices, with an additional minus sign for
fermions arising from their Grassmann nature. The full
propagator GP for the physical modes is a functional of
arbitrary macroscopic fields, such that Eq. (7) is a func-
tional differential equation. With P the projector on the
physical fluctuations, the physical propagator obeys
PGP ¼ GPPT ¼ GP. The infrared cutoff function RP acts
on the physical fluctuations.
The relation between Γ̄k and GP involves the projector

on the physical fluctuations,

ðΓ̄ð2Þ
k þ RPÞGP ¼ PT: ð9Þ

In the presence of a local gauge symmetry the second

functional derivative Γ̄ð2Þ
k of a gauge invariant effective

action has zero modes corresponding to the gauge degrees
of freedom (d.o.f.). It is therefore not invertible. It is
invertible, however, on the projected subspace of physical
fluctuations. This underlies the relation (9), which remains
meaningful even in the limit k → 0 where RP vanishes. In
short, the physical propagator is the inverse of the second
functional derivative of Γ̄k on the projected subspace. For
the flow equation, it is the inverse in the presence of the IR-
cutoff RP. Insertion of Eq. (9) into Eq. (8) closes the flow
equation, which becomes a functional differential equation
for Γ̄k.
Projection operators on physical fluctuations are neces-

sarily nonlocal objects. An example is the projection on a
transverse photon, Pμ

ν ¼ δνμ − qμqν=q2. At first sight the
gauge invariant flow equations (8) and (9) seem therefore to
be plagued by severe nonlocalities. The explicit use of
projectors can be circumvented, however, by a simple

procedure. One adds to Γ̄ð2Þ
k the second functional deriva-

tive of a physical gauge fixing term Γ̃ð2Þ
gf =α, Γð2Þ

k ¼
Γ̄ð2Þ
k þ Γ̃ð2Þ

gf =α, which renders Γð2Þ
k invertible. A physical

gauge fixing acts only on the gauge fluctuations, obeying

PT Γ̃ð2Þ
gf ¼ Γ̃ð2Þ

gf P ¼ 0: ð10Þ
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Adding also an IR cutoff for the gauge modes Rgf=α, the
propagator in the presence of gauge fixing and IR cutoffs is
given by

G ¼
�
Γ̄ð2Þ
k þ RP þ 1

α
ðΓ̃ð2Þ

gf þ RgfÞ
�
−1
: ð11Þ

No projectors are needed any longer for the inversion.
For α → 0 one finds a block diagonal form of the

propagator matrix G, with a physical block GP and a
block for the gauge modes that vanishes ∼α. As a
consequence, one has

1

2
trf∂tðRP þ Rgf=αÞðΓð2Þ

k þ RP þ Rgf=αÞ−1g
¼ πk þ δk: ð12Þ

The part δk arises from the block in G for the gauge modes.
This part of G is proportional to α, such that multiplication
with ∂tRgf=α yields a result that remains finite for α → 0. It
is given by a simple determinant in the projected space of
gauge modes

δk ¼
1

2
∂t ln det ðΓ̃ð2Þ

gf þ RgfÞ; ð13Þ

with Γ̃ð2Þ
gf a fixed differential operator, such that the k

dependence arises only from Rgf . With given δk we can
compute the flow contribution of the physical fluctuations
πk from Eq. (12) without any explicit use of projections.
Despite the close resemblance to the method of gauge

fixing, the gauge invariant flow equation (8) does not use
any gauge fixing. The addition of Γ̃ð2Þ

gf =α should be seen as
a purely technical device for an effective computation of
GP, as defined by Eq. (9). The relation (10) and the limit
α → 0 are mandatory, and there is no freedom for the
choice of a gauge fixing.
The measure factor in Eq. (7) amounts to −δk, with δk a

universal expression given by Eq. (13) [63,65]. It expresses
the presence of nonlinear constraints for the physical
fluctuations. Omitting the measure term −δk in the gauge
invariant flow equation (7) would erroneously treat the
physical fluctuations as unconstrained fields. In the present
approach the measure contribution is universal since the
presence of constraints does not involve the form of the
effective action Γ̄k. It is based [63] on the direct regulari-
zation of the Faddeev-Popov determinant, and no ghosts
are introduced. It is not known if this type of IR regulari-
zation is sufficient for all purposes. For the present level of
truncation we establish explicitly in Appendix D the
equivalence with a regularization of the ghost propagator.
Despite the conceptional difference, Eq. (12) can also be

viewed as the flow generator for a gauge fixed theory with a
truncation of the form

Γk ¼ Γ̄k þ Γgf ; Γð2Þ
gf ¼ 1

α
Γ̃ð2Þ
gf ; ð14Þ

up to a part from ghost fluctuations. This holds provided
one uses for Γgf a physical gauge fixing that acts only on
the gauge modes. The ghost contribution amounts to −2δk,
having the same structure as the contribution from gauge
fluctuations, but with opposite sign and a factor of 2. We
therefore observe a rather close relation between the gauge
invariant flow equation and the background field method
with a particular physical gauge fixing and a particular
truncation. This relation is discussed in detail in
Appendixes A and D.
The quantity Γ̃ð2Þ

gf appearing in the measure term (13)
follows from

Γgf ¼
1

α
Γ̃gf ¼

1

2α

Z
x

ffiffiffi
g

p
DμaμνDρaρν ð15Þ

by second variation with respect to the gauge fluctuation
aμν. It corresponds to a physical gauge fixing condition
Dμhμν ¼ 0, with hμν ¼ fμν þ aμν the fluctuation of the
metric around the macroscopic metric gμν, and fμν the
physical fluctuation. Gauge transformations act only on

aμν, leaving fμν invariant. By construction, Γ̃ð2Þ
gf obeys the

projection condition (10). The precise form of Γ̃ð2Þ
gf will be

discussed in Sec. IV.
The infrared cutoff functions RP and Rgf involve

covariant derivatives formed with the macroscopic metric.
This dependence on the macroscopic metric is a crucial
feature for guaranteeing gauge invariance in a formulation
with a single macroscopic metric and no separate “back-
ground metric.” As a consequence of the formulation in
terms of a single metric, the derivatives ∂t ¼ k∂k and
∂=∂gμν commute. For example, the flow equation for the
graviton propagator follows directly from the second
functional derivative of πk − δk with respect to the metric.
This feature is an important difference as compared to the
background field formalism, even if one uses for the latter
the truncation (14). Derivatives of the flow generator with
respect to the metric contain parts that involve field
derivatives of Rk. This results in additional diagrams for
the flow equation for propagators or vertices. These addi-
tional diagrams involve external lines “ending” in the Rk
insertion. They are not present in the background field
formalism. This is true only for the average fluctuations
lines [66]. It is a crucial advantage of the gauge invariant
formulation with a single metric that physical propagators
and vertices can be extracted directly from functional
derivatives of the gauge invariant effective action Γ̄k for
k → 0. The gravitational field equations imply that source
terms always involve a covariantly conserved energy
momentum tensor. This property does not hold automati-
cally in the background field formalism. We here comment
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on the modification of local symmetries in the background
field formalism. In the standard background field formal-
ism for the gravity–Yang-Mills system, the effective action,
especially the ghost action, loses the SUðNÞ gauge invari-
ance due to the noncommutative feature between diffeo-
morphisms and the SUðNÞ gauge transformations. For this
issue one would define modified diffeomorphisms [67,68]
such that the effective action is invariant under both the
modified diffeomorphisms and the SUðNÞ gauge trans-
formations. On the other hand, in the present gauge
invariant formalism such a modification is not required
since the projection operators P for local transformations,
which define the propagators of the physical modes as
Eq. (9), are commutative and then the gauge invariant
theory space is automatically projected out.
We conclude that the gauge invariant flow equation has

many attractive properties. What is not settled at the present
stage is the question whether this equation is exact, or
whether it is only an approximation to a more complicated
functional differential equation for Γ̄k. If the macroscopic
metric is identified with the expectation value of the
microscopic metric, and Γ̄k is defined by the standard
implicit functional integral over fluctuations (functional
differential equation or “background field identity”), the
flow equations (8) and (9) are only an approximation [65].
In this case the exact gauge invariant flow equation for Γ̄k
involves a gauge invariant correction term. It has been
argued that Eqs. (8) and (9) can become exact if one
chooses a different macroscopic metric and modifies the
definition of Γ̄k. This requires that the differential equation
relating an optimized macroscopic metric to the expectation
value of the microscopic metric admits a solution [63].
Only the existence of a solution is needed, but a proof or
disproof of existence is not available so far. We note here
that there exists an exact formula if one chooses
gμν ¼ hgμνi. In this version there are correction terms that
may be absorbed by a different definition of the macro-
scopic metric gμν. One could estimate the relative impor-
tance of the correction term. At the present level we think,
however, that the truncation error is dominant. As a check
of the validity of different truncations, the stability of
critical exponents could still be an indicator for the
approximation to the flow equation.

III. MATTER INDUCED FLOWING PLANCKMASS

In this section we compute the contribution to the flow
equations for the effective scalar potential U and the
coefficient of the curvature scalar F from fluctuations of
scalars, gauge bosons, and fermions. We partly recover
results of earlier work for a subclass of employed methods
and choices of cutoff functions, and we trace the origin of
the differences to other results. Since no metric fluctuations
are involved at this stage, the issue of gauge fixing for
diffeomorphism symmetry does not matter at this stage.

What is important for the differences between earlier results
in the background formalism or flow equations violating
gauge symmetry is the treatment of terms in Γk involving
the differences between macroscopic fields and background
fields, and the choices of infrared cutoffs. Our approach of
gauge invariant flow equations, combined with require-
ments of locality for the choice of cutoff functions,
eliminates many earlier ambiguities in the computation
of cM.
We find that matter fluctuations alone induce a fixed

point for the flowing dimensionless Planck mass, provided
that the number of gauge bosons NV exceeds the value
ðNS þ NFÞ=4. This can serve as a demonstration for the
solidity of the concept of a nonperturbative fixed point for
quantum gravity. Particle physics models with 4NV − NS −
NF > 0 and NV → ∞ are easily constructed. In this limit
the strength of gravity at the fixed point w−1 tends to zero
∼N−1

V . Thus metric fluctuations play a subdominant role
and may be neglected, eliminating thereby many associated
conceptional issues. The case of matter domination for
NV → ∞ realizes in a certain sense old ideas of “induced
gravity” [69]. In contrast to the divergent expressions in a
simple loop expansion, which involve often a problem of
interpretation and preservation of symmetries, our flow
equation is UV finite and gauge invariant.

A. Flow contribution from scalar field

Basic properties can be understood from the contribution
of a scalar field with effective action

ΓðSÞ
k ¼

Z
x

ffiffiffi
g

p �
1

2
∂μφ∂μφþ UðφÞ − 1

2
FðφÞR

�
: ð16Þ

The second functional derivative with respect to φ reads

ΓðS;2Þ
k ¼ ffiffiffi

g
p �

−D2 þm2ðφÞ − 1

2
ξ̃ðφÞR

�
; ð17Þ

where D2 ¼ DμDμ, Dμ is a covariant derivative, and

m2ðφÞ ¼ ∂2U
∂φ2

; ξ̃2ðφÞ ¼ ∂2F
∂φ2

: ð18Þ

Adding an appropriate IR-cutoff term
ffiffiffi
g

p
Rkð−D2Þ

modifies

ffiffiffi
g

p ð−D2Þ → ffiffiffi
g

p
Pkð−D2Þ ¼ ffiffiffi

g
p ð−D2 þ Rkð−D2ÞÞ: ð19Þ

The scalar contribution to the flow equation reads

∂tΓk ¼
1

2
trð0Þ

�
∂tRkð−D2Þ

�
Pkð−D2Þ þm2 −

ξ̃R
2

�−1�
:

ð20Þ
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We note that the factor
ffiffiffi
g

p
drops out, multiplying both −D2

and Rkð−D2Þ. We can write

∂tΓk ¼
1

2
trð0Þ∂̃t ln

�
Pkð−D2Þ þm2 −

ξ̃R
2

�
; ð21Þ

where ∂̃t acts only on the k dependence of the IR cutoff
Rk ¼ Pk þD2, e.g., not on m2, on ξ̃, or on parameters or
fields appearing in D2. The derivative ∂̃t makes the trace
finite. This is a central difference as compared to one-loop
perturbation theory.
We can write

∂tΓk ¼
1

2
trWðΔSÞ; ΔS ¼ −D2; ð22Þ

with

WðzÞ ¼ ∂tRkðzÞ
�
zþ RkðzÞ þm2 −

ξ̃R
2

�−1
: ð23Þ

The trace can be evaluated by the heat kernel expansion
(see Appendix B),

trWðΔSÞ ¼
1

16π2
X∞
n¼0

Q2−nðw̃Þ
Z
x

ffiffiffi
g

p
cS2nðΔSÞ: ð24Þ

The heat kernel coefficients for the operator ΔS ¼ −D2 are
well known,

cS0 ¼ bS0 ¼ 1; cS2 ¼ bS2R ¼ R
6
: ð25Þ

The functions Qn depend on the field φ via

w̃ ¼ m2ðφÞ
k2

−
ξ̃R
2k2

; ð26Þ

with

Q2 ¼
Z

∞

0

dzzWðzÞ; Q1 ¼
Z

∞

0

dzWðzÞ;

Q0 ¼ Wðz ¼ 0Þ; WðzÞ ¼ ∂tRkðzÞ
PkðzÞ þ w̃k2

: ð27Þ

The first two terms in the expansion yield

∂tΓk ¼
1

32π2

Z
x

ffiffiffi
g

p Z
∞

0

dz
∂tRkðzÞ

PkðzÞ þ w̃k2

�
zþ R

6

�
: ð28Þ

The functions Qn are directly related to the threshold
functions ld

0 that have been investigated in functional
renormalization for many different cutoffs [70–74],

Q2ðw̃Þ ¼ 2l4
0ðw̃Þk4 ¼

k4

1þ w̃
;

Q1ðw̃Þ ¼ 2l2
0ðw̃Þk2 ¼

2k2

1þ w̃
; ð29Þ

where the second identity uses the specific Litim cutoff
[64]. One infers

∂t

Z
x

ffiffiffi
g

p �
U −

F
2
R

�
¼ πðSÞk

¼ 1

16π2

Z
x

ffiffiffi
g

p �
k4l4

0ðw̃Þ þ
1

6
k2l2

0ðw̃ÞR
�
; ð30Þ

For R ¼ 0 this yields the flow equation for the effective
potential

∂tU ¼ k4

16π2
l4
0ðm̃2Þ ¼ k4

32π2ð1þ m̃2Þ ; ð31Þ

with

m̃2 ¼ m2

k2
: ð32Þ

One recovers the standard flow for a scalar model
[13,70,73].
For the flow of the coefficient of the curvature scalar F

we expand in linear order in R

l4
0ðw̃Þ ¼ l4

0ðm̃2Þ þ 1

2
ξ̃l4

1ðm̃2Þ R
k2

; ð33Þ

with

ld
1ðw̃Þ ¼ −

∂ld
0ðw̃Þ
∂w̃ ; l4

1ðm̃2Þ ¼ 1

2ð1þ m̃2Þ2 ; ð34Þ

where the last identity applies for the Litim cutoff. The flow
equation for F therefore receives an additional contribution
∼ξ̃,

∂tF ¼ −
k2

48π2
l2
0ðm̃2Þ − k2ξ̃

16π2
l4
1ðm̃2Þ

¼ −
k2

48π2ð1þ m̃2Þ −
k2ξ̃

32π2ð1þ m̃2Þ2 : ð35Þ

These results agree with a computation for a fixed back-
ground geometry [75]. For ξ̃ ¼ 0 the result agrees with
Refs. [7,15,21,30,36,37].
For the dimensionless functions and field variables

u ¼ U
k4

; w ¼ F
2k2

; ρ̃ ¼ ρ

k2
¼ φ2

2k2
; ð36Þ
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we obtain

∂tuðρ̃Þ ¼ −4uþ 2ρ̃∂ ρ̃uþ 4cV;

∂twðρ̃Þ ¼ −2wþ 2ρ̃∂ ρ̃wþ 2cM; ð37Þ

with scalar contributions to cV and cM

cðSÞV ¼ 1

128π2ð1þ m̃2Þ ;

cðSÞM ¼ −
1

192π2ð1þ m̃2Þ −
ξ̃

128π2ð1þ m̃2Þ2 : ð38Þ

Here we have switched from fixed ρ for Eqs. (31) and (35)
to fixed ρ̃, and we assume a discrete symmetry φ → −φ
such that U and F depend only on ρ, with

m̃2 ¼ ∂ ρ̃uþ 2ρ̃∂2
ρ̃u ¼ u0 þ 2ρ̃u00: ð39Þ

The flow equations (37) have a fixed point or scaling
solution with ρ̃-independent uðρ̃Þ ¼ u� and wðρ̃Þ ¼ w�,

u� ¼ cVð0Þ; w� ¼ cMð0Þ; ð40Þ

where cV and cM are evaluated for m̃2 ¼ 0, ξ̃ ¼ 0. Indeed,
for constant u and w one has w̃ ¼ 0. This fixed point occurs
for negative w� or a negative squared running Planck mass
M2

pðkÞ ¼ 2w�k2. It does not correspond to stable gravity
and is therefore not acceptable for the definition of quantum
gravity.
One may alternatively extract the flow of the Planck

mass and other aspects of the gravitational effective action
from the flow of the graviton propagator. This is discussed
in Appendix C. For the gauge invariant flow equation one
finds the same results as for the heat kernel expansion. This
differs from computations for which the IR-cutoff Rk does
not involve the macroscopic metric through covariant
derivatives, but rather only involves momenta in flat space,
or covariant derivatives with a fixed background metric. A
comparison of our gauge invariant approach with the
background formalism can be found in Appendix C.

B. Gauge bosons

We next consider the flow of F and U induced by the
fluctuations of gauge bosons. We employ the gauge
invariant flow equation [63,65]. The connection to a gauge
fixed version in the background field formulation for the
Landau gauge is similar to the case of gravity discussed in
Sec. II. The contribution of the gauge boson fluctuations to

the flow of U and F involves again a physical part πðVÞk and

a universal measure part −δðVÞk , which is a fixed functional
of the metric and gauge fields,

∂tΓk ¼ ζðVÞk ¼ πðVÞk − δðVÞk : ð41Þ

The measure factor arises from the nonlinearity of the
constraint for the physical gauge boson fluctuations. The

physical part πðVÞk depends on the gauge invariant effective

action Γ̄ðVÞ
k for the gauge bosons.

We concentrate on a single gauge boson of an Abelian
U(1)-gauge theory—a photon coupled to gravity. This is
sufficient for the flow of U and F. Both are evaluated for
zero macroscopic gauge fields. We first assume a fixed
point with a vanishing gauge coupling. Nonvanishing
gauge couplings are discussed in Sec. III C. For a vanishing
gauge coupling any Abelian or non-Abelian gauge theory
with a total ofNV gauge bosons gives the same contribution

asNV photons. The measure term−δðVÞk only appears due to
the metric dependence of the covariant derivatives in the
projection on physical gauge boson fluctuations.
For the truncation of the gauge invariant effective action

Γ̄ðVÞ
k we consider here the minimal kinetic term

Γ̄ðVÞ
k ¼ 1

4e2

Z
x

ffiffiffi
g

p
FμνFμν; ð42Þ

with field strength

Fμν ¼ DμAν −DνAμ ¼ ∂μAν − ∂νAμ; ð43Þ

and gauge coupling e. Covariant derivatives involve the
macroscopic metric, while they are independent of gauge
fields in the case of an Abelian gauge symmetry.
For the photon field the physical d.o.f. are the transverse

field, where the longitudinal field is a gauge mode. We
introduce projection operators

ðPLÞμν ¼ DμD−2Dν; ðPTÞμν ¼ δνμ − ðPLÞμν; ð44Þ

which obey [ðP2
LÞμν ¼ ðPLÞμρðPLÞρν, etc.]

P2
L ¼ PL; P2

T ¼ PT; PLPT ¼ PTPL ¼ 0: ð45Þ

The corresponding transversal and longitudinal gauge
fluctuations are

AT
μ ¼ ðPTÞμνAν; AL

μ ¼ ðPLÞμνAν; Aμ ¼ AT
μ þ AL

μ :

ð46Þ

Since we evaluate the flow of the effective action for
vanishing macroscopic gauge fields, we make here no
difference between the gauge fields and the fluctuations of
gauge fields around a macroscopic field. For Yang-Mills
theories the projection of infinitesimal physical fluctuations
remains well defined for arbitrary macroscopic gauge
fields, while no global definition of a physical field exists
[63,65].
The longitudinal gauge field can be written as the

derivative of a scalar
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AL
μ ¼ ∂μa ¼ Dμa; ðPTÞμνDνa ¼ 0: ð47Þ

Under an infinitesimal gauge transformation Aμ →
Aμ þ δAμ, δAμ ¼ ∂μb the transversal gauge field is invari-
ant, while the longitudinal gauge field transforms as

δAL
μ ¼ ∂μb; δa ¼ b; δAT

μ ¼ 0: ð48Þ

We can therefore consider AL
μ as a gauge d.o.f., while AT

μ is
a gauge invariant “physical d.o.f.”
By partial integration we can write

Γ̄ðVÞ
k ¼ 1

2e2

Z
x

ffiffiffi
g

p
AμðDμν þDμDνÞAν ð49Þ

with

Dμν ¼ −D2gμν þ Rμν: ð50Þ

The part involving the transversal gauge fields therefore
reads

Γ̄ðVÞ
k ¼ 1

2e2

Z
x

ffiffiffi
g

p
AT
μD

μν
T AT

ν : ð51Þ

Indeed, we can project Dμ
ν ¼ D on the subspace of

transversal and longitudinal fluctuations,

ðDTÞμν ¼ ðPTDPTÞμν ¼ −D2δνμ þ Rμ
ν þDμDν;

ðDLÞμν ¼ ðPLDPLÞμν ¼ −DμDν: ð52Þ

Even though the projectors PT and PL are nonlocal, the
projected operators DT and DL involve only two deriva-
tives. One has

D ¼ DT þDL; PTDPL ¼ PLDPT ¼ 0;

DLDT ¼ DTDL ¼ 0: ð53Þ

The computation of πðVÞk from a gauge invariant flow
equation involves the projector PT similar to Eq. (9). We

employ again the trick of first computing πðVÞk þ δðVÞk by
adding to the action a formal gauge fixing term

ΓðVÞ
gf ¼ 1

2α

Z
x

ffiffiffi
g

p ðDμAμÞ2: ð54Þ

We need to take the limit α → 0, such that Eq. (54)
corresponds to Landau gauge fixing. By partial integration
the gauge fixing part reads

ΓðVÞ
gf ¼ −

1

2α

Z
x

ffiffiffi
g

p
AμDμDνAν ð55Þ

or

ΓðVÞ
gf ¼ 1

2α

Z
x

ffiffiffi
g

p
AL
μD

μν
L AL

ν : ð56Þ

As it should be for a physical gauge fixing, Γgf involves
only the gauge d.o.f. AL

μ . In contrast, for our ansatz (42) Γ̄
depends only on the gauge invariant field AT

μ .
If we define ΓðVÞ

k ¼ Γ̄ðVÞ
k þ ΓðVÞ

gf , the second functional
derivative is block diagonal in the transverse and longi-
tudinal fields,

ΓðV;2Þ
k ¼

ffiffiffi
g

p
e2

PTDPT þ
ffiffiffi
g

p
α

PLDPL

¼ ffiffiffi
g

p �
1

e2
DT þ

1

α
DL

�
: ð57Þ

In consequence, also its inverse or the propagator is block
diagonal for α → 0, with a block for the gauge modes ∼α.
For the particular case of a maximally symmetric space,

Rμν ¼
1

4
Rgμν; ð58Þ

one has

Dμν ¼
�
−D2 þ R

4

�
gμν: ð59Þ

We introduce the infrared cutoff function Rk such that

ΓðV;2Þ
k þRk ¼

ffiffiffi
g

p �
1

e2
PkðDTÞ þ

1

α
PkðDLÞ

�
; ð60Þ

with

PkðzÞ ¼ zþ RkðzÞ: ð61Þ

One infers for the sum

πðVÞk þ δðVÞk ¼ 1

2
trfðΓðV;2Þ

k þRkÞ−1∂tRkg: ð62Þ

The part δðVÞk is connected to the gauge fluctuations, and the
separate contributions are given by

πðVÞk ¼ 1

2
trWðDTÞ; δðVÞk ¼ 1

2
trWðDLÞ;

with

WðzÞ ¼ ∂tRkðzÞðzþ RkðzÞÞ−1: ð63Þ

The quantity δk also determines the measure contribution
in Eq. (41).
Let us first evaluate the measure contribution δðVÞk .

Writing the longitudinal gauge field as the derivative of
a scalar (47), one has
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ðDLÞμνAL
ν ¼ ðDLÞμνDνa ¼ Dμð−D2Þa: ð64Þ

The eigenvalues of the (negative) scalar Laplacian ΔS ¼
−D2 acting on a are the eigenvalues of DL acting on AL

μ ,
implying

δðVÞk ¼ 1

2
trð0ÞWðΔSÞ; ð65Þ

with trð0Þ the trace over scalar fields. Therefore the flow

contribution δðVÞk is the same as the one for a massless scalar

δðVÞk ¼ 1

16π2

Z
x

ffiffiffi
g

p �
l4
0k

4 þ 1

6
l2
0k

2R

�
: ð66Þ

We next turn to the contribution πðVÞk from the physical
gauge boson fluctuations,

πðVÞk ¼ 1

2
trð1ÞWðDÞ; ðDÞμν ¼ ΔVδ

ν
μ þ Rν

μ: ð67Þ

Here trð1Þ is the trace over transverse vector fields (spin one)
and ΔV ¼ −D2 the (negative) Laplacian acting on vector
fields. We will evaluate the trace (65) again by the heat
kernel method; see Appendix B.
For the evaluation of tr expð−sD1Þ we employ the

fact that the result is a series of integrals over local terms
that are invariant under diffeomorphism transformations.
Dimensional analysis implies c2 ¼ b2R. For the computa-
tion of b2 we can choose the geometry of a maximally
symmetric space with constant R, for which Eq. (59)
implies

trð1Þe−sD ¼ trð1Þe−sðΔVþR=4Þ ¼ ðtrð1Þe−sΔV Þðe−sR=4Þ

¼ ðtrð1Þe−sΔV Þ
�
1 −

sR
4

þ � � �
�
: ð68Þ

From

trð1Þe−sΔV ¼ 1

16π2

Z
x

ffiffiffi
g

p ðbV0 s−2 þ bV2Rs
−1 þ � � �Þ; ð69Þ

one infers

trð1Þe−sD1 ¼ 1

16π2

Z
x

ffiffiffi
g

p �
bV0 s

−2 þ
�
bV2 −

bV0
4

�
Rs−1 þ � � �

�
:

ð70Þ

With

bV0 ¼ 3; bV2 ¼ 1

4
; bV2 −

bV0
4

¼ −
1

2
; ð71Þ

one obtains a negative contribution of the term ∼R.

Employing again the relation between the function Qn
and the threshold functions, the flow contribution from the
transverse vector fields is

πðVÞk ¼ 1

16π2

Z
x

ffiffiffi
g

p �
3l4

0k
4 −

1

2
l2
0k

2R

�
; ð72Þ

with threshold functions evaluated for w̃ ¼ 0. Wewill see in
Sec. III C that in the case of a nonvanishing gauge coupling

w̃ will depend on ρ̃, i.e., w̃ ¼ e2ρ̃. Then also πðVÞk will

depend on ρ̃, while for δðVÞk the threshold functions remain
evaluated at w̃ ¼ 0.
Taking terms together the flow contribution of a massless

gauge field is

∂t

Z
x

ffiffiffi
g

p �
U −

F
2
R

�
¼ ζðVÞk

¼ 1

16π2

Z ffiffiffi
g

p �
2k4l4

0 −
2k2

3
l2
0R

�
ð73Þ

or

∂tU ¼ k4l4
0

8π2
; ∂tF ¼ k2l2

0

12π2
: ð74Þ

For NV gauge fields one has in Eq. (37), using the Litim
cutoff (29),

cðVÞV ¼ NVl4
0

32π2
¼ NV

64π2
; cðVÞM ¼ NVl2

0

48π2
¼ NV

48π2
: ð75Þ

Our final result is very simple. It agrees with
Refs. [7,15,30].
The flow equations (74), translated to the dimensionless

quantities u and w in Eq. (36), admit a simple fixed point
with ρ̃-independent u and w

u� ¼ cV; w� ¼ cM: ð76Þ

This fixed point occurs now for a positive running Planck
mass M2

pðkÞ ¼ 2cMk2. In contrast to scalar fluctuations, a
fixed point induced by NV massless vector boson fluctua-
tions leads to stable gravity. A UV-fixed point of this type
can be used to define quantum gravity as an asymptotically
safe quantum field theory. A measure for the strength of
gravity is w−1. In the limit NV → ∞ one finds that w−1

tends to zero such that gravity is weak. This may allow for a
valid perturbative expansion in w−1.
The positive sign of cM is a crucial ingredient. This

property should not depend on the precise implementation
of the IR cutoff. The threshold function l2

0 is positive for
every cutoff function with positive ∂tRk. We may also
consider a different implementation with Rk depending
only on −D2 instead of DT and DL. This is investigated in
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Appendix E. It leads to a similar result, with threshold
function l2

0 replaced by a different threshold function l4
1.

When the so-called type I is employed, one should replace

NV → 7NV=16 ≈ 0.438NV for cðVÞM given in Eq. (75).

C. Gauge bosons coupled to scalars

We next investigate the role of a possible nonzero gauge
coupling for the properties of the fixed point. For this
purpose we consider scalar quantum electrodynamics with
a complex scalar coupled to a gauge boson. Because of the
U(1)-gauge symmetry U and F can depend only on
ρ ¼ φ�φ. We normalize the gauge coupling e such that
the gauge boson mass is given by m2

g ¼ e2ρ. The contri-
bution (38) to the flow from the two real scalar fields is

cðSÞV ¼ 1

128π2

�
1

1þ u0 þ 2ρ̃u00
þ 1

1þ u0

�
;

cðSÞM ¼ −
1

192π2

�
1

1þ u0 þ 2ρ̃u00
þ 1

1þ u0

�
: ð77Þ

The first term in these equations arises from the “radial
mode” with m̃2 ¼ u0 þ 2ρ̃u00, while the second corresponds
to the “Goldstone mode”with m̃2 ¼ u0. In Eq. (77) we have
omitted a nonminimal coupling ξ̃ to gravity, which would

give an additional contribution to cðSÞM . The contributions
from scalar fluctuations are not modified in the presence of
a nonzero gauge coupling e.
The contribution from the physical gauge boson fluctu-

ations πðVÞk is sensitive to e2 ≠ 0 through a different
argument w̃ of the threshold functions. Indeed, a nonzero
ρ induces a mass term for the transverse gauge boson
fluctuations, resulting in w̃ ¼ e2ρ̃. As a consequence, the
threshold functions l4

0 and l
2
0 in Eq. (74) are now functions

of w̃ ¼ e2ρ̃, instead of being evaluated at w̃ ¼ 0.
For the gauge invariant flow equation this is the only

change. Because of the projection on the physical fluctua-
tions there are no mixing effects. The transverse gauge
bosons are vectors that cannot mix with scalars for any
rotation invariant geometry.
A similar behavior is found for a gauge fixed background

field approach. In this case the physical gauge fixing
(Landau gauge) is crucial for the absence of mixed terms.
The gauge invariant scalar kinetic term can be written
in terms of a scalar fluctuation χ around the macroscopic
field φ,

Γkin ¼
Z
x

ffiffiffi
g

p ½ðDμ − iAμÞðφþ χÞ��½ðDμ − iAμÞðφþ χÞ�:

ð78Þ

For Γð2Þ we need the terms quadratic in Aμ and χ,

Γkin;2 ¼
Z
x

ffiffiffi
g

p ½ðDμχÞ�ðDμχÞ þ χ�χAμAμ� þ Γmix;

Γmix ¼ −i
Z
x

ffiffiffi
g

p
Aμ½ðDμχÞ�φ − φ�Dμχ�: ð79Þ

The mixed term involves only the longitudinal gauge fixed
AL
μ . We can take φ real, and χ ¼ ðχR þ iχIÞ, such that

Γmix ¼ −2φ
Z
x

ffiffiffi
g

p
AμDμχI ¼ 2φ

Z
x

ffiffiffi
g

p
χIDμAμ: ð80Þ

Because of the divergence of Γð2Þ
k þRk in the longitudinal

sector ∼α−1, the effect of the mixed term vanishes in the

propagator ðΓð2Þ
k þRkÞ−1 proportional to α. It does not

contribute to the flow equation.
In consequence of the absence of mixing and the simple

change of argument in the photon threshold function, one
obtains rather simple flow equations. They read for a Litim
cutoff

∂tu ¼ −4uþ 2ρ̃∂ ρ̃uþ 4cV;

∂tw ¼ −2wþ 2ρ̃∂ ρ̃wþ 2cM; ð81Þ

with

cV ¼ 1

128π2

�
3

1þ e2ρ̃
− 1þ 1

1þ u0
þ 1

1þ u0 þ 2ρ̃u00

�
;

cM ¼ 1

192π2

�
3

1þ e2ρ̃
þ 1 −

1

1þ u0
−

1

1þ u0 þ 2ρ̃u00

�
:

ð82Þ

This generalizes to the case of several vector bosons and
more complicated scalar sectors. The dependence on the
gauge coupling arises only from the physical gauge boson
fluctuations. For each gauge boson one needs the field-
dependent squared mass or the corresponding eigenvalue of
the mass matrix.
The qualitative effects of nonzero e2 can already be seen

for the Abelian case of a single photon with w̃ ¼ e2ρ̃. We
concentrate on the effects for the properties of the scaling
solution. For the scaling solution ∂tu and ∂tw vanish. The
scaling solution therefore obeys the differential equations

ρ̃∂ ρ̃u ¼ 2ðu − cVÞ; ρ̃∂ ρ̃w ¼ w − cM: ð83Þ

For e2 ≠ 0 both cV and cM depend explicitly on ρ̃. This has
an immediate important consequence: a ρ̃-independent u
and w no longer solve Eq. (83).
For e2 ≠ 0 a possible UV-fixed point is characterized by

ρ̃-dependent scaling solutions of Eq. (83). We briefly
discuss here the limits ρ̃ → 0 and ρ̃ → ∞. For ρ̃ ¼ 0 the
solutions of the flow equation have to obey

CHRISTOF WETTERICH and MASATOSHI YAMADA PHYS. REV. D 100, 066017 (2019)

066017-10



u�ð0Þ ¼ cVð0Þ ¼
1

64π2

�
1þ 1

1þ m̃2
0

�
;

w�ð0Þ ¼ cMð0Þ ¼
1

96π2

�
2 −

1

1þ m̃2
0

�
; ð84Þ

with

m̃2
0 ¼ u0�ð0Þ: ð85Þ

One observes positivew�ð0Þ and u�ð0Þ. These values do not
depend on e2.
On the other hand, for ρ̃ → ∞ the gauge boson con-

tribution vanishes if e2 ≠ 0. In this limit cM becomes
negative. A possible asymptotic solution for ρ̃ → ∞ is

w → ξ∞ρ̃; u →
1

2
λ∞ρ̃

2: ð86Þ

With u0ðρ̃ → ∞Þ ¼ λ∞ρ̃ both cV and cM vanish in this limit
if λ∞ > 0.
We may investigate directly the flow of the ρ̃ dependence

of the functions uðρ̃Þ and wðρ̃Þ. For this purpose we define

m̃2ðρ̃Þ ¼ u0ðρ̃Þ; ξðρ̃Þ ¼ 1

2
w0ðρ̃Þ; λðρ̃Þ ¼ u00ðρ̃Þ:

ð87Þ

(The factor 1=2 in the definition of ξ is chosen such that for
constant ξ one has F ¼ 2w0k2 þ ξρ.) The flow equation for
the dimensionless scalar mass term m̃2ðρ̃Þ reads

∂tm̃2 ¼ −2m̃2 þ 2ρ̃∂ ρ̃m̃2 þ 4∂ ρ̃cV; ð88Þ

where

∂ ρ̃cV ¼ −
1

128π2

�
3e2

ð1þ e2ρ̃Þ2 þ
λ

ð1þ m̃2Þ2

þ 3λþ 2ρ̃u000

ð1þ m̃2 þ 2λρ̃Þ2
�
: ð89Þ

The fixed point value for m̃2
0 ¼ m̃2ðρ̃ ¼ 0Þ is negative

m̃2
0 ¼ −

1

64π2

�
3e2 þ 4λ0

ð1þ m̃2
0Þ2
�
: ð90Þ

If uðρ̃Þ increases for ρ̃ → ∞ or goes to a constant, one
expects a minimum of u at some ρ̃0 > 0, indicating
spontaneous symmetry breaking for the scaling solution.
For the flow equation for ξ one obtains

∂tξ ¼ 2ρ̃∂ ρ̃ξþ 2∂ ρ̃cM; ð91Þ

with

∂ ρ̃cM ¼ −
1

192π2

�
3e2

ð1þ e2ρ̃Þ2 −
λ

ð1þ m̃2Þ2

−
3λþ 2ρ̃u000

ð1þ m̃2 þ 2λρ̃Þ2
�
: ð92Þ

For the scaling solution ξðρ̃ → 0Þ diverges logarithmically

ξðρ̃Þ ¼ c1 þ c2 ln ρ̃; c2 ¼ −∂ ρ̃cMðρ̃ ¼ 0Þ: ð93Þ

The effective Planck mass remains finite for ρ̃ → 0,

w ¼ w0 þ 2ðc1 − c2Þρ̃þ 2c2ρ̃ ln ρ̃: ð94Þ

We conclude that a nonvanishing gauge coupling at the
fixed point has important consequences for the behavior of
the scaling solution.
In the present paper we will concentrate on a UV-fixed

point with e2� ¼ 0. The constant scaling solutions for the
fixed point exist in this case. We note, however, that e2 has
to be a relevant parameter in this case since the extrapo-
lation of the observed gauge couplings to the transition
scale kt where the metric fluctuations decouple indicate
nonzero e2ðktÞ. With e2 increasing slowly in the vicinity of
the fixed point, our discussion of constant e2 > 0 may still
be relevant for the flow away from the fixed point. Instead
of a fixed point one has in this case an approximate partial
fixed point.

D. Fermions

The gravitational interactions of fermions cannot be
described by a direct coupling to the metric. In the presence
of fermions the basic gravitational d.o.f. is the vierbein eμm.
The metric is subsequently associated with a bilinear of the
vierbein,

gμν ¼ eμmeνnηmn; ð95Þ

with ηmn ¼ diagð−1; 1; 1; 1Þ for the Minkowski signature
and ηmn ¼ δmn for the Euclidean signature. As an alter-
native, one may always use ηmn ¼ δmn and admit complex
values for the vierbein. The Minkowski signature for flat
space is then realized for eμm ¼ diagði; 1; 1; 1Þ. Analytic
continuation is achieved [76] by varying eμm ¼
ðeiϕ; 1; 1; 1Þ with ϕ ¼ 0 for the Euclidean signature and
ϕ ¼ π=2 for the Minkowski signature. With Eq. (95) one
has

ffiffiffi
g

p ¼ e ¼ detðeμmÞ, which yields the factor i multiply-
ing the action for Minkowski space. Our Euclidean notation
[76] is adapted to the complex vierbein for which analytic
continuation is straightforward even for curved space.
The second central object is the spin connection ωμmn,

which can be expressed in the simplest version of gravity
by the vierbein and its first derivative
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ωμmnðeÞ ¼
1

2
femρenτeμp∂τeρp − emρ∂ρeμn þ emρ∂μeρn

− ðm ↔ nÞg: ð96Þ

Here emμ is the inverse vierbein

emμeμn ¼ δnm; ð97Þ

where we suppose that eμm are elements of a regular matrix.
One can construct a curvature tensor in terms of the
vierbein and the spin connection

Rμνmnðe;ωÞ ¼ ∂μωνmn þ ωμmpων
p
n − ðμ ↔ νÞ: ð98Þ

For ω ¼ ωðeÞ according to Eq. (96) this is a function of the
vierbein involving two derivatives. Contraction with the
vierbein,

Rμνρτ ¼ eρmeτnRμνmn; ð99Þ

yields with Eqs. (95) and (96) the curvature tensor of
Riemannian geometry formed from gμν. For a computation
of the fermionic contribution to the flow of U and F it is
sufficient to investigate the fermion fluctuations in a
geometric background. We first perform this in a back-
ground given by the vierbein, and subsequently translate to
the metric.
For the effective action for fermions we choose the

truncation

ΓðFÞ
k ¼

Z
x
efiψ̄γmemμDμψ þ yψ̄γ5ψφg ð100Þ

with y a Yukawa coupling to a complex scalar field φ. In
our conventions for fermions, φ is a scalar (not a pseudo-
scalar), and a fermion mass term involves γ5,
Lm ∼ emψ̄γ5ψ . We consider here a Dirac fermion for
which ψ̄ and ψ are independent Grassmann variables.
The covariant derivative involves the spin connection

Dμψ ¼ ∂μψ þ 1

8
ωμmn½γm; γn�ψ ; ð101Þ

with Dirac matrices obeying

fγm; γng ¼ 2ηmn; fγ5; γmg ¼ 0: ð102Þ

For real values of φ the second functional derivative reads
in the ψ̄ − ψ block

ΓðF;2Þ
k ¼ eðiDþ yφγ5Þ: ð103Þ

It involves the covariant Dirac operator

D ¼ γmemμDμ: ð104Þ

The fermion contribution to the flow equation reads

∂tΓk ¼ −trf∂tRkðiDþ RðFÞ
k þ yφγ5Þ−1g; ð105Þ

where the minus sign reflects that ψ and ψ̄ are Grassmann
variables. For a Majorana fermion ψ̄ is related to ψ by
charge conjugation. For Majorana spinors the right-hand
side of Eq. (105) is multiplied by 1=2. (If convenient, one

may choose a normalization which multiplies ΓðFÞ
k by a

factor 1=2.) We will perform the computation for a Dirac
spinor. For NF Majorana or Weyl spinors the result will be
multiplied by NF=2.
We can decompose ψ and ψ̄ into Weyl spinors that are

eigenstates of γ5,

ψ� ¼ 1� γ5

2
ψ ; ψ̄� ¼ ψ̄

1 ∓ γ5

2
: ð106Þ

(One often uses left- and right-handed ψþ ≡ ψL and
ψ− ≡ ψR.) The kinetic term does not mix different Weyl
spinors,

Lkin ¼ ieψ̄Dψ ¼ −ieðψ̄þDψþ þ ψ̄−Dψ−Þ; ð107Þ

while the Yukawa coupling does,

LY ¼ eyφψ̄γ5ψ ¼ eyφðψ̄−ψþ − ψ̄þψ−Þ: ð108Þ

Chiral symmetries transform ψþ and ψ− independently.
They are violated for y ≠ 0. We want a cutoff function that
is compatible with the chiral symmetry [77]. Since D maps
ψþ to ψ− and vice versa, the cutoff should be chosen in the
form

RðFÞ
k ¼ ieskð−D2ÞD; ð109Þ

such that it has the same chiral properties as ieD. In
consequence,

PðFÞ
k ¼ ieDþ RðFÞ

k ¼ ieð1þ skð−D2ÞÞD ð110Þ

maps again ψþ to ψ−. We emphasize that sk should be a
function of the operator D since we want to cut off small
eigenvalues of the Dirac operator. This function should be
even for compatibility with chiral symmetry.
Employing the properties of Dirac matrices one has

−D2 ¼ −D2 þ R
4
; ð111Þ

with

D2 ¼ emμemνDμDν: ð112Þ
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The covariant Laplacian for spinors depends on the
vierbein and spin connection and involves Dirac matrices.
(No Laplacian involving the metric is defined for spinors.)
With

πðFÞk ¼ −tr∂̃t lnðPðFÞ
k þ eyφγ5Þ

¼ −
1

2
tr∂̃t ln ðPðFÞ

k þ eyφγ5Þ2

¼ −
1

2
tr∂̃t lnððPðFÞ

k Þ2 þ e2y2φ2Þ; ð113Þ

and defining

Pk ¼
1

e2
ðPðFÞ

k Þ2 ¼ −D2ð1þ skð−D2ÞÞ2

¼ −D2ð1þ rkð−D2ÞÞ; ð114Þ

one has

rk ¼ 2sk þ s2k: ð115Þ

Using ρ ¼ φ2 the fermion contribution is given by the
familiar form

πðFÞk ¼ −
1

2
tr∂̃t lnðPk þ y2ρÞ; ð116Þ

where

Pk ¼
�
−D2 þ R

4

��
1þ rk

�
−D2 þ R

4

��
: ð117Þ

For complex φ this generalizes to ρ ¼ φ†φ, and similarly
for multicomponent scalar fields. For Pk we will choose a
function similar to the one for scalars or gauge bosons. This
determines the infrared cutoff function (109) via the
identity (115).
In consequence, one obtains from the heat kernel

expansion for a Dirac fermion

πðFÞk ¼ −
1

16π2

Z
x
e

�
bD0 l

4
0ðw̃Þk4 þ

�
bD2 −

1

4
bD0

�
l2
0ðw̃ÞR

�
ð118Þ

with bD0 ¼ 4, bD2 ¼ 2=3, and

w̃ ¼ y2ρ
k2

: ð119Þ

For Majorana or Weyl spinors πF is divided by two.
With Eqs. (95) and (96), we translate e ¼ ffiffiffi

g
p

and R
becomes the curvature scalar for the metric gμν. For y ¼ 0

Eq. (118) agrees with Ref. [78] and with the result of a
“type-II cutoff” [7,79,80]. The same result is obtained by a

spectral sum on a sphere [80]. The sign differs, however,
from a “type-I cutoff” [15]. We emphasize that the
formulation of the cutoff in terms of the Dirac operator
involving the vierbein, together with the preservation of
chiral symmetry, imposes important constraints on the
properties of the infrared cutoff. They lead naturally to a
type-II cutoff.
With NF Weyl spinors one finds, with ρ̃ ¼ ρ=k2,

cðFÞV ¼ −
NF

32π2
l4
0ðy2ρ̃Þ ¼ −

NF

64π2ð1þ y2ρ̃Þ ;

cðFÞM ¼ −
NF

192π2
l2
0ðy2ρ̃Þ ¼ −

NF

192π2ð1þ y2ρ̃Þ : ð120Þ

The second identity specifies to the Litim cutoff. For the
flow of U fermions contribute with the opposite sign as
compared to scalars and gauge bosons. For the flow of F
their contribution has the same sign as the scalar contri-
bution, opposite to the sign of vector contributions.
For the gauge invariant flow equation one obtains the

fermion contribution to the flow of the graviton propagator
by taking two derivatives of πðFÞk in Eq. (113) with respect
to the vierbein (or similarly to the metric). The flow of the
graviton propagator can be evaluated in flat space. The
result is expected to agree with Eq. (120).
The different matter contributions can be summarized by

cV ¼ N U

128π2
; cM ¼ NM

192π2
: ð121Þ

For massless fields one has

N U ¼ NS þ 2NV − 2NF;

NM ¼ −NS þ 4NV − NF −
3ξ̃

2
Nξ: ð122Þ

Here Nξ is the number of scalars that have the nonminimal
coupling ξ̃ to gravity. This number may be smaller than NS
since not all scalars may participate in this coupling. For
massive fields the numbers NS, NV , and NF become
effective particle numbers, multiplied by corresponding
threshold functions with m̃2 ≠ 0. In this case,N U andNM
depend on ρ̃.
Matter fluctuations alone can induce an UV-fixed point

for quantum gravity, u� ¼ cV , w� ¼ cM. This does not need
any metric fluctuations. We observe, however, that without
metric fluctuations an UV-fixed point with positive effec-
tive Planck mass (F > 0, attractive gravity) is possible only
for a sufficiently large number of vector bosons, NM > 0.
For NV > ðNF þ NSÞ=4 asymptotic safety can be realized
even if fluctuations of the metric are neglected. We will
see below that metric fluctuations induce an acceptable
UV-fixed point with F > 0 even for NV < ðNF þ NSÞ=4.
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IV. METRIC FLUCTUATIONS

This section addresses the contribution of the metric
fluctuations to the flow equations for U and F. The
dominant contribution π2 arises from the graviton fluctua-
tions, e.g., the traceless transverse tensor modes. For spaces
with rotation symmetry the graviton fluctuations do not mix
with the other metric fluctuations or matter fluctuations.
Furthermore, the graviton fluctuations are physical fluctu-
ations, being invariant under gauge transformations. Once
the graviton propagator is known or assumed in a given
truncation, the graviton contribution to the flow equations
is rather unambiguous. The other physical metric fluc-
tuation is a scalar. It can mix with other scalar fields in the
matter sector. Still, its contribution π0 to the flow equation
remains somewhat involved. The gauge invariant flow
equation has the important advantage that physical scalar
fluctuations are not affected by gauge modes. The universal
measure contribution−δðgÞ reflecting the nonlinearity of the
projection on the space of physical fluctuations involves
both a vector and a scalar part. It depends only on the
macroscopic metric. The total contribution to the flow from
the metric sector is given by

ζðgÞk ¼ π2 þ π0 − δðgÞk : ð123Þ

A. Physical metric fluctuations and gauge modes

To compute the contribution of metric fluctuations to the
flow equation for U and F, we need the second functional
derivative of the gauge invariant effective average action

Γ̄ð2Þ
k for a general macroscopic metric gμν. For this purpose

we consider Γ̄k½gμν þ hμν� and compute the term Γ̄2

quadratic in the metric fluctuations hμν. We split the metric
fluctuation hμν into “physical fluctuations” fμν and “gauge
fluctuations” aμν. In linear order the physical fluctuations
are transverse,

hμν ¼ fμν þ aμν;

Dμfμν ¼ 0; aμν ¼ Dμaν þDνaμ: ð124Þ

Infinitesimal diffeomorphism transformations act as a shift
of aμ and leave fμν invariant. We will need Γ̄k in second
order in fμν.
Inserting the linear decomposition (124) into a gauge

invariant effective action Γ̄k, one finds in linear order in hμν
that Γ̄1 depends only on fμν, reflecting the gauge invariance
of Γ̄. A gauge invariant effective action can depend only on
physical fluctuations. The association of the physical
fluctuations with fμν as defined by Eq. (124) holds only
in linear order, however. (An exception are Abelian gauge
theories.) Physical fluctuations vanish for fμν ¼ 0, but can
contain higher order terms ∼fμρaνρ. As a consequence, Γ̄2

contains terms quadratic in fμν and may also contain mixed
terms linear in fμν and linear in aμν. (For an explicit
discussion for the analogous case of non-Abelian gauge
theories, see Ref. [65].) For maximally symmetric spaces
the mixed terms vanish due to the identity

Z
x

ffiffiffi
g

p
fμνaμν ¼ 0: ð125Þ

For the purpose of the present paper this is sufficient. For
more general macroscopic metrics the mixed terms are
eliminated by the projection on the physical subspace that
is implicit in the flow equation (9).
Similar to the treatment of gauge bosons we perform the

projection by adding formally a term Γð2Þ
gf ¼ 1

α Γ̃
ð2Þ
gf to the

inverse propagator. This allows the computation of π2 þ
π0 − δðgÞ without the explicit use of projectors. The
measure part δðgÞ is computed separately. The implemen-
tation of this procedure introduces in the effective action a
term

Γk ¼ Γ̄k þ Γgf ; ð126Þ

which resembles a physical gauge fixing in the background

field formalism. The second variation Γð2Þ
gf should act only

on the gauge fluctuations, and we take

Γgf ¼
1

2α

Z
x

ffiffiffi
g

p
DμhνμDρhνρ

¼ 1

2α

Z
x

ffiffiffi
g

p ðDμaμνÞðDρaρνÞ

¼ 1

2α

Z
x

ffiffiffi
g

p ðD2aν þDνDμaμ þ Rν
μaμÞ

× ðD2aν þDνDρaρ þ Rν
ρaρÞ; ð127Þ

with α → 0. This “physical gauge fixing” is the generali-
zation of covariant Landau gauge fixing for Yang-Mills
theories to the case of gravity.
The gauge fixing term induces for Γð2Þ

k a term that
diverges for α → 0,

ðΓð2Þ
gf Þμνρτ ¼

ffiffiffi
g

p
2α

ðDaÞμνρτ; ð128Þ

with

ðDaÞμνρτ ¼ −
1

2
ðδρμDνDτ þ δρνDμDτ þ δτμDνDρ þ δτνDμDρÞ:

ð129Þ

One observes
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ðDaÞμνρτfρτ ¼ 0;

ðDaÞμνρτaρτ ¼ DμD̂ν
ρaρ þDνD̂μ

ρaρ; ð130Þ

with

D̂μ
ρ ¼ −ðD2δρμ þDμDρ þ Rμ

ρÞ: ð131Þ

We may formally introduce projectors Pf and Pa on the
physical metric fluctuations and gauge modes

ðPfÞμνρτhρτ ¼ fμν; ðPaÞμνρτhρτ ¼ aμν; ð132Þ

obeying

Pf þ Pa ¼ 1; P2
f ¼ Pf; P2

a ¼ Pa;

PfPa ¼ PaPf ¼ 0: ð133Þ

In terms of these projectors one has

DaPa ¼ Da; DaPf ¼ 0;

PT
a
ffiffiffi
g

p
Da ¼

ffiffiffi
g

p
Da; PT

f
ffiffiffi
g

p
Da ¼ 0: ð134Þ

With

Γð2Þ
k ¼ Γ̄ð2Þ

k þ 1

2α
PT
a
ffiffiffi
g

p
DaPa ð135Þ

the inverse of Γð2Þ
k is block diagonal for α → 0,

G ¼ ðΓð2Þ
k Þ−1 ¼ GP þGa; ð136Þ

where

GP ¼ PfGPT
f ; Ga ¼ PaGPT

a ; ð137Þ

and

Γ̄ð2Þ
k GP ¼ PT

f ; Γð2Þ
gf Ga ¼ PT

a : ð138Þ

Here Ga is proportional to α and Γð2Þ
gf proportional to α−1,

such that the factors of α cancel in the second equa-
tion (138). The part GP is the propagator for the physical
metric fluctuations that appears in Eqs. (8) and (9).
The block diagonal structure for α → 0 has an important

consequence. For the computation of GP only the projec-

tion PT
f Γ̄

ð2Þ
k Pf enters, as appropriate for the propagator of

the physical metric fluctuations. Possible mixed terms in Γ̄2

that involve powers of aμν play no role—they are projected
out by the physical gauge fixing for α → 0. It is therefore
sufficient to evaluate Γ̄2 for the physical metric fluctuations
fμν, which simplifies the task sinceDνfμν ¼ 0 can be used.

For the truncation

Γ̄k ¼
Z
x

ffiffiffi
g

p �
−
1

2
FðρÞRþ UðρÞ

�
; ð139Þ

one finds [81] for geometries with a vanishing Weyl tensor

Γ̄2 ¼
1

8

Z
x

ffiffiffi
g

p f−Uð2fμνfμν − σ2Þ þ FfμνðD̂fÞμνρτfρτg;

ð140Þ

with

ðD̂fÞμνρτ ¼
�
−D2 þ 2R

3

�
Eμν

ρτ þD2gμνgρτ; ð141Þ

and unit matrix

Eμν
ρτ ¼ 1

2
ðδρμδτν þ δτμδ

ρ
νÞ: ð142Þ

The physical scalar metric fluctuation corresponds to the
trace of fμν,

σ ¼ gμνfμν: ð143Þ

Thus the physical metric fluctuations can be decomposed
into a traceless transverse tensor tμν (graviton) and a scalar σ

fμν ¼ tμν þ sμν;

Dνtμν ¼ 0; tμμ ¼ 0; sμν ¼ Ŝμνσ; ð144Þ

with Ŝμν ¼ Ŝνμ obeying

Ŝμνgμν ¼ 1; DμŜμν ¼ 0: ð145Þ

For a computation of the flow of F and U we can restrict
the discussion to maximally symmetric geometries with
constant curvature scalar R. In this case one has [81]

Ŝμν ¼ ðD2gμν −DμDν þ RμνÞð3D2 þ RÞ−1: ð146Þ

There is no mixing between tμν and σ in Γ̄2, e.g.,

Γ̄2 ¼ ΓðtÞ
2 þ ΓðσÞ

2 ; ð147Þ

where

ΓðtÞ
2 ¼ 1

8

Z
x

ffiffiffi
g

p
tμν
�
F

�
−D2 þ 2

3
R

�
− 2U

�
tμν ð148Þ

and
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ΓðσÞ
2 ¼ 1

4

Z
x

ffiffiffi
g

p
σ

��
F

�
D2 þ 3

8
R

�
D2

þ U
2

�
D2 þ 1

2
R

��
ð3D2 þ RÞ−1

�
σ: ð149Þ

The infrared cutoff ðRkÞμνρτ should respect the split into
physical fluctuations and gauge fluctuations,

Rk ¼
ffiffiffi
g

p �
F
8
RðfÞ
k ðDfÞ þ

1

2α
RðaÞ
k ðDaÞ

�
: ð150Þ

Here the operator Df should obey

DfPf ¼ Df; PT
f
ffiffiffi
g

p
Df ¼ ffiffiffi

g
p

Df;

DfPa ¼ 0; PT
a
ffiffiffi
g

p
Df ¼ 0; ð151Þ

similar to Eq. (134). We can define it by using D̂f in
Eq. (141),

Df ¼
1ffiffiffi
g

p PT
f
ffiffiffi
g

p
D̂fPf; ð152Þ

such that
ffiffiffi
g

p
Df equals

ffiffiffi
g

p
D̂f on the subspace of diver-

genceless physical fluctuations fμν. For a cutoff of the type
(150) the flow equation can be separated into different

pieces similar to Eq. (62), with πðgÞk the contribution from

physical metric fluctuations and −δðgÞk the measure con-
tribution. For maximally symmetric spaces the physical

contribution πðgÞk further decays into a graviton contribution
π2 from the fluctuations of tμν, and a scalar contribution π0
from the σ fluctuations, as given by Eq. (123).

B. Graviton contribution

The graviton contribution π2 typically dominates. It is
given by

π2 ¼
1

2
trð2Þ

�
∂tRk

�
F
4
D̂f þ Rk −

U
2

�
−1
�
; ð153Þ

with trð2Þ the trace in the projected space of tμν (spin two
fields). For the physical metric fluctuations the cutoff
RkðD̂fÞ is chosen as a function of the operator D̂f. In
the projected space for the graviton fluctuations D̂f reduces
to −D2 þ 2R=3. For the heat kernel expansion
(cf. Appendix B), one needs

trð2Þe−sDt ¼ trð2Þe−sΔT e−2sR=3

¼ trð2Þe−sΔT

�
1 −

2R
3
s

�
; ð154Þ

where ΔT ¼ −D2 involves the Laplacian acting on trace-
less transverse tensor fields and we have taken constant R.

With bT0 ¼ 5 and bT2 ¼ −5=6 the heat kernel coefficients of
ΔT for traceless transverse tensors, the graviton contribu-
tion reads

cT0 ¼ bT0 ¼ 5; cT2 ¼
�
bT2 −

2

3
bT0

�
R ¼ −

25

6
R: ð155Þ

One obtains the flow contribution of the graviton
fluctuations

π2 ¼
5

32π2

Z
x

ffiffiffi
g

p Z
∞

0

dz

�
z −

5R
6

�

×
∂tR

ðfÞ
k þ ð∂t lnFÞRðfÞ

k

zþ RðfÞ
k − 2U=F

: ð156Þ

With ηg ¼ 2 − ∂t lnF ¼ −∂t lnw and employing the Litim

cutoff RðfÞ
k ¼ ðk2 − zÞθðk2 − zÞ this yields

π2 ¼
5

32π2ð1− vÞ
Z
x

ffiffiffi
g

p �
4

3
k4
�
1−

ηg
8

�
−
5

2
k2
�
1−

ηg
6

�
R

�
;

ð157Þ

where

v ¼ 2U
k2F

¼ u
w
: ð158Þ

Correspondingly, the graviton contribution to cV and cM
depends on ρ̃ via vðρ̃Þ and ηgðρ̃Þ,

cðTÞV ¼ 5

96π2ð1 − vÞ
�
1 −

ηg
8

�
;

cðTÞM ¼ 25

128π2ð1 − vÞ
�
1 −

ηg
6

�
: ð159Þ

For scaling solutions with constant wðρ̃Þ ¼ w� ¼ cM one

has ηg ¼ 0. For cðTÞV one recovers the graviton contribution
to the flow of the effective potential [12,82]. This result for

cðTÞM agrees with Refs. [21,36,37]. Further details and a
comparison with the background field formalism can be
found in Appendixes A and D.

C. Measure contribution

The gauge invariant flow equation involves a universal
“measure contribution.” It is given by

−δðgÞk ¼ −
1

2
∂t ln detðDa þ RðaÞ

k ðDaÞÞ; ð160Þ

with Da given by Eq. (129). We will evaluate this
expression here. In Appendix A, we show that the truncated
background field flow equation with physical gauge fixing
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yields the same result. A different possible choice of the

cutoff function, where RðaÞ
k ðDaÞ is replaced by RðaÞ

k ðD̃aÞ,
with D̃a obtained fromDa by omitting in D̂ in Eq. (131) the
term Rμ

ρ, is discussed in Appendix E.
We can express δðgÞk in terms of the eigenvalues λi

of Da as

δðgÞk ¼ 1

2
tr∂t lnðDa þ RðaÞ

k ðDaÞÞ

¼ 1

2

X
i

∂t lnðλi þ RðaÞ
k ðλiÞÞ: ð161Þ

The eigenvalues of Da are the same as the eigenvalues of
the operator D̂ in Eq. (131). Indeed, for

D̂μ
ρaρ ¼ λaμ ð162Þ

one concludes from Eq. (130)

ðDaÞμνρτaρτ ¼ ðDμλaν þDνλaμÞ ¼ λaμν: ð163Þ

The constraints on the gauge fluctuations aμν are precisely
that aμν can be expressed in term of aμ by Eq. (124), such
that the set of eigenvalues of D̂ completely covers the set of
eigenvalues of Da in the presence of the constraints on aμν.
The vector fields aμ are unconstrained, and we can write

δðgÞk ¼ 1

2
trðVÞ∂t lnðD̂þ RkðD̂ÞÞ; ð164Þ

with trðVÞ the unconstrained trace over vector fields. We
emphasize that the measure contribution (164) is universal.
For a given cutoff prescription it depends only on the form
of the IR cutoff, not on the approximations used for the
gauge invariant effective action Γ̄. It depends only on the
metric, and not on fields describing other particles. In
particular, it contributes to the flow of U and F only a ρ-
independent term.
For the evaluation of δk we split aμ into a transverse part

and a longitudinal part, similar to the discussion of the
vector gauge field Aμ in Sec. III B. We decompose

aμ ¼ κμ þDμu; Dμκμ ¼ 0; ð165Þ

with

D̂μ
ρκρ ¼ −D2κμ − Rμ

ρκρ;

D̂μ
ρDρu ¼ −2D2Dμu ¼ −2DμD2u − 2Rμ

ρDρu: ð166Þ

For maximally symmetric geometries one finds

D̂μ
ρκρ ¼

�
ΔV −

R
4

�
κμ ¼ D1κμ;

D̂μ
ρDρu ¼ 2Dμ

�
ΔS −

R
4

�
u ¼ 2DμD0u; ð167Þ

with Δ ¼ −D2, and ΔV and ΔS denoting the action of the
Laplacian on vector or scalar fields, respectively. The
eigenvalues of the operator ΔS − R=4 acting on u are
the eigenvalues of D̂=2 acting on the longitudinal field
Dμu. The factor 1=2 drops out in ∂̃t ln D̂. The measure
contribution becomes the sum of a transverse vector and a
scalar piece,

δk ¼
1

2
½trð1Þ∂t lnðD1 þ Rð1Þ

k ðD1ÞÞ

þ trð0Þ∂t lnðD0 þ Rð0Þ
k ðD0ÞÞ�; ð168Þ

with trð1Þ the trace over transverse vector fields (spin one for
geometries with rotation symmetry) and trð0Þ the trace over
scalars (spin zero).
For the heat kernel expansion we employ

trð1Þe−sD1 ¼ trð1Þe−sΔV esR=4

¼ tre−sΔV

�
1þ R

4
s

�

¼ 1

16π2

Z
x

ffiffiffi
g

p ðbV0 s−2 þ bV2Rs
−1Þ
�
1þ Rs

4

�

¼ 1

16π2

Z
x

ffiffiffi
g

p �
bV0 s

−2 þ
�
bV2 þ 1

4
bV0

�
Rs−1

�
;

ð169Þ

with bV0 ¼ 3, bV2 ¼ 1=4. Similarly, one has

trð0Þe−sD0 ¼ 1

16π2

Z
x

ffiffiffi
g

p �
bS0s

−2 þ
�
bS2 þ

1

4
bS0

�
Rs−1

�
;

ð170Þ

with bS0 ¼ 1, bS2 ¼ 1=6. This yields

δðgÞk ¼ 1

32π2

Z
x

ffiffiffi
g

p Z
∞

0

dzWðzÞ
�
4zþ 17

12
R

�
; ð171Þ

with WðzÞ ¼ ∂tRkðzÞ=ðzþ RkðzÞÞ. The universal measure
contribution (160) is found as

−δðgÞk ¼ −
Z
x

ffiffiffi
g

p �
k4l4

0

4π2
þ 17k2l2

0

192π2
R

�
; ð172Þ

with threshold functions l4
0 and l2

0 evaluated for w̃ ¼ 0.
For the Litim cutoff the measure contributions to the

flow of U and F are constants
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cðmÞ
V ¼ −

l4
0

16π2
¼ −

1

32π2
;

cðmÞ
M ¼ 17l2

0

384π2
¼ 17

384π2
: ð173Þ

One may compare this simple result with the usual treat-
ment of a ghost sector and the vector and scalar fluctuations
of the metric. For a general gauge fixing, including the most
commonly employed gauge fixings, no such simple result
exists. For a physical gauge fixing, however, the leading

order yields a contribution of the gauge fluctuations δðgÞk

and a ghost contribution ϵðgÞk ¼ −2δðgÞk , reproducing the
total measure contribution (172). Details can be found in
Appendix A. Comparing the measure contribution (173)
with the graviton contribution, one finds for ηg ¼ 0 that the
measure part of cV is a factor of −3ð1 − vÞ=5 of the
graviton part, while for cM it is a factor of 17ð1 − vÞ=75 of
the graviton contribution. The graviton contribution domi-
nates, in particular, for v close to one.

D. Physical scalar metric fluctuations

For the physical scalar fluctuations the inverse propa-
gator matrix mixes the scalar contained in the metric
fluctuations with the other scalars in the model. As a
result, the scalar contribution to the flow becomes some-
what lengthy. We display this mixing for our truncation in
Appendix A. In particular, for a single additional scalar
field ϕ the scalar contribution π0 involves the mixing effect
between σ and ϕ as given in Eq. (A29). We will neglect
here this mixing effect and concentrate on the contribution
of the scalar metric fluctuation σ, while the contribution of
ϕ is contained in NS as discussed in Sec. III A. The
resulting expression for π0 can be extracted from
Appendix D. It still remains a somewhat lengthy expres-
sion. Since the scalar part in the metric fluctuations is small
as compared to the graviton part, we approximate it by
setting v ¼ 0. This error is modest, given that factors such
as ð1 − v=4Þ−1 appearing in the propagator are reasonably
close to one for the range of interest jvj ≤ 1.
Under the approximations made above one can evaluate

π0 as

π0 ¼
1

32π2

Z
x

ffiffiffi
g

p Z
∞

0

dz

�
zþ R

6

� ∂tRk þ ð∂t lnFÞRk

zþ Rk

−
1

32π2

Z
x

ffiffiffi
g

p Z
∞

0

dz

�
z
R
24

� ∂tRk þ ð∂t lnFÞRk

ðzþ RkÞ2

¼ 1

32π2

Z
x

ffiffiffi
g

p �
4k4

3

�
1 −

ηg
8

�
þ 4k2

9

�
1 −

11ηg
64

�
R

�
;

ð174Þ

where we employ the Litim cutoff in the last equality. The
contributions to the flow equations (37) read

cðσÞV ¼ 1

96π2

�
1 −

ηg
8

�
;

cðσÞM ¼ −
1

144π2

�
1 −

11ηg
64

�
: ð175Þ

More precise calculations for the contributions from the
physical scalar fluctuations, including the mixing term and
a finite v, are presented in Appendix D.
For ηg ¼ 0, as appropriate for the scaling solution at

ρ̃ ¼ 0, the contribution of the scalar in the metric fluctua-
tions effectively adds to NS a term 4=3. Here the factor 4=3
is due to the k dependence of the factor F multiplying the
IR cutoff for the metric fluctuations. We observe that π0 is
suppressed as compared to the graviton fluctuations π2 by a
typical factor of ð1 − vÞ=5, with even stronger suppression
for the derivatives relevant for anomalous dimensions. This
justifies the simplification in the scalar metric sector. For
positive v < 1 the error of setting v ¼ 0 used for the
analytic discussion in the scalar propagator ∼ð1 − v=4Þ−1
amounts at most to a factor of 4=3. For large negative v the
graviton fluctuations are less dominant as compared to the
scalar fluctuations. However, all effects of metric fluctua-
tions are suppressed by v−1 in this case. For all models
considered here Eq. (175) is a rather good approximation.

V. UV-FIXED POINT

In our truncation we find an UV-field point with ρ̃-
independent u�, w� for a large region of particle physics
models characterized by NS, NF, and NV . This region
covers the standard model as well as GUT models based on
SU(5) and SO(10). The fixed point exists for an arbitrary
number of scalar fieldsNS for these models. In the region of
strong gravity for v close to one or w close to zero our
truncation is presumably not reliable. These regions are
encountered for large NS. We also find a new fixed point, in
addition to the Reuter fixed point, in a small region of
models. Based on the argument in Sec. V D we use the
simplification (175), which permits an analytic discussion
of fixed points and critical exponents.

A. Dependence on particle content

For an understanding of the UV-fixed point we take all
particles to be massless. We also set ηg ¼ 0. As discussed
above, we omit for the physical scalar in the metric
fluctuations the mixing with other scalars, and we set v ¼ 0
for this contribution. This results in the flow equations

∂tuðρ̃Þ ¼ 2ρ̃∂ ρ̃u − 4

�
u −

1

128π2

�
Ñ U þ 20

3ð1 − vÞ
��

;

∂twðρ̃Þ ¼ 2ρ̃∂ ρ̃w − 2

�
w −

1

192π2

�
ÑM þ 75

2ð1 − vÞ
��

;

ð176Þ
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where

v ¼ u
w
: ð177Þ

With Eq. (122) we define the effective particle numbers

Ñ U ¼ N U −
8

3
¼ NS þ 2NV − 2NF −

8

3
;

ÑM ¼ NM þ 43

6
¼ −NS þ 4NV − NF þ 43

6
: ð178Þ

The second identities neglect ξ̃. The dependence of the flow
equations on the particle content of the model is summa-
rized in two numbers N U and NM or, equivalently, Ñ U

and ÑM. We will display our results in dependence of Ñ U

and ÑM. This has the advantage that an improved treatment
of the physical scalar metric fluctuations, as well as
different treatments or cutoffs for the measure contribution,
can partially be absorbed by small shifts in Ñ U and ÑM.
This extends to the effect of small particle masses.
In a “lowest order approximation” one sets v in the

graviton propagator to be zero. This applies to weak gravity
of small w−1, since v ∼ w−1. In this limit the contributions
from matter and metric fluctuations for u and w give the
factors N U þ 4 andNM þ 134=3, respectively. The matter
contributions (N U andNM) agreewithRefs. [7,30],whereas
the contributions from themetric fluctuations generally differ
due to the dependences on choices of the gauge parameters
and regulators. Reference [30], in which the gauge choice
α ¼ β ¼ 1 is taken and the same cutoff functions are used,
reports the factors of 2 for u and 46 for w as contributions
from the metric fluctuations. Since the main contribution
comes from the transverse traceless (TT) graviton mode,
there is no drastic difference arising from variations of the
gauge choice and the cutoff functions. The metric contribu-
tion inN U þ 4 has a simple explanation. The contribution of
the 6 physical d.o.f. ismultiplied by 4=3 due toFmultiplying
the IR cutoff, resulting in 6 × ð4=3Þ − 4 ¼ 4.
Beyond the lowest order the gauge invariant flow

equation leads to considerable simplifications as compared
to earlier work, e.g., in Ref. [30]. In particular, the effect of
the scalar metric fluctuations remains always small, such
that the mixing with other scalars can be neglected and the
simple approximation (176) can be used. This has impor-
tant consequences for the existence of the fixed point, being
at the origin of differences in the allowed range of NS, NV ,
NF as compared to Ref. [30].

B. Limitation of truncation

A key element for our truncation for the metric fluctua-
tions is the specific form of the propagator that is derived
from an Einstein-Hilbert form of the gravitational effective
average action. In terms of the dimensionless quantities u

and w the inverse graviton propagator in the presence of the
IR cutoff is proportional to

G−1
grav ¼ ðΓ̄ð2Þ

k þ RkÞgrav ∼ wpkðD̂f=k2Þ − u; ð179Þ

with

pkðz=k2Þ ¼ ðzþ RkðzÞÞ=k2: ð180Þ

Becaue of the IR cutoff, pk has a minimum p̄ > 0. For the
Litim cutoff, as well as other suitably normalized cutoffs,
one has p̄ ¼ 1, and we will take this value. The minimal
value of wpk − u is therefore given by

y ¼ w − u ¼ wð1 − vÞ: ð181Þ

In the vicinity of y ¼ 0 our truncation is expected to
become insufficient. This concerns w close to zero or v
close to one. For example, adding to Γ̄k a term quadratic in
the Weyl tensor with coefficient D=2 adds to G−1

grav a piece
DD̂2

f=2, replacing

wpk − u → wpk − uþDD̂2
f=k

4: ð182Þ

For y → 0 the term ∼D will dominate near the minimum of
G−1

grav and can no longer be neglected. We therefore expect
our approximation to break down for small values of y,
typically y≲D.
Within our truncation (D ¼ 0) the graviton propagator

diverges for y → 0 even in the presence of the IR cutoff. It
becomes unstable for y < 0. Such an instability is avoided
by the flow for a valid truncation. In the present truncation
this is not the case. With

∂ty ¼ βy ¼ 2ρ̃∂ ρ̃y − 4yþ w

�
2þ 35

192π2y

�

þ 1

96π2
ðÑM − 3Ñ UÞ; ð183Þ

we observe that for y → 0 the flow generator βy is positive
for w > 0. As a result, a ρ̃-independent y could run into the
singularity for decreasing k. Similarly, a scaling solution
for a ρ̃-dependent y [∂tyðρ̃Þ ¼ 0] could run into the
singularity for increasing ρ̃. Such a behavior is not
acceptable, indicating the need for an extension of the
truncation for y → 0. The same problem is visible in the
flow equation for v,

∂tv ¼ 2ρ̃∂ ρ̃v − 2v

þ 1

192π2w

�
6Ñ U − 2vÑM þ 75 −

35

1 − v

�
; ð184Þ

for which v could run into the onset of the instability at
v ¼ 1. This contrasts with the behavior of the flow of u or v
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for constant w (or with the inclusion of a constant D), for
which the instability is repulsive and avoided by the flow
[82,83]. We conclude that for v very close to one or very
small w our approximation can no longer be trusted.

C. Constant scaling solution

In this paper we concentrate on the constant scaling
solution for which uðρ̃Þ and wðρ̃Þ have ρ̃-independent
scaling solutions, such that the terms 2ρ̃∂ ρ̃u and 2ρ̃∂ ρ̃w
can be omitted in the flow equation (176). For constant w
one also has ξ̃ ¼ 0. Indeed, the flow equations (176) have a
fixed point with ρ̃-independent u and w, for which ηg ¼ 0,
and

u� ¼
1

128π2

�
Ñ U þ 20

3ð1 − v�Þ
�
;

w� ¼
1

192π2

�
ÑM þ 75

2ð1 − v�Þ
�
: ð185Þ

This fixed point exists whenever the corresponding relation
for v,

v� ¼
u�
w�

¼ 3Ñ Uð1 − v�Þ þ 20

2ÑMð1 − v�Þ þ 75
; ð186Þ

has a solution for real v. The fixed point corresponds to an
acceptable stable theory if

v� < 1; w� > 0: ð187Þ

Equation (186) results in a quadratic equation for
x ¼ 1 − v�,

2ÑMx2 þ ð3Ñ U − 2ÑM þ 75Þx − 55 ¼ 0: ð188Þ

We are interested in solutions with positive x (v� < 1) and
positive w�. For ÑM > 0 or NM ≥ −43=6 the condition
w� > 0 is obeyed for all x > 0. For ÑM < 0 or NM <
−43=6 one needs x in the range

0 < x <
75

j2ÑMj
: ð189Þ

With

b ¼ 2ÑM − 3Ñ U − 75

¼ 2NV þ 4NF − 5NS −
158

3
; ð190Þ

Eq. (188) has the solutions

x� ¼ 1

4ÑM

�
b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 440ÑM

q �
: ð191Þ

For ÑM > 0 there exists always one solution with x > 0,
whereas the second solution has x < 0. For ÑM < 0 and
b > 0 no solution with x > 0 exists. For ÑM < 0, b < 0
one finds two solutions with x > 0, provided

b2 > 440jÑMj: ð192Þ

Otherwise no solution exists. Particularly interesting are the
two solutions with both b and 440ÑM negative, e.g., for

NS þ NF > 4NV þ 43

6
: ð193Þ

It can be realized for a sufficient large number of fermions
and scalars as compared to the number of gauge fields.
We can take Ñ U and ÑM as the two parameters

characterizing the particle content of a given model. In
our approximation they specify completely the fixed point
for u, w, and v. Through the dependence on v�, both u� and
w� depend on both numbers Ñ U and ÑM. In Fig. 1 we
present contour plots for v� in the ðÑM; Ñ UÞ plane, and
similar for w� in Fig. 2. We show vþ and wþ, which
correspond to xþ with theþ sign in Eq. (191). Similar plots

FIG. 1. Contour plot of the fixed point value of vþ in the
ðÑM; Ñ UÞ plane. In the red region for negative Ñ U and ÑM no
constant scaling solution is found. In the yellow region the
scaling solution is unstable due to wþ < 0. The green region
admits a stable constant scaling solution. As one moves toward
the region of large positive Ñ U and negative ÑM, corresponding
to a large number of scalar fields NS, the fixed point value vþ
approaches one. For v close to one our approximations are no
longer reliable. We indicate the location of pure gravity, the
standard model, as well as SU(5) and SO(10) GUT models with a
number of scalar fields varying between NS ¼ 50 and 100.
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for v− and w−, corresponding to x−, are shown in Figs. 9
and 10 in Appendix F. Allowed regions for stable theories
obeying Eq. (187) have different shades of green, while
fixed points with instabilities are not acceptable and are
indicated with yellow shades. Regions for which no real
solution exists because the argument of the square root in
Eq. (191) is negative are indicated in red. Boundaries of
these regions are thick lines. We also present contour plots
for u in Fig. 3, with a corresponding plot for u− in Fig. 11 in
Appendix F.

D. New fixed point

Our investigation shows that for NS þ NF >
4NV þ 43=6 a new fixed point can emerge. It is instructive
to follow the change of the fixed point values as the
parameters ÑM and Ñ U are changed continuously. We
denote by “Reuter fixed point” the one that is connected
continuously to the fixed point in pure gravity.
For the pure gravity fixed point one has

NS ¼ NF ¼ NV ¼ 0, and therefore

Ñ U ¼ −
8

3
; ÑM ¼ 43

6
; b ¼ −

158

3
: ð194Þ

Since ÑM > 0, one has x− < 0, v− > 1, which is outside
the range of stability. The Reuter fixed point therefore
corresponds to

ðRÞ∶ v� ¼ vþ: ð195Þ

For pure gravity one finds

v� ¼ 0.152; u� ¼ 0.00411; w� ¼ 0.0271: ð196Þ

Moving away from the pure gravity fixed point the
Reuter fixed point persists for ÑM > 0. Then xþ remains
positive for arbitrary b. A change of sign of b is not relevant
for the continuation of the Reuter fixed point. Consider next
the limit of small ÑM and a change of sign of ÑM. For
b < 0 and ÑM close to zero one can expand

xþ ¼ −
55

b
; x− ¼ b

2ÑM

þ 55

b
: ð197Þ

For negative b the Reuter fixed point continues to negative
ÑM without any discontinuity. We can follow the Reuter
fixed point on the line Ñ U ¼ −8=3 within the green region
in Figs. 1–3. This extends to the whole green region on
these figures, for which the Reuter fixed point exists and
remains associated with stable gravity at the fixed point.
Let us next look at the second solution corresponding in

Eq. (191) to x− with a relative minus sign. As long as ÑM
remains positive, the solution x− < 0 remains outside the
range of stability. As soon as ÑM < 0, one finds x− > 0,
however. A new fixed point appears for ÑM < 0,

ðNÞ∶ v� ¼ v−: ð198Þ

FIG. 3. Contour plot of the fixed point value of uþ in the
ðÑM; Ñ UÞ plane. Roughly the fixed point potential or cosmo-
logical constant uþ is positive for positive Ñ U and negative for
negative Ñ U .

FIG. 2. Contour plot of the fixed point value of wþ in the
ðÑM; Ñ UÞ plane. The strength of gravity at the fixed point w−1þ
increases as one approaches the excluded red and yellow regions
for large negative Ñ U and ÑM. For sufficiently negative Ñ U the
fixed point gravity becomes unstable as ÑM turns negative (red
region). For the small value of wþ near the boundary of the
excluded red and yellow regions one may have doubts on the
validity of the truncation.
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It starts at small negative ÑM at v− → −∞. In this limit the
graviton contribution becomes ∼ÑM and

w− →
ÑM

192π2

�
1þ 75

b

�

approaches zero. This limit corresponds to very strong
gravity for which our approximations are no longer valid.
The graviton propagator may be dominated by higher order
derivative invariants. Keeping, nevertheless, our truncation,
the new fixed point is in the stable range w− > 0 if

−75 < b < 0: ð199Þ

No second fixed point in the stable range exists for
b < −75, ÑM → 0.
As ÑM becomes more negative, the fixed point (N) may

move to more moderate values of w−1 for which our
approximations are valid again. The question is whether
w− is positive in this range. This requires x− to be
sufficiently small such that the inequality (189) is obeyed.
This condition is obeyed for

−75þ 22

15
ÑM < b < 0: ð200Þ

For a given b < −75 the new fixed point x− may appear in
the stable region at nonzero negative ÑM, given by

ÑM;cr ¼
15

22
ðbþ 75Þ: ð201Þ

We conclude that a new fixed point in the stable range
exists besides the Reuter fixed point if all three of the
following conditions are obeyed:

b < 0; ÑM < 0; ÑM <
15

22
ðbþ 75Þ: ð202Þ

In Fig. 4 we plot in the ðÑM; Ñ UÞ plane the lines
w− ¼ 0 and v− ¼ 1, together with the excluded red region.
We also indicate the region where no stable new fixed point
exists. Only a rather small region of negative Ñ U and ÑM
(green) exists for which the new fixed point is stable.
Within this region the Reuter fixed point and the new

fixed point exist simultaneously. As a consequence, one
expects the existence of crossover trajectories from one
fixed point to the other. The fixed point with a higher
degree of stability is attractive for the crossover trajectories.
We will discuss this issue in Sec. V E.
The new fixed point typically occurs in a region close to

instabilities where our truncation is not very reliable.
Extending the truncation, two outcomes are possible.
The region where the new fixed point exists either shrinks
or disappears completely. Or the region of existence grows

larger, making the new fixed point relevant for a larger class
of particle physics models.

E. Standard model and grand unification

We next discuss a few particular particle physics models.
For the standard model with NS ¼ 4, NV ¼ 12, and
NF ¼ 45, one has

N U ¼ −62; NM ¼ −1;

Ñ U ¼ −
194

3
; ÑM ¼ 37

6
; b ¼ 394

3
: ð203Þ

Because of the positive value of ÑM there is only one fixed
point solution with v� < 1 and positive w�. One finds

v� ¼ −10.05; u� ¼ −0.0507; w� ¼ 0.00505:

ð204Þ

The graviton contribution is reduced due to the large
negative value of v. Also the contribution π0 from scalar
metric fluctuations will be reduced by a factor of
ð1 − v=4Þ−1 ≈ 0.3 as compared to the approximation
(175). A more accurate estimate would reduce Ñ U by
one unit and enhance ÑM by one unit. This remains a small
effect. We here comment on the case where the type-I cutoff
for gauge fields is employed. In this case the particle

FIG. 4. Contour plot of the allowed (green) and excluded (red)
regions for the new fixed point. We indicate line plots of v− ¼ 1

(red dotted line) and w− ¼ 0 (blue solid line) in the ðÑM; Ñ UÞ
plane. For the yellow region the fixed point u−, w− is unstable.
Only for the green region with Ñ U and ÑM somewhat smaller
than zero is the new fixed point stable. As the unstable yellow
region is approached, our truncation is not expected to
remain valid.
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content in the standard model yields Ñ U ¼ −469=6 and
ÑM ¼ −125=6 for which the fixed point is located in the
unstable region (yellow region in Figs. 1–3). While a cutoff
of type-I seems to be less well motivated in our view, the
change of the standard model fixed point to the yellow
region may cast doubts whether our truncation is sufficient
for points very close to the boundary. As discussed in
Sec. V B, the inclusion of the higher derivative operators in
the effective average action could improve this situation.
As another example we may take an SO(10) GUT with

NV ¼ 45, NF ¼ 48 and N U ¼ NS − 6, NM ¼ 132 − NS,
or

Ñ U ¼ NS −
26

3
; ÑM ¼ 835

6
− NS ¼ 139.17 − NS;

b ¼ 688

3
− 5NS ¼ 229.33 − 5NS: ð205Þ

For a large number of scalars NS > 139 the combination
ÑM turns negative. Then b is negative, too, such that two
solutions could exist provided the constraint (192) is

obeyed. This holds indeed for all NS. The second condition
(200) for positive w− reads

688

3
− 5NS > −75þ 22

15

�
835

6
− NS

�
ð206Þ

or

NS <
4510

159
≈ 28.36: ð207Þ

This is not compatible with NS > 139. We conclude that
only the Reuter fixed point exists in the stable range for all
NS. No new fixed point is realized for SO(10) GUTs.
We plot u�, w�, and v� as functions of NS in Fig. 5. Since

Ñ U is positive for all realistic NS, one finds positive w�
only for v� > 0 and w� < 0 for v� < 0. The Reuter fixed
point (blue dashed curves or upper dashed curves) exists for
all NS. For NS ≳ 100 it moves rather close to v ¼ 1,
however, such that our truncation may no longer be
reliable. The new fixed point (red dashed or lower dashed
curve) has positive w− only in a range where v− > 1, such
that it is unstable for all NS.

FIG. 5. Fixed point values of v�, u�, and w� as functions of NS for SU(5) (solid lines) and SO(10) (dashed lines) GUT models. We
display both possible constant scaling solutions ðuþ; wþ; vþÞ (blue lines in upper parts of the figures) and ðu−; w−; v−Þ (red lines in
lower parts of the figures). For the Reuter fixed point the truncation becomes insufficient as vþ moves close to one for large NS. For the
new fixed values no stable solutions are found for large NS due to w− < 0. For small w our approximations are doubtful. The gray
regions are not allowed due to the conditions v� < 1 and w� > 0. The vertical dotted and dot-dashed lines are at NS ¼ 47 and NS ¼ 139
at which w−� ¼ 0, respectively.
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With

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 440ÑM

b2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 440ÑM

b2

s
; ð208Þ

we can write the fixed point solutions as

v� ¼ 1 −
15NS − 688

12NS − 1670
ð1 ∓ WÞ: ð209Þ

For very large NS → ∞ one has W → 0 such that vþ
approaches 1 and v− goes to −3=2. Only vþ corresponds to
positive w� > 0 in this case. Indeed, for the two solutions
vþ and v− one finds the fixed points for w

w� ¼ u�
v�

¼ 6NS − 835

1152π2ð15NS − 688Þ
�

450

1 ∓ W
− ð15NS − 688Þ

�
:

ð210Þ

For large NS only wþ corresponds to stable gravity,
wþ > 0. In particular, for NS → ∞ one has

wþ →
1

12672π2
ð159NS − 2125Þ;

w− →
1

1152π2
ð−6NS þ 925Þ: ð211Þ

In our truncation we find that a fixed point with constant
u, w, and v exists for arbitrary NS. The mechanism is a
cancellation between negative contributions to cM from
scalar and fermion fluctuations and a large positive con-
tribution from the graviton fluctuations. As NS increases,
the size of the graviton contribution also has to increase.
This is achieved by moving v close to one, realizing a
substantial enhancement of the graviton contribution. This
mechanism implies, however, that for large NS our
approximation becomes questionable since v comes close
to one. Already for NS ≳ 50 one may doubt the validity of
our truncation. This value is too low for a realistic SO(10)-
GUT model. In consequence, we will not be able to make
robust statements about SO(10)-GUT models.
For SU(5)-GUT models one has NV ¼ 24, NF ¼ 45 and

therefore

Ñ U ¼ NS −
134

3
; ÑM ¼ 349

6
−NS; b¼ 526

3
− 5NS:

ð212Þ

In this case also more moderate numbers of scalar fields are
possible. For a minimal set with a real 24-plet and a
complex 5-plet one has NS ¼ 34 and therefore moderate
values of Ñ U and ÑM,

Ñ U ¼ −
32

3
; ÑM ¼ 145

6
: ð213Þ

The corresponding fixed point values are

v� ¼ −0.123; u� ¼ −0.00375; w� ¼ 0.0304:

ð214Þ

They are not far from the values for pure gravity.

VI. QUANTUM GRAVITY PREDICTIONS FOR
THE HIGGS SECTOR

In this section we address the question raised in the
Introduction, namely whether the quartic coupling λH of the
Higgs sector corresponds to an irrelevant coupling near
the UV-fixed point and therefore becomes predictable by
quantum gravity. For this purpose we have to expand the
effective potential UðρÞ in terms of ρ ¼ h†h, where h is the
Higgs doublet. The flow of the first three coefficients of this
expansion describes the flow of the cosmological constant,
the mass term, and the quartic coupling of the Higgs boson.
Wewill work at fixed values for possible other scalar fields,
typically set to zero. We also neglect possible small effects
from the nonzero gauge and Yukawa couplings of the
Higgs doublet. In this case constant values for NF and NV
can be taken, and similarly for the number of scalars
beyond the Higgs doublet NS − 4. These numbers charac-
terize the short-distance model of particle physics into
which the standard model is embedded.
Besides the expansion of UðρÞ we perform a similar

expansion for FðρÞ. We truncate the expansion at second
order in the ρ derivatives. This leaves us with the flow of six
couplings describing the deviations from the UV-fixed
point or constant scaling solution. In this space of couplings
we compute the stability matrix for small deviations from
the fixed point and its eigenvalues, the critical exponents.
For the standard model and GUT models with not too large
NS, such that our truncation remains reliable, we find that
indeed the quartic Higgs coupling corresponds to an
irrelevant parameter at the UV-fixed point.

A. Mass term and couplings

For the Higgs sector we are interested in
ffiffiffi
ρ

p
near the

Fermi scale φ0. For the range of k of interest here this
corresponds to very small values of ρ̃. We therefore expand
the effective potential UðρÞ around ρ ¼ 0,

UðρÞ ¼ V þm2
Hρþ

λH
2
ρ2; ð215Þ

and correspondingly for the dimensionless potential uðρ̃Þ,

uðρ̃Þ ¼ u0 þ m̃2
Hρ̃þ

λ̃H
2
ρ̃2: ð216Þ
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We also expand

wðρ̃Þ ¼ w0 þ
ξH
2
ρ̃þ w2

2
ρ̃2; ð217Þ

with ξH a nonminimal coupling between the Higgs scalar
and gravity of the type −ξHh†hR=2. The function ξ̃ in
Eqs. (18) and (120) reads

ξ̃ ¼ ξH þ 6w2ρ̃; ð218Þ

whereNξ ¼ 4 for the standard model and larger suitableNξ

for larger representations in which the Higgs doublet is
embedded in GUT models.
The flow equation for m̃2

Hðρ̃Þ ¼ ∂ ρ̃uðρ̃Þ is obtained by
taking a ρ̃ derivative of the first equation (176),

∂tm̃2
H ¼ 2ρ̃∂ ρ̃m̃2

H þ ðA − 2Þm̃2
H −

1

2
AξHvþ

1

32π2
∂Ñ U

∂ρ̃ ;

ð219Þ

where the graviton induced anomalous dimension A reads

A ¼ 5

24π2wð1 − vÞ2 : ð220Þ

Here we employ vðρ̃Þ ¼ uðρ̃Þ=wðρ̃Þ and

∂ ρ̃v ¼ 1

w

�
m̃2

H −
ξHv
2

�
; ð221Þ

with ξHðρ̃Þ ¼ 2∂ ρ̃wðρ̃Þ.
Taking a further ρ̃ derivative of Eq. (221) yields the flow

equation for λ̃H,

∂tλ̃H ¼ 2ρ̃∂ ρ̃λ̃H þ Aðλ̃H − vw2Þ

þ A
w

�
2

1 − v

�
m̃2

H −
ξHv
2

�
2

− ξH

�
m̃2

H −
ξHv
2

��

þ 1

32π2
∂2Ñ U

∂ρ̃2 : ð222Þ

Similarly, one finds the flow equation for ξHðρ̃Þ ¼ 2∂ ρ̃wðρ̃Þ
from the ρ̃ derivative of the second equation (176),

∂tξH ¼ 2ρ̃∂ ρ̃ξHþ15A
4

�
m̃2

H−
ξHv
2

�
þ 1

48π2
∂ÑM

∂ρ̃ : ð223Þ

For w2ðρ̃Þ ¼ ∂2w=∂ρ̃2 ¼ ð∂ξH=∂ρ̃Þ=2 one obtains

∂tw2 ¼ 2ρ̃∂ ρ̃w2 þ 2w2 þ
15A
8

�
λ̃H − w2v

−
ξH
w

�
m̃2

H −
ξHv
2

�
þ 2

wð1 − vÞ
�
m̃2

H −
ξHv
2

�
2
�

þ 1

96π2
∂2ÑM

∂ρ̃2 : ð224Þ

For ρ̃-independent Ñ U and ÑM these flow equations
have a simple scaling solution

m̃2
H� ¼ 0; λ̃H� ¼ 0; ξH� ¼ 0; w2� ¼ 0; ð225Þ

which correspond to ρ̃-independent u and w. The corre-
sponding fixed point values u0� and w0� are given by uþ
and wþ as discussed for the constant scaling solutions in
Sec. V. If the gauge and Yukawa couplings are also zero at
the fixed point, only the gravitational interactions remain at
this fixed point.
Vanishing fixed point values for m̃2

H, λ̃H, ξH, and w2

follow directly if both Ñ U and ÑM are constants. This is
only an approximation for small matter couplings. For the
example of a single gauge boson coupling to the Higgs
doublet with gauge coupling e, the ρ dependence in
Eq. (82) generates an additional term for the flow of m̃2ðρ̃Þ,

Δ∂tm̃2
Hðρ̃Þ ¼ −

3e2

32π2ð1þ e2ρ̃Þ2 ; ð226Þ

and similar for nonzero Yukawa couplings and quartic
scalar couplings. For e ≠ 0 the scaling solution is no longer
independent of ρ̃, with m̃2

H ≠ 0. For vanishing matter
couplings at the fixed point, e2� ¼ 0, these corrections do
not change the fixed point. They modify, however, the
stability matrix for small deviations from the fixed point.
We note at this point that the constant scaling solution

(225) is not the only possible scaling solution. For example,
one may investigate scaling solutions with ρ̃-dependent w
reaching a form w ∼ ξ∞ρ̃=2 for ρ̃ → ∞. Such scaling
solutions have been discussed in the context of dilaton
quantum gravity [84,85].

B. Critical exponents

For small deviations from this scaling solution we
discuss the (truncated) stability matrix T that describes
the linear approximation for the vicinity of the fixed point

∂tg̃i ¼ −Tijðg̃j − g̃j�Þ; ð227Þ

with six couplings

g̃i ¼ ðu0; w0; m̃2
H; ξH; λ̃H; w2Þ: ð228Þ

The stability matrix obtains as
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Tij ¼ −
∂βi
∂gj
				
gj¼gj�

; ð229Þ

where

∂tgi ¼ βi: ð230Þ

The critical exponents are the eigenvalues of the stability
matrix. Eigenvectors with respect to positive critical expo-
nents are relevant couplings, whereas the ones for negative
exponents are irrelevant couplings. The irrelevant cou-
plings are predicted to take their fixed point values. The six
couplings g̃i ¼ ðu0; w0; m̃2

H; ξ̃H; λ̃H; w2Þ are related to the
values of uðρ̃Þ, wðρ̃Þ, m̃2

Hðρ̃Þ, etc., at ρ̃ ¼ 0.
We first neglect the terms proportional to ∂Ñ U=∂ρ̃

and ∂ÑM=∂ρ. In this approximation the stability matrix
decays into 2 × 2 blocks. The first block involves
ðg̃1; g̃2Þ ¼ ðu0; w0Þ,

Tð12Þ ¼
�
4 − A Av

− 15A
8

2þ 15Av
8

�
: ð231Þ

The second block for ðg̃3; g̃4Þ ¼ ðm̃2
H; ξHÞ reads

Tð34Þ ¼
�
2 − A Av

2

− 15A
4

15Av
8

�
; ð232Þ

while the third block for ðg̃5; g̃6Þ ¼ ðλ̃H; w2Þ becomes

Tð56Þ ¼
� −A Av

− 15A
8

−2þ 15Av
8

�
: ð233Þ

Here A and v are evaluated for ρ̃ ¼ 0. This block structure
continues for higher couplings. It is a result of our simple
truncation. Including for the scalar fluctuation contribution
the dependence of ∂tu and ∂tw on m̃2

H and ξ̃ will mix the
different blocks.
Consider first the ðλH; w2Þ sector for which the critical

exponents are

θ5;6 ¼ −
1

2

�
Aþ 2−

15Av
8

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA− 2Þ2 − 15AðAþ 2Þv

4
þ
�
15Av
8

�
2

s �
: ð234Þ

For jvj ≪ jðA − 2Þ=ð2AÞj one may expand

θ5 ¼ −Aþ 15A2v
8ðA − 2Þ ;

θ6 ¼ −2 −
15Av

4ðA − 2Þ : ð235Þ

We may also expand for jAvj ≪ ðA − 2 − 15Av=8Þ2=15,
where

θ5 ¼ −A −
15Av
8

þ 15Av
4ðA − 2 − 15Av=8Þ2 ;

θ6 ¼ −2 −
15Av

4ðA − 2 − 15Av=8Þ2 ; ð236Þ

which covers a region of A closer to two. In the region of
validity of these expansions both couplings are irrelevant
and therefore predictable. The eigenvector of the critical
exponent θ5 is mainly λH, while for θ6 it is w2. Another
expansion for large negative v, −v ≫ jðAþ 2Þ=ð2AÞj,
yields

θ5 ¼
16

15v
;

θ6 ¼
15Av
8

− A − 2: ð237Þ

In this limit one finds again negative critical exponents θ5
and θ6. For small v and negative v both λH and w2 are
irrelevant couplings predicted to be zero at the fixed point.
As v increases from zero toward one, the fixed point

approaches the region where our truncation is expected to
break down. For a given A the eigenvalues θ5 and θ6 remain
real as long as v < vcr, with

vcr ¼
8

15

�
1 ∓

ffiffiffiffi
2

A

r �2

: ð238Þ

The minus sign holds for v < 8=15þ 16=ð15AÞ and the
plus sign for v > 8=15þ 16=ð15AÞ. While complex critical
exponents for v > vcr are no problem, they may never-
theless be artifacts of an insufficient truncation. For
v ¼ vcr, where the imaginary part starts to set in, one has

θ5 ¼ θ6 ¼ −
ffiffiffiffiffiffi
2A

p
: ð239Þ

Both λH and w2 are irrelevant.
The eigenvalues in the sector m̃2

H, ξH are shifted by two
as compared to θ5;6,

θ3 ¼ θ5 þ 2; θ4 ¼ θ6 þ 2: ð240Þ

Similarly, one finds in the sector δu0, δw0

θ1 ¼ θ5 þ 4; θ2 ¼ θ6 þ 4: ð241Þ

Correspondingly, the critical exponents for higher order
couplings are shifted to more negative values. For − 2 <
θ5;6 < 0 there are four relevant couplings δu0 ¼ u0 − u0�,
δw0 ¼ w0 − w0�, m̃2

H, and ξH, while all other couplings are
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irrelevant. For more negative θ5, θ6 the number of relevant
couplings is reduced.

C. Graviton induced anomalous dimension

A crucial quantity for predictions of the properties of the
effective potential for the Higgs scalar is the graviton
induced anomalous dimension A [12,82,83,86]. For ηg ¼ 0
it is given by

A¼ 5

24π2wð1−vÞ2¼
5

24π2wx2
¼ 80

xð75þ2ÑMxÞ
; ð242Þ

with x ¼ xþ ¼ 1 − vþ given by the Reuter fixed
point (191).
For pure gravity one finds with x ¼ 0.848, ÑM ¼ 43=6

a value

A ¼ 1.082; ð243Þ

and therefore critical exponents

θ5 ¼ −1.39þ 0.491i; θ6 ¼ −1.39 − 0.491i: ð244Þ

For the standard model one has x ¼ 11.05, ÑM ¼ 37=6,
resulting in

A ¼ 0.0343; ð245Þ

and critical exponents

θ5 ¼ −0.0258: θ6 ¼ −2.65: ð246Þ

Because of the small value of A the influence of the off-
diagonal elements in the matrices (231)–(233) is small. In a
rough approximation the eigenvectors correspond simply to
the couplings δu0, δw0, m̃2

H, ξH, λH, and w2. There are three
relevant couplings that may be associated with δu0, δw0,
and m̃2

H. The couplings ξH, λH, and w2 are irrelevant. The
value of θ5 is rather close to zero, such that the critical
exponents for δu0, m̃2

H, and λH are not far from the
canonical scaling exponents. The approach of the quartic
coupling λH to its fixed point value λH� ¼ 0 is rather slow.
As a consequence, the small effects of nonzero gauge and
Yukawa couplings in the vicinity of the fixed point have to
be taken into account for the flow of λH away from the fixed
point, even for the region of large k where the metric
fluctuations are important.
To get some intuition on the size of A for GUT models,

we may consider the limit of largeNS. For jÑMj ≪ b2=440
one may use Eq. (197) for b < 0, resulting in

A ≈
16jbj
825

�
1þ 22ÑM

15jbj
�−1

: ð247Þ

For large values of jbj the anomalous dimension becomes
much larger than one. For the example of an SO(10) GUT
with NS ¼ 317 scalars (complex 126, complex 10, and real
45) one has jbj ¼ 1355.7 and ÑM ¼ −177.83, and one
finds A ¼ 32.29. For large NS one observes a linear
increase of A with NS, as can be seen from Fig. 6 where
we plot A as a function of NS. The large values of A arise
from a fixed point value of v rather close to one. This is
outside the range of validity of our truncation. The range of
very large values of A should therefore not be taken as
realistic.
For SU(5) one also has an increase of A for large NS. For

a minimal set with NS ¼ 34 one has

A ¼ 1.004: ð248Þ

One finds for the critical exponents

θ5 ¼ −0.5075; θ6 ¼ −2.171: ð249Þ

Thus λH, ξH, and w2 are irrelevant couplings, while m̃2
H,

δu0, and δw0 are relevant.
In Fig. 7 we show the dependence of the critical

exponents on the number of scalar fields for SU(5) and
SO(10) GUTs. For SU(10) there is a critical threshold for
the number of scalars Ncr ≈ 37 such that for NS < Ncr all
critical exponents are real, while for NS > Ncr they develop
an imaginary part. For NS < Ncr both θ5 and θ6 are
negative, while the other critical exponents θ1;…; θ4 are
positive. As NS approaches Ncr from below the critical
exponent θ5 decreases, while θ6 increases. Both critical
exponents have a common negative value for N ¼ Ncr. For
NS > Ncr the real part of the critical exponents θ5;6
increases, even becoming positive as one comes close to
the boundary of the region of validity of our truncation.
This part should not be trusted. For SU(5) the situation is
qualitatively similar, with Ncr ¼ 43. In contrast to SO(10),
only three couplings are relevant for NS < 39.

FIG. 6. Graviton induced anomalous dimension A, given by
Eq. (242), for SU(5) and SO(10) GUT models as a function of the
number of scalars NS.
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In Fig. 8 we show contour plots of θ5 and θ6 in the (Ñ U,
ÑM) plane. Both exponents are negative except for the
upper left corner where our truncation becomes unreliable.

D. Beyond the graviton approximation

In the graviton approximation Ñ U and ÑM are treated as
constants. For this approximation the only ρ̃ dependence of
the flow generators in Eq. (176) (beyond the canonical
terms 2ρ̃∂ ρ̃u − 4u and 2ρ̃∂ ρ̃w − 2w) arises through the ρ̃
dependence of v. This results in the block structure of the

stability matrix. The ρ̃ dependence of the effective particle
numbers Ñ U and ÑM induces a mixing between the
different blocks.
Let us start with the ρ̃ dependence of ÑM induced by the

contribution −3Nξξ̃=2 [cf. Eq. (122)] and neglect first other

contributions to the ρ̃ dependence of Ñ U and ÑM. With the
polynomial truncation (217),

ξ̃ ¼ ξH þ 6w2ρ̃; ∂ ρ̃ξ̃ ¼ 8w2; ð250Þ

FIG. 8. Contour plots for the real parts of θ5 (left) and θ6 (right). The red (no constant scaling solution) and yellow (unstable solution
due to wþ < 0) regions are excluded. The pink dashed line shows the change ofNS for the SU(5)-GUTmodel. It corresponds to the plots
for θ5 and θ6 in Fig. 7. For NS ≥ 43 in SU(5) GUT both θ5 and θ6 have an imaginary part, so that their real parts are degenerate.

FIG. 7. Critical exponents (real parts of eigenvalues of Tð12Þ, Tð34Þ, and Tð56Þ) as functions ofNS in SU(5) and SO(10) GUTs. For small
values of NS the critical exponents are not far from the values given by the canonical mass dimension of the associated parameters. For
the SO(10) model the curves for small NS from top to bottom correspond approximately to u0, w0, m̃2

H , ξH , λH , and w2. In particular, the
critical exponent for the quartic coupling of the Higgs scalar is negative, making this irrelevant parameter predictable. As NS increases,
the quartic scalar coupling becomes first more and more irrelevant, with decreasing θ5. ForNS close to 40 the eigenvalues of the stability
matrix develop an imaginary part, and the absolute value of the critical exponents starts to increase. For large NS our approximations no
longer remain valid.
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one has

∂ÑM

∂ρ̃ ¼ −12NHw2;
∂2ÑM

∂ρ̃2 ¼ 0: ð251Þ

Here Nξ ¼ NH is the dimension of the multiplet to which
the Higgs doublet belongs. This results in additional
contributions for the flow generators for w0 and ξH,

∂tw0 ¼ βw0
¼ � � � − NH

64π2
ξH;

∂tξH ¼ βξ ¼ � � � − NH

4π2
w2: ð252Þ

These additional terms do not affect the constant scaling
solutions (185) and (225). They influence, however, the
stability matrix by mixing the blocks,

T24 ¼ −
∂βw
∂ξH ¼ NH

64π2
; ð253Þ

T46 ¼ −
∂βξ
∂w2

¼ NH

4π2
: ð254Þ

This does not change the eigenvalues or critical exponents.
The stability matrix now has a triangle structure

T ¼

0
B@

Tð12Þ T̃ð12Þ 0

0 Tð34Þ T̃ð34Þ

0 0 Tð56Þ

1
CA; ð255Þ

with T24 and T46 contributing to the 2 × 2-matrices T̃ð12Þ

and T̃ð34Þ, respectively. In consequence, the eigenvalues
remain the eigenvalues of the 2 × 2-matrices Tð12Þ, Tð34Þ,
and Tð56Þ.
The triangular form of the stability matrix remains

preserved if we include the dependence of NS on scalar
mass terms. Let us assume for simplicity that NH scalars
have all mass terms m2

H ¼ m̃2
Hk

2, m̃2
H ¼ ∂u=∂ρ̃. This

results in an additional ρ̃ dependence of NS,

NS ¼ Nð0Þ
S þ NH

�
1

1þ m̃2
H
− 1

�
: ð256Þ

With

∂βu
∂m̃2

H
¼ −

NH

32π2ð1þ m̃2
HÞ2

;

∂βw
∂m̃2

H
¼ NH

96π2ð1þ m̃2
HÞ2

; ð257Þ

one finds off-diagonal contributions in the stability matrix

T13 ¼
NH

32π2
; T23 ¼ −

NH

96π2
; ð258Þ

such that

T̃ð12Þ ¼ NH

32π2

�
1 0

−1=3 1=2

�
: ð259Þ

Similarly, with

∂Ñ U

∂ρ̃ ¼ −
NHλH

ð1þ m̃2
HÞ2

;

∂ÑM

∂ρ̃ ¼ NHλH
ð1þ m̃2

HÞ2
; ð260Þ

one obtains new elements of the stability matrix

T35 ¼
NH

32π2
; T45 ¼ −

NH

48π2
; ð261Þ

resulting in

T̃ð34Þ ¼ NH

32π2

�
1 0

−2=3 8

�
: ð262Þ

We conclude that for the constant scaling solution the
stability matrix is very simple. Its structure remains similar
if we take into account the v dependence of the scalar
physical metric fluctuation π0. This will be different for
possible scaling solutions for which u and w depend on ρ̃.
In particular, if gauge or Yukawa couplings at the fixed
point differ from zero, such a ρ̃ dependence of the scaling
solution will be induced by ∂NV=∂ρ̃ and ∂NF=∂ρ̃ that do
not vanish for ρ̃ → 0. This will induce nonzero fixed point
values m̃2

H�, λH�, and w2�. We have discussed some details
of this case in Sec. III C.

E. Critical exponents for the new fixed point

We have concentrated our discussion of critical expo-
nents on the Reuter fixed point, since this is the only fixed
point for the standard model and the discussed GUT
models. In the small region where two fixed points exist
it is interesting to know which one is more stable, e.g.,
which one has less relevant parameters. For the new fixed
point v− is negative for the interesting range of Ñ U and
ÑM. For large negative v, this has the tendency to make the
critical exponent θ6 more negative according to Eq. (237).
For the example Ñ U ¼ ÑM ¼ −5 one finds for the new
fixed point v− ¼ −5.098 and w− ¼ 0.0006066

ðNÞ∶ θ5 ¼ −0.168; θ6 ¼ −16.03; ð263Þ

while the critical exponents for the Reuter fixed point are
given by
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ðRÞ∶ θ5 ¼ −1.55þ 0.539i; θ6 ¼ −1.55 − 0.539i:

ð264Þ

We conclude that the Reuter fixed point has four relevant
parameters, while the new fixed point has only two. This
seems to indicate that the new fixed point is actually the
more stable one.

VII. CONCLUSIONS

We have computed the flow equations for the effective
potential UðρÞ and the coefficient function of the curvature
scalar FðρÞ, within quantum gravity coupled to an arbitrary
number of scalars, gauge bosons, and fermions. The use of
the gauge invariant flow equation constrains the possible
form of the effective average action by diffeomorphism
symmetry. Since our setting is formulated in terms of a
single macroscopic metric, diffeomorphism symmetry
relates, for example, the effective scalar potential and the
zero momentum behavior of the graviton propagator.
Furthermore, the gauge invariant flow equation leads to
a universal measure contribution to the flow that is a fixed
functional of the metric, not involving the matter fields.
This replaces the contribution of ghosts and part of the
metric fluctuations in other functional renormalization
group investigations of quantum gravity. For the gauge
invariant flow equation the contribution from the physical
metric fluctuations decays into the dominant, rather simple
graviton contribution (traceless transverse tensor fluctua-
tions) and a physical scalar contribution. The latter is more
involved, also due to mixing with other scalars. Being
subdominant it admits, however, a reasonable approxima-
tion that permits us to discuss many aspects analytically.
We concentrate in this paper on the fixed point or scaling

solution with field independentU and F, and the vicinity of
it.We find a scaling solution for all the models we have
considered, pure gravity, the standard model, and grand
unified models based on SO(10) or SU(5) with an arbitrary
number of scalar fields NS. For SO(10) the fixed point is
situated, however, outside the range of validity of our
truncation, due to the large number of scalar fields needed
for a realistic spontaneous symmetry breaking. For dealing
with SO(10) reliably one needs at least to include the effect
of the squared Weyl tensor for the graviton propagator.
For the vicinity of the fixed point we have used a Taylor

expansion of UðρÞ and FðρÞ in terms of ρ, which is a
quadratic invariant formed from scalar fields. We concen-
trate on the Higgs doublet h for which ρ ¼ h†h. We
compute the flow of the scalar mass term and quartic
scalar coupling, as well as a nonminimal scalar gravity
coupling, in the vicinity of the fixed point. From the
corresponding stability matrix and its eigenvalues, the
critical exponents, we find that the quartic scalar coupling
λH is an irrelevant parameter for all models considered,
restricted to ranges where our truncation does not become

invalid. This gives support to the prediction of the mass of
the Higgs boson in Ref. [11].
On the other hand, for the same range of models the

scalar mass term m̃2
H turns out to be a relevant parameter.

Self-adjusted criticality in the Higgs sector, and the
associated resurgence mechanism [87], is not realized for
this class of models for the constant scaling solution. A
small ratio between the Fermi scale and the Planck scale is
technically natural because of particle scale symmetry [86].
Its value cannot be predicted, however, if the distance from
the phase transition is a relevant parameter. This situation
may change for a different scaling solution. Another
interesting possibility for m̃2

H becoming an irrelevant
parameter may arise for GUT models with large NS.
The gravity induced anomalous dimension A may grow
large for this type of models. If a more reliable truncation
tames the large off-diagonal elements in the stability
matrix, this may offer prospects for self-adjusted criticality.
We are aware that an understanding of the effective

potential U and the effective squared Planck mass F at the
fixed point of quantum gravity, as well as the stability
analysis at the fixed point, is only at its beginning.
Nevertheless, already at this stage the gauge invariant flow
equation offers many insights, and we hope that a robust
picture will arise from extended truncations.
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APPENDIX A: EFFECTIVE AVERAGE ACTION
IN THE BACKGROUND FIELD FORMALISM

AND PHYSICAL GAUGE FIXING

In the main body of this paper we employ the gauge
invariant flow equation with a single metric and gauge
field. As we have argued in Sec. II, this is equivalent to the
more standard background formalism with a physical
gauge fixing, in the most commonly used truncation where
the field dependent inverse propagator is approximated by
the second functional derivative of a gauge invariant kernel
plus a gauge fixing term. This equivalence holds if no field
derivatives of the flow equation are performed—for the
differences concerning field derivatives see Appendix C. In
the background field formalism the IR cutoff depends on a
separate background field, not on the macroscopic field as
for the gauge invariant flow equation. In the background
formalism one also uses ghost fields with an appropriate IR
cutoff.
In the background field formalism the one-loop form of

the functional flow equation is exact [13,14,88,89]. It is
given as a functional differential equation

CHRISTOF WETTERICH and MASATOSHI YAMADA PHYS. REV. D 100, 066017 (2019)

066017-30



∂tΓk½Φ� ¼ 1

2
Tr½ðΓð2Þ

k ½Φ� þRkÞ−1∂tRk�; ðA1Þ

whereRk is an infrared regulator function and ∂t ¼ k∂k is a
dimensionless scale derivative. The trace in Eq. (A1) sums
over all internal d.o.f. of a multifieldΦ that includes ghosts.
It involves a momentum integration and a sum over internal
space indices. The matrix of second functional derivatives

Γð2Þ
k is the full inverse propagator of Φ. For reviews on the

functional renormalization group (FRG), one can see
Refs. [71,90–98].
In this Appendix we work in the standard background

field formalism. For a physical gauge fixing and a suitable
truncation this will produce the same flow equation as in
the main text. This Appendix, together with Appendix D, is
self-contained.

1. Setup

We consider the system of a singlet scalar field φ
nonminimally coupled to gravity. Our truncation for the
effective action is given by

Γk ¼ Γgravity
k þ ΓS

k þ ΓV
k þ ΓF

k ; ðA2Þ

where

Γgravity
k ¼ −

1

2

Z
x

ffiffiffi
g

p
FðρÞRþ Γgf þ Γgh;

ΓS
k ¼

Z
x

ffiffiffi
g

p �
UðρÞ þ Zφ

2
gμν∂μφ∂νφ

�
;

ΓV
k ¼ ZA

4e2

Z
x

ffiffiffi
g

p
FμνFμν þ ΓðVÞ

gf þ ΓðVÞ
gh ;

ΓF
k ¼

Z
x

ffiffiffi
g

p fiZψ ψ̄γ
μDμψ þ yψ̄γ5ψφg: ðA3Þ

Here FðρÞ is the field dependent Planck mass, UðρÞ is the
scalar effective potential, and Zφ, Zψ , and ZA stand for the
field-renormalization factors of φ, ψ , and Aμ, respectively.
The scalar potentials can be expanded as polynomials of
ρ ¼ φ2=2, namely

FðρÞ ¼ M2
p þ ξρþ � � � ; ðA4Þ

UðρÞ ¼ V þm2ρþ 1

2
λρ2 þ � � � ; ðA5Þ

whereM2
p is the reduced Planck mass related to the Newton

constant GN ¼ 1=ð8π2M2
pÞ, ξ is the nonminimal coupling

constant that connects between ρ and the Ricci scalar, and
V is the cosmological constant.
In our truncation the only violation of the gauge

symmetries for the macroscopic metric gμν and gauge field
Aμ arises from gauge fixing and ghost terms. In the

approximation Γk ¼ Γ̄k þ Γgf þ Γgh the flow equations
will be found to be equivalent to the ones obtained from
the gauge invariant flow equation with the same ansatz for
the gauge invariant functional Γ̄k. We emphasize that in the
background field formalism the ansatz Γk ¼ Γ̄k þ Γgf þ
Γgh is only an approximation. The symmetries admit many
additional invariants involving the differences gμν − ḡμν or
Aμ − Āμ, with ḡμν and Āμ the background fields. We recall
that the equivalence with the gauge invariant flow equation
holds only for this truncation and for a physical gauge
fixing.
For the gauge bosons the physical gauge fixing and the

ghost action are given by

ΓðVÞ
gf ¼ 1

2α

Z
x

ffiffiffī
g

p ð∂μAμÞ2; ðA6Þ

ΓðVÞ
gh ¼

Z
x

ffiffiffī
g

p
c̄∂μ∂μc: ðA7Þ

To specify the physical gauge fixing for the metric, we
write the macroscopic metric as

gμν ¼ ḡμν þ hμν; ðA8Þ

where ḡμν is a constant background metric and hμν is a
fluctuation field. The gauge fixing for diffeomorphism
symmetry is given by

Γgf ¼
1

2α

Z
x

ffiffiffī
g

p
ḡμνΣμΣν: ðA9Þ

A class of general gauge fixings reads

Σμ ¼ D̄νhνμ −
β þ 1

4
D̄μh; ðA10Þ

where h ¼ ḡμνhμν is the trace mode. Bars on operators
denote that covariant derivatives are formed with the
background metric, and indices of operators are contracted
by the background metric as well. The ghost action
associated with the gauge fixing (A10) is given by

Γgh ¼ −
Z
x

ffiffiffī
g

p
C̄μ

�
ḡμρD̄2 þ 1− β

2
D̄μD̄ρ þ R̄μρ

�
Cρ; ðA11Þ

where C and C̄ are ghost and antighost fields.
Equations (A9) and (A10) constitute a general family of
gauge fixings for diffeomorphism symmetry, specified by
two parameters α and β. The choice β ¼ −1 and α → 0 is a
“physical gauge fixing” that acts only on the gauge modes
in hμν. In this work, we use this gauge choice. Nevertheless,
the next subsection discusses general α and β. This will
demonstrate explicitly the particular role of the physical
gauge fixing.
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2. Physical metric decomposition

A key quantity for the flow equation is the inverse
propagator or 1PI two-point function, as given by the
matrix of second functional derivatives of Γk. To derive the
explicit form for the metric two-point function, we split
the metric fluctuations into physical and gauge fluctua-
tions [81].
Accordingly, we decompose the metric fluctuations into

hμν ¼ fμν þ aμν; ðA12Þ

where fμν are the physical metric fluctuations, and aμν the
gauge fluctuations or gauge modes. The physical metric
fluctuations satisfy the transverse constraint D̄μfμν ¼ 0. In
turn, the physical metric fluctuations can be decomposed
into two independent fields as

fμν ¼ tμν þ sμν; ðA13Þ

where the graviton tμν is the transverse and traceless (TT)
tensor, i.e., D̄μtμν ¼ ḡμνtμν ¼ 0. The tensor sμν is given as a
linear function of a scalar field σ such that

sμν ¼ Ŝμνσ ¼ 1

3
Pμνσ: ðA14Þ

For a background geometry with constant curvature the
projection operator can be found explicitly as

Pμν ¼ ðḡμνΔ̄S þ D̄μD̄ν − R̄μνÞ
�
Δ̄S −

R̄
3

�−1
; ðA15Þ

with Δ̄S ¼ −D̄2 ¼ −D̄μD̄μ the covariant Laplacian acting
on scalar fields (spin-0 fields).
Similarly, the gauge modes or unphysical metric fluc-

tuations aμν are decomposed into a transverse vector mode
κμ, satisfying D̄μκμ ¼ 0, and a scalar mode u. In summary,
the metric fluctuations (A12) are parametrized by

fμν ¼ tμν þ
1

3
Pμνσ;

aμν ¼ D̄μκν þ D̄νκμ − D̄μD̄νu: ðA16Þ

Using the linear combinations

σ ¼ 3

4

�
Δ̄S − R̄=3
Δ̄S − R̄=4

�
ðhþ ðΔ̄SÞsÞ;

u ¼ 1

4

1

Δ̄S − R̄=4

�
h − 3

�
Δ̄S −

R̄
3

�
s

�
; ðA17Þ

we obtain the York decomposition [99] of the fluctuation
metric

hμν ¼ tμν þ ðD̄μκν þ D̄νκμÞ

þ
�
D̄μD̄ν þ

1

4
ḡμνΔ̄S

�
sþ 1

4
ḡμνh; ðA18Þ

where h ¼ ḡμνhμν. The scalar modes s and h in the York
decomposition are given as a mixture of the physical scalar
mode σ and the gauge mode u.
The ghost fields can be decomposed similarly into vector

and scalar fields

Cμ ¼ C⊥
μ þ D̄μC; C̄μ ¼ C̄⊥

μ þ D̄μC̄; ðA19Þ

where C⊥
μ (C̄⊥

μ ) is the transverse (anti)ghost field and C (C̄)
is the scalar (anti)ghost field.
These decompositions yield Jacobians that read

Jgrav1 ¼ ½det0ð1ÞðD̄1Þ�1=2;
Jgrav0 ¼ ½det0ð0ÞðD̄0ÞΔ̄S�1=2;
Jgh ¼ ½det00ð0ÞðΔ̄SÞ�−1; ðA20Þ

with

D̄1 ¼ Δ̄V −
R̄
4
; D̄0 ¼ Δ̄S −

R̄
4
: ðA21Þ

Here Δ̄V ¼ −D̄2 is the Laplacian acting on vector fields
(spin-1 fields) and a prime denotes a subtraction of the zero
eigenmode. This subtraction, however, does not contribute
to the present truncation, so that we hereafter neglect it.

3. Hessians

The two-point functions (or Hessians) for each d.o.f. in
the metric fluctuations defined in Eq. (A16), as well as for
the scalar field φ, are obtained by calculating the second
order variations of the effective action (A2) in terms of the
fluctuation fields. For our decomposition of the metric
fluctuations, the matrix of the Hessians becomes block
diagonal for each d.o.f. or spin. We neglect scale-indepen-
dent overall constant factors such as

ffiffiffī
g

p
and the gauge

parameters since they drop out in the flow equations.
For the tμν mode, we obtain

ðΓð2Þ
ðttÞÞ

μνρσ ¼ F
�
D̄T −

2U
F

�
PðtÞμνρσ; ðA22Þ

where we define the derivative operator

D̄T ¼ Δ̄T þ 2R̄
3
; ðA23Þ

with the Laplacian Δ̄T ¼ −D̄2 acting on transverse trace-
less tensor fields (spin-2 fields). The TT-projection operator
is given by
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PðtÞμνρσ ¼ 1

2
ðPμρPνσ þ PμσPνρÞ − 1

3
PμνPρσ; ðA24Þ

with Pμν defined by Eq. (A15).
The Hessian for the spin-1 gauge mode κμ is given by

ðΓð2Þ
ðκκÞÞ

μν ¼ D̄1

�
D̄1 þ

αR̄
2

− αU

�
PðvÞμν; ðA25Þ

with PðvÞ the projection operator on the vector mode,
PðvÞ

μ
μ ¼ 3. For α → 0 the inverse propagator for the gauge-

vector mode becomes independent of U

lim
α→0

ðΓð2Þ
k Þμνκκ ¼ ðD̄1Þ2PðvÞμν: ðA26Þ

We next turn to the Hessian for the scalar modes. In the
ðσ; u;φÞ-field basis, we obtain

Γð2Þ
ð00Þ ¼

0
BBBBBBBB@

ðΓð2Þ
ð00ÞÞgrav

1
2

�
−F0



Δ̄S þ R̄

4

�
þ U0

�
φ

1
4
ð−F0R̄þ 2U0ÞφΔ̄S

1
2

�
−F0



Δ̄S þ R̄

4

�
þ U0

�
φ

1
4
ð−F0R̄þ 2U0ÞφΔ̄S ZφΔ̄S þm2

φ − 1
2
ξ̃φR̄

1
CCCCCCCCA
; ðA27Þ

where we define m2
φðρÞ ¼ U0 þ 2ρU00 the field-dependent scalar mass and ξ̃φðρÞ ¼ F0 þ 2ρF00, and primes denote

derivatives with respect to ρ ¼ φ2=2. Here the spin-0 gravitational part is given by the following 2 × 2 matrix:

ðΓð2Þ
ð00ÞÞgrav¼

0
BBBBBB@
−F

6

�

Δ̄S− 3

8
R̄
�
Δ̄S− U

2F



Δ̄S− R̄

2

��
ðΔ̄S− R̄

3
Þ−1þðβþ1Þ2

16α Δ̄S
F
4



U
F−

R̄
4

�
Δ̄Sþðβþ1Þðβ−3Þ

16α



Δ̄Sþ R̄

β−3

�
Δ̄S

F
4



U
F−

R̄
4

�
Δ̄Sþðβþ1Þðβ−3Þ

16α



Δ̄Sþ R̄

β−3

�
Δ̄S

F
16



Δ̄S− R̄

2

�

R̄− 4U

F

�
Δ̄Sþðβ−3Þ2

16α



Δ̄Sþ R̄

β−3

�
2
Δ̄S

1
CCCCCCA
:

ðA28Þ

For general α and β the Hessian in the scalar sector is rather complicated. It simplifies considerably for a physical gauge

fixing that corresponds to β ¼ −1. The 2 × 2 matrix ðΓð2Þ
ð00ÞÞgrav becomes diagonal. For β ¼ −1 the factor 1=α remains only

in the Hessian for the spin-0 gauge mode Γð0Þ
ðuuÞ. In the limit α → 0 we can further neglect in the matrix (A27) the elements

mixing u with σ and φ. They do not diverge for α → 0 and drop out in the propagator that is the inverse of Γð2Þ. As a result,
for a physical gauge fixing the physical fluctuations and the gauge modes decouple. The Hessian becomes block diagonal in
physical and gauge modes. For the physical modes one obtains the 2 × 2 matrix



Γð2Þ
ð00Þ
�
ph

¼

0
BBBBB@

− F
6

�

Δ̄S − 3

8
R̄
�
Δ̄S − U

2F



Δ̄S − R̄

2

��

Δ̄S − R̄

3

�
−1 1

2

�
−F0



Δ̄S þ R̄

4

�
þ U0

�
φ

1
2

�
−F0



Δ̄S þ R̄

4

�
þ U0

�
φ ZφΔ̄S þm2

φ − 1
2
ξ̃φR̄

1
CCCCCA; ðA29Þ

while the Hessian for the gauge scalar mode reads



Γð2Þ
ð00Þ
�
gauge

¼
�
Δ̄S −

R̄
4

�
2

Δ̄S: ðA30Þ

Finally, the Hessians for the ghost field obtains from Eq. (A11) as
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Γð2Þ
ðC̄⊥C⊥Þ

�
μν ¼ D̄1PðvÞμν;

Γð2Þ
ðC̄CÞ ¼

�
Δ̄S þ

R̄
β − 3

�
Δ̄S: ðA31Þ

It is an important consequence of the physical gauge
fixing β ¼ −1 and α → 0 that the Hessian for the spin-1
and 0 gauge modes and the ghost mode depend on neither
U nor F. This also holds for the Jacobians (A20). More
generally, all these terms do not depend on the form of Γk.
We will see in Appendix D that their contributions to the
flow equations can be combined into a universal measure
contribution, corresponding to the one employed in the
gauge invariant flow equation. The gravitational measure
contribution depends on the metric, but not on the scalar
field φ or any other matter fields. All these important
simplifications do not hold for a general gauge fixing with
arbitrary α and β.
At this stage we have collected all the ingredients

necessary for the flow equation (A1), up to the cutoff
function Rk. The cutoff function will be specified in
Appendix D, where we also compute the right-hand side
of Eq. (A1) in our truncation. We are interested in the gauge
invariant kernel Γ̄k and therefore evaluate the flow gen-
erator for a macroscopic metric equal to the background
metric. The bars on covariant derivatives can therefore be
dropped in the following.

APPENDIX B: HEAT KERNEL EVALUATION
OF THE FLOW GENERATOR

The flow generator ζk, defined by the right-hand side of
the flow equation ∂tΓk ¼ ζk, involves different contribu-
tions of the type

ζk ¼
X
i

aitrWðΔiÞ; ðB1Þ

with Δi appropriate differential operators. For the contri-
bution of a scalar field one has Δ ¼ −DμDμ, a ¼ 1=2, and
WðΔÞ ¼ ∂̃t lnPkðΔÞ. The trace is conveniently evaluated in
the heat kernel expansion that we recall here briefly for
convenience.
Assume an operator Δ with all eigenvalues positive,

λm > 0. For the evaluation of trWðΔÞ we make use of a
representation of the δ distribution,

Z
γþi∞

γ−i∞

ds
2πi

esðz−λmÞ ¼ δðz − λmÞ; ðB2Þ

that holds for real positive finite γ provided λm > 0.
Insertion of Eq. (B2) yields

trWðΔÞ ¼
X
m

WðλmÞ ¼
X
m

Z
∞

0

dzδðz − λmÞWðzÞ

¼
Z

∞

0

dzWðzÞ
Z

γþi∞

γ−i∞

ds
2πi

esztre−sΔ; ðB3Þ

where we use
P

m expð−sλmÞ ¼ tr expð−sΔÞ. One next
employs the expansion

tre−sΔ ¼ 1

16π2

Z
x

ffiffiffi
g

p fc0ðΔÞs−2þ c2ðΔÞs−1þ c4ðΔÞþ � � �g;

ðB4Þ

for which the coefficients cnðΔÞ are well known for the
operators of interest here. This yields

trWðΔÞ ¼ 1

16π2
X∞
n¼0

Q2−n

Z
x

ffiffiffi
g

p
c2nðΔÞ; ðB5Þ

with

Qn ¼
Z

∞

0

dzWðzÞ
Z

γþi∞

γ−i∞

ds
2πi

eszs−n: ðB6Þ

Evaluating Eq. (B6) one finds

Q2 ¼
Z

∞

0

dzzWðzÞ; Q1 ¼
Z

∞

0

dzWðzÞ;

Q0 ¼ Wðz ¼ 0Þ; ðB7Þ

or, more generally,

Qn ¼
1

ΓðnÞ
Z

∞

0

dzzn−1WðzÞ; n ≥ 1;

Q−n ¼ ð−1Þn ∂
nW
∂zn

				
z¼0

; n ≥ 0: ðB8Þ

In particular, for W ¼ ∂tRk=ðzþ RkðzÞ þm2Þ the coeffi-
cients Qn are directly related to the threshold functions ld

n
that have been widely explored in functional renormaliza-
tion for different forms of the IR cutoff Rk; cf. Eq. (29).

TABLE I. Heat kernel coefficients for the individual fields in
maximally symmetric four-dimensional spacetime. “T” and “TT”
denote “transverse” and “transverse traceless,” respectively.

Tensor
(hμν)

T
tensor
(fμν)

TT
tensor
(tμν)

Vector
(Aμ)

vector
(AT

μ , κμ,
C⊥
μ )

Weyl
spinor
(ψ )

Scalar (a,
u, σ, φ, C)

b0 10 9 5 4 3 2 1
b2 5

3
3
2

− 5
6

2
3

1
4

1
3

1
6

CHRISTOF WETTERICH and MASATOSHI YAMADA PHYS. REV. D 100, 066017 (2019)

066017-34



The coefficients c0 and c2 are given by

c0 ¼ b0; c2 ¼ b2R: ðB9Þ

We display the value of b0 and b2 for the operators relevant
for various fields in Table I. The numbers for fermions ψ
are given for Majorana spinors. They have to be doubled for
Dirac spinors.

APPENDIX C: FLOW OF THE
GRAVITON PROPAGATOR

In this Appendix we compute directly the flow equation
for the inverse graviton propagator in flat space. This will
reveal important differences between the gauge invariant
flow equation and the background field formalism for the
flow of field derivatives of Γk. Only for the gauge invariant
flow do the field derivatives and scale derivatives commute.
We focus on the infrared behavior of the gravitational
propagator, i.e., vanishing momentum in flat space, since
the main differences are already visible there.

1. Gauge invariant flow equation

Within the gauge invariant approach with a single metric
the inverse graviton propagator is given by the second
functional derivative of the gauge invariant effective aver-
age action Γ̄ð2Þ

grav,

Γ̄k ¼
1

2

Z
x
tμνðΓ̄ð2Þ

gravÞμνρτtρτ þ � � � : ðC1Þ

We compute the flow contribution of a single scalar field.
Our starting point is Eq. (21),

∂tΓ̄k ¼ πS ¼
1

2
tr∂̃t lnðPkðzÞ þm2Þ; ðC2Þ

with covariant Laplacian

z ¼ −DμDμ ¼ −gμν∂μ∂ν þ Γμ
μν∂ν: ðC3Þ

Taking two derivatives one has

∂tðΓ̄ð2Þ
gravÞμνρτ ¼ 1

2
tr∂̃t

∂2

∂tμν∂tρτ lnðPkðzÞ þm2Þ: ðC4Þ

For the graviton propagator we need to expand z ¼ −D2 up
to second order in tμν,

z ¼ −ðδμν − tμν þ tμρtρνÞ∂μ∂ν

−
�
tμρ∂μtνρ −

1

2
δμνðtτρ∂μtτρÞ

�
∂ν: ðC5Þ

We consider the graviton propagator in the zero-momen-
tum limit. This corresponds to x-independent tμν. In this
case the operator z becomes diagonal in momentum space,

zðq; q0Þ ¼ ðq2 − tμνqμqν þ tμρtρνqμqνÞδðq − q0Þ: ðC6Þ

Insertion into Eq. (C4) yields, with P̄ ¼ Pk þm2,

∂tðΓ̄ð2ÞÞμνρτ ¼ 1

2

Z
q
∂̃t

�
1

P̄
∂P̄
∂z

∂2z
∂tμν∂tρτ

þ 1

P̄
∂2P̄
∂z2

∂z
∂tμν

∂z
∂tρτ −

1

P̄2

�∂P̄
∂z
�

2 ∂z
∂tμν

∂z
∂tρτ

�
;

ðC7Þ

to be evaluated at tμν ¼ 0. Taking into account that tμν is
trace-free one finds, with z ¼ q2,

∂tðΓ̄ð2ÞÞμνρτ¼1

2

Z
q

� ∂2

∂z2
� ∂tRk

Pkþm2

�

×

�
qμqν−

1

4
q2δμν

��
qρqτ−

1

4
q2δρτ

�

þ1

2

∂
∂z
� ∂tRk

Pkþm2

��
qμqρδντþqμqτδνρþqνqρδμτ

þqνqτδμρ−qμqνδρτ−qρqτδμνþ1

4
q2δμνδρτ

��
:

ðC8Þ

We employ the identities

Z
q
fðq2Þqμqν¼1

4

Z
fðq2Þq2δμν;Z

q
fðq2Þqμqνqρqτ¼ 1

24

Z
fðq2Þq4ðδμνδρτþδμρδντþδμτδνρÞ;

ðC9Þ

and

Z
q
¼ 1

16π2

Z
∞

0

dzz; ðC10Þ

in order to obtain

∂tðΓ̄ð2Þ
gravÞμνρτ ¼ −

1

2
πðUÞ
S P̂μνρτδðq − q0Þ: ðC11Þ

Here

πðUÞ
S ¼ −

1

32π2

Z
∞

0

dz

�
z3

6

d2

dz2
þ z2

d
dz

� ∂tRk

Pk þm2
; ðC12Þ

and

P̂μνρτ ¼ 1

4
ð2δμρδντ þ 2δμτδνρ − δμνδρτÞ ðC13Þ
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is a projector that eliminates the trace of hμν. A flow of the
zero-momentum graviton propagator of the form (C11)
follows if the part of Γ̄k not containing derivatives of the
metric has the diffeomorphism invariant structure

Γ̄k ¼
Z
x

ffiffiffi
g

p
Ug ¼ −

Ug

4

Z
x
tμνtμν;

∂tUg ¼ πðUÞ
S : ðC14Þ

For ∂tRk vanishing fast enough for z → ∞ and
∂tRk=ðPk þm2Þ remaining finite for z → 0we can perform
partial integrations,

πðUÞ
S ¼ −

1

64π2

Z
∞

0

dzz2
∂
∂z

∂tRk

Pk þm2

¼ 1

32π2

Z
∞

0

dzz
∂tRk

Pk þm2
: ðC15Þ

Comparison with the part of Eq. (28) that remains for a
vanishing curvature scalar R ¼ 0 shows that we can
identify Ug with the effective scalar potential U. This is
what one expects for a diffeomorphism-invariant effective
action if a derivative expansion is valid. On the diagram-
matic level several individual diagrams have to combine in
a particular way in order to arrive at this simple result. This
combination is dictated by diffeomorphism symmetry.

2. Background field method

The use of covariant derivatives in the scalar IR-cutoff
function, and therefore the dependence of Rk on the
macroscopic metric gμν, are crucial for obtaining this
simple result. We can compare this result with the back-
ground field method or computations without gauge
symmetry for which Rk does not depend on the macro-
scopic metric. It may depend on the background metric ḡμν
that corresponds to flat space in our case. If we omit the
metric dependence of Rk, choosing instead of

ffiffiffi
g

p
Rkð−D2Þ

a cutoff Rkð−∂2Þ, ∂2 ¼ δμν∂μ∂ν, the derivative ∂=∂z in
Eq. (C12) is replaced by ∂̃z acting only on the part ∼z in
Pk ¼ zþ Rk, resulting in ∂̃zP̄ ¼ 1, and

∂̃z
∂tRk

Pk þm2
¼ −

∂tRk

ðPk þm2Þ2 : ðC16Þ

Furthermore, the factor
ffiffiffi
g

p
in the inverse propagatorffiffiffi

g
p ð−D2 þm2Þ þ Rkð−∂2Þ is no longer canceled by a
similar factor

ffiffiffi
g

p ∂tRk. As a consequence, the dependence
of z on tμν is supplemented by

δz ¼ −ð ffiffiffi
g

p
− 1Þδμν∂μ∂ν ¼

1

4
tρτtρτδμν∂μ∂ν: ðC17Þ

This adds in momentum space to Eq. (C6) a contribution

δz ¼ −
1

4
q2tμνtμνδðq − q0Þ; ðC18Þ

resulting in an additional piece

ΔπðUÞ
S ¼ −

1

32π2

Z
∞

0

dzz2
∂tRk

ðPk þm2Þ2 : ðC19Þ

Taking things together, the noncovariant cutoff Rkð−∂2Þ
replaces πðUÞ

S by π̃ðUÞ
S ,

π̃ðUÞ
S ¼ −

1

96π2

Z
∞

0

dzz3
∂tRk

ðPk þm2Þ3 : ðC20Þ

In general, one may expect contributions both from a four-
point vertex and from three-point vertices, which may by
represented graphically as

ðC21Þ

Here the wiggled lines are gravitons, solid lines are scalar
propagators, and a cross denotes the insertion of ∂tRk.
Because of the particular momentum structure the four-
point vertex does not contribute, however, and Eq. (C20)
involves the second graph only. In contrast, for the gauge

invariant flow πðUÞ
S there are further graphs where graviton

lines are attached to the cross ∼∂tRk.
The result (C20) corresponds to a flat-space computation

of the flow of the graviton propagator at zero momentum
for a cutoff function Rk that violates diffeomorphism
symmetry. This is the type of computation performed in

Ref. [41]. As noted there, the sign of π̃ðUÞ
S is opposite to the

sign of πðUÞ
S . For a Litim cutoff one obtains, with

w̃ ¼ m2=k2,

πðUÞ
S ¼ k4

32π2ð1þ w̃Þ ;

π̃ðUÞ
S ¼ −

k4

192π2ð1þ w̃Þ3 ; ðC22Þ

such that for w̃ ¼ 0 one has π̃ðUÞ
S ¼ −πðUÞ

S =6, in agreement
with Ref. [41].
The difference between πðUÞ

S and π̃ðUÞ
S arises only from

the different choice of the IR-cutoff function. Since πðUÞ
S

corresponds to a diffeomorphism invariant effective aver-

age action, and the difference between πðUÞ
S and π̃ðUÞ

S is not
small, we conclude that the violation of diffeomorphism
symmetry in the scalar-induced flow is substantial if Rk is
not formulated in terms of covariant derivatives. If scalar
fluctuations play an important role, the truncation where
vertices are derived from a gauge invariant Γ̄k is valid only
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if Rk involves covariant derivatives. In other words, if the
flow equation is not gauge invariant, additional vertices will
play a role. This generalizes to background gauge fixing if
Rk involves a background metric ḡμν different from the
macroscopic metric gμν. The additional vertices arise from
terms involving the difference gμν − ḡμν.
There is, in principle, an ambiguity by which quantity

the coefficient of the curvature scalar is defined. Without
gauge invariance the graviton propagator and the graviton
vertices are not directly related. If one wants to use a
truncation with a gauge invariant kernel Γ̄k, one has to
decide from which quantity one extracts the flow of FðρÞ.
As we have argued, the effects of gauge symmetry breaking
by a noncovariant cutoff function can be substantial. They
seem to be reduced if one employs the graviton vertices,
with a certain degree of encouraging universality between
the three- and four-point vertices [59].

3. Comparison

In principle, one is free to choose a cutoff function
provided some general properties for the behavior at large
and small (covariant) momenta are obeyed. Different
choices of Rk correspond to different flow trajectories on
which the quantum effective action is reached for k → 0.
We want to choose initial conditions for the flow at large k
such that for k ¼ 0, where Rk vanishes, the effective action
is diffeomorphism invariant. For k ¼ 0 it should involve
only a single metric once the dependence on the gauge
modes is removed by a partial solution of the field
equations, taking the leading contribution from the physical
gauge fixing term.
For the gauge invariant flow equation this is achieved

whenever we start at large k with a gauge invariant Γ̄k. In
contrast, for cutoff functions not involving the macroscopic
metric one needs instead to take for the initial value at large
k an effective action that features terms violating diffeo-
morphism symmetry. In this context the gauge invariant
flow equation seems to offer more control of the truncation.
The issue whether one can find a choice of macroscopic
fields and a precise definition of Γ̄k such that the gauge
invariant flow equation becomes exact is not yet settled.
Despite this shortcoming, it is our opinion that truncations
of the gauge invariant flow are more reliable than a flow
that violates diffeomorphism symmetry.
One may ask which is the correct graviton propagator

that describes the propagation of gravitational waves and
encodes the information about the primordial cosmic tensor
fluctuations according to the formalism of Ref. [81]. As
discussed in a similar investigation for Yang-Mills theories,
this question concerns essentially the coupling to physical
sources [65]. For gravity, the physical sources are given by
a conserved energy momentum tensor.
By construction, the field equations derived from the

gauge invariant effective action Γ̄ involve a conserved
energy momentum tensor. One actually defines in this

setting the physical energy momentum tensor by the field
equations derived from Γ̄ in the presence of matter fields,
suitably averaged in the case of inhomogeneous matter
distributions. The propagator GP, defined by the inverse of
Γ̄ð2Þ on the subspace of physical fluctuations by Eq. (9),
describes indeed the propagation of metric perturbations
induced by physical sources. It obeys all the necessary
criteria for the physical graviton propagator. For the
formulation of the gauge invariant effective average action
Γ̄k leading to the gauge invariant flow equations, these
properties extend to arbitrary k.
For formulations where the gauge fixing, the Faddeev-

Popov determinant, and a possible IR cutoff do not involve
the macroscopic metric, but rather an independent fixed
background metric (which may be a flat space metric), the
issue is more complicated. The field equations derived from
the effective action no longer involve a conserved energy
momentum tensor. Indeed, we have argued that for fixed
background fields the effective average action Γk is not
gauge invariant, even if a physical gauge fixing is used. For
k ¼ 0 one may recover the physical properties of diffeo-
morphism symmetry by the use of Slavnov-Taylor iden-
tities and Becchi-Rouet-Stora-Tyutin symmetry. This can
be extended to those flow trajectories for k ≠ 0 that recover
for k ¼ 0 the physical properties of diffeomorphism sym-
metry. This procedure involves modified Slavnov-Taylor
identities [100] or associated “background field identities”
[14], or a k-dependent version of Becchi-Rouet-Stora-
Tyutin symmetry [101]. These identities control, in prin-
ciple, the diffeomorphism violating terms in the effective
action. They are rather different to handle in practice,
however. The gauge invariant effective average action Γ̄k
and the use of gauge invariant flow equations circumvents
all these complications, treating directly with objects of
interest.
We conclude that the inclusion of graphs from the field

dependence of Rk is crucial for a simple justification of
gauge invariant truncations. A similar situation was pre-
viously discussed for the graviton contribution to the flow
of the graviton propagator at zero momentum [83]. Of
course, one may sometimes encounter situations where the
omission of graphs from the field dependence of Rk has
only modest consequences for the flow equations.

APPENDIX D: FLOW GENERATOR

In this Appendix we compute the flow equation for the
effective potential U and the coefficient of the curvature
tensor F in the background field formalism with physical
gauge fixing and a truncation Γk ¼ Γ̄k þ Γgf , with gauge
invariant Γ̄k and Γgf the gauge fixing term. In this
approximation we find the same flow equations as for
the gauge invariant setting. In particular, the more detailed
result in the sector of physical scalar fluctuations can be
taken over directly to the gauge invariant flow, extending
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the approximative result for π0 in Sec. IV D. As discussed
in Appendix C, this simple correspondence does not hold
for quantities involving field derivatives, as propagators or
vertices. The contribution of Appendixes A and D is self-
contained and may be considered as an independent
computation of the flow equation.
Within the standard background field approach [14] we

derive the flow generator that is given as

∂tΓk ¼ ζk ¼ π2 þ π0 þ η1 þ η0 þ τ: ðD1Þ

Here π2 and π0 are the contributions from the spin-2
graviton (tμν) and the spin-0 scalar fields (σ and φ),
respectively, while η1 and η0 are the spin-1 (κμ, C⊥

μ ) and
spin-0 (u, C) measure contributions. We also have to
regularize the Jacobians. The corresponding contribution
to the flow equation is part of the measure contribution
η1 þ η0. Contributions of additional matter fields are
denoted by τ. We concentrate on gravity coupled to a
single scalar field, for which the main ingredients for the
flow equation are given in Appendix A.

1. Infrared cutoff function

The infrared cutoff function Rk has to obey several
criteria: (i) It should regulate the propagator in the infrared
such that the momentum integration in the flow
equation (A1) remains finite for small q2. (ii) The derivative
∂tRk should decay fast for high momenta q2 ≫ k2 such
that for fixed fields the momentum integral is also UV
finite. (iii) The typical scale should be set by k, with Rk
vanishing for k → 0. With these requirements only a finite
momentum interval of q2 near k2 contributes effectively to
the flow equation. (iv) In the background field formalism
the effective average action should be invariant under
combined gauge transformations of the macroscopic and
background metrics. Then Rk should be formulated in
terms of covariant derivatives involving the background
metric. (For the gauge invariant flow equation one uses
instead covariant derivatives involving the macroscopic
metric.)
These criteria limit the choice of Rk, but many different

forms remain possible. We require here two additional
properties: (v) The physical part of the cutoff function
should be a sufficiently smooth function of the covariant
momenta. In particular, it should not contain explicit
projectors on particular modes that would induce additional
strong nonlocalities. A natural choice for the metric is a
cutoff RkðD̂fÞ with D̂f given by Eq. (141) and related
directly to the second variation of the curvature scalar.
Similarly, for the scalars we will employ RkðDSÞ with DS
the covariant scalar Laplacian. In the ghost sector Rk should
be a function of the differential operator in Eq. (A11).
While the use of explicit projectors is avoided by these
definitions of Rk, an effective projection on the different

modes will take place for maximally symmetric geometries.
In this case the relevant operators as D̂f become block
diagonal, and the same happens for RkðD̂fÞ.
The next criterion (vi) requires a separate cutoff for the

gauge modes that diverges ∼1=α for α → 0. This is needed
for an effective cutoff in this sector, since otherwise thegauge
fixing term∼1=αwould not be regularized. The cutoff for the
gauge modes should act only on the gauge fluctuations, not
on the physical fluctuations. This avoids mixing between the
physical and gauge modes also for k > 0. Finally, the
Jacobians (A20) need a regularization by Rk as well.
Otherwise, they would induce strong nonlocalities.
Different choices and normalizations of modes yield differ-
ent Hessians and different Jacobians. The regularization for
the Jacobians should be of a type that makes the regulari-
zation independent of the precise definition of fields.
Finally, we include in Rk prefactors as F such that Rk

has a similar structure as the second variation of kinetic
terms such as FRk or Zφ∂μφ∂μφ. With these prescriptions
the addition of the IR-cutoff Rk replaces kinetic operators
as FD̂f by FPkðD̂fÞ. Here PkðDÞ is of the form
PkðDÞ ¼ Dþ RkðDÞ. For the flow equations we have to

add the IR cutoff to the Hessian Γð2Þ
k . This replaces in

Eq. (A22) D̄T by PkðD̄TÞ, or in the φ − φ element of the
matrix (A27) ZφΔ̄S → ZφPkðΔ̄SÞ.

2. Physical metric fluctuations

We first evaluate the contributions from the physical
fluctuations. There are the TT mode (tμν) and the physical
spin-0 modes (φ and σ), whose forms of the flow generators
are given by

π2 ¼
1

2
Trð2Þ

∂tRk

Γð2Þ
k þRk

				
tt
;

π0 ¼
1

2
Trð0Þ

∂tRk

Γð2Þ
k þRk

				
ph
; ðD2Þ

respectively. The two-point functions Γð2Þ
k for the TT

mode and the physical spin-0 modes are shown in (A22)
and (A29), respectively.

a. Spin-2 TT mode

Using the heat kernel method summarized in
Appendix B we can evaluate the contributions (D2). Our
criteria for the IR cutoff function correspond for the TT
mode to a type-II cutoff function in the naming of Ref. [7],
with

W2ðzÞ ¼
∂tðFRkðzÞÞ

FðPkðzÞ − vk2Þ : ðD3Þ

This is precisely the formula of Sec. IV B and results in
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π2 ¼
1

16π2

Z
x

ffiffiffī
g

p �
20

3
k4l4

0ð−vÞ
�
1 −

ηg
8

�

−
25

4
k2l2

0ð−vÞ
�
1 −

ηg
6

�
R̄

�
; ðD4Þ

with ηg ¼ −∂t lnw. The threshold functions for the Litim
cutoff are evaluated as

l4
0ðw̃Þ ¼

1

2ð1þ w̃Þ ; l2
0ðw̃Þ ¼

1

1þ w̃
: ðD5Þ

Using the formulas in Appendix E, one can find for
comparison the case where a type-I cutoff is employed.

b. Spin-0 modes

Let us calculate contributions from the spin-0 physical
scalar fields. For our cutoff function only the diagonal part
of the Hessian is replaced with PkðzÞ ¼ zþ RkðzÞ, with
z ¼ Δ̄S. The projection of the cutoff on the σ mode yields

Rph
k ðzÞ ¼

 
Γσσ
k ðPkÞ − Γσσ

k ðzÞ 0

0 ZφRkðzÞ

!
; ðD6Þ

where

Γσσ
k ðzÞ ¼ −

F
6

"
z − 3R̄

8

z − R̄
3

z −
U
2F

z − R̄
2

z − R̄
3

#
: ðD7Þ

This apparently somewhat complicated form is only a result
of the projection, the original cutoff RkðD̂fÞ being much
simpler.
We again extract the flow generator π0 from the heat

kernel method. The physical spin-0 mode contributions are
given as

π0 ¼
1

2
Trð0Þ∂̃t lnðΓð2Þ

k þRkÞjph ¼
1

2
Trð0ÞW0ðzÞ

¼ 1

2ð4πÞ2
Z
x

ffiffiffī
g

p fbð0Þ0 Q2½W0� þ bð0Þ2 Q1½W0�R̄g; ðD8Þ

where ∂̃t is the t derivative acting on only the scale
dependence in the regulator. The heat kernel function for

the spin-0 modes involves the eigenvalues of the regulated
inverse propagator matrix (A29), with Δ̄S replaced by
PkðΔ̄SÞ. It reads

W0ðzÞ ¼ ∂̃t ln

�
3ρ

�
−F0

�
zþ R̄

4

�
þ U0

�
2

þ F
18

�
Pk − 3R̄

8

Pk − R̄
3

Pk −
U
2F

Pk − R̄
2

Pk − R̄
3

�

×

�
ZφPk þm2

φ −
ξ̃φ
2
R̄

��
; ðD9Þ

where the first term in the logarithm corresponds to the
mixing contribution between σ and φ.
To extract the explicit form of the beta functions, we

define the dimensionless quantities

ρ̃ ¼ Zφφ
2

2k2
¼ Zφρ; uðρ̃Þ ¼ UðρÞ

k4
;

wðρ̃Þ ¼ FðρÞ
2k2

; vðρ̃Þ ¼ 2UðρÞ
FðρÞk2 ¼

uðρ̃Þ
wðρ̃Þ ;

ñφðρ̃Þ ¼
ξ̃φ
Zφ

¼ F0 þ 2ρF00

Zφ
¼ 2w0 þ 4ρ̃w00;

m̃2
φðρ̃Þ ¼

m2
φ

Zφk2
¼ U0 þ 2ρU00

Zφk2
¼ u0 þ 2ρ̃u00: ðD10Þ

Evaluating Eq. (D8) with Eq. (D9) one finds

π0 ¼
k4

32π2
½ϒðσσÞ

1;0;0;0;0;1 þϒðφφÞ
0;1;0;0;0;1�

Z
x

ffiffiffī
g

p

þ k2

32π2

�
1

6
fϒðσσÞ

1;0;0;0;0;0 þϒðφφÞ
0;1;0;0;0;0g

−
1

2
fϒðσσÞ

1;0;0;1;1;0 þϒðφφÞ
0;1;0;1;1;0g

−
1

24
fϒðσσÞ

2;0;1;0;1;1 þϒðφφÞ
0;0;1;1;1;1 −ΦðvÞg

− ñφfϒðσσÞ
0;0;0;1;1;1 þϒðφφÞ

0;2;0;0;1;1g
� Z

x

ffiffiffī
g

p
R̄: ðD11Þ

Here the threshold functions are defined as

ϒðσσÞ
i;j;k;l;m;n ¼

Z
∞

0

dxðxnfgðxÞÞ
ðpðxÞ þm2

φÞiðpðxÞ − v=4Þjð1 − v=pðxÞÞk


3ρ̃ð−2w0xþu0Þ2

2w

�
l

½ðpðxÞ − v=4ÞðpðxÞ þm2
φÞ þ 3ρ̃ð−2w0xþ u0Þ2=2w�mþ1

;

ϒðφφÞ
i;j;k;l;m;n ¼

Z
∞

0

dxðxnfφðxÞÞ
ðpðxÞ þm2

φÞiðpðxÞ − v=4Þjð1 − v=pðxÞÞk


3ρ̃ð−2w0xþu0Þ2

2w

�
l

½ðpðxÞ − v=4ÞðpðxÞ þm2
φÞ þ 3ρ̃ð−2w0xþ u0Þ2=2w�mþ1

;

ΦðvÞ ¼
Z

∞

0

dxfΦðxÞ
ðv=pðxÞÞðpðxÞ þ m̃2

φÞ
ðpðxÞ − v=4ÞðpðxÞ þm2

φÞ þ 3ρ̃ð−2w0xþ u0Þ2=2w : ðD12Þ
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They involve the dimensionless combinations

fφðxÞ ¼
∂tðZφRkðzÞÞ

Zφk2
¼ −ηφrðxÞ þ

∂tRkðzÞ
k2

;

fgðxÞ ¼
∂tðFRkðzÞÞ

Fk2
¼ ð2 − ηgÞrðxÞ þ

∂tRkðzÞ
k2

;

fΦðxÞ ¼ ð4þ ∂t ln v − ηgÞrðxÞ þ
x

pðxÞ
∂tRkðzÞ

k2
;

rðxÞ ¼ RkðzÞ
k2

; pðxÞ ¼ PkðzÞ
k2

; x ¼ z
k2

; ðD13Þ

and the anomalous dimensions

ηg ¼ −
∂tw
w

; ηφ ¼ −
∂tZφ

Zφ
: ðD14Þ

The result is somewhat lengthy, partly because of the
mixing between the scalar modes. It simplifies consider-
ably if this mixing can be neglected. Assume that in the
denominator of the threshold functions, one has

ðpðxÞ − v=4ÞðpðxÞ þm2
φÞ ≫ 3ρ̃ð2w0xþ u0Þ2=2w: ðD15Þ

In this case the mixing term is suppressed and can be
neglected. In particular, the mixing is absent if ρ̃ ¼ 0.
Neglecting the mixing, π0 can be evaluated as

π0 ¼ πðSÞk þ πðσÞk , where πðSÞk is the contribution from the
φ fluctuation given in Eq. (30) and

πðσÞ0 ¼ k4

32π2
ϒðσσÞ

1;0;0;0;0;1

Z
x

ffiffiffī
g

p

þ k2

32π2

�
1

6
ϒðσσÞ

1;0;0;0;0;0 −
1

24
ðϒðσσÞ

2;0;1;0;1;1 −ΦÞ
�Z

x

ffiffiffī
g

p
R̄:

ðD16Þ

The threshold functions simplify in the absence of mixing,
and we obtain for the Litim cutoff

πðσÞ0 ¼ 1

32π2

Z
x

ffiffiffī
g

p �
4

3

�
1−

ηg
8

�
k4

þ
�

1

2ð1− v=4Þ
�
1−

ηg
6

�

−
1− v

18ð1− v=4Þ2
�
1−

ηg
8

�
þ 1

24
ΦðvÞ

�
k2R̄

�
; ðD17Þ

where

ΦðvÞ ¼ v
Z

∞

0

dx
ð4þ ∂t ln v − ηgÞrðxÞ þ x

pðxÞ
∂tRkðzÞ

k2

pðxÞðpðxÞ − v=4Þ

¼ 3v
1 − v=4

�
1þ ∂t ln v − ηg

6

�
: ðD18Þ

The result (D17) and (D18) has already a simple struc-
ture from which the contributions to cðσÞV and cðσÞM are easily
extracted. We observe the appearance of various factors
ð1 − v=4Þ, where the part ∼v arises from the mass term in
the σ propagator. For analytic discussions it is often

sufficient to set v ¼ 0, since the cðσÞV and cðσÞM are subdomi-
nant. We have discussed in the main text that this is a valid
approximation for our purposes. Setting v ¼ 0, Eq. (D17)
results in Eq. (174).

3. Measure contribution

We next evaluate the measure contribution ηk. As argued
in Ref. [63], this contribution takes a simple form

ηk ¼ −
1

2
Trð1Þ

∂tPkðD̄1Þ
PkðD̄1Þ

−
1

2
Trð0Þ

∂tPkðD̄0Þ
PkðD̄0Þ

; ðD19Þ

with

D̄1 ¼ Δ̄V −
R̄
4
; D̄0 ¼ Δ̄S −

R̄
4
: ðD20Þ

It is shown by explicit calculations in [12] that actually the
measure contribution is given indeed by Eq. (D19), with
D1 ¼ D0 ¼ q2 in the case of flat background ḡμν ¼ δμν. We
generalize here the result to arbitrary background metrics.
The measure contribution arises from the gauge fluctua-

tions, the ghost fluctuations, and the regularization of the
Jacobian. Only the combination of all contributions results
in the simple expression (D19). For the regularized
Jacobians we again replace the relevant differential operator
D̄ by PkðD̄Þ. This is necessary since otherwise the
Jacobians would induce strong nonlocalities. The flow
contributions from the regularized Jacobians read

Jgrav1 ¼
1

2
Trð1Þ

∂tPkðD̄1Þ
PkðD̄1Þ

;

Jgrav0 ¼ −
1

2
Trð0Þ

∂tPkðD̄0Þ
PkðD̄0Þ

−
1

2
Trð0Þ

∂tPkðΔ̄SÞ
PkðΔ̄SÞ

;

Jgh ¼ Trð1Þ
∂tPkðΔ̄SÞ
PkðΔ̄SÞ

: ðD21Þ

By a separate computation of all other individual
contributions we will show explicitly that the combined
measure contribution is given by the simple form (D19).
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The spin-1 measure contribution is given by

η1 ¼ δð1Þk − ϵð1Þk ; ðD22Þ

with the spin-1 vector gauge mode (A26) and the Jacobians
(D21) for the spin-1 gauge field

δð1Þk ¼ lim
α→0

1

2
Trð1Þ

∂tRk

Γð2Þ
k þRk

				
κκ

þ Jgrav1

¼ Trð1Þ
∂tPkðD̄1Þ
PkðD̄1Þ

−
1

2
Trð1Þ

∂tPkðD̄1Þ
PkðD̄1Þ

¼ 1

2
Trð1Þ

∂tPkðD̄1Þ
PkðD̄1Þ

; ðD23Þ

and the spin-1 ghost mode (A31)

ϵð1Þk ¼ Trð1Þ
∂tRk

Γð2Þ
k þRk

				
C̄⊥C⊥

¼ Trð1Þ
∂tPkðD̄1Þ
PkðD̄1Þ

: ðD24Þ

This sums up to the measure contribution from the spin-1
modes

η1 ¼ −
1

2
Trð1Þ

∂tPkðD̄1Þ
PkðD̄1Þ

: ðD25Þ

Next we discuss the spin-0 measure contribution. The
spin-0 gauge mode coming from the metric fluctuation
(A29) and the corresponding Jacobian (D21) is

δð0Þk ¼ lim
α→0

1

2
Trð0Þ

∂tRk

Γð2Þ
k þRk

				
gauge

þ Jgrav0

¼
�
Trð0Þ

∂tPkðD̄0Þ
PkðD̄0Þ

þ 1

2
Trð0Þ

∂tPkðΔ̄SÞ
PkðΔ̄SÞ

�

−
1

2

�
Trð0Þ

∂tPkðD̄0Þ
PkðD̄0Þ

þ Trð0Þ
∂tPkðΔ̄SÞ
PkðΔ̄SÞ

�

¼ 1

2
Trð0Þ

∂tPkðD̄0Þ
PkðD̄0Þ

; ðD26Þ

while the spin-0 ghost mode (A31) is

−ϵð0Þk ¼ −Trð0Þ
∂tRk

Γð2Þ
k þRk

				
C̄C

þ Jgh

¼ −
�
Trð0Þ

∂tPkðD̄0Þ
PkðD̄0Þ

þ Trð0Þ
∂tPkðΔ̄SÞ
PkðΔ̄SÞ

�

þ Trð0Þ
∂tPkðΔ̄SÞ
PkðΔ̄SÞ

¼ −Trð0Þ
∂tPkðD̄0Þ
PkðD̄0Þ

: ðD27Þ

In consequence, the measure contribution of the spin-0
modes becomes

η0 ¼ δð0Þk − ϵð0Þk ¼ −
1

2
Trð0Þ

∂tPkðD̄0Þ
PkðD̄0Þ

: ðD28Þ

This concludes the proof that the total measure contri-
bution ηk ¼ η1 þ η0 is given by Eq. (D19). For both the
spin-1 and 0 measure contributions, the simple relation
δk ¼ 2ϵk holds. We have employed here the type-II cutoff
scheme; namely the regulator Rk is employed to replace D̄1

and D̄0 with Pk. Even if one uses the type-I cutoff function
such that Δ̄V and Δ̄S are replaced by Pk, these rela-
tions hold.
The evaluation of Eq. (D19) is done in Sec. IV C and

yields

ηk ¼ −
1

16π2

Z
x

ffiffiffī
g

p �
4k4l4

0ð0Þ þ
17

12
k2l2

0ð0ÞR̄
�
: ðD29Þ

The use of Eq. (E6) in Appendix E allows us to obtain the
case of the type-I cutoff functions.

4. Contributions from other free particles

We summarize contributions from massless free particles
in the background field formalism. ForNS scalars, NF Weyl
fermions, and NV gauge bosons, we have contributions,

τ ¼ πðSÞk þ πðFÞk þ ζðVÞk

¼ NS

2
Trð0Þ

∂tPkðΔSÞ
PkðΔSÞ

−
NF

2
Trð1

2
Þ
∂tPkð−D2Þ
Pkð−D2Þ

þ NV

2

�
Trð1Þ

∂tPkðDTÞ
PkðDTÞ

− Trð0Þ
∂tPkðΔSÞ
PkðΔSÞ

�

¼ k4

16π2
ðNS − 2NF þ 2NVÞl4

0ð0Þ
Z
x

ffiffiffī
g

p

þ k2

96π2
ðNS þ NF − 4NVÞl2

0ð0Þ
Z
x

ffiffiffī
g

p
R̄: ðD30Þ
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The choice of the cutoff follows the criteria developed at the
beginning of this Appendix. In the language of Ref. [7] this
corresponds to a type-I cutoff for bosons, while for fermions
and gauge bosons the type-II cutoff is used. As advocated,
this yields (for ξ̃ ¼ 0) the same flow equations (121).

APPENDIX E: DIFFERENT IR-CUTOFF SCHEME

For a comparison of different implementations of IR
cutoffs we consider

Γð2Þ
k ¼ Δþ cRþ w̃k2 ¼ Dþ w̃k2; ðE1Þ

with Δ the negative covariant Laplacian in an appropriate
sector. For a cutoff function RkðDÞ one obtains

ζ1 ¼
1

2
tr∂̃t lnðDþ RkðDÞ þ w̃k2Þ

¼ 1

16π2

Z
x

ffiffiffi
g

p fb0l4
0ðw̃Þk4 þ ðb2 − cb0Þl2

0ðw̃Þk2Rg:

ðE2Þ

This cutoff is of type II in the classification of Ref. [7].
If we choose instead a type-I cutoff function RkðΔÞ, the
result is

ζ2 ¼
1

2
tr∂̃t lnðDþ RkðΔÞ þ w̃k2Þ

¼ 1

16π2

Z
x

ffiffiffi
g

p �
b0l4

0

�
w̃þ cR

k2

�
k4

þ b2l2
0

�
w̃þ cR

k2

�
k2R

�
: ðE3Þ

Expanding in a power of R yields

ζ2 ¼
1

16π2

Z
x

ffiffiffi
g

p fb0l4
0ðw̃Þk4

þ ½b2l2
0ðw̃Þ − cb0k2l4

1ðw̃Þ�k2Rg; ðE4Þ

with

ld
1ðw̃Þ ¼ −

∂
∂w̃ld

0ðw̃Þ: ðE5Þ

Comparison with ζ1 replaces in Eq. (E2) for the coefficient
of R

ðb2 − cb0Þl2
0ðw̃Þ → b2l2

0ðw̃Þ − cb0l4
1ðw̃Þ ðE6Þ

such that for the term ∼c the threshold function l2
0ðw̃Þ is

replaced by a different threshold function l4
1ðw̃Þ. Unless

there are particular cancellations of the type cb0 ≈ b2 or
cb0l4

1 ≈ b2l2
0, the two types of cutoff give qualitatively

similar results. Quantitative differences fall into the general
class of cutoff differences. We recall, however, that for
fermions a chirally invariant cutoff in terms of the Dirac
operator does not allow for an arbitrary choice of Rk.

APPENDIX F: CONSTANT SCALING SOLUTION
FOR THE NEW FIXED POINT

We display in this Appendix the contour plots for the
second scaling solution v−, w−, and u− in Figs. 9, 10,
and 11, respectively. In the red regions there is no stable
fixed point. The conditions, w− > 0 and v− < 1, are not
satisfied in the yellow regions. As discussed in Sec. V D,
the second scaling solution can be allowed only for the
green region in Fig. 4, which is the intersection of the green
regions in Figs. 9 and 10.

FIG. 9. Contour plot of the fixed point value of v− in the
ðÑM; Ñ UÞ plane. For the yellow region on the right of the figure
there is no stable solution due to v− > 1. For the red region no
constant scaling solution is found.
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ðÑM; Ñ UÞ plane.

FIG. 10. Contour plot of the fixed point value of w− in the
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