PHYSICAL REVIEW D 100, 066017 (2019)

Variable Planck mass from the gauge invariant flow equation

Christof Wetterich and Masatoshi Yamada
Institut fiir Theoretische Physik, Universitit Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany

® (Received 12 June 2019; published 16 September 2019)

Using the gauge invariant flow equation for quantum gravity we compute how the strength of gravity
depends on the length or energy scale. The fixed point value of the scale-dependent Planck mass in units of
the momentum scale has an important impact on the question, which parameters of the Higgs potential can
be predicted in the asymptotic safety scenario for quantum gravity? For the standard model and a large class
of theories with additional particles the quartic Higgs coupling is an irrelevant parameter at the ultraviolet
fixed point. This makes the ratio between the Higgs boson and the top-quark mass predictable.
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I. INTRODUCTION

The asymptotic safety scenario [1,2] realizes quantum
gravity as a nonperturbatively renormalizable quantum
field theory, as summarized in [3—10]. If a particle physics
model coupled to quantum gravity can be extended to an
infinitely short distance, the free parameters of the model
correspond to the relevant parameters at the ultraviolet
(UV) fixed point. On the other hand, one can predict every
renormalizable coupling of the effective low energy theory
of particle physics at length scales much larger than the
Planck length that corresponds to an irrelevant parameter at
the fixed point. More precisely, for n relevant parameters at
the UV-fixed point and m renormalizable couplings of the
low energy theory below the Planck mass, there exist m — n
constraints relating the low energy couplings.

Within this general setting the mass of the Higgs boson
has been predicted to be 126 GeV with a few giga-electron-
volt uncertainty [11]. This prediction is based on three
assumptions: (i) The quartic scalar coupling Ay is an
irrelevant coupling at the UV-fixed point. (ii) The fixed
point value Ay, is close to zero. (iii) The flow equations for
Ay for momenta below the Planck scale do not deviate
much from the ones for the standard model. The present
paper addresses the first assumption (i). We want to know
for which type of particle physics models, specified by the
number of (almost) massless scalars, fermions, and gauge
bosons at the fixed point, the quartic Higgs coupling is an
irrelevant parameter.

A previous detailed investigation [12] of this question by
the use of the gauge invariant flow equation for quantum
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gravity has been performed with the strength of gravity at
the fixed point w=! taken as an unknown parameter. The
question of which parameters of the Higgs potential are
relevant or irrelevant depends in an important way on the
value of w at the fixed point, possibly being influenced as
well by a nonminimal coupling &y of the Higgs doublet to
gravity. By taking w and &y as fixed parameters also the
stability matrix for the flow away from the fixed point is
reduced to the parameters in the scalar potential. This
approximation influences the critical exponents 6;, which
are the eigenvalues of the stability matrix. The critical
exponents decide if a coupling is relevant (6; > 0) or
irrelevant (6; < 0). The present paper computes the flow
equations for w and &y and determines their values at the
fixed point. The stability matrix at the fixed point is
extended to include these parameters. Within the
Einstein-Hilbert truncation for gravity we compute the
critical exponents in dependence on the number of massless
scalars, fermions, and gauge bosons at the fixed point.
In a quantum field theory for gravity the Planck mass
M, (k) depends on the renormalization scale k, which is a
typical inverse length scale at which the effective laws are
investigated. Fluctuations with wave length shorter than
k~! are included in the scale-dependent effective action (or
effective average action) I';. Lowering k includes addi-
tional fluctuations and induces a scale dependent M (k).

The flow equation for M3 (k) takes the general form
kM2 (K) = 4y k2. (1)

The gravitational interactions are universal and all particles
contribute to cy,. In particular, the contribution of free
massless scalars, fermions, or vector bosons yield constant
contributions to ¢, since no mass scale is present besides &,
and dimensionless coupling constants are absent. The
structure of the flow equation (1) is very general and does

Published by the American Physical Society


https://orcid.org/0000-0002-1013-8631
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.066017&domain=pdf&date_stamp=2019-09-16
https://doi.org/10.1103/PhysRevD.100.066017
https://doi.org/10.1103/PhysRevD.100.066017
https://doi.org/10.1103/PhysRevD.100.066017
https://doi.org/10.1103/PhysRevD.100.066017
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

CHRISTOF WETTERICH and MASATOSHI YAMADA

PHYS. REV. D 100, 066017 (2019)

not need the contribution from metric fluctuations. While
the metric fluctuations do not change the structure (1), they
induce a quantitatively important part of c,, that depends
on the value of the (dimensionless) effective scalar potential
or “cosmological constant.”

For the dimensionless ratio w = Mp(k)/(2k*) the flow
equation (1) shows a fixed point for w, = cy. In the
presence of additional dimensionless couplings c;, has to
be evaluated for the fixed point values of these couplings.
At the fixed point M (k) scales according to its canonical
dimension [2]

M2(k) = 2w, K2, 2)

while for k much smaller than the observed reduced Planck
mass M, = 2.435 x 10'® GeV the running of the Planck
mass stops,

M3(k) = M3+ 2w, k* = 2w(k)k>. (3)
Here ]\_/Il% may depend on fields, being independent of k. We
are interested in the UV regime for which we want to
compute the fixed point value w,. For this purpose we need
the flow equation for the dependence of w(k) on k.

Functional renormalization [2,13,14] permits one to
compute the flow equation for w(k), both for pure quantum
gravity [2] and for gravity coupled to matter [15]. We need
¢y in dependence on the number of massless real scalars
Ng, massless Weyl or Majorana fermions N, and massless
gauge bosons Ny. There is already a rather substantial body
of work for the computation of c,, in various truncations for
the effective action of gravity [2,16-62]. The existing
quantitative results are, however, more widely scattered
than needed for our purpose.

To increase the robustness of the result for
cyu(Ng, Ng, Ny ), we employ here the gauge invariant flow
equation for a single metric field [63]. It has the important
advantage that all physical information is contained in the
gauge invariant or diffeomorphism symmetric effective
action T, which depends on a single macroscopic metric
field g,, . Diffeomorphism invariance imposes an important
restriction on the allowed couplings, reducing greatly the
number of possible couplings as compared to an effective
action without gauge invariance, or with gauge invariance
only realized by simultaneous transformations of a back-
ground field g,, and an independent macroscopic metric
gy~ For example, keeping only up to two derivatives the
gauge invariant effective action for scalars coupled to
gravity reads

Fk/\/_{——RJrUJrZ 8(/)18,,%} (4)

where we use the shorthand convention [, = [d*x, and F,
U, and K depend on k and are functions of the scalar fields

;. Here R is the curvature scalar and g = det g,,. We will
work in this truncation, setting further K; = 1.

We investigate the flow of U(p), as embodied in the
dimensionless quantity u(p) = U/k*, with p a suitable
bilinear of scalar fields and p = p/k*>. Similarly, we
establish flow equations for F(p) or w(p) = F/2k* For
the gauge invariant flow equation one finds a rather simple
result:

1 8
k@ku—2p3 M—4M+32 2<NS_2NF+2NV_§)

5 u\ !
— (1 -= 5
e < w) ®)
and

43
koww = 2p0;w = 2w + — ( NS—NF+4NV+€>

1
967>
25 u\ !
T <1 w) ’ (6)
This result uses the Litim cutoff function [64] and makes a
mild simplification in the sector of scalar fluctuations.
Constant scaling solutions for an UV-fixed point are found
by setting Oyu = d;u = Ow = Ow =0

Within our truncation we find an acceptable UV-fixed
point with stable gravity for a large region in “theory space”
(Ng,Np,Ny). This region includes pure gravity, the
standard model, and many grand unified models. Our
truncation becomes doubtful for large positive values of
Ng+ Np —4Ny,. Discarding this doubtful extreme region
the quartic scalar coupling is found to be an irrelevant
parameter. It can therefore be predicted, giving support to
the prediction of the Higgs boson mass [11]. The validity
for a large positive value of Ng+ Np—4Ny may be
enlarged by extending the truncation for the gravity system.
The limitation of the truncation will be discussed in
Sec. V B.

In Sec. II we briefly recapitulate the gauge invariant flow
equation for the effective average action for quantum
gravity. Subsequently, we discuss separately the different
contributions to the flow of the effective scalar potential
U(p) and the effective squared Planck mass F(p). We start
in Sec. III A with the fluctuations of massless scalars and
continue in Sec. III B with massless gauge bosons. The
gauge boson fluctuations alone are sufficient to generate an
acceptable UV-fixed point for quantum gravity. Section III
C addresses the coupled system of gauge bosons and
scalars for nonvanishing gauge couplings, and Sec. III D
includes fermionic fluctuations. Matter fluctuations alone
generate an UV-fixed point with stable gravity pro-
vided Ng + Ny < 4Ny.

In Sec. IV we discuss the flow contributions from
fluctuations of the metric. The gauge invariant flow
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equation offers the advantage that the contributions from
physical fluctuations are independent of the ones from
gauge modes and the regularized Faddeev-Popov determi-
nant. Section IVA describes the dominant graviton con-
tribution from the traceless transverse metric fluctuations.
In Sec. IV B we discuss the combined “measure contribu-
tion” from gauge modes and the Faddeev-Popov determi-
nant. Section IV C presents a simplified version of the
subleading contribution from the physical scalar metric
fluctuation. The full contribution is displayed in the
Appendixes A and D.

In Sec. V we discuss in detail the UV-fixed point solution
for p-independent U and F'. An approximate treatment of the
subleading physical scalar metric fluctuations and their
mixing with other scalar fluctuations allows us to discuss
many aspects analytically. The contributions from matter
fluctuations, as well as the measure contribution and the
contribution from the physical scalar metric fluctuations can
be combined into two effective parameters Ny = Ng —
2Np+2Ny —8/3 and Ny = —Ng— Np + 4Ny + 43 /6.
For all these contributions the propagator is the one for
massless fields. Only for the graviton contribution does the
value of U, corresponding to a cosmological constant,
influence the propagator.

Section VI addresses the consequences of our inves-
tigation for the predictability of the parameters of the Higgs
potential. This issue depends on the particle physics model
coupled to quantum gravity. The precise number of mass-
less scalars, fermions, and vector bosons for the UV
completion of the standard model influences N, and

N, and therefore the precise location and properties of
the fixed point.

Many of the particles may acquire a mass proportional to
the Planck mass MP as the flow of couplings moves away
from the fixed point. This is typically the case for grand
unified theories (GUTs). The effective low energy theory
below the Planck mass may be only the standard model.
Nevertheless, predictions for the fixed point and critical
exponents for small deviations from it depend on the
complete microphysical particle model. If the microscopic
model remains the standard model, the quartic Higgs
coupling is an irrelevant parameter and can be predicted.
In contrast, the mass term is a relevant parameter such that
the gauge hierarchy is a free parameter that cannot be
predicted. This is similar for a minimal GUT based on
SU(5). For microscopic GUTs with a large number of
scalar Ny the gravity induced anomalous dimension for the
scalar mass term and quartic coupling increases due to the
graviton propagator moving close to the onset of instability.
This is the region where our truncation becomes doubtful.
Unfortunately, at the present stage no robust statement is
possible on the question if the mass term for the Higgs
scalar becomes irrelevant (self-induced criticality) in GUTs
with large Ng as SO(10). In Sec. VII we present our
conclusions.

II. GAUGE INVARIANT FLOW EQUATION

The gauge invariant flow equation for the gauge invariant
effective average action I'; takes the form [63,65]

kO = 0,0y = my — 8 (7)

with 7z, the contribution of physical fluctuations that
depends on T, and &, a universal measure contribution
that is independent of T',. The contribution from physical
fluctuations takes the one-loop form

1
T = ESU{@RPGP}’ (8)

where Str denotes a momentum integration and summation
over internal indices, with an additional minus sign for
fermions arising from their Grassmann nature. The full
propagator Gp for the physical modes is a functional of
arbitrary macroscopic fields, such that Eq. (7) is a func-
tional differential equation. With P the projector on the
physical fluctuations, the physical propagator obeys
PGp = GpP" = Gp. The infrared cutoff function Rp acts
on the physical fluctuations.

The relation between I', and Gp involves the projector
on the physical fluctuations,

(T¢) + Rp)Gp = PT. 9)

In the presence of a local gauge symmetry the second
functional derivative I;,(cz) of a gauge invariant effective
action has zero modes corresponding to the gauge degrees
of freedom (d.o.f.). It is therefore not invertible. It is
invertible, however, on the projected subspace of physical
fluctuations. This underlies the relation (9), which remains
meaningful even in the limit kK — 0 where Rp vanishes. In
short, the physical propagator is the inverse of the second
functional derivative of I'; on the projected subspace. For
the flow equation, it is the inverse in the presence of the IR-
cutoff Rp. Insertion of Eq. (9) into Eq. (8) closes the flow
equation, which becomes a functional differential equation
for T,.

Projection operators on physical fluctuations are neces-
sarily nonlocal objects. An example is the projection on a
transverse photon, P, = &, — q,4"/ g*. At first sight the
gauge invariant flow equations (8) and (9) seem therefore to
be plagued by severe nonlocalities. The explicit use of
projectors can be circumvented, however, by a simple

(2)

procedure. One adds to fk the second functional deriva-

tive of a physical gauge fixing term fé? /a, I“,E2> =

1_“,({2) + l:;) /a, which renders F,(Cz) invertible. A physical
gauge fixing acts only on the gauge fluctuations, obeying

P =T{P=0. (10)
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Adding also an IR cutoff for the gauge modes Ry¢/a, the
propagator in the presence of gauge fixing and IR cutoffs is
given by

=(2 1 ~ (2 _l
G= r,§)+RP+a(r;f)+Rgf> . (1)

No projectors are needed any longer for the inversion.

For a — 0 one finds a block diagonal form of the
propagator matrix G, with a physical block Gp and a
block for the gauge modes that vanishes ~a. As a
consequence, one has

tr{8 (Rp + Rgf/a)( "R+ Ry/a) "

= 1 + 6. (12)

The part o, arises from the block in G for the gauge modes.
This part of G is proportional to , such that multiplication
with 0,R,¢/a yields a result that remains finite for a — 0. It
is given by a simple determinant in the projected space of
gauge modes

:—a Indet (I} + Ry). (13)

with fézf) a fixed differential operator, such that the k
dependence arises only from R, With given §; we can
compute the flow contribution of the physical fluctuations
7, from Eq. (12) without any explicit use of projections.

Despite the close resemblance to the method of gauge
fixing, the gauge invariant flow equatlon (8) does not use
any gauge fixing. The addition of 1"(f /a should be seen as
a purely technical device for an effectlve computation of
Gp, as defined by Eq. (9). The relation (10) and the limit
a — 0 are mandatory, and there is no freedom for the
choice of a gauge fixing.

The measure factor in Eq. (7) amounts to —§;, with §; a
universal expression given by Eq. (13) [63,65]. It expresses
the presence of nonlinear constraints for the physical
fluctuations. Omitting the measure term —J; in the gauge
invariant flow equation (7) would erroneously treat the
physical fluctuations as unconstrained fields. In the present
approach the measure contribution is universal since the
presence of constraints does not involve the form of the
effective action T';. It is based [63] on the direct regulari-
zation of the Faddeev-Popov determinant, and no ghosts
are introduced. It is not known if this type of IR regulari-
zation is sufficient for all purposes. For the present level of
truncation we establish explicitly in Appendix D the
equivalence with a regularization of the ghost propagator.

Despite the conceptional difference, Eq. (12) can also be
viewed as the flow generator for a gauge fixed theory with a
truncation of the form

ef>

up to a part from ghost fluctuations. This holds provided
one uses for Iy a physical gauge fixing that acts only on
the gauge modes. The ghost contribution amounts to —26;,
having the same structure as the contribution from gauge
fluctuations, but with opposite sign and a factor of 2. We
therefore observe a rather close relation between the gauge
invariant flow equation and the background field method
with a particular physical gauge fixing and a particular
truncation. This relation is discussed in detail in
Appendixes A and D.

The quantity F(gf) appearing in the measure term (13)
follows from

| 1
Fgf = argf = Z[; \/g_]D”aWD/ Clﬂ (15)

by second variation with respect to the gauge fluctuation
a,,. It corresponds to a physical gauge fixing condition
D*h,, =0, with h,, = f, +a, the fluctuation of the
metric around the macroscopic metric g,,, and f,, the
physical fluctuation. Gauge transformations act only on

a,,, leaving f,, invariant. By construction, l:é? obeys the

projection condition (10). The precise form of fé? will be

discussed in Sec. IV.

The infrared cutoff functions Rp and Ry involve
covariant derivatives formed with the macroscopic metric.
This dependence on the macroscopic metric is a crucial
feature for guaranteeing gauge invariance in a formulation
with a single macroscopic metric and no separate “back-
ground metric.” As a consequence of the formulation in
terms of a single metric, the derivatives 0, = k0 and
0/0g,, commute. For example, the flow equation for the
graviton propagator follows directly from the second
functional derivative of z; — J; with respect to the metric.
This feature is an important difference as compared to the
background field formalism, even if one uses for the latter
the truncation (14). Derivatives of the flow generator with
respect to the metric contain parts that involve field
derivatives of R. This results in additional diagrams for
the flow equation for propagators or vertices. These addi-
tional diagrams involve external lines “ending” in the R,
insertion. They are not present in the background field
formalism. This is true only for the average fluctuations
lines [66]. It is a crucial advantage of the gauge invariant
formulation with a single metric that physical propagators
and vertices can be extracted directly from functional
derivatives of the gauge invariant effective action I'; for
k — 0. The gravitational field equations imply that source
terms always involve a covariantly conserved energy
momentum tensor. This property does not hold automati-
cally in the background field formalism. We here comment
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on the modification of local symmetries in the background
field formalism. In the standard background field formal-
ism for the gravity—Yang-Mills system, the effective action,
especially the ghost action, loses the SU(N) gauge invari-
ance due to the noncommutative feature between diffeo-
morphisms and the SU(N) gauge transformations. For this
issue one would define modified diffeomorphisms [67,68]
such that the effective action is invariant under both the
modified diffeomorphisms and the SU(N) gauge trans-
formations. On the other hand, in the present gauge
invariant formalism such a modification is not required
since the projection operators P for local transformations,
which define the propagators of the physical modes as
Eq. (9), are commutative and then the gauge invariant
theory space is automatically projected out.

We conclude that the gauge invariant flow equation has
many attractive properties. What is not settled at the present
stage is the question whether this equation is exact, or
whether it is only an approximation to a more complicated
functional differential equation for I';. If the macroscopic
metric is identified with the expectation value of the
microscopic metric, and I, is defined by the standard
implicit functional integral over fluctuations (functional
differential equation or “background field identity”), the
flow equations (8) and (9) are only an approximation [65].
In this case the exact gauge invariant flow equation for I';
involves a gauge invariant correction term. It has been
argued that Eqgs. (8) and (9) can become exact if one
chooses a different macroscopic metric and modifies the
definition of I';. This requires that the differential equation
relating an optimized macroscopic metric to the expectation
value of the microscopic metric admits a solution [63].
Only the existence of a solution is needed, but a proof or
disproof of existence is not available so far. We note here
that there exists an exact formula if one chooses
9y = (G- In this version there are correction terms that
may be absorbed by a different definition of the macro-
scopic metric g,,. One could estimate the relative impor-
tance of the correction term. At the present level we think,
however, that the truncation error is dominant. As a check
of the validity of different truncations, the stability of
critical exponents could still be an indicator for the
approximation to the flow equation.

III. MATTER INDUCED FLOWING PLANCK MASS

In this section we compute the contribution to the flow
equations for the effective scalar potential U and the
coefficient of the curvature scalar F from fluctuations of
scalars, gauge bosons, and fermions. We partly recover
results of earlier work for a subclass of employed methods
and choices of cutoff functions, and we trace the origin of
the differences to other results. Since no metric fluctuations
are involved at this stage, the issue of gauge fixing for
diffeomorphism symmetry does not matter at this stage.

What is important for the differences between earlier results
in the background formalism or flow equations violating
gauge symmetry is the treatment of terms in ['; involving
the differences between macroscopic fields and background
fields, and the choices of infrared cutoffs. Our approach of
gauge invariant flow equations, combined with require-
ments of locality for the choice of cutoff functions,
eliminates many earlier ambiguities in the computation
of cy.

We find that matter fluctuations alone induce a fixed
point for the flowing dimensionless Planck mass, provided
that the number of gauge bosons Ny exceeds the value
(Ng+ Np)/4. This can serve as a demonstration for the
solidity of the concept of a nonperturbative fixed point for
quantum gravity. Particle physics models with 4Ny — Ng —
Nrp > 0 and Ny — oo are easily constructed. In this limit
the strength of gravity at the fixed point w™! tends to zero
~N7!. Thus metric fluctuations play a subdominant role
and may be neglected, eliminating thereby many associated
conceptional issues. The case of matter domination for
Ny — oo realizes in a certain sense old ideas of “induced
gravity” [69]. In contrast to the divergent expressions in a
simple loop expansion, which involve often a problem of
interpretation and preservation of symmetries, our flow
equation is UV finite and gauge invariant.

A. Flow contribution from scalar field

Basic properties can be understood from the contribution
of a scalar field with effective action

F,is):l\/g_]{;a”(Pa”QD—F U((ﬂ)—;F(é”)R}- (16)

The second functional derivative with respect to ¢ reads

s2 1.
8 = a0 4 (o) -3 E0R). (19
where D? = D”D”, Dﬂ 1s a covariant derivative, and

2
2(p) —‘2—;. (18)

Adding an appropriate IR-cutoff term /gR;(—D?)
modifies

V9(=D?) = \/gPi(=D?) = \/g(=D* + Ri(=D?)). (19)

The scalar contribution to the flow equation reads

1 ER\ !
Oy = Ztr(O){arRk(—Dz) (Pk(_Dz) +m? — i) }

(20)
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We note that the factor /g drops out, multiplying both -D?
and Ry (—D?). We can write

atrk = %tr(o)ét In <Pk(—D2) + m2 - §7R> s (21)

where , acts only on the k dependence of the IR cutoff
R, = P, + D?, e.g., not on m?, on 5 Or on parameters or
fields appearing in D2. The derivative 0, makes the trace
finite. This is a central difference as compared to one-loop
perturbation theory.

We can write

1
atrk - EtrW(As), AS - —D2, (22)

with
W(z)za,Rk<z>(z+Rk< ) 42 —ff) @)

The trace can be evaluated by the heat kernel expansion
(see Appendix B),

uW(As) = 1 ZZQZ () / Vacs (Ag).  (24)
The heat kernel coefficients for the operator Ag = —D? are
well known,
cy=0b5=1, 5 =b5R=— (25)
The functions Q,, depend on the field ¢ via
__m*p) (R
=T T (26)
with
0:= [Tazw). 0= [awe),
0 0
O/R(z)
=W(z=0), W(z) = ———2—. 27
0 =W=0. W =5 en ()

The first two terms in the expansion yield

O =52 /*[/ Pk + k2< +§>‘ (28)

The functions Q, are directly related to the threshold
functions ¢4 that have been investigated in functional
renormalization for many different cutoffs [70-74],

k4
0x(W) = 208 (W)K* = 1~ —.
2k?
Q1(W) = 205 (W)K* = 1~ —. (29)

where the second identity uses the specific Litim cutoff
[64]. One infers

a,Aﬁ(v—gR) =z
= oz [ va(et + gedimn). oo

For R = 0 this yields the flow equation for the effective
potential

k4 . 5 k4
OU=—— ) =— . (31
V=162 00") = 520 ) S
with
2
=" (32)

One recovers the standard flow for a scalar model
[13,70,73].

For the flow of the coefficient of the curvature scalar F
we expand in linear order in R

AW = A4 + A L (33)
with
d(w
A =00, A = g (4

where the last identity applies for the Litim cutoff. The flow
equation for F' therefore receives an additional contribution

NE’

k2 sz
Fe_ _pm 4
OF = =43 CYi") = == A1)
K2 k&
= 2 o\ 2 f~22' (35)
487*(1 +m*)  327*(1 + mn*)

These results agree with a computation for a fixed back-

ground geometry [75]. For &= 0 the result agrees with
Refs. [7,15,21,30,36,37].
For the dimensionless functions and field variables

U . P
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we obtain

0u(p) = —4u + 2p0;u + 4cy,
dw(p) = =2w + 2p0;w + 2c . (37)

with scalar contributions to ¢y and ¢y,

A8 1
Vo 12822 (1 + m?)’
() _ 1 ¢

— - . (38
Cu 192722(1 + %) 1287%(1 + im?)? (38)

Here we have switched from fixed p for Eqgs. (31) and (35)
to fixed p, and we assume a discrete symmetry ¢ — —¢
such that U and F depend only on p, with

m* = Oyu + 2p0%u = u' + 2pu”. (39)

The flow equations (37) have a fixed point or scaling

solution with p-independent u(p) = u, and w(p) = w,,

u, =cy(0),  w,=cu(0). (40)
where ¢y and ¢, are evaluated for % = 0, & = 0. Indeed,
for constant u and w one has w = 0. This fixed point occurs
for negative w, or a negative squared running Planck mass
M} (k) = 2w,.k*. It does not correspond to stable gravity
and is therefore not acceptable for the definition of quantum
gravity.

One may alternatively extract the flow of the Planck
mass and other aspects of the gravitational effective action
from the flow of the graviton propagator. This is discussed
in Appendix C. For the gauge invariant flow equation one
finds the same results as for the heat kernel expansion. This
differs from computations for which the IR-cutoft R, does
not involve the macroscopic metric through covariant
derivatives, but rather only involves momenta in flat space,
or covariant derivatives with a fixed background metric. A
comparison of our gauge invariant approach with the
background formalism can be found in Appendix C.

B. Gauge bosons

We next consider the flow of F and U induced by the
fluctuations of gauge bosons. We employ the gauge
invariant flow equation [63,65]. The connection to a gauge
fixed version in the background field formulation for the
Landau gauge is similar to the case of gravity discussed in

Sec. II. The contribution of the gauge boson fluctuations to

the flow of U and F involves again a physical part ”1({\/) and

a universal measure part —5,((‘/), which is a fixed functional

of the metric and gauge fields,

o, =c =2V — 5" (41)

The measure factor arises from the nonlinearity of the
constraint for the physical gauge boson fluctuations. The
: ()
physical part 7,

action I:,({V) for the gauge bosons.

We concentrate on a single gauge boson of an Abelian
U(1)-gauge theory—a photon coupled to gravity. This is
sufficient for the flow of U and F. Both are evaluated for
zero macroscopic gauge fields. We first assume a fixed
point with a vanishing gauge coupling. Nonvanishing
gauge couplings are discussed in Sec. III C. For a vanishing
gauge coupling any Abelian or non-Abelian gauge theory
with a total of Ny, gauge bosons gives the same contribution
as Ny photons. The measure term —6,(€V> only appears due to
the metric dependence of the covariant derivatives in the
projection on physical gauge boson fluctuations.

For the truncation of the gauge invariant effective action

depends on the gauge invariant effective

l_“,({v) we consider here the minimal kinetic term

_ v 1 )
" = o K VIF W F*, (42)
with field strength

F,=DA,-DA,=0,A,-0,A, (43)
and gauge coupling e. Covariant derivatives involve the
macroscopic metric, while they are independent of gauge
fields in the case of an Abelian gauge symmetry.

For the photon field the physical d.o.f. are the transverse
field, where the longitudinal field is a gauge mode. We
introduce projection operators

(PL)//D = DyD_sz» (PT)MD = 6/11 - (PL)uya (44)

which obey [(Pf),* = (PL),/(PL),", etc]

P

P} =P, P = Pr, P Py =PrP.=0. (45)
The corresponding transversal and longitudinal gauge
fluctuations are
A; = (PT)MDAU’

AL = (P),*A,. A, =Al +AL

(46)

Since we evaluate the flow of the effective action for
vanishing macroscopic gauge fields, we make here no
difference between the gauge fields and the fluctuations of
gauge fields around a macroscopic field. For Yang-Mills
theories the projection of infinitesimal physical fluctuations
remains well defined for arbitrary macroscopic gauge
fields, while no global definition of a physical field exists
[63,65].

The longitudinal gauge field can be written as the
derivative of a scalar
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AL =0,a=D,a, (Pr),*D,a = 0. (47)

Under an infinitesimal gauge transformation A, —
A, +0A,, 6A, = 0,b the transversal gauge field is invari-
ant, while the longitudinal gauge field transforms as
SAL = 0,b, da =b, SA} = 0. (48)
We can therefore consider A% as a gauge d.o.f., while AT is

a gauge invariant “physical d.o.f.”
By partial integration we can write

=V 1 v v
") =53 / VA (D* + D'DY)A, (49)
with
D — —D2g 4 R, (50)

The part involving the transversal gauge fields therefore
reads

=(V 1 v
" =57 | VIAIDYAL. (51)

Indeed, we can project D,” =D on the subspace of
transversal and longitudinal fluctuations,

(D1),
(Do),

V= (PTDPT)M” = —Dzél‘; +R,”+ D,D",
V= (PLDPL)M” =-D,D". (52)
Even though the projectors Pt and P; are nonlocal, the
projected operators Dt and D; involve only two deriva-
tives. One has

D:DT+DL, PTDPL:PLDPT:O,
DLDT — DTDL — O (53)
v)

The computation of z; ' from a gauge invariant flow
equation involves the projector P similar to Eq. (9). We

employ again the trick of first computing ”](Cv) + 5/((\/) by
adding to the action a formal gauge fixing term

1
M =5 [ Vi, (54

We need to take the limit @ — 0, such that Eq. (54)
corresponds to Landau gauge fixing. By partial integration
the gauge fixing part reads

% 1 )
ry = 5 1 VIA,D'D*A, (55)

or

1 v
() = 5 / VIALDI AL (56)

As it should be for a physical gauge fixing, I'y; involves
only the gauge d.o.f. AL. In contrast, for our ansatz (42) I’
depends only on the gauge 1nvar1ant field AT

If we define F + Fgf , the second functional
derivative is block dlagonal in the transverse and longi-
tudinal fields,

(" = \/_PTDPT + i P.DP,

—J( Dﬁ-DQ (57)

In consequence, also its inverse or the propagator is block
diagonal for @ — 0, with a block for the gauge modes ~a.
For the particular case of a maximally symmetric space,

1
R/w = ZRgﬂw (58)
one has
, R
D = | =D~ + 1 g (59)

We introduce the infrared cutoff function R; such that

F](CVJ) + R, = \/ﬁ(% Py (Dy) + ipk(DL)>’ (60)
with
Pi(z) = 2+ Ri(2). (61)

One infers for the sum

2 4 5 —tr{( VA R)TORY. (62)

The part 5,((‘/) is connected to the gauge fluctuations, and the
separate contributions are given by

1 1
=g, o = Lewo,),

with

W(z) = 0:Ri(2)(z + Re(2))™". (63)
The quantity 9, also determines the measure contribution
in Eq. (41).

Let us first evaluate the measure contribution 5( )
Writing the longitudinal gauge field as the der1vat1ve of
a scalar (47), one has
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(DL),*Ay = (Dr),'Dya =D, (-D*)a.  (64)
The eigenvalues of the (negative) scalar Laplacian Ag =
—D? acting on a are the eigenvalues of D; acting on AL,
implying

1
8 = S0 W(As), (65)

with tr() the trace over scalar fields. Therefore the flow

V)

contribution §, ’ is the same as the one for a massless scalar

y o1 1
5" =13 / \/g(fgkugfgkzze). (66)

We next turn to the contribution n,ﬁv)

gauge boson fluctuations,

from the physical

1
7Ty :*tr(l)W(D), (D) L—

5 L= AyS + R (67)

Here tr(;) is the trace over transverse vector fields (spin one)

and A, = —D? the (negative) Laplacian acting on vector
fields. We will evaluate the trace (65) again by the heat
kernel method; see Appendix B.

For the evaluation of trexp(—sD;) we employ the
fact that the result is a series of integrals over local terms
that are invariant under diffeomorphism transformations.
Dimensional analysis implies ¢, = b,R. For the computa-
tion of b, we can choose the geometry of a maximally
symmetric space with constant R, for which Eq. (59)
implies

trU)e_SD = tr(pye” s(Ay+R/4) — (tr<l)e—sAV)(e—sR/4)
SR
= (trye™ ) (1 ==+ ). 68
e (1= ) (68)
From

1
e = / JabYs - BYRs 4, (69)

one infers
tr e—SDI _ /\/— bV -2 + bV b_ —1 + ..
(1) 167 16,2 4 ’
(70)
With
1 by 1
by =3, bZV:Z, bZV_TO:_E’ (71)

one obtains a negative contribution of the term ~R.

Employing again the relation between the function Q,
and the threshold functions, the flow contribution from the
transverse vector fields is

y 1 1
2V = o / @(35315* —§f§k2R>, (72)

with threshold functions evaluated for w = 0. We will see in
Sec. III C that in the case of a nonvanishing gauge coupling
i will depend on p, ie., W = ¢2p. Then also z" will
depend on p, while for 5,<€V>
evaluated at w = 0.
Taking terms together the flow contribution of a massless

gauge field is

ofalo-5) -

== / f<2k4f4——f2R) (73)

the threshold functions remain

or

I2L2

k44
0,U = 0 —
! 1272

g2 o=

(74)

For Ny gauge fields one has in Eq. (37), using the Litim
cutoff (29),

Ny¢§ N Ny N

WM Ny Nl Ny g
32 64 487 487

Our final result is very simple. It agrees with

Refs. [7,15,30].

The flow equations (74), translated to the dimensionless
quantities # and w in Eq. (36), admit a simple fixed point
with p-independent u and w

u, = cy, W, = Cy- (76)
This fixed point occurs now for a positive running Planck
mass Mj(k) = 2¢)k*. In contrast to scalar fluctuations, a
fixed point induced by Ny massless vector boson fluctua-
tions leads to stable gravity. A UV-fixed point of this type
can be used to define quantum gravity as an asymptotically
safe quantum field theory. A measure for the strength of
gravity is w™'. In the limit Ny — oo one finds that w~!
tends to zero such that gravity is weak. This may allow for a
valid perturbative expansion in w=!.

The positive sign of ¢y, is a crucial ingredient. This
property should not depend on the precise implementation
of the IR cutoff. The threshold function #3 is positive for
every cutoff function with positive 0,R,. We may also
consider a different implementation with R, depending
only on —D? instead of Dy and D . This is investigated in
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Appendix E. It leads to a similar result, with threshold
function #3 replaced by a different threshold function #7.
When the so-called type I is employed, one should replace

Ny = TNy /16 =~ 0.438Ny, for c,g,/) given in Eq. (75).

C. Gauge bosons coupled to scalars

We next investigate the role of a possible nonzero gauge
coupling for the properties of the fixed point. For this
purpose we consider scalar quantum electrodynamics with
a complex scalar coupled to a gauge boson. Because of the
U(1)-gauge symmetry U and F can depend only on
p = ¢@*@. We normalize the gauge coupling e such that
the gauge boson mass is given by m? = e*p. The contri-
bution (38) to the flow from the two real scalar fields is

) 1 1 N 1
C - )
Vo \L - 2pu” 1+

N ! - (77)
M 19222 \1 +u' +2pu” " 1+u')"

The first term in these equations arises from the “radial
mode” with > = u' + 2pu’”, while the second corresponds
to the “Goldstone mode” with > = . In Eq. (77) we have
omitted a nonminimal coupling & to gravity, which would
give an additional contribution to cl(l,f). The contributions
from scalar fluctuations are not modified in the presence of
a nonzero gauge coupling e.

The contribution from the physical gauge boson fluctu-
ations ﬂ'kv is sensitive to e? # 0 through a different
argument w of the threshold functions. Indeed, a nonzero
p induces a mass term for the transverse gauge boson
fluctuations, resulting in W = ezﬁ. As a consequence, the
threshold functions £3 and #3 in Eq. (74) are now functions
of W = e?p, instead of being evaluated at W = 0.

For the gauge invariant flow equation this is the only
change. Because of the projection on the physical fluctua-
tions there are no mixing effects. The transverse gauge
bosons are vectors that cannot mix with scalars for any
rotation invariant geometry.

A similar behavior is found for a gauge fixed background
field approach. In this case the physical gauge fixing
(Landau gauge) is crucial for the absence of mixed terms.
The gauge invariant scalar kinetic term can be written
in terms of a scalar fluctuation y around the macroscopic
field ¢,

Ty = / ValD = id) (@ + )1 (D, — iA,) (@ + 7).

(78)

For I'® we need the terms quadratic in A, and g,

Dinp = / V(D x) (Dyy) + 3 xA*A,] + T,
o = =1 [ VIA(D2)'0 - 9'D,2). (79)

The mixed term involves only the longitudinal gauge fixed
AL, We can take ¢ real, and y = (yg + ix1), such that

Cix = —2¢ / VIAD = 2¢ / VanD, A", (80)

Because of the divergence of F,?) + Ry in the longitudinal

sector ~a~!, the effect of the mixed term vanishes in the
propagator (F,(f) +Rk)_] proportional to «. It does not
contribute to the flow equation.

In consequence of the absence of mixing and the simple
change of argument in the photon threshold function, one
obtains rather simple flow equations. They read for a Litim
cutoff

Ou = —4u + 2p0yu + 4cy,
0w = =2w +2p0xw + 2y, (81)

with

| 3 1 |
= —_— 7—1 s
VT 12822 (1 PR I —|—2,5u”>

1 3 1 1
S . - .
M= 1922 (1 Y5 T Tid 1tdt 2;»/’)
(82)

This generalizes to the case of several vector bosons and
more complicated scalar sectors. The dependence on the
gauge coupling arises only from the physical gauge boson
fluctuations. For each gauge boson one needs the field-
dependent squared mass or the corresponding eigenvalue of
the mass matrix.

The qualitative effects of nonzero e~ can already be seen
for the Abelian case of a single photon with W = e%5. We
concentrate on the effects for the properties of the scaling
solution. For the scaling solution 0,u and J,w vanish. The
scaling solution therefore obeys the differential equations

2

pOsu = 2(u — cy), pow=w—cy.  (83)
For e? # 0 both ¢y, and ¢,; depend explicitly on /. This has
an immediate important consequence: a p-independent u
and w no longer solve Eq. (83).

For e? # 0 a possible UV-fixed point is characterized by
p-dependent scaling solutions of Eq. (83). We briefly
discuss here the limits p — 0 and p — oo. For p = 0 the
solutions of the flow equation have to obey
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1 1
(0) = ¢y (0) = 1 ,
u.(0) = ¢v(0) 64;:2( +1+mg>

1 1
= 2 - , 84
967> < 1+ ﬁié) (84)

with
i = 1, (0). (85)

One observes positive w, (0) and u, (0). These values do not
depend on 2.

On the other hand, for p — oo the gauge boson con-
tribution vanishes if e?> # 0. In this limit ¢,, becomes

negative. A possible asymptotic solution for p — oo is

1
U= =Aop’. (86)

W = Eeop, >

With v/ (p — o0) = A,,p both ¢y, and ¢, vanish in this limit
if Ay, > 0.

We may investigate directly the flow of the p dependence
of the functions u() and w(p). For this purpose we define

1

§p)=5w (@) Ap)=u"(p).

(87)
(The factor 1/2 in the definition of & is chosen such that for

constant & one has F = 2wk* + &p.) The flow equation for
the dimensionless scalar mass term 2 (p) reads

Oym* = =2im* + 2p0ym* + 40,y (88)
where
5 1 3¢2 L
..c = -
PRV 128 \(1+ €2p)2 T (1 +m2)?
3/’{ 2~ "

). (39)
(1 4+ m* 4 24p)

The fixed point value for M3 = m*(p = 0) is negative

1 4),
M2 = — 32+ 20 ) 90
™o 64ﬂ2< ¢ +(1+ﬁz(2))2) (90)

If u(p) increases for p — oo or goes to a constant, one

expects a minimum of u at some p, > 0, indicating

spontaneous symmetry breaking for the scaling solution.
For the flow equation for £ one obtains

with

Do - — 1 ( 3¢ 2

P 1922 \(1+e2p)? (1 +m?)?
34 2pu” ) (92)
(1+m>+24p)?)°

For the scaling solution £(p — 0) diverges logarithmically

§(p) =c1+cyInp, ¢ ==0;c(p=0). (93)

The effective Planck mass remains finite for p — 0,
w=wy+2(c; —c2)p+2¢cpInp. (94)

We conclude that a nonvanishing gauge coupling at the
fixed point has important consequences for the behavior of
the scaling solution.

In the present paper we will concentrate on a UV-fixed
point with e2 = 0. The constant scaling solutions for the
fixed point exist in this case. We note, however, that ¢? has
to be a relevant parameter in this case since the extrapo-
lation of the observed gauge couplings to the transition
scale k, where the metric fluctuations decouple indicate
nonzero e?(k,). With e? increasing slowly in the vicinity of
the fixed point, our discussion of constant e2>0 may still
be relevant for the flow away from the fixed point. Instead
of a fixed point one has in this case an approximate partial
fixed point.

D. Fermions

The gravitational interactions of fermions cannot be
described by a direct coupling to the metric. In the presence
of fermions the basic gravitational d.o.f. is the vierbein e,,".
The metric is subsequently associated with a bilinear of the
vierbein,

Guv = e/tmev”’/lmn’ (95)

with 7,,, = diag(—1, 1, 1,1) for the Minkowski signature
and #,,, = 6,,, for the Euclidean signature. As an alter-
native, one may always use #,,, = 6,,, and admit complex
values for the vierbein. The Minkowski signature for flat
space is then realized for e,” = diag(i, 1,1, 1). Analytic
continuation is achieved [76] by varying e,” =
(ei‘/’, 1,1,1) with ¢ = 0 for the Euclidean signature and
¢ = /2 for the Minkowski signature. With Eq. (95) one
has \/g = e = det(e,”), which yields the factor i multiply-
ing the action for Minkowski space. Our Euclidean notation
[76] is adapted to the complex vierbein for which analytic
continuation is straightforward even for curved space.

The second central object is the spin connection @,
which can be expressed in the simplest version of gravity
by the vierbein and its first derivative
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1
wﬂmn(e) = B {em/’enfeﬂpafepp - em/)a/)eﬂn + eml)aﬂe/m

—(m < n)}. (96)
Here ¢,,* is the inverse vierbein

eyte," = oy, (97)
where we suppose that e, are elements of a regular matrix.
One can construct a curvature tensor in terms of the
vierbein and the spin connection

Rﬂumn(e’ a)) = 8ya)bmn + a)ﬂmpa)upn - (/" < l/)‘ (98)

For w = w(e) according to Eq. (96) this is a function of the
vierbein involving two derivatives. Contraction with the
vierbein,

R/wpr = epmernR/wmn’ (99)
yields with Egs. (95) and (96) the curvature tensor of
Riemannian geometry formed from g,,. For a computation
of the fermionic contribution to the flow of U and F it is
sufficient to investigate the fermion fluctuations in a
geometric background. We first perform this in a back-
ground given by the vierbein, and subsequently translate to
the metric.

For the effective action for fermions we choose the
truncation

) = / e{igy" e, Dy + ypr’we}  (100)

with y a Yukawa coupling to a complex scalar field ¢. In
our conventions for fermions, ¢ is a scalar (not a pseudo-
scalar), and a fermion mass term involves ;/5,
L,, ~emyy>y. We consider here a Dirac fermion for
which w and y are independent Grassmann variables.
The covariant derivative involves the spin connection

1
DMW = a}tl//_l_ga)ymn[ymv Yn]l//, (101)

with Dirac matrices obeying
{rmyy =29, {y.ym}=0. (102)

For real values of ¢ the second functional derivative reads
in the  —y block

(F2

I = e(iB + yor). (103)

It involves the covariant Dirac operator

D =y"e,'D,. (104)

The fermion contribution to the flow equation reads

O = —t{OR (D + R + ygr®) ™'}, (105)
where the minus sign reflects that y and i are Grassmann
variables. For a Majorana fermion  is related to y by
charge conjugation. For Majorana spinors the right-hand
side of Eq. (105) is multiplied by 1/2. (If convenient, one
may choose a normalization which multiplies F,((F) by a
factor 1/2.) We will perform the computation for a Dirac
spinor. For N Majorana or Weyl spinors the result will be
multiplied by N/2.

We can decompose y and i into Weyl spinors that are
eigenstates of >,
5

_IFy

1+p _
v, FL=0—

2

Vi = (106)
(One often uses left- and right-handed w, =y and
w_ = wg.) The kinetic term does not mix different Weyl
spinors,

Lyin = ieyDy = —ie(p Dy, +y_Dy_),  (107)
while the Yukawa coupling does,
Ly = eypyy’y = eyop(p_y, —y.y_). (108)

Chiral symmetries transform -, and y_ independently.
They are violated for y # 0. We want a cutoff function that
is compatible with the chiral symmetry [77]. Since P maps
y . toy_ and vice versa, the cutoff should be chosen in the
form

R = ies,(—-P*)D (109)
ko k ’
such that it has the same chiral properties as ieD. In
consequence,

P = ieD + R = ie(1 + s, (=7?))P  (110)

maps again y, to y_. We emphasize that s; should be a
function of the operator P since we want to cut off small
eigenvalues of the Dirac operator. This function should be
even for compatibility with chiral symmetry.

Employing the properties of Dirac matrices one has

R
_ﬂ2 :_D2+_7

4 (111)

with

D? =e,/'e¢™D,D,. (112)
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The covariant Laplacian for spinors depends on the
vierbein and spin connection and involves Dirac matrices.
(No Laplacian involving the metric is defined for spinors.)
With

ﬂiﬂ = —tr0, ln(P,iF) + eypyr®)

1 -
= —Etrﬁt In (P,((F) + ey(py5)2

_ —%trét n((P) + 2%, (113)
and defining
Py = §<P£f>>2 = —D(1 + 5,(-17))?
= —P2(1 + r,(=P?)), (114)
one has
ry = 2s; + 7. (115)

Using p = ¢* the fermion contribution is given by the
familiar form

1 -
) = ~5 w0, In(Py + 7). (116)
where
R R
P, = (—DZ +Z> <1 + rk<—D2 +Z>>' (117)

For complex ¢ this generalizes to p = ¢'¢, and similarly
for multicomponent scalar fields. For P, we will choose a
function similar to the one for scalars or gauge bosons. This
determines the infrared cutoff function (109) via the
identity (115).

In consequence, one obtains from the heat kernel
expansion for a Dirac fermion

oo ] I i
2P _Fzﬂ/x e{bgfgww i (bg —Zb0D>fg(w)R}
(118)
with b2 = 4, bP = 2/3, and
2
~_yp

For Majorana or Weyl spinors 7z is divided by two.
With Egs. (95) and (96), we translate ¢ = /g and R
becomes the curvature scalar for the metric g,,. For y =0
Eq. (118) agrees with Ref. [78] and with the result of a
“type-II cutoff” [7,79,80]. The same result is obtained by a

spectral sum on a sphere [80]. The sign differs, however,
from a “type-I cutoff” [15]. We emphasize that the
formulation of the cutoff in terms of the Dirac operator
involving the vierbein, together with the preservation of
chiral symmetry, imposes important constraints on the
properties of the infrared cutoff. They lead naturally to a
type-II cutoff.
With N Weyl spinors one finds, with p = p/k?,

M. 0(y°P) AL —
v 32720 647> (1 + y?p)’
(F) Ne oo Np
= = (120
M = 12 0P = a1y 120

The second identity specifies to the Litim cutoff. For the
flow of U fermions contribute with the opposite sign as
compared to scalars and gauge bosons. For the flow of F
their contribution has the same sign as the scalar contri-
bution, opposite to the sign of vector contributions.

For the gauge invariant flow equation one obtains the
fermion contribution to the flow of the graviton propagator
by taking two derivatives of n,(cF) in Eq. (113) with respect
to the vierbein (or similarly to the metric). The flow of the
graviton propagator can be evaluated in flat space. The
result is expected to agree with Eq. (120).

The different matter contributions can be summarized by

Ny Ny
= — = —. 121
VT8 M T 10222 (121)
For massless fields one has
NU:NS+2NV_2NF7
3¢

Here N is the number of scalars that have the nonminimal
coupling & to gravity. This number may be smaller than N
since not all scalars may participate in this coupling. For
massive fields the numbers Ng, Ny, and Np become
effective particle numbers, multiplied by corresponding
threshold functions with M2 # 0. In this case, N y and Ny,
depend on p.

Matter fluctuations alone can induce an UV-fixed point
for quantum gravity, u, = cy, w, = c),. This does not need
any metric fluctuations. We observe, however, that without
metric fluctuations an UV-fixed point with positive effec-
tive Planck mass (F > 0, attractive gravity) is possible only
for a sufficiently large number of vector bosons, A/}, > 0.
For Ny > (Np + Ng)/4 asymptotic safety can be realized
even if fluctuations of the metric are neglected. We will
see below that metric fluctuations induce an acceptable
UV-fixed point with F > 0 even for Ny < (Np + Ng)/4.
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IV. METRIC FLUCTUATIONS

This section addresses the contribution of the metric
fluctuations to the flow equations for U and F. The
dominant contribution 7, arises from the graviton fluctua-
tions, e.g., the traceless transverse tensor modes. For spaces
with rotation symmetry the graviton fluctuations do not mix
with the other metric fluctuations or matter fluctuations.
Furthermore, the graviton fluctuations are physical fluctu-
ations, being invariant under gauge transformations. Once
the graviton propagator is known or assumed in a given
truncation, the graviton contribution to the flow equations
is rather unambiguous. The other physical metric fluc-
tuation is a scalar. It can mix with other scalar fields in the
matter sector. Still, its contribution 7 to the flow equation
remains somewhat involved. The gauge invariant flow
equation has the important advantage that physical scalar
fluctuations are not affected by gauge modes. The universal
measure contribution —8\9 reflecting the nonlinearity of the
projection on the space of physical fluctuations involves
both a vector and a scalar part. It depends only on the
macroscopic metric. The total contribution to the flow from
the metric sector is given by

0 =m+m-87. (123)

A. Physical metric fluctuations and gauge modes

To compute the contribution of metric fluctuations to the
flow equation for U and F, we need the second functional
derivative of the gauge invariant effective average action
r 1((2) for a gener_al macroscopic metric g,,. For this purpose
we consider I'[g,, +h,] and compute the term I,
quadratic in the metric fluctuations h,,. We split the metric
fluctuation £, into “physical fluctuations” f,, and “gauge
fluctuations™ a,,. In linear order the physical fluctuations

are transverse,

hmx = f;w + Auys

Dtf,, =0, a,, = Dya,+ D,a,. (124)
Infinitesimal diffeomorphism transformations act as a shift
of a, and leave f,, invariant. We will need I, in second
order in f,.

Inserting the linear decomposition (124) into a gauge
invariant effective action I';, one finds in linear order in hy,
that I'; depends only on f,,, reflecting the gauge invariance
of I'. A gauge invariant effective action can depend only on
physical fluctuations. The association of the physical
fluctuations with f,, as defined by Eq. (124) holds only
in linear order, however. (An exception are Abelian gauge
theories.) Physical fluctuations vanish for f,, = 0, but can

contain higher order terms ~f,”a,,. As a consequence, I,

contains terms quadratic in f,, and may also contain mixed
terms linear in f,, and linear in a,. (For an explicit
discussion for the analogous case of non-Abelian gauge
theories, see Ref. [65].) For maximally symmetric spaces
the mixed terms vanish due to the identity

l Vi a,, = 0. (125)

For the purpose of the present paper this is sufficient. For
more general macroscopic metrics the mixed terms are
eliminated by the projection on the physical subspace that
is implicit in the flow equation (9).

Similar to the treatment of gauge bosons we perform the
projection by adding formally a term Fg«) = ifﬁ) to the
inverse propagator. This allows the computation of 7z, +
7y — 69 without the explicit use of projectors. The
measure part 59 is computed separately. The implemen-
tation of this procedure introduces in the effective action a
term

ef>

which resembles a physical gauge fixing in the background

(2)

field formalism. The second variation I

should act only
on the gauge fluctuations, and we take

1
Fgf = %[C \/gDﬂh ”Dphup
1
3 [ Vi D,00)

1
= Z/ V9(D*a* + DD, a" + R* ,a*)
X

x (D*a, + D,D,a’ + R, a,), (127)
with @ — 0. This “physical gauge fixing” is the generali-
zation of covariant Landau gauge fixing for Yang-Mills

theories to the case of gravity. )

The gauge fixing term induces for I';” a term that
diverges for @ — 0,
2)\HrpT g UpT
(e = Y p, oo (128)

with

1
(Do) = =5 (8.D,D + 8D, D" + 5,D,D’ + 5D, D").
(129)

One observes
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(Da>yuprfpr =0,

(D)u/"a,. = D,D,a, + D,D,a, — (130)

with

D/ =-(D*,+D,D’ +R,}/).

(131)

We may formally introduce projectors Py and P, on the
physical metric fluctuations and gauge modes

(Pf)ﬂymhpr = fyw (Pa)/wpfhpr = dayy, (132)
obeying
P;+P,=1, P =Py, Pl=r,
PP, =P,P; =0. (133)
In terms of these projectors one has
D,P,=7D,, D,P; =0,
PI\/gD, = \/4D,. P%@Da =0. (134)
With
_ 1
r® =@ 4 52 PAVID.P, (135)
04
the inverse of F,EZ) is block diagonal for a — 0,
_ (@t
6= =G +6, (136)
where
Gp = P;GPY, G,=P,GPL, (137)
and
06, =prl,  1YG, =P (138)

Here G, is proportional to a and FS) proportional to a~!,

such that the factors of a cancel in the second equa-
tion (138). The part Gp is the propagator for the physical
metric fluctuations that appears in Eqs. (8) and (9).

The block diagonal structure for @ — 0 has an important
consequence. For the computation of Gp only the projec-

tion P]Tcl_“,((z)Pf enters, as appropriate for the propagator of
the physical metric fluctuations. Possible mixed terms in I,
that involve powers of a,, play no role—they are projected
out by the physical gauge fixing for @ — 0. It is therefore
sufficient to evaluate I, for the physical metric fluctuations
S w» wWhich simplifies the task since D f,,, = 0 can be used.

For the truncation

r= [vil-3ror e} )

one finds [81] for geometries with a vanishing Weyl tensor

_ 1 B

o= [ VBIUCP f )+ PRy, )
(140)

with

A

2R
(Df);w'm = <_D2 + ?) E/w/n + ng;u/gprv (141)
and unit matrix

E, /" == (8.6, 4 5,00). (142)
The physical scalar metric fluctuation corresponds to the
trace of f,,,

6= 0" (143)
Thus the physical metric fluctuations can be decomposed
into a traceless transverse tensor 7, (graviton) and a scalar ¢

f;w = t;w + Suws

A

D1, =0, #=0,  s5,=038,0 (144)
with S‘W = S'W obeying
S,9* =1, D+§, =0. (145)

For a computation of the flow of " and U we can restrict
the discussion to maximally symmetric geometries with
constant curvature scalar R. In this case one has [81]

S, = (D*g,,—D,D,+R,)3D*+R)™".  (146)
There is no mixing between 7, and ¢ in I, e.g.,
=1 +1{, (147)
where
F(t) _ 1 uv 2 2
2 =3 Vgt F| =D +§R -2U ¢t,, (148)
and
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_il \/ga{ [F(Dz +%R>D2
+% (DZ + %R)] (3D + R)‘l}a

The infrared cutoff (Ry),,”* should respect the split into
physical fluctuations and gauge fluctuations,

(149)

Re= Vil B(0)) 4 5 B0} (150

Here the operator D, should obey

P}\/gD; = /4Dy,
PZ\/EDf — 0

similar to Eq. (134). We can define it by using ﬁf in
Eq. (141),

DyPy =Dy,

DsP, =0, (151)

Dy = \f 7\/D;sPy. (152)
such that /gD equals \/E@f on the subspace of diver-
genceless physical fluctuations f,. For a cutoff of the type

(150) the flow equation can be separated into different

(9)

pieces similar to Eq. (62), with ;" the contribution from

physical metric fluctuations and —55{9) the measure con-

tribution. For maximally symmetric spaces the physical

contribution ﬂ,({m further decays into a graviton contribution

m, from the fluctuations of 7,,, and a scalar contribution

from the o fluctuations, as given by Eq. (123).

B. Graviton contribution

The graviton contribution 7, typically dominates. It is
given by

1 A U\-!

with tr(y) the trace in the projected space of 7,, (spin two
fields). For the physical metric fluctuations the cutoff
Rk(f)f) is chosen as a function of the operator f)f. In
the projected space for the graviton fluctuations ZADf reduces

to —D?>+2R/3. For the heat kernel expansion
(cf. Appendix B), one needs
tr(z)e—sD, — tr(z)e—sATe—ZsR/S
2R
= tr(z)e_SA'l'(l —?S>, (154)
where A; = —D? involves the Laplacian acting on trace-

less transverse tensor fields and we have taken constant R.

With b} = 5 and bl = —5/6 the heat kernel coefficients of
A7 for traceless transverse tensors, the graviton contribu-
tion reads

25
cg = bg =5, C2 = (bT —bT>R— _FR

; (155)

One obtains the flow contribution of the graviton
fluctuations

e 322/f/ dz<z__)

y o.RY + (8, nF)RY
z+RY -20/F

(156)

With n, =2 - 0,In F' = -0, Inw and employing the Litim
cutoff R,((f ) = (K = 2)0(k? - 7) this yields

meti=a [ 5 (%) 3606,

(157)
where

) =

2U
V=T

(158)

»4
e

Correspondingly, the graviton contribution to ¢y and ¢,
depends on p via v(p) and 7,(p),

() 5 My
=—-— 1 —_—— .
VT 9621 —1})( 8>

c(T) = 725 1 g .
M 12872 (1 — ) 6

For scaling solutions with constant w(p) = w, = ¢;; one

has 5, = 0. For cg,n one recovers the graviton contribution

to the flow of the effective potential [12,82]. This result for

cg;) agrees with Refs. [21,36,37]. Further details and a
comparison with the background field formalism can be
found in Appendixes A and D.

(159)

C. Measure contribution

The gauge invariant flow equation involves a universal
“measure contribution.” It is given by

1 a
59 = 50 Indet(D, + RY(D,).  (160)
with D, given by Eq. (129). We will evaluate this
expression here. In Appendix A, we show that the truncated
background field flow equation with physical gauge fixing
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yields the same result. A different possible choice of the
cutoff function, where R\”(D,) is replaced by R\ (D,),
with D, obtained from D,, by omitting in D in Eq. (131) the
term R,”, is discussed in Appendix E.

We can express ékg) in terms of the eigenvalues 4,
of D, as

1 a
59 = 50, In(D, + RY(D,))

_ %Zat In(2; + R (4,)). (161)

The eigenvalues of D, are the same as the eigenvalues of
the operator D in Eq. (131). Indeed, for

D,/a, = Aa, (162)
one concludes from Eq. (130)

(Do)’

uw e = (Dyda, + Djda,) = Aa,,. (163)
The constraints on the gauge fluctuations a,,, are precisely
that a,, can be expressed in term of a, by Eq (124), such

that the set of eigenvalues of D completely covers the set of
eigenvalues of D, in the presence of the constraints on a,,
The vector fields a, are unconstrained, and we can write

1 A A
89 = 55w 9 In(D + Ri(D)). (164)

with tr(y) the unconstrained trace over vector fields. We
emphasize that the measure contribution (164) is universal.
For a given cutoff prescription it depends only on the form
of the IR cutoff, not on the approximations used for the
gauge invariant effective action I. It depends only on the
metric, and not on fields describing other particles. In
particular, it contributes to the flow of U and F only a p-
independent term.

For the evaluation of 5, we split @, into a transverse part
and a longitudinal part, similar to the discussion of the
vector gauge field A, in Sec. Il B. We decompose

a, =K, +D,u, Dk, =0, (165)
with
Dk, = —DZK‘M - R,/x,,
D,’D,u = -2D*D,u = —=2D,D*u — 2R,”D ,u. (166)

For maximally symmetric geometries one finds

~ R
D;tpr = <AV —Z> Kﬂ = DIK s

N R
Dﬂpru == 2D/4 <AS - Z)u = 2DﬂD0u, (167)

with A = —D?, and A, and A denoting the action of the
Laplacian on vector or scalar fields, respectively. The
eigenvalues of the operator Ag — R/4 acting on u are
the eigenvalues of f)/ 2 acting on the longitudinal field
D,u. The factor 1/2 drops out in d,In D. The measure
contribution becomes the sum of a transverse vector and a
scalar piece,

1
O = 3 [tr(1)0; In(D; + Rl(cl)(Dl))

+tr)d, In(Dy + R (Dy))], (168)

with tr(;) the trace over transverse vector fields (spin one for
geometries with rotation symmetry) and tr(g) the trace over
scalars (spin zero).

For the heat kernel expansion we employ

U‘<1>€_SD1 —_ tr<1)e—sAvesR/4

R
= tre~*4v <1 + ZS>
Rs
V2 pVpel
=l /\/_b + by Rs )(1 4)
1
—@/\/g[bgs—2+ <b2V+Zbg>Rs—1],
(169)

with by = 3, b} = 1/4. Similarly, one has

-sDy — Se=2 4 ( pS S ) ps-!
trig)e~*™ =16 z/f[bos (b +4b> ]
(170)

with b5 = 1, b3 = 1/6. This yields

(g) 1 G 17
sW — dzW(z)( 4 R 171
k 32n’2[\/§/0 ‘ (Z<Z+12> (171)

with W(z) = 0,R(z)/(z + Ry(z)). The universal measure
contribution (160) is found as

-l

with threshold functions #§ and ¢3 evaluated for W = 0.
For the Litim cutoff the measure contributions to the
flow of U and F are constants

17k
19272

R) (172)
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m_ o
1622 32z%°
m 1763 17

M T 38an? T 384

Cy =

(173)

One may compare this simple result with the usual treat-
ment of a ghost sector and the vector and scalar fluctuations
of the metric. For a general gauge fixing, including the most
commonly employed gauge fixings, no such simple result
exists. For a physical gauge fixing, however, the leading

order yields a contribution of the gauge fluctuations 6,(})

and a ghost contribution e,(f) = —25,({9), reproducing the
total measure contribution (172). Details can be found in
Appendix A. Comparing the measure contribution (173)
with the graviton contribution, one finds for n, = 0 that the
measure part of cy is a factor of —3(1—v)/5 of the
graviton part, while for ¢, it is a factor of 17(1 — v)/75 of
the graviton contribution. The graviton contribution domi-
nates, in particular, for v close to one.

D. Physical scalar metric fluctuations

For the physical scalar fluctuations the inverse propa-
gator matrix mixes the scalar contained in the metric
fluctuations with the other scalars in the model. As a
result, the scalar contribution to the flow becomes some-
what lengthy. We display this mixing for our truncation in
Appendix A. In particular, for a single additional scalar
field ¢ the scalar contribution 7 involves the mixing effect
between ¢ and ¢ as given in Eq. (A29). We will neglect
here this mixing effect and concentrate on the contribution
of the scalar metric fluctuation ¢, while the contribution of
¢ is contained in Ng as discussed in Sec. Il A. The
resulting expression for 7z, can be extracted from
Appendix D. It still remains a somewhat lengthy expres-
sion. Since the scalar part in the metric fluctuations is small
as compared to the graviton part, we approximate it by
setting v = 0. This error is modest, given that factors such
as (1 — v/4)~" appearing in the propagator are reasonably
close to one for the range of interest |v| < 1.

Under the approximations made above one can evaluate
Tty as

1 o R\ 0,R; + (0,InF)R
”0232;;2/\/5A dZ(“E) - z:—tRk =
1 © ([ R\OR,+ (9,InF)R,
- dz( 7=
3277 [\@ /0 Z(%4) (z + R

1 4K ny\ | 4K 11y,
= — B _— — _— R
3232L@[3< 8)+9( 64)}’

(174)

where we employ the Litim cutoff in the last equality. The
contributions to the flow equations (37) read

(6) 1 llng
M T T 14422 (1 64 ) (175)
More precise calculations for the contributions from the
physical scalar fluctuations, including the mixing term and
a finite v, are presented in Appendix D.

For 1, =0, as appropriate for the scaling solution at
p = 0, the contribution of the scalar in the metric fluctua-
tions effectively adds to N a term 4 /3. Here the factor 4/3
is due to the k dependence of the factor ' multiplying the
IR cutoff for the metric fluctuations. We observe that 7z, is
suppressed as compared to the graviton fluctuations 7, by a
typical factor of (1 — v)/5, with even stronger suppression
for the derivatives relevant for anomalous dimensions. This
justifies the simplification in the scalar metric sector. For
positive v < 1 the error of setting v =0 used for the
analytic discussion in the scalar propagator ~(1 —v/4)~!
amounts at most to a factor of 4/3. For large negative v the
graviton fluctuations are less dominant as compared to the
scalar fluctuations. However, all effects of metric fluctua-
tions are suppressed by v~! in this case. For all models
considered here Eq. (175) is a rather good approximation.

V. UV-FIXED POINT

In our truncation we find an UV-field point with p-
independent u,, w, for a large region of particle physics
models characterized by Ng, Ng, and Ny. This region
covers the standard model as well as GUT models based on
SU(5) and SO(10). The fixed point exists for an arbitrary
number of scalar fields N g for these models. In the region of
strong gravity for v close to one or w close to zero our
truncation is presumably not reliable. These regions are
encountered for large Ng. We also find a new fixed point, in
addition to the Reuter fixed point, in a small region of
models. Based on the argument in Sec. VD we use the
simplification (175), which permits an analytic discussion
of fixed points and critical exponents.

A. Dependence on particle content

For an understanding of the UV-fixed point we take all
particles to be massless. We also set 7, = 0. As discussed
above, we omit for the physical scalar in the metric
fluctuations the mixing with other scalars, and we set v = 0
for this contribution. This results in the flow equations

e 1 - 20
6,u(p)—2p6!~,u—4{u—m</\/y+m>}

v ioae (Vo x|
(176)
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where

v =

%. (177)

With Eq. (122) we define the effective particle numbers

8 8
~3=Ns+2Ny =2Np 3

43 43
NM—NM‘FF:—NS—FA‘-NV—NF—’—F

NU :NU
(178)

The second identities neglect &. The dependence of the flow
equations on the particle content of the model is summa-

rized in two numbers Ny and N, or, equivalently, A/
and N/ - We will display our results in dependence of N U

and \/ - This has the advantage that an improved treatment
of the physical scalar metric fluctuations, as well as
different treatments or cutoffs for the measure contribution,

can partially be absorbed by small shifts in N';; and N,.
This extends to the effect of small particle masses.

In a “lowest order approximation” one sets v in the
graviton propagator to be zero. This applies to weak gravity
of small w™!, since » ~ w™!. In this limit the contributions
from matter and metric fluctuations for u and w give the
factors N’y + 4 and NV, + 134/3, respectively. The matter
contributions (A, and ;) agree with Refs. [7,30], whereas
the contributions from the metric fluctuations generally differ
due to the dependences on choices of the gauge parameters
and regulators. Reference [30], in which the gauge choice
a = f = 1 is taken and the same cutoff functions are used,
reports the factors of 2 for u and 46 for w as contributions
from the metric fluctuations. Since the main contribution
comes from the transverse traceless (TT) graviton mode,
there is no drastic difference arising from variations of the
gauge choice and the cutoff functions. The metric contribu-
tionin Ny + 4 has a simple explanation. The contribution of
the 6 physical d.o.f. is multiplied by 4/3 due to F multiplying
the IR cutoff, resulting in 6 x (4/3) —4 = 4.

Beyond the lowest order the gauge invariant flow
equation leads to considerable simplifications as compared
to earlier work, e.g., in Ref. [30]. In particular, the effect of
the scalar metric fluctuations remains always small, such
that the mixing with other scalars can be neglected and the
simple approximation (176) can be used. This has impor-
tant consequences for the existence of the fixed point, being
at the origin of differences in the allowed range of Ng, Ny,
Np as compared to Ref. [30].

B. Limitation of truncation

A key element for our truncation for the metric fluctua-
tions is the specific form of the propagator that is derived
from an Einstein-Hilbert form of the gravitational effective
average action. In terms of the dimensionless quantities u

and w the inverse graviton propagator in the presence of the
IR cutoff is proportional to

Gahe = (07 + Ry ~wpi(Dy/K?) —u. (179)
with
Pe(2/K2) = (z + Ri(2)) /K2 (180)

Becaue of the IR cutoff, p; has a minimum p > 0. For the
Litim cutoff, as well as other suitably normalized cutoffs,
one has p = 1, and we will take this value. The minimal
value of wp, — u is therefore given by

=w(l —w).

In the vicinity of y = 0 our truncation is expected to
become insufficient. This concerns w close to zero or v
close to one. For example, adding to I, a term quadratic in
the Weyl tensor with coefficient D/2 adds to Ggréw a piece

y=w-—u (181)

D@zf /2, replacing

wpi —u = wpy — u+ DD} /K. (182)
For y — 0 the term ~D will dominate near the minimum of
Ggéw and can no longer be neglected. We therefore expect
our approximation to break down for small values of y,
typically y < D.

Within our truncation (D = 0) the graviton propagator
diverges for y — 0 even in the presence of the IR cutoff. It
becomes unstable for y < 0. Such an instability is avoided
by the flow for a valid truncation. In the present truncation
this is not the case. With

~ 35
8ty:ﬂy:2p 5y — 4y+w<2+192 y)

Ny = 3A). (183)

962

we observe that for y — 0 the flow generator 3, is positive
for w > 0. As a result, a p-independent y could run into the
singularity for decreasing k. Similarly, a scaling solution
for a p-dependent y [0,y(p) = 0] could run into the
singularity for increasing p. Such a behavior is not
acceptable, indicating the need for an extension of the
truncation for y — 0. The same problem is visible in the
flow equation for v,

0w = 2p0;v —2v

1 35
—7 | 6 -2 75—— , 184
+1927Z2W<NU ’UNM+ ) ( )

for which v could run into the onset of the instability at
v = 1. This contrasts with the behavior of the flow of u or v

066017-19



CHRISTOF WETTERICH and MASATOSHI YAMADA

PHYS. REV. D 100, 066017 (2019)

for constant w (or with the inclusion of a constant D), for
which the instability is repulsive and avoided by the flow
[82,83]. We conclude that for » very close to one or very
small w our approximation can no longer be trusted.

C. Constant scaling solution

In this paper we concentrate on the constant scaling
solution for which u(p) and w(p) have p-independent
scaling solutions, such that the terms 2p0;u and 2p0;w
can be omitted in the flow equation (176). For constant w
one also has .;f = 0. Indeed, the flow equations (176) have a
fixed point with p-independent u and w, for which 5, = 0,

and
1 /- 20
T 1282 <NU 3= v*)>’
1 /- 75
1927 <NM T y*))'

This fixed point exists whenever the corresponding relation
for v,

Wy

(185)

3N (1 =v,)+20
we 2N (1=v,)+75

U,

(186)

Uy

has a solution for real ». The fixed point corresponds to an
acceptable stable theory if

v, <1, w,>0. (187)

Equation (186) results in a quadratic equation for
x=1-wv,,

Ny + BNy —2N )y +75)x—55=0.  (188)

We are interested in solutions with positive x (v, < 1) and
positive w,. For A/}, > 0 or N/}, > —43/6 the condition

w, > 0 is obeyed for all x > 0. For Ny, <0 or Ny <
—43/6 one needs x in the range

75
2N ml
With
b=2Ny—3Ny—-175
1

Eq. (188) has the solutions

xi:Ml/ (bi\/b2+440ﬂ/'M>. (191)

M

-100 -50 0 50 100
Nu
FIG. 1. Contour plot of the fixed point value of v, in the
(N, Ny) plane. In the red region for negative Ay and Ay no
constant scaling solution is found. In the yellow region the
scaling solution is unstable due to w, < 0. The green region
admits a stable constant scaling solution. As one moves toward
the region of large positive N, and negative Ny, corresponding
to a large number of scalar fields N, the fixed point value v,
approaches one. For v close to one our approximations are no
longer reliable. We indicate the location of pure gravity, the

standard model, as well as SU(5) and SO(10) GUT models with a
number of scalar fields varying between Ng = 50 and 100.

For N/ u > 0 there exists always one solution with x > 0,
whereas the second solution has x < 0. For A/); < 0 and
b > 0 no solution with x > 0 exists. For N}, <0, b <0

one finds two solutions with x > 0, provided

b2 > 440|N . (192)

Otherwise no solution exists. Particularly interesting are the
two solutions with both » and 440N, negative, e.g., for

43
Ns+ Np > 4Ny + —.

. (193)

It can be realized for a sufficient large number of fermions
and scalars as compared to the number of gauge fields.
We can take Ny and N, as the two parameters
characterizing the particle content of a given model. In
our approximation they specify completely the fixed point
for u, w, and v. Through the dependence on v,, both u, and

w, depend on both numbers N vy and N m- In Fig. 1 we

present contour plots for v, in the (N, N') plane, and
similar for w, in Fig. 2. We show v, and w,, which
correspond to x, with the + sign in Eq. (191). Similar plots
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W,
100 _6,11,/' T T

A kY
SO(10) Ng=!

-50

—-100 ===
-100

-50 0 50 100
N

FIG. 2. Contour plot of the fixed point value of w, in the
(./(/ M,/\~/' v) plane. The strength of gravity at the fixed point wZ!
increases as one approaches the excluded red and yellow regions
for large negative N v and N - For sufficiently negative N u the
fixed point gravity becomes unstable as N » turns negative (red
region). For the small value of w, near the boundary of the

excluded red and yellow regions one may have doubts on the
validity of the truncation.

for v_ and w_, corresponding to x_, are shown in Figs. 9
and 10 in Appendix F. Allowed regions for stable theories
obeying Eq. (187) have different shades of green, while
fixed points with instabilities are not acceptable and are
indicated with yellow shades. Regions for which no real
solution exists because the argument of the square root in
Eq. (191) is negative are indicated in red. Boundaries of
these regions are thick lines. We also present contour plots
for u in Fig. 3, with a corresponding plot for #_ in Fig. 11 in
Appendix F.

D. New fixed point

Our investigation shows that for Ng+ Np>
4Ny + 43/6 a new fixed point can emerge. It is instructive
to follow the change of the fixed point values as the

parameters Ny, and A are changed continuously. We
denote by “Reuter fixed point” the one that is connected
continuously to the fixed point in pure gravity.

For the pure gravity fixed point one has
Ng = Np =Ny =0, and therefore

~ 8
NU:__v

4 _1s8
: |

Nuy==, b= 194
w=" = (194
Since JVM > 0, one has x_ < 0, v_ > 1, which is outside
the range of stability. The Reuter fixed point therefore
corresponds to

100 | 0-425—

-50 i
-100L! n n ! u
-100 -50 0 50 100
N
FIG. 3. Contour plot of the fixed point value of u, in the

(./(/’ M,./V v) plane. Roughly the fixed point potential or cosmo-
logical constant u is positive for positive A/, and negative for
negative Ny

(R): v, =v,. (195)

For pure gravity one finds

v, = 0.152, u, = 0.00411, w, = 0.0271. (196)

Moving away from the pure gravity fixed point the
Reuter fixed point persists for A'y; > 0. Then x, remains
positive for arbitrary b. A change of sign of b is not relevant

for the continuation of the Reuter fixed point. Consider next
the limit of small A/, and a change of sign of \),. For
b < 0 and N\, close to zero one can expand

55 b +55
-—, X =——+—.
b 2N, b

X, = (197)

For negative b the Reuter fixed point continues to negative

Ny without any discontinuity. We can follow the Reuter
fixed point on the line N v = —8/3 within the green region
in Figs. 1-3. This extends to the whole green region on
these figures, for which the Reuter fixed point exists and
remains associated with stable gravity at the fixed point.
Let us next look at the second solution corresponding in
Eq. (191) to x_ with a relative minus sign. As long as N,
remains positive, the solution x_ < 0 remains outside the

range of stability. As soon as N u <0, one finds x_ > 0,
however. A new fixed point appears for N, < 0,

(N): v, =w_. (198)
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It starts at small negative N m at v_ — —oo. In this limit the
graviton contribution becomes ~Ny; and

Ny 75
Y- 19222 (1 * b)
approaches zero. This limit corresponds to very strong
gravity for which our approximations are no longer valid.
The graviton propagator may be dominated by higher order
derivative invariants. Keeping, nevertheless, our truncation,
the new fixed point is in the stable range w_ > 0 if

—75 < b <0. (199)

No second fixed point in the stable range exists for
b < =75, Ny — 0.

As N, becomes more negative, the fixed point (N) may
move to more moderate values of w™' for which our
approximations are valid again. The question is whether
w_ is positive in this range. This requires x_ to be
sufficiently small such that the inequality (189) is obeyed.
This condition is obeyed for

22 -
=75+ 5 Nu <b <0, (200)

For a given b < —75 the new fixed point x_ may appear in
the stable region at nonzero negative '), given by

- 15

' 22
We conclude that a new fixed point in the stable range
exists besides the Reuter fixed point if all three of the
following conditions are obeyed:

~ ~ 15

b <0, Ny <0, /\/M<ﬁ(b+75). (202)
In Fig. 4 we plot in the (A} Ny) plane the lines

w_ = 0 and v_ = 1, together with the excluded red region.

We also indicate the region where no stable new fixed point

exists. Only a rather small region of negative N/, and V),
(green) exists for which the new fixed point is stable.

Within this region the Reuter fixed point and the new
fixed point exist simultaneously. As a consequence, one
expects the existence of crossover trajectories from one
fixed point to the other. The fixed point with a higher
degree of stability is attractive for the crossover trajectories.
We will discuss this issue in Sec. V E.

The new fixed point typically occurs in a region close to
instabilities where our truncation is not very reliable.
Extending the truncation, two outcomes are possible.
The region where the new fixed point exists either shrinks
or disappears completely. Or the region of existence grows

Nff———
10+ V_:1 -
0 u
w_=0
'z -10 ]

-40 :
-60 -40

=20 0 20
N

FIG. 4. Contour plot of the allowed (green) and excluded (red)
regions for the new fixed point. We indicate line plots of v_ = 1
(red dotted line) and w_ = 0 (blue solid line) in the (N, Ny)
plane. For the yellow region the fixed point u_, w_ is unstable.

Only for the green region with 'y and A, somewhat smaller
than zero is the new fixed point stable. As the unstable yellow
region is approached, our truncation is not expected to
remain valid.

larger, making the new fixed point relevant for a larger class
of particle physics models.

E. Standard model and grand unification

We next discuss a few particular particle physics models.
For the standard model with Ny =4, Ny =12, and
Ny =45, one has

NU——62, NM:—l,

~ 194 ~ 37 394
=——, =—, b=— 203
Ny =-= w= o (20)

Because of the positive value of N u there is only one fixed
point solution with v, < 1 and positive w,. One finds
v, = —10.05,

u, = —0.0507, w, = 0.00505.

(204)

The graviton contribution is reduced due to the large
negative value of v. Also the contribution 7, from scalar
metric fluctuations will be reduced by a factor of
(1-v/4)"'~03 as compared to the approximation
(175). A more accurate estimate would reduce N by
one unit and enhance N\, by one unit. This remains a small
effect. We here comment on the case where the type-I cutoff
for gauge fields is employed. In this case the particle
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content in the standard model yields N y = —469/6 and

Ny = —125/6 for which the fixed point is located in the
unstable region (yellow region in Figs. 1-3). While a cutoff
of type-I seems to be less well motivated in our view, the
change of the standard model fixed point to the yellow
region may cast doubts whether our truncation is sufficient
for points very close to the boundary. As discussed in
Sec. V B, the inclusion of the higher derivative operators in
the effective average action could improve this situation.

As another example we may take an SO(10) GUT with
Ny =45, Ny =48 and Ny = Ng— 6, N'j; = 132 — N,
or

835

- 26 -
NU:NS_ NM:T—NS:139.17—NS,

? )
688
For a large number of scalars Ny > 139 the combination

N, turns negative. Then b is negative, too, such that two
solutions could exist provided the constraint (192) is

—_ SU(5)
—-= 50(10)

100 250

0 50

obeyed. This holds indeed for all Ng. The second condition
(200) for positive w_ reads

688 22 (835
3_5NS>_75+15(6_NS> (206)
or
4510
N —— ~ 28.36. 207
S =159 (207)

This is not compatible with Ny > 139. We conclude that

only the Reuter fixed point exists in the stable range for all

Ng. No new fixed point is realized for SO(10) GUTs.
We plot u,, w,,, and v, as functions of Ng in Fig. 5. Since

Ny is positive for all realistic Ng, one finds positive w,
only for v, > 0 and w, < 0 for v, < 0. The Reuter fixed
point (blue dashed curves or upper dashed curves) exists for
all Ng. For Ng =z 100 it moves rather close to v =1,
however, such that our truncation may no longer be
reliable. The new fixed point (red dashed or lower dashed
curve) has positive w_ only in a range where v_ > 1, such
that it is unstable for all Ny.

— su@)
-= S0(10)

==
-
-

— su(s)
-- S0(10)

200 300
Ns

0.4

0.3}

0.2}
3

0.1}

0.0p=2=

-0.1 - s
0 50 100

FIG. 5. Fixed point values of v,, u,, and w, as functions of Ny for SU(5) (solid lines) and SO(10) (dashed lines) GUT models. We
display both possible constant scaling solutions (u.,w_, v, ) (blue lines in upper parts of the figures) and (u_,w_, v_) (red lines in
lower parts of the figures). For the Reuter fixed point the truncation becomes insufficient as v, moves close to one for large N. For the
new fixed values no stable solutions are found for large Ny due to w_ < 0. For small w our approximations are doubtful. The gray
regions are not allowed due to the conditions v, < 1 and w, > 0. The vertical dotted and dot-dashed lines are at Ny = 47 and Ny = 139

at which w_, = 0, respectively.
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With
b2 + 440N, 440Ny,
W:\/T: 1+ e (208)
we can write the fixed point solutions as
I15Ng — 688
=1l-—1 . 209
vt 2N, — 1670 L T W) (209)

For very large Ny — oo one has W — 0 such that v

approaches 1 and v_ goes to —3/2. Only v, corresponds to

positive w, > 0 in this case. Indeed, for the two solutions

v, and v_ one finds the fixed points for w

Uy
Wy = —
Uy

B 6Ng — 835 450

~ 11527%(15Ng — 688) \1 F W

— (15N —688)).
(210)

For large Ng only w, corresponds to stable gravity,
w, > 0. In particular, for Ng — oo one has

|
(159N, —2125),
We = Te7am 10N )

(6N + 925). (211)

11527

In our truncation we find that a fixed point with constant
u, w, and v exists for arbitrary Ng. The mechanism is a
cancellation between negative contributions to c¢j; from
scalar and fermion fluctuations and a large positive con-
tribution from the graviton fluctuations. As Ny increases,
the size of the graviton contribution also has to increase.
This is achieved by moving v close to one, realizing a
substantial enhancement of the graviton contribution. This
mechanism implies, however, that for large Ng our
approximation becomes questionable since v comes close
to one. Already for Ng = 50 one may doubt the validity of
our truncation. This value is too low for a realistic SO(10)-
GUT model. In consequence, we will not be able to make
robust statements about SO(10)-GUT models.

For SU(5)-GUT models one has Ny = 24, N = 45 and
therefore

134 - 349 526
T, NM:——Ns, b:——SNS

Ny=Ns- 6 3

(212)
In this case also more moderate numbers of scalar fields are

possible. For a minimal set with a real 24-plet and a
complex 5-plet one has Ng = 34 and therefore moderate

values of N v and N M

~ 32 ~ 145
Ny=-=, Ny=—. (213)
3 6
The corresponding fixed point values are
v, = —0.123, u, = —0.00375, w, = 0.0304.
(214)

They are not far from the values for pure gravity.

VI. QUANTUM GRAVITY PREDICTIONS FOR
THE HIGGS SECTOR

In this section we address the question raised in the
Introduction, namely whether the quartic coupling 1y of the
Higgs sector corresponds to an irrelevant coupling near
the UV-fixed point and therefore becomes predictable by
quantum gravity. For this purpose we have to expand the
effective potential U(p) in terms of p = h'h, where h is the
Higgs doublet. The flow of the first three coefficients of this
expansion describes the flow of the cosmological constant,
the mass term, and the quartic coupling of the Higgs boson.
We will work at fixed values for possible other scalar fields,
typically set to zero. We also neglect possible small effects
from the nonzero gauge and Yukawa couplings of the
Higgs doublet. In this case constant values for Ny and Ny,
can be taken, and similarly for the number of scalars
beyond the Higgs doublet Ng — 4. These numbers charac-
terize the short-distance model of particle physics into
which the standard model is embedded.

Besides the expansion of U(p) we perform a similar
expansion for F(p). We truncate the expansion at second
order in the p derivatives. This leaves us with the flow of six
couplings describing the deviations from the UV-fixed
point or constant scaling solution. In this space of couplings
we compute the stability matrix for small deviations from
the fixed point and its eigenvalues, the critical exponents.
For the standard model and GUT models with not too large
Ny, such that our truncation remains reliable, we find that
indeed the quartic Higgs coupling corresponds to an
irrelevant parameter at the UV-fixed point.

A. Mass term and couplings

For the Higgs sector we are interested in ,/p near the
Fermi scale ¢,. For the range of k of interest here this
corresponds to very small values of p. We therefore expand
the effective potential U(p) around p = 0,

A
Ulp) =V +myp +=2p*. (215)

and correspondingly for the dimensionless potential u(5),

3

u(p) = uo + App + 27 (216)
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We also expand

En
2

~ - Wa
w(p) =wo + 55+ 707 (217)
with £ a nonminimal coupling between the Higgs scalar
and gravity of the type —&yhthR/2. The function & in

Egs. (18) and (120) reads

E:§H+6W2ﬁ, (218)

where N = 4 for the standard model and larger suitable N
for larger representations in which the Higgs doublet is
embedded in GUT models.

The flow equation for m3,(p) = O5u(p) is obtained by
taking a p derivative of the first equation (176),

) o ) 1 ONy
iy = 2pdsi’y + (A = 2)m% — EAava + 22 0
(219)

where the graviton induced anomalous dimension A reads

5

A= = (220)
Here we employ v(p) = u(p)/w(p) and
aﬁv_%<m%,—5HT”>, (221)

with &,(7) = 20,w(7).
Taking a further p derivative of Eq. (221) yields the flow
equation for 1,

8,;11.1 = 27)8;,;11-1 + A(EH - UWz)

R )

1 0*Ny

327 Op*

(222)

Similarly, one finds the flow equation for &4 () = 20,w(p)
from the p derivative of the second equation (176),

1 0Ny
487> Op

154
O\ = 2P0y +—o (m%, - 5”—”) + (223)

4 2

For w,(p) = 0°w/0p* = (0&y/0p)/2 one obtains

15A
0wy = 2p0;w, + 2wy + —— {/1;, — Wy

8
CSua SV, 2 (o, &nv)?
w(mH 2>+W(1—v)<mH 2)
1 PNy
+W0—[)2 (224)

For p-independent N v and N v these flow equations
have a simple scaling solution

lH* :O’ fH* :O,

wy, =0, (225)
which correspond to p-independent u and w. The corre-
sponding fixed point values u, and wy, are given by u,
and w, as discussed for the constant scaling solutions in
Sec. V. If the gauge and Yukawa couplings are also zero at
the fixed point, only the gravitational interactions remain at
this fixed point.

Vanishing fixed point values for 7?2, Ay Ey, and w,

follow directly if both N/, and N, are constants. This is
only an approximation for small matter couplings. For the
example of a single gauge boson coupling to the Higgs
doublet with gauge coupling e, the p dependence in
Eq. (82) generates an additional term for the flow of /n?(5),

3e?

AD(P) = =g ——s.
th<p) 3271_2(1 +62ﬁ)2

(226)

and similar for nonzero Yukawa couplings and quartic
scalar couplings. For e # 0 the scaling solution is no longer
independent of p, with 72 # 0. For vanishing matter
couplings at the fixed point, e2 = 0, these corrections do
not change the fixed point. They modify, however, the
stability matrix for small deviations from the fixed point.

We note at this point that the constant scaling solution
(225) is not the only possible scaling solution. For example,
one may investigate scaling solutions with p-dependent w
reaching a form w~ £ p/2 for p — oo. Such scaling
solutions have been discussed in the context of dilaton
quantum gravity [84,85].

B. Critical exponents

For small deviations from this scaling solution we
discuss the (truncated) stability matrix 7" that describes
the linear approximation for the vicinity of the fixed point

0,9i = =T;(3; — ;) (227)
with six couplings
Gi = (w0, wo, My, gy A w)).- (228)

The stability matrix obtains as
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P
09jl9,=g,.

Ti:

: (229)

where

0,9; = Pi- (230)
The critical exponents are the eigenvalues of the stability
matrix. Eigenvectors with respect to positive critical expo-
nents are relevant couplings, whereas the ones for negative
exponents are irrelevant couplings. The irrelevant cou-
plings are predicted to take their fixed point values. The six
couplings §; = (ug, wo. fityy, &, Ay, wo) are related to the
values of u(p), w(p), m%(p), etc., at p = 0. }

We first neglect the terms proportional to ON ' /0p
and ON w/Op. In this approximation the stability matrix
decays into 2 x 2 blocks. The first block involves

(91,G2) = (uo, wo),

7(2) <4—A Av > (231)
- 24ip)
The second block for (g3, 34) = (%, &) reads
2-4 A
T = ( 154 15€w)’ (232)

1 8
while the third block for (s, Js) = (Ay. w,) becomes

7056 _ —-A Av '

(233)

Here A and v are evaluated for p = 0. This block structure
continues for higher couplings. It is a result of our simple
truncation. Including for the scalar fluctuation contribution
the dependence of d,u and 9,w on 72, and & will mix the
different blocks.

Consider first the (44, w,) sector for which the critical
exponents are

1 15Av
Osg=—~dA+2—
5.6 2{ + 3

2
i\/(A_Z)z_ISA(A+2)v+ <15A1j> } 230
4 8
For |v| < |(A—2)/(2A)| one may expand
15A%y
05 = —A+ "
> +8(A -2)
15Av
Og =—2——"—. 235
6 4(A=2) (235)

We may also expand for |Av| < (A —2 — 15Av/8)?/15,
where

15A0 15Av
g 4(A=2—-15Ap/8)%"
15Av
4(A=2—15Av/8)%

95 :—A

96:_2_

(236)

which covers a region of A closer to two. In the region of
validity of these expansions both couplings are irrelevant
and therefore predictable. The eigenvector of the critical
exponent s is mainly Ay, while for g it is w,. Another
expansion for large negative v, —v > [(A +2)/(24)],
yields

16
05 = —-.
ST 150
154
0 = 8”—A—2. (237)

In this limit one finds again negative critical exponents 05
and 0¢. For small v and negative v both 15 and w, are
irrelevant couplings predicted to be zero at the fixed point.

As v increases from zero toward one, the fixed point
approaches the region where our truncation is expected to
break down. For a given A the eigenvalues 65 and 64 remain
real as long as v < v, with

8 2\?
Ucr:E l:F Z .

The minus sign holds for » < 8/15 + 16/(15A) and the
plus sign for v > 8/15 4 16/(15A). While complex critical
exponents for v > v, are no problem, they may never-
theless be artifacts of an insufficient truncation. For
v = v, where the imaginary part starts to set in, one has

95 :96:—\/214.

(238)

(239)

Both A5 and w, are irrelevant.
The eigenvalues in the sector 7%, &y are shifted by two
as compared to 05,

93 == 95 + 2, 94 - 96 + 2 (240)
Similarly, one finds in the sector du,, dw,
91 = 95 + 4, 92 - 96 + 4 (241)

Correspondingly, the critical exponents for higher order
couplings are shifted to more negative values. For —2 <
05 < O there are four relevant couplings duy = uy — uy,.,
Swy = Wy — Wy, iz, and &y, while all other couplings are
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irrelevant. For more negative s, 8¢ the number of relevant
couplings is reduced.

C. Graviton induced anomalous dimension

A crucial quantity for predictions of the properties of the
effective potential for the Higgs scalar is the graviton
induced anomalous dimension A [12,82,83,86]. Forn, = 0
it is given by

5 5 80
A == = - ~ )
247°w(1—v)?  24x*wx? x(75 42N yx)

(242)

with x=x, =1—-wv,_ given by the Reuter fixed
point (191). _
For pure gravity one finds with x = 0.848, A/}, = 43/6

a value

A =1.082, (243)
and therefore critical exponents
05 = —1.39 4+ 0.491i, 0s = —1.39-0.491i.  (244)

For the standard model one has x = 11.05, /VM =37/6,
resulting in

A = 0.0343, (245)

and critical exponents

05 = —0.0258. 0¢ = —2.65. (246)

Because of the small value of A the influence of the off-
diagonal elements in the matrices (231)—(233) is small. In a
rough approximation the eigenvectors correspond simply to
the couplings duy, Swy, ﬁﬁl &y, Ay, and w,. There are three
relevant couplings that may be associated with dug, dwy,
and 2,. The couplings &y, Ay, and w, are irrelevant. The
value of 05 is rather close to zero, such that the critical
exponents for Suy, Mm%, and Ay are not far from the
canonical scaling exponents. The approach of the quartic
coupling Ay to its fixed point value Ay, = 0 is rather slow.
As a consequence, the small effects of nonzero gauge and
Yukawa couplings in the vicinity of the fixed point have to
be taken into account for the flow of 15 away from the fixed
point, even for the region of large k where the metric
fluctuations are important.

To get some intuition on the size of A for GUT models,

we may consider the limit of large Ng. For U(/' | < b?/440
one may use Eq. (197) for b < 0, resulting in

A

v -1
~ 1612 (1 +22N’”> . (247)

~ 825 15]b|

20
15}
< 10
5-
O-I 1 1 1 1
0 50 100 150 200
Ns

FIG. 6. Graviton induced anomalous dimension A, given by
Eq. (242), for SU(5) and SO(10) GUT models as a function of the
number of scalars Ny.

For large values of || the anomalous dimension becomes
much larger than one. For the example of an SO(10) GUT
with Ng = 317 scalars (complex 126, complex 10, and real

45) one has |b| = 1355.7 and N, = —177.83, and one
finds A =32.29. For large Ng one observes a linear
increase of A with Ny, as can be seen from Fig. 6 where
we plot A as a function of Ng. The large values of A arise
from a fixed point value of v rather close to one. This is
outside the range of validity of our truncation. The range of
very large values of A should therefore not be taken as
realistic.

For SU(5) one also has an increase of A for large Ng. For
a minimal set with Ng = 34 one has

A = 1.004. (248)
One finds for the critical exponents
05 = —0.5075, ¢ = —2.171. (249)

Thus Ay, &y, and w, are irrelevant couplings, while ﬁﬁ,,
ouy, and Sw, are relevant.

In Fig. 7 we show the dependence of the critical
exponents on the number of scalar fields for SU(5) and
SO(10) GUTs. For SU(10) there is a critical threshold for
the number of scalars N = 37 such that for Ny < N, all
critical exponents are real, while for Ng > N, they develop
an imaginary part. For Ng < N, both 65 and 6 are
negative, while the other critical exponents 6y, ..., 0, are
positive. As Ng approaches N from below the critical
exponent @5 decreases, while 64 increases. Both critical
exponents have a common negative value for N = N,. For
Ng> N the real part of the critical exponents 05 g
increases, even becoming positive as one comes close to
the boundary of the region of validity of our truncation.
This part should not be trusted. For SU(5) the situation is
qualitatively similar, with N = 43. In contrast to SO(10),
only three couplings are relevant for Ng < 39.
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SU(5)

Critical exponents

80 100

Ns

Critical exponents

SO(10)
4.‘ ‘ ‘ ]
3t i — 6
2 1 — 62
£ T =T 1 -- 65
Of——mmm====mT" ' = O
1 1 - 65
il | | | i Oe

0 20 40 60 80 100

Ns

FIG.7. Critical exponents (real parts of eigenvalues of 7(!2), 734 and 709)) as functions of Ng in SU(5) and SO(10) GUTs. For small
values of N the critical exponents are not far from the values given by the canonical mass dimension of the associated parameters. For
the SO(10) model the curves for small Ng from top to bottom correspond approximately to ug, wo, %, Ex, Ay, and w,. In particular, the
critical exponent for the quartic coupling of the Higgs scalar is negative, making this irrelevant parameter predictable. As Ny increases,
the quartic scalar coupling becomes first more and more irrelevant, with decreasing €s. For N close to 40 the eigenvalues of the stability
matrix develop an imaginary part, and the absolute value of the critical exponents starts to increase. For large N g our approximations no

longer remain valid.

In Fig. 8 we show contour plots of 85 and ¢ in the (J\~/ Us

N ) plane. Both exponents are negative except for the
upper left corner where our truncation becomes unreliable.

D. Beyond the graviton approximation

In the graviton approximation N v and N m are treated as
constants. For this approximation the only p dependence of
the flow generators in Eq. (176) (beyond the canonical
terms 2p0;u — 4u and 2p0;w — 2w) arises through the p
dependence of ». This results in the block structure of the

FIG. 8.

stability matrix. The p p dependence of the effective particle
numbers A/ vy and N » induces a mixing between the

different blocks. _
Let us start with the p dependence of AV, induced by the

contribution —3N 55 /2 [cf. Eq. (122)] and neglect first other

contributions to the 5 dependence of N, and AV ,,. With the
polynomial truncation (217),

E= &y + 6wp, 5}5 = 8wy, (250)

-40 =20

0
Nu

20 40

Contour plots for the real parts of 65 (left) and 8¢ (right). The red (no constant scaling solution) and yellow (unstable solution

due tow, < 0) regions are excluded. The pink dashed line shows the change of N for the SU(5)-GUT model. It corresponds to the plots
for 65 and 64 in Fig. 7. For Ng > 43 in SU(5) GUT both 65 and #¢ have an imaginary part, so that their real parts are degenerate.
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one has

ON
op

.
% —0. (251

= —12NHW2,

Here N = Ny is the dimension of the multiplet to which
the Higgs doublet belongs. This results in additional
contributions for the flow generators for wy and &y,

N
atWo:ﬂWO :"'—Izzﬁﬂ,
N
Ok =Pz =+ = 5 (252)

These additional terms do not affect the constant scaling
solutions (185) and (225). They influence, however, the
stability matrix by mixing the blocks,

aﬂw_ NH

T = —_—_—— = 2
#7098, 64n° (253)
Op: Ny
Ty = ——t =1 254
46 Ow, 4n? (254)

This does not change the eigenvalues or critical exponents.
The stability matrix now has a triangle structure

7(12)  F(12) 0
T=| 0o 7169 76491, (255)
0 0 7109

with T,, and T, contributing to the 2 x 2-matrices 712

and 7G%, respectively. In consequence, the eigenvalues
remain the eigenvalues of the 2 x 2-matrices 7(12), 704,
and 700,

The triangular form of the stability matrix remains
preserved if we include the dependence of Ny on scalar
mass terms. Let us assume for simplicity that Ny scalars
have all mass terms m3 = myk?, 3 = Ou/0p. This
results in an additional p dependence of Ng,

Ng =N + Ny (ﬁ - 1> . (256)
With
9. Ny
omy, 327 (1 +m2)?’
% _ N , (257)

o3y 967> (1 + i)

one finds off-diagonal contributions in the stability matrix

Ny Ny
Ths=—>. =—-—, 258
B 3042 27 96a (258)
such that
~ N 1 0
702 = 1 ( ) (259)
3277\ -1/3 1/2
Similarly, with
Ny Nyly
O (L+mp)*
N Ny
w__Nutn (260)
op  (1+imy)
one obtains new elements of the stability matrix
Ny Ny
Tys =—=, =—-—, 261
¥ 302 B 482 (261)
resulting in
- N 1 0
764 = I . (262)
3277\ -2/3 8

We conclude that for the constant scaling solution the
stability matrix is very simple. Its structure remains similar
if we take into account the v dependence of the scalar
physical metric fluctuation z. This will be different for
possible scaling solutions for which «# and w depend on p.
In particular, if gauge or Yukawa couplings at the fixed
point differ from zero, such a p dependence of the scaling
solution will be induced by ONy,/9p and ON/0p that do
not vanish for p — 0. This will induce nonzero fixed point
values ﬁz%{* A, and w,,. We have discussed some details
of this case in Sec. III C.

E. Critical exponents for the new fixed point

We have concentrated our discussion of critical expo-
nents on the Reuter fixed point, since this is the only fixed
point for the standard model and the discussed GUT
models. In the small region where two fixed points exist
it is interesting to know which one is more stable, e.g.,
which one has less relevant parameters. For the new fixed
point v_ is negative for the interesting range of N, and

N ;. For large negative v, this has the tendency to make the
critical exponent ¢ more negative according to Eq. (237).

For the example N U= N m = —5 one finds for the new
fixed point v_ = —5.098 and w_ = 0.0006066

(N): 65 = —0.168, 0 = —16.03,  (263)
while the critical exponents for the Reuter fixed point are

given by
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(R): 05 = —155+0.539i, O =—1.55—0.539i.

(264)

We conclude that the Reuter fixed point has four relevant
parameters, while the new fixed point has only two. This
seems to indicate that the new fixed point is actually the
more stable one.

VII. CONCLUSIONS

We have computed the flow equations for the effective
potential U(p) and the coefficient function of the curvature
scalar F(p), within quantum gravity coupled to an arbitrary
number of scalars, gauge bosons, and fermions. The use of
the gauge invariant flow equation constrains the possible
form of the effective average action by diffeomorphism
symmetry. Since our setting is formulated in terms of a
single macroscopic metric, diffeomorphism symmetry
relates, for example, the effective scalar potential and the
zero momentum behavior of the graviton propagator.
Furthermore, the gauge invariant flow equation leads to
a universal measure contribution to the flow that is a fixed
functional of the metric, not involving the matter fields.
This replaces the contribution of ghosts and part of the
metric fluctuations in other functional renormalization
group investigations of quantum gravity. For the gauge
invariant flow equation the contribution from the physical
metric fluctuations decays into the dominant, rather simple
graviton contribution (traceless transverse tensor fluctua-
tions) and a physical scalar contribution. The latter is more
involved, also due to mixing with other scalars. Being
subdominant it admits, however, a reasonable approxima-
tion that permits us to discuss many aspects analytically.

We concentrate in this paper on the fixed point or scaling
solution with field independent U and F', and the vicinity of
it.We find a scaling solution for all the models we have
considered, pure gravity, the standard model, and grand
unified models based on SO(10) or SU(5) with an arbitrary
number of scalar fields Ng. For SO(10) the fixed point is
situated, however, outside the range of validity of our
truncation, due to the large number of scalar fields needed
for a realistic spontaneous symmetry breaking. For dealing
with SO(10) reliably one needs at least to include the effect
of the squared Weyl tensor for the graviton propagator.

For the vicinity of the fixed point we have used a Taylor
expansion of U(p) and F(p) in terms of p, which is a
quadratic invariant formed from scalar fields. We concen-
trate on the Higgs doublet i for which p = h'h. We
compute the flow of the scalar mass term and quartic
scalar coupling, as well as a nonminimal scalar gravity
coupling, in the vicinity of the fixed point. From the
corresponding stability matrix and its eigenvalues, the
critical exponents, we find that the quartic scalar coupling
Ag is an irrelevant parameter for all models considered,
restricted to ranges where our truncation does not become

invalid. This gives support to the prediction of the mass of
the Higgs boson in Ref. [11].

On the other hand, for the same range of models the
scalar mass term 7% turns out to be a relevant parameter.
Self-adjusted criticality in the Higgs sector, and the
associated resurgence mechanism [87], is not realized for
this class of models for the constant scaling solution. A
small ratio between the Fermi scale and the Planck scale is
technically natural because of particle scale symmetry [86].
Its value cannot be predicted, however, if the distance from
the phase transition is a relevant parameter. This situation
may change for a different scaling solution. Another
interesting possibility for /% becoming an irrelevant
parameter may arise for GUT models with large Ng.
The gravity induced anomalous dimension A may grow
large for this type of models. If a more reliable truncation
tames the large off-diagonal elements in the stability
matrix, this may offer prospects for self-adjusted criticality.

We are aware that an understanding of the effective
potential U and the effective squared Planck mass F at the
fixed point of quantum gravity, as well as the stability
analysis at the fixed point, is only at its beginning.
Nevertheless, already at this stage the gauge invariant flow
equation offers many insights, and we hope that a robust
picture will arise from extended truncations.
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APPENDIX A: EFFECTIVE AVERAGE ACTION
IN THE BACKGROUND FIELD FORMALISM
AND PHYSICAL GAUGE FIXING

In the main body of this paper we employ the gauge
invariant flow equation with a single metric and gauge
field. As we have argued in Sec. II, this is equivalent to the
more standard background formalism with a physical
gauge fixing, in the most commonly used truncation where
the field dependent inverse propagator is approximated by
the second functional derivative of a gauge invariant kernel
plus a gauge fixing term. This equivalence holds if no field
derivatives of the flow equation are performed—for the
differences concerning field derivatives see Appendix C. In
the background field formalism the IR cutoff depends on a
separate background field, not on the macroscopic field as
for the gauge invariant flow equation. In the background
formalism one also uses ghost fields with an appropriate IR
cutoff.

In the background field formalism the one-loop form of
the functional flow equation is exact [13,14,88,89]. It is
given as a functional differential equation
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o @] = ST [@] + RO TOR, (A1)
where R is an infrared regulator function and 0, = k0 is a
dimensionless scale derivative. The trace in Eq. (A1) sums
over all internal d.o.f. of a multifield ® that includes ghosts.
It involves a momentum integration and a sum over internal
space indices. The matrix of second functional derivatives

F/((z) is the full inverse propagator of ®@. For reviews on the
functional renormalization group (FRG), one can see
Refs. [71,90-98].

In this Appendix we work in the standard background
field formalism. For a physical gauge fixing and a suitable
truncation this will produce the same flow equation as in
the main text. This Appendix, together with Appendix D, is
self-contained.

1. Setup

We consider the system of a singlet scalar field ¢
nonminimally coupled to gravity. Our truncation for the
effective action is given by

[ =T8S 41V 4 1F, (A2)
where
ravi 1
F%a ty _ _5/ \/gF(p)R+Fgf+th,
S Z(P v

0= | VoyUlp) += 9" 0,0dup ¢
ZA v v v

3 e o1y

rF = / VIIZ,py" Dy + yirwel. (A3)

Here F(p) is the field dependent Planck mass, U(p) is the
scalar effective potential, and Z,,, Z,,, and Z, stand for the
field-renormalization factors of ¢, y, and A, respectively.
The scalar potentials can be expanded as polynomials of
p = ¢*/2, namely

F(p) =M} +ép+ . (A4)

1
U(p):V—l-mzp—l—Eipz—l-'--, (A5)

where M }% is the reduced Planck mass related to the Newton
constant Gy = 1/(87>M3), & is the nonminimal coupling
constant that connects between p and the Ricci scalar, and
V is the cosmological constant.

In our truncation the only violation of the gauge

symmetries for the macroscopic metric g, and gauge field
A, arises from gauge fixing and ghost terms. In the

approximation I'j =T + [yp + 'y the flow equations
will be found to be equivalent to the ones obtained from
the gauge invariant flow equation with the same ansatz for
the gauge invariant functional I',. We emphasize that in the
background field formalism the ansatz I'y =Ty + Ty +
[y, is only an approximation. The symmetries admit many
additional invariants involving the differences g,, — g,, or
A, - Aﬂ, with g, and Aﬂ the background fields. We recall
that the equivalence with the gauge invariant flow equation
holds only for this truncation and for a physical gauge
fixing.

For the gauge bosons the physical gauge fixing and the
ghost action are given by

1 -
) =5 [ Vi (86

ry = / V§ed, dvc. (A7)
x
To specify the physical gauge fixing for the metric, we
write the macroscopic metric as
G = G + My (A8)
where g,, is a constant background metric and h,, is a

fluctuation field. The gauge fixing for diffeomorphism
symmetry is given by

1 AV
Fgf _Zl \/‘59‘4 ZMZD (Ag)
A class of general gauge fixings reads
_ f+1 -
%, =D"h,, - TDMh’ (A10)
where h = g*h,, is the trace mode. Bars on operators

denote that covariant derivatives are formed with the
background metric, and indices of operators are contracted
by the background metric as well. The ghost action
associated with the gauge fixing (A10) is given by

_ _ 1-p- - -
Ty =— / VG, [9"/’D2+—2ﬁ D'DP+ R\ C), (AlL)

where C and C are ghost and antighost fields.
Equations (A9) and (A10) constitute a general family of
gauge fixings for diffeomorphism symmetry, specified by
two parameters a and . The choice f = —landa — Oisa
“physical gauge fixing” that acts only on the gauge modes
in h,,,. In this work, we use this gauge choice. Nevertheless,
the next subsection discusses general @ and f. This will
demonstrate explicitly the particular role of the physical
gauge fixing.
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2. Physical metric decomposition

A key quantity for the flow equation is the inverse
propagator or 1PI two-point function, as given by the
matrix of second functional derivatives of I';. To derive the
explicit form for the metric two-point function, we split
the metric fluctuations into physical and gauge fluctua-
tions [81].

Accordingly, we decompose the metric fluctuations into

h[ll/ = fﬂl/ + aﬂl/’ (Alz)
where f,, are the physical metric fluctuations, and a,,, the
gauge fluctuations or gauge modes. The physical metric
fluctuations satisfy the transverse constraint D*f,, = 0. In
turn, the physical metric fluctuations can be decomposed
into two independent fields as

f;w = t/w + Suvs (Al?’)
where the graviton 7, is the transverse and traceless (TT)
tensor, i.e., D"t}w = g"t,, = 0. The tensor s, is given as a
linear function of a scalar field ¢ such that

u (A14)

S = S0 = gP,wO'-
For a background geometry with constant curvature the
projection operator can be found explicitly as

o == = (o R\
P;w = (gm/AS + DﬂDv - Ruu) (AS _§> ’ (AlS)

with Ag = —D? = —D*D,, the covariant Laplacian acting
on scalar fields (spin-0 fields).

Similarly, the gauge modes or unphysical metric fluc-
tuations a,,, are decomposed into a transverse vector mode
Ky, satisfying D*k, = 0, and a scalar mode u. In summary,
the metric fluctuations (A12) are parametrized by

1
f/w = t;w + §P[,{I/67
a,, = Dk, + Dk, — D,D,u. (A16)

Using the linear combinations

3<AS—R/3
O =—|=—"—=—

we obtain the York decomposition [99] of the fluctuation
metric

Ry =ty + (D,x, + D,k,)
I 1_ - 1_

+ <D/4DD +ZgﬂpAs>s ‘I‘Zg/wh, (AIS)
where h = g h,,. The scalar modes s and h in the York
decomposition are given as a mixture of the physical scalar
mode ¢ and the gauge mode u.

The ghost fields can be decomposed similarly into vector
and scalar fields

C,=Cy+D,C, C‘# = C’j + DﬂC, (A19)
where C;- (C;) is the transverse (anti)ghost field and C (C)

is the scalar (anti)ghost field.
These decompositions yield Jacobians that read

Jgravl = [det/(l) (Z_)l)] 1/2,

Jgrav() = [det/(()) (Z_)O)AS]I/Z7

T = ldetly (Bg)], (A20)
with
_ - R - ~ R
Dy=Ay ——, Dy = A5 ——. A21
1 VT3 0 ST (A21)
Here A, = —D? is the Laplacian acting on vector fields

(spin-1 fields) and a prime denotes a subtraction of the zero
eigenmode. This subtraction, however, does not contribute
to the present truncation, so that we hereafter neglect it.

3. Hessians

The two-point functions (or Hessians) for each d.o.f. in
the metric fluctuations defined in Eq. (A16), as well as for
the scalar field ¢, are obtained by calculating the second
order variations of the effective action (A2) in terms of the
fluctuation fields. For our decomposition of the metric
fluctuations, the matrix of the Hessians becomes block
diagonal for each d.o.f. or spin. We neglect scale-indepen-
dent overall constant factors such as /g and the gauge
parameters since they drop out in the flow equations.

For the 7,, mode, we obtain

(o) =F [TDT - %U] plmre  (A22)

where we define the derivative operator
Dy = A + ?, (A23)
with the Laplacian A; = —D? acting on transverse trace-

less tensor fields (spin-2 fields). The TT-projection operator
is given by
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(A24) with P(*) the projection operator on the vector mode,
P # =3 Fora — 0 the inverse propagator for the gauge-
vector mode becomes independent of U

P(t)m//m' — (Pﬂ/}PIJ{T + P/mpu/)) _ lpﬂl/P/)(T
3 9

SN

with P* defined by Eq. (A15).
The Hessian for the spin-1 gauge mode «, is given by lim(F,(cz) "o (D)2, (A26)
a—0

KK

(ngl)c))”” =D [{)1 + ak _ aU] pWw  (A25)  We next turn to the Hessian for the scalar modes. In the
2 (0, u, @)-field basis, we obtain

! [—F’ (Bs+5) + U'](p
Floo) = L (~FR+2U)pks |- (A27)
; [‘F’ (Bs+5) + U’] 0 +(-FR+2UpAs  Z,As+m2—L1E,R

where we define m,(p) = U’ + 2pU" the field-dependent scalar mass and E(/,(p) = F' +2pF”, and primes denote

derivatives with respect to p = ¢?/2. Here the spin-0 gravitational part is given by the following 2 x 2 matrix:

Sl
o0l

o

rav -
£ F
7

-\ - - 5 - S B1)? = 5\ — 8-3) [ ~ -
e e e GO

R\ A — y R\ =& = B = - 32 [ - 2 -
~B) A+ (B + ) A £ (Bs—5) (R-42) B+ B2 (A5 +555) Ay

Rl

(A28)

For general a and f the Hessian in the scalar sector is rather complicated. It simplifies considerably for a physical gauge
fixing that corresponds to f = —1. The 2 x 2 matrix (Fgéé))grav becomes diagonal. For f = —1 the factor 1/« remains only
in the Hessian for the spin-0 gauge mode I' E%. In the limit @ — O we can further neglect in the matrix (A27) the elements

mixing u with ¢ and ¢. They do not diverge for & — 0 and drop out in the propagator that is the inverse of ['?). As a resullt,
for a physical gauge fixing the physical fluctuations and the gauge modes decouple. The Hessian becomes block diagonal in
physical and gauge modes. For the physical modes one obtains the 2 x 2 matrix

_ _\ - _ - _ =\ =1 _ _
) —g{(As—g@As—%(As—gﬂ(AS—§> %{—F’(AS—F%)—FU’}(p
2
(F(om)ph = 1 - ) O (A29)
: —F’(AS+Z> +U’}p Z,As+mg —3E,R

while the Hessian for the gauge scalar mode reads

@) _ (& _BV;
(r<00>>gauge = <AS Z) As. (A30)

Finally, the Hessians for the ghost field obtains from Eq. (A11) as
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v)

2) H
(fées)

Dy P,
@ _ (% R\«
2, = (As+ﬁ>AS. (A31)

It is an important consequence of the physical gauge
fixing f = —1 and a — 0O that the Hessian for the spin-1
and 0 gauge modes and the ghost mode depend on neither
U nor F. This also holds for the Jacobians (A20). More
generally, all these terms do not depend on the form of I';.
We will see in Appendix D that their contributions to the
flow equations can be combined into a universal measure
contribution, corresponding to the one employed in the
gauge invariant flow equation. The gravitational measure
contribution depends on the metric, but not on the scalar
field ¢ or any other matter fields. All these important
simplifications do not hold for a general gauge fixing with
arbitrary a and f.

At this stage we have collected all the ingredients
necessary for the flow equation (Al), up to the cutoff
function Rj. The cutoff function will be specified in
Appendix D, where we also compute the right-hand side
of Eq. (A1) in our truncation. We are interested in the gauge
invariant kernel ', and therefore evaluate the flow gen-
erator for a macroscopic metric equal to the background
metric. The bars on covariant derivatives can therefore be
dropped in the following.

APPENDIX B: HEAT KERNEL EVALUATION
OF THE FLOW GENERATOR

The flow generator {;, defined by the right-hand side of
the flow equation 0,I", = {;, involves different contribu-
tions of the type

(= ZaitrW(Ai)7 (B1)

with A; appropriate differential operators. For the contri-
bution of a scalar field one has A = —D,D¥, a = 1 /2, and

W(A) = 9,In P;(A). The trace is conveniently evaluated in
the heat kernel expansion that we recall here briefly for
convenience.

Assume an operator A with all eigenvalues positive,
A > 0. For the evaluation of trW(A) we make use of a
representation of the ¢ distribution,

+ico
/ T sl — 8(z = An), (B2)
14

—ico 27i

that holds for real positive finite y provided 4, > 0.
Insertion of Eq. (B2) yields

aW(A) =Y W(i,) =Y A " dz8(z — 2,)W(2)

00 y+ico d
:/ de(z)/ —s,e”tre_SA,
0 y—ioo 2mi

where we use ), exp(—s4,,) = trexp(—sA). One next
employs the expansion

(B3)

e = s [ Vilao(@)s7 - ex(8)s + eu(d) o)

(B4)

for which the coefficients c,(A) are well known for the
operators of interest here. This yields

trW(A) = #i Q2—n/ \/§C2n(A)v (BS)
n=0 X

with

0, = /) " dzW(z) /y :m %e‘“s—". (B6)
Evaluating Eq. (B6) one finds
0, = A TdeW(z), 0= A " dw(z),
Qo =W(z=0), (B7)
or, more generally,
0, = L/oo dzz"'W(z), n>1,
I'(n) Jo
0, = (- )"sznv " >0. (B3)

In particular, for W = 9,R;/(z + Ry(z) + m?) the coeffi-
cients Q, are directly related to the threshold functions #¢
that have been widely explored in functional renormaliza-
tion for different forms of the IR cutoff R;; cf. Eq. (29).

TABLE I. Heat kernel coefficients for the individual fields in
maximally symmetric four-dimensional spacetime. “T” and “TT”
denote “transverse” and “transverse traceless,” respectively.

T TT vector
Tensor tensor tensor Vector (Aj. Ky

Weyl
spinor  Scalar (a,

(hy) Fw) ) @A) G W) w6 0
by 10 9 5 4 3 2 1
b 5 3 _s 2 1 1 1
23 2 6 3 4 3 6
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The coefficients ¢, and ¢, are given by

Co — bo, Cy) = bzR <B9)
We display the value of b, and b, for the operators relevant
for various fields in Table I. The numbers for fermions y
are given for Majorana spinors. They have to be doubled for

Dirac spinors.

APPENDIX C: FLOW OF THE
GRAVITON PROPAGATOR

In this Appendix we compute directly the flow equation
for the inverse graviton propagator in flat space. This will
reveal important differences between the gauge invariant
flow equation and the background field formalism for the
flow of field derivatives of I';. Only for the gauge invariant
flow do the field derivatives and scale derivatives commute.
We focus on the infrared behavior of the gravitational
propagator, i.e., vanishing momentum in flat space, since
the main differences are already visible there.

1. Gauge invariant flow equation

Within the gauge invariant approach with a single metric
the inverse graviton propagator is given by the second
functional denvatlve of the gauge invariant effective aver-
age action Fgmv,

— 1 — vptT
I, _5/ L (Comn )y + - (C1)

We compute the flow contribution of a single scalar field.
Our starting point is Eq. (21),

O =ng = étré, In(Py(z) + m?), (C2)
with covariant Laplacian
z=-D'D, = —¢"0,0, +T 0, (C3)
Taking two derivatives one has
i 1 - 2
0,(Ta) )™ = 5tra,mlnupk(z) +m?).  (C4)
For the graviton propagator we need to expand z = —D? up
to second order in 7,,,
z=—(8" ="+ tpt”)0,0,
- (ﬂ‘ﬂaﬂtg - %W”(t,paﬂf/’)> 0,. (C5)

We consider the graviton propagator in the zero-momen-
tum limit. This corresponds to x-independent 7,,. In this
case the operator z becomes diagonal in momentum space,

2q.94) = (* - "q,q, + *p"q,q,)8(q — ¢'). (C6)

Insertion into Eq. (C4) yields, with P= P, + m2,

_ 1 (~(10P 8%
T@ymrr — — / _—
0,(I"%) 2/, 6,{}) 0z 0t,,0t,,
1 9*P 9z Oz _i(@f’)z 0z 82}

TPoz o, o, 9:) i, 01,
(C7)

to be evaluated at 7,, = 0. Taking into account that 7, is

trace-free one finds, with z = g2,

_ 1 0 ([ OR
a F(z) ”D/)T:—/ —_— 1k
t( ) 2 q 312 Pk+m2
X quu_lq26/w q/)qr_quyr
4 4

10 [ O,R;
_ _ HaP YT gt g" 8YP + a¥ o SHF
s (e (o

1
+quq76;4p _q,uql/é/)’l'_q/)q’téﬂl/ +4q25;w6/11> }

(C8)
We employ the identities
| srwa=; [ siaren
[ eea—y, [ 1@)a e s,
q
(C9)
and
/ = %/w dzz, (C10)
167= Jo
in order to obtain
O,TGM"™" = =S al Pris(g ). (CI)
Here
o 2
ﬂgv)z_&lﬂz/) dz <6;2+ 2d>P5f; (C12)
and
prort = % (2587 425787 — 3"&7)  (C13)
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is a projector that eliminates the trace of /,,. A flow of the
zero-momentum graviton propagator of the form (CI1)
follows if the part of I'; not containing derivatives of the
metric has the diffeomorphism invariant structure

_ U
Fe= / \/EUQ - _Tg/ tﬂvﬂw’
o,U, = ny"). (C14)
For O,R, vanishing fast enough for z — oo and

9,R/ (P + m?) remaining finite for z — 0 we can perform
partial integrations,

20— L[4 20 OR
5 6472 Jo 0z P + m?
1 © (9tRk
=— [ dgz——F C15
ﬂﬁ% Pt m? (C13)

Comparison with the part of Eq. (28) that remains for a
vanishing curvature scalar R =0 shows that we can
identify U, with the effective scalar potential U. This is
what one expects for a diffeomorphism-invariant effective
action if a derivative expansion is valid. On the diagram-
matic level several individual diagrams have to combine in
a particular way in order to arrive at this simple result. This
combination is dictated by diffeomorphism symmetry.

2. Background field method

The use of covariant derivatives in the scalar IR-cutoff
function, and therefore the dependence of R; on the
macroscopic metric g,,, are crucial for obtaining this
simple result. We can compare this result with the back-
ground field method or computations without gauge
symmetry for which R, does not depend on the macro-
scopic metric. It may depend on the background metric g,
that corresponds to flat space in our case. If we omit the
metric dependence of Ry, choosing instead of \/gR;(—D?)
a cutoff R,(-9?), 0> = 5"0,0,, the derivative 0/9z in
Eq. (C12) is replaced by 5Z acting only on the part ~z in
Py =z + Ry, resulting in 9,P = 1, and

OiRy
(Pk + m2)2 '

5 Ok

= Cl6
ZPk+m2 ( )

Furthermore, the factor /g in the inverse propagator
V9(=D* + m*) + R;(=9?) is no longer canceled by a
similar factor ,/g0,Ry. As a consequence, the dependence
of z on ¢, is supplemented by

6z = —(y/g—1)8"0,0, = lt 75" 0,0,.

=1l (C17)

This adds in momentum space to Eq. (C6) a contribution

1
07 = _Z qztﬂyﬂwé(q - q/)’ (Clg)
resulting in an additional piece
1 © O,R
ArY) = 2 Ok (C19)

[z
3222 Jo O (P + m2)?

Taking things together, the noncovariant cutoff R, (—0?)

replaces ﬂ(SU) by ﬁ(SU),

-(U) L fog3  OR
=—-— dzz° ————. C20

s 967724 ZZ (P +m?)? (€20)

In general, one may expect contributions both from a four-

point vertex and from three-point vertices, which may by
represented graphically as

Here the wiggled lines are gravitons, solid lines are scalar
propagators, and a cross denotes the insertion of O,R;.
Because of the particular momentum structure the four-
point vertex does not contribute, however, and Eq. (C20)
involves the second graph only. In contrast, for the gauge
invariant flow ﬂgU) there are further graphs where graviton
lines are attached to the cross ~0,R;.

The result (C20) corresponds to a flat-space computation
of the flow of the graviton propagator at zero momentum
for a cutoff function R; that violates diffeomorphism
symmetry. This is the type of computation performed in

Ref. [41]. As noted there, the sign of frgU) is opposite to the

_(c21)

sign of zrgU). For a Litim cutoff one obtains, with
W =m?>/k?,
o _ K
S 322 (14+w)’
k4
7 = (C22)

19222 (14 w)

such that for w = 0 one has fr(SU)
with Ref. [41]. -

The difference between 7

— —7r<SU> /6, in agreement

(V)

and 7z’ arises only from

the different choice of the IR-cutoff function. Since 7r<SU)

corresponds to a diffeomorphism invariant effective aver-

age action, and the difference between ﬂ(SU) and 7?<SU) is not

small, we conclude that the violation of diffeomorphism
symmetry in the scalar-induced flow is substantial if R, is
not formulated in terms of covariant derivatives. If scalar
fluctuations play an important role, the truncation where
vertices are derived from a gauge invariant I, is valid only
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if R;, involves covariant derivatives. In other words, if the
flow equation is not gauge invariant, additional vertices will
play a role. This generalizes to background gauge fixing if
R, involves a background metric g,, different from the
macroscopic metric g,,. The additional vertices arise from
terms involving the difference g,, — g,,.

There is, in principle, an ambiguity by which quantity
the coefficient of the curvature scalar is defined. Without
gauge invariance the graviton propagator and the graviton
vertices are not directly related. If one wants to use a
truncation with a gauge invariant kernel T, one has to
decide from which quantity one extracts the flow of F(p).
As we have argued, the effects of gauge symmetry breaking
by a noncovariant cutoff function can be substantial. They
seem to be reduced if one employs the graviton vertices,
with a certain degree of encouraging universality between
the three- and four-point vertices [59].

3. Comparison

In principle, one is free to choose a cutoff function
provided some general properties for the behavior at large
and small (covariant) momenta are obeyed. Different
choices of R, correspond to different flow trajectories on
which the quantum effective action is reached for k — 0.
We want to choose initial conditions for the flow at large k
such that for k = 0, where R; vanishes, the effective action
is diffeomorphism invariant. For k = 0 it should involve
only a single metric once the dependence on the gauge
modes is removed by a partial solution of the field
equations, taking the leading contribution from the physical
gauge fixing term.

For the gauge invariant flow equation this is achieved
whenever we start at large k with a gauge invariant ;. In
contrast, for cutoff functions not involving the macroscopic
metric one needs instead to take for the initial value at large
k an effective action that features terms violating diffeo-
morphism symmetry. In this context the gauge invariant
flow equation seems to offer more control of the truncation.
The issue whether one can find a choice of macroscopic
fields and a precise definition of ', such that the gauge
invariant flow equation becomes exact is not yet settled.
Despite this shortcoming, it is our opinion that truncations
of the gauge invariant flow are more reliable than a flow
that violates diffeomorphism symmetry.

One may ask which is the correct graviton propagator
that describes the propagation of gravitational waves and
encodes the information about the primordial cosmic tensor
fluctuations according to the formalism of Ref. [81]. As
discussed in a similar investigation for Yang-Mills theories,
this question concerns essentially the coupling to physical
sources [65]. For gravity, the physical sources are given by
a conserved energy momentum tensor.

By construction, the field equations derived from the
gauge invariant effective action I' involve a conserved
energy momentum tensor. One actually defines in this

setting the physical energy momentum tensor by the field
equations derived from I in the presence of matter fields,
suitably averaged in the case of inhomogeneous matter
distributions. The propagator Gp, defined by the inverse of
'@ on the subspace of physical fluctuations by Eq. (9),
describes indeed the propagation of metric perturbations
induced by physical sources. It obeys all the necessary
criteria for the physical graviton propagator. For the
formulation of the gauge invariant effective average action
I'; leading to the gauge invariant flow equations, these
properties extend to arbitrary k.

For formulations where the gauge fixing, the Faddeev-
Popov determinant, and a possible IR cutoff do not involve
the macroscopic metric, but rather an independent fixed
background metric (which may be a flat space metric), the
issue is more complicated. The field equations derived from
the effective action no longer involve a conserved energy
momentum tensor. Indeed, we have argued that for fixed
background fields the effective average action I'; is not
gauge invariant, even if a physical gauge fixing is used. For
k = 0 one may recover the physical properties of diffeo-
morphism symmetry by the use of Slavnov-Taylor iden-
tities and Becchi-Rouet-Stora-Tyutin symmetry. This can
be extended to those flow trajectories for k # 0 that recover
for kK = 0 the physical properties of diffeomorphism sym-
metry. This procedure involves modified Slavnov-Taylor
identities [100] or associated “background field identities”
[14], or a k-dependent version of Becchi-Rouet-Stora-
Tyutin symmetry [101]. These identities control, in prin-
ciple, the diffeomorphism violating terms in the effective
action. They are rather different to handle in practice,
however. The gauge invariant effective average action I';
and the use of gauge invariant flow equations circumvents
all these complications, treating directly with objects of
interest.

We conclude that the inclusion of graphs from the field
dependence of Ry is crucial for a simple justification of
gauge invariant truncations. A similar situation was pre-
viously discussed for the graviton contribution to the flow
of the graviton propagator at zero momentum [83]. Of
course, one may sometimes encounter situations where the
omission of graphs from the field dependence of R, has
only modest consequences for the flow equations.

APPENDIX D: FLOW GENERATOR

In this Appendix we compute the flow equation for the
effective potential U and the coefficient of the curvature
tensor F' in the background field formalism with physical
gauge fixing and a truncation I'y = I} + [yp, with gauge
invariant ', and [y the gauge fixing term. In this
approximation we find the same flow equations as for
the gauge invariant setting. In particular, the more detailed
result in the sector of physical scalar fluctuations can be
taken over directly to the gauge invariant flow, extending
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the approximative result for z; in Sec. IV D. As discussed
in Appendix C, this simple correspondence does not hold
for quantities involving field derivatives, as propagators or
vertices. The contribution of Appendixes A and D is self-
contained and may be considered as an independent
computation of the flow equation.

Within the standard background field approach [14] we
derive the flow generator that is given as

o =8=m+my+n +ny+7. (D1)

Here 7, and 7z, are the contributions from the spin-2
graviton (7,,) and the spin-O scalar fields (¢ and @),
respectively, while n; and 5, are the spin-1 (x,, Cj) and
spin-0 (u, C) measure contributions. We also have to
regularize the Jacobians. The corresponding contribution
to the flow equation is part of the measure contribution
N +no. Contributions of additional matter fields are
denoted by z. We concentrate on gravity coupled to a
single scalar field, for which the main ingredients for the
flow equation are given in Appendix A.

1. Infrared cutoff function

The infrared cutoff function R; has to obey several
criteria: (i) It should regulate the propagator in the infrared
such that the momentum integration in the flow
equation (A1) remains finite for small ¢°. (ii) The derivative
O,R; should decay fast for high momenta ¢> > k> such
that for fixed fields the momentum integral is also UV
finite. (iii) The typical scale should be set by k, with R;
vanishing for k — 0. With these requirements only a finite
momentum interval of ¢> near k> contributes effectively to
the flow equation. (iv) In the background field formalism
the effective average action should be invariant under
combined gauge transformations of the macroscopic and
background metrics. Then R, should be formulated in
terms of covariant derivatives involving the background
metric. (For the gauge invariant flow equation one uses
instead covariant derivatives involving the macroscopic
metric.)

These criteria limit the choice of R, but many different
forms remain possible. We require here two additional
properties: (v) The physical part of the cutoff function
should be a sufficiently smooth function of the covariant
momenta. In particular, it should not contain explicit
projectors on particular modes that would induce additional
strong nonlocalities. A natural choice for the metric is a
cutoff Rk(fo) with f)f given by Eq. (141) and related
directly to the second variation of the curvature scalar.
Similarly, for the scalars we will employ R, (Dy) with Dg
the covariant scalar Laplacian. In the ghost sector R;, should
be a function of the differential operator in Eq. (All).
While the use of explicit projectors is avoided by these
definitions of Ry, an effective projection on the different

modes will take place for maximally symmetric geometries.
In this case the relevant operators as D, become block

diagonal, and the same happens for Rk(f)f).

The next criterion (vi) requires a separate cutoff for the
gauge modes that diverges ~1/a for @ — 0. This is needed
for an effective cutoff in this sector, since otherwise the gauge
fixing term ~1/a would not be regularized. The cutoff for the
gauge modes should act only on the gauge fluctuations, not
on the physical fluctuations. This avoids mixing between the
physical and gauge modes also for k& > 0. Finally, the
Jacobians (A20) need a regularization by R, as well.
Otherwise, they would induce strong nonlocalities.
Different choices and normalizations of modes yield differ-
ent Hessians and different Jacobians. The regularization for
the Jacobians should be of a type that makes the regulari-
zation independent of the precise definition of fields.

Finally, we include in R, prefactors as F such that R,
has a similar structure as the second variation of kinetic
terms such as FRy or Z,0"¢d,¢. With these prescriptions
the addition of the IR-cutoff R, replaces kinetic operators
as F@f by FPk(fo). Here P,(D) is of the form
P, (D) = D+ Ry (D). For the flow equations we have to
add the IR cutoff to the Hessian F,Ez). This replaces in
Eq. (A22) Dy by Pi(Dy), or in the ¢ — ¢ element of the
matrix (A27) Z,Ag — Z,Pi(As).

2. Physical metric fluctuations

We first evaluate the contributions from the physical
fluctuations. There are the TT mode (7,,) and the physical
spin-0 modes (¢ and o), whose forms of the flow generators
are given by

1 o/R
ﬂz = 5Tf(2) ~ (z)t k )
I+ Rylu
1
my = 5T ﬂ , (D2)
2 0
Fk +Rk ph

respectively. The two-point functions F,(cz) for the TT
mode and the physical spin-0 modes are shown in (A22)
and (A29), respectively.

a. Spin-2 TT mode

Using the heat kernel method summarized in
Appendix B we can evaluate the contributions (D2). Our
criteria for the IR cutoff function correspond for the TT
mode to a type-II cutoff function in the naming of Ref. [7],
with

0,(FR(2))

Wa(z) = F(Pu(z) — vk2)

(D3)

This is precisely the formula of Sec. IV B and results in
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o [ Va3 ra-o(1-%)
——sz 3= )< —%>R},

with 7, = =0, Inw. The threshold functions for the Litim
cutoff are evaluated as

(D4)

L am-= HLW (Ds)

Using the formulas in Appendix E, one can find for
comparison the case where a type-I cutoff is employed.

b. Spin-0 modes

Let us calculate contributions from the spin-O physical
scalar fields. For our cutoff function only the diagonal part

the spin-0 modes involves the eigenvalues of the regulated
inverse propagator matrix (A29), with Ag replaced by
Pi(Ag). Tt reads

Wo(z) = 8, m{zp [_F/ (Z +§> . U'r

F Pk—%P UP-%
18| p, —R"“ 2Fp _E

X <Z¢Pk‘i‘n’lé_é )}7

where the first term in the logarithm corresponds to the
mixing contribution between ¢ and @.

To extract the explicit form of the beta functions, we
define the dimensionless quantities

(D9)

of the Hessian is replaced with Py(z) = z + R(z), with p= Z,9 —Z,p. u(p) = Ulp)
z = Ag. The projection of the cutoff on the ¢ mode yields 2k* K+
. Flp) o 2U(p) _ u(p)
oo oo w\p) = s v\p -
Ry (FED-TTE 0 06 ()= ?) = e = wp)
0 Z,Ri(2) o Z’,,, F' +2pF" _
fi,(p) == ——F——=2w +4pn’,
Z, Z,
where 5 A
p U
] ] 2 (p) = 2 Yo, (D10)
Flz-3%® Uz-% Y 20 2,
FZU(Z):—E kT apL k| (D7)
73 73 Evaluating Eq. (D8) with Eq. (D9) one finds
This apparently somewhat complicated form is only a result y
of the projection, the original cutoff Ri(D;) being much o =135 [TI.O.O,O,O,I + To(,ﬂl(.o,o.o.l / NG
simpler. 4
We again extract the flow generator z, from the heat k?
kernel method. The physical spin-0 mode contributions are + 3072 {TI-O,O,O,O,O + TOJ.O,O-O,O
given as o)
| | {TI,O.O,I.I,O + Yo 10.1.10
; (2)
mo = 5 Tr(o)0, In(I7 + Ry)[pn = 5 Tro)Wo(2)
2 | 2 {TZ,O.l,O.],l +T0.0,1,1,1.1 (v)}
= 5 | VA 0l + 0 WalR. (09 _
' - an{TO,O,O,l.l,l + T0.2,0.0,1.1 / VIR.  (D11)
where a is the ¢ derivative acting on only the scale
dependence in the regulator. The heat kernel function for =~ Here the threshold functions are defined as
|
p(—2w'x+u')*\ !
- o P+ mR) (px) = /4 (1 = v p(x)) (P2
i = ) oy )+ A AT
. 5(=2w x4+u')? 1
. - (p(x) + m3)(p(x) = 0/4V (1 = v/ p() (P25r)
= [ a7, ) T e
R o [(p(x) = v/4)(p(x) + mG) + 3p(=2w'x + u')* [ 2w]"*
© (v/p(x))(p(x) + m3)
D(v) = dxfe(x z ) D12
0= o) Gy o) 1 )+ ST 1
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They involve the dimensionless combinations

91(Z,R;(2)) IR
7o) = 2 = )+ 20
0,(FR O,R
o) = 2ERD _ 3 () 4 DR
O,R
folx) =@+, Inv—n,)r(x )—i—ﬁ k];(z),
R Pz
=B B2 o)
and the anomalous dimensions
0 0.Z
== m=-— . (D)

The result is somewhat lengthy, partly because of the
mixing between the scalar modes. It simplifies consider-
ably if this mixing can be neglected. Assume that in the
denominator of the threshold functions, one has

(p(x) —v/4)(p(x) + m}) > 3p(2w'x + u')*/2w. (DI15)

In this case the mixing term is suppressed and can be
neglected. In particular, the mixing is absent if p = 0.

Neglecting the mixing, 7z, can be evaluated as
Ty = 71'5{5> + ngf), where nf) is the contribution from the
@ fluctuation given in Eq. (30) and

”((),;) 3042 1,0.0,0.0,1 / V3

(1 oo 1
+32ﬂ2 [ETE.O,Z).O,O.O_ﬂ(rz,o.l,o,l,l ]/\/_R
(D16)

The threshold functions simplify in the absence of mixing,
and we obtain for the Litim cutoff

where

PHYS. REV. D 100, 066017 (2019)
0, Rk(Z)

B I (4+6,lnv—ng)r(x)+ﬁ’kz
() = / A SO ETZ)

_ 3 1+8tlnv—ng .
1—v/4 6

The result (D17) and (D18) has already a simple struc-
ture from which the contributions to ¢}, and c,; are easily
extracted. We observe the appearance of various factors
(1 —v/4), where the part ~v arises from the mass term in

the o propagator. For analytic discussions it is often

sufficient to set » = 0, since the cﬂf) and cj(;) are subdomi-

nant. We have discussed in the main text that this is a valid
approximation for our purposes. Setting v = 0, Eq. (D17)
results in Eq. (174).

(D18)

3. Measure contribution

We next evaluate the measure contribution 77,. As argued
in Ref. [63], this contribution takes a simple form

1 5 Pk(bl) 1 9,P(Dy)
=—=-T = — —_—, D19
nE 0Dy 2Oy P
with
_ _ R - ~ R
D] :AV—Z, DOZAS—Z (DZO)

It is shown by explicit calculations in [12] that actually the
measure contribution is given indeed by Eq. (D19), with
D, = D, = ¢ in the case of flat background Gy = Oy We
generalize here the result to arbitrary background metrics.
The measure contribution arises from the gauge fluctua-
tions, the ghost fluctuations, and the regularization of the
Jacobian. Only the combination of all contributions results
in the simple expression (D19). For the regularized
Jacobians we again replace the relevant differential operator
D by Pi(D). This is necessary since otherwise the
Jacobians would induce strong nonlocalities. The flow
contributions from the regularized Jacobians read

1 9,P(Dy)
Jrv =-T _
= =2 TP (D)
1 d.Pr(Dy) 1 0.P (A
Tomo = ~5Trgy b 20 gy, APu8s)
2 Py(Do) 2 P(Ag)
0,Pi(A
Jen = Tr) OPilAs) (D21)
Pi(Ag)

By a separate computation of all other individual
contributions we will show explicitly that the combined
measure contribution is given by the simple form (D19).
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The spin-1 measure contribution is given by

(n _ (1)

—eV, (D22)

with the spin-1 vector gauge mode (A26) and the Jacobians
(D21) for the spin-1 gauge field

1 1 O Ry
51(<> lim 02T() (2)t T Jgravi
a= k +Rk KK
_T 0,P(Dy) ]T 0,P(Dy)
=T By 20 pyDy)
(D) «(Dy)
1 0,P(D
= _Tr(l) L_l) , (D23)
2 P (Dy)
and the spin-1 ghost mode (A31)
1 Ry - 0,P(Dy)
€k —TI'(])T ) —Tr(l) P (2—)) (D24)
7+ Ryletet AC|

This sums up to the measure contribution from the spin-1
modes

ath(Z_)l)

P(Dy) (b23)

m = —5Try

1
2

Next we discuss the spin-0 measure contribution. The
spin-0 gauge mode coming from the metric fluctuation
(A29) and the corresponding Jacobian (D21) is

0, R
8 = lim T 4 T
a—>02 ( )F](f) 4 Ry lgange grav0
o ath(Z_)O) 1 ath(AS)
=T 5 mdy T2 B A
Py(Dy) 2 Pi(Ag)
1 (T 0,P(Dy) 3sz(£$>>
5 \T0 5 FHy T 0 Ry
2 P(Dy) P(Ag)
1 P.(D,
= 7Tr(0) M N (D26)
2 P(Dy)

while the spin-0 ghost mode (A31) is

O Ry
F,(f) + Rk cc
= —(Trq o,pP k(_DO)

P(Dy)
arPk(_AS>

Pi(Ag)
31Pk(_Do)

Pi(Dy)

—Tr() + Jen

+Tr(0 ath(AS))

) Pi(Ay)

+ TI'(O)

= —Tr, (D27)

In consequence, the measure contribution of the spin-0
modes becomes

_ s _ o0 _ _ 1o 0:Pi(Dy)
N =206, —e€ = 2Tr(0) PuDy) (D28)

This concludes the proof that the total measure contri-
bution 7, = 1, + 1y i1s given by Eq. (D19). For both the
spin-1 and 0 measure contributions, the simple relation
O = 2¢; holds. We have employed here the type-II cutoff
scheme; namely the regulator R, is employed to replace D,
and D, with P;. Even if one uses the type-I cutoff function
such that Ay and Ag are replaced by P,, these rela-
tions hold.

The evaluation of Eq. (D19) is done in Sec. IV C and
yields

T / NG <4k4f4 0) + %Wg(O)R) (D29)

The use of Eq. (E6) in Appendix E allows us to obtain the
case of the type-I cutoff functions.

4. Contributions from other free particles

We summarize contributions from massless free particles
in the background field formalism. For N scalars, N Weyl
fermions, and Ny gauge bosons, we have contributions,

T= ﬂ](cs) + lr,(CF) + C,({v)
_ Nsp.  9iPil(As) —&Tr , 3sz(—752)
2 OTP(ag) 2 OTR(-DY)
Ny < 0,P(Dr) 3sz(AS)>
2V (o, SRy OTS)
2 VR Y Pi(ay)

k4
2
+ 55,2 (Vs + Np = 4Ny) )£2(0) / ViR. (D30)
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The choice of the cutoff follows the criteria developed at the
beginning of this Appendix. In the language of Ref. [7] this
corresponds to a type-I cutoff for bosons, while for fermions
and gauge bosons the type-II cutoff is used. As advocated,

this yields (for E = 0) the same flow equations (121).

APPENDIX E: DIFFERENT IR-CUTOFF SCHEME

For a comparison of different implementations of IR
cutoffs we consider

TP = A+ R+ Wk? = D + Wi, (E1)

with A the negative covariant Laplacian in an appropriate
sector. For a cutoff function R;(D) one obtains

1 -
C] = Etrat ln(D + Rk(D) + \’NVkQ)
1 - -
= oz [ VDA + (b2 = ch)FRIR).
(E2)
This cutoff is of type II in the classification of Ref. [7].

If we choose instead a type-I cutoff function R;(A), the
result is

1 =
Cz = Etrat ln(D + Rk<A> + sz)

Expanding in a power of R yields

1
o= g | Valbt I
+Iba£3(0) - chR AR}, (B4)
with

FR) =~ o 40, (BS)

Comparison with ¢ replaces in Eq. (E2) for the coefficient
of R

(by = cbo)£5(W) = byt§(W) — bt (W) (E6)

such that for the term ~c the threshold function £3(W) is
replaced by a different threshold function #}(#). Unless
there are particular cancellations of the type cby = b, or
cbot} ~ by£3, the two types of cutoff give qualitatively
similar results. Quantitative differences fall into the general
class of cutoff differences. We recall, however, that for
fermions a chirally invariant cutoff in terms of the Dirac
operator does not allow for an arbitrary choice of Ry.

APPENDIX F: CONSTANT SCALING SOLUTION
FOR THE NEW FIXED POINT

We display in this Appendix the contour plots for the
second scaling solution v_, w_, and u_ in Figs. 9, 10,
and 11, respectively. In the red regions there is no stable
fixed point. The conditions, w_ > 0 and v_ < 1, are not
satisfied in the yellow regions. As discussed in Sec. VD,
the second scaling solution can be allowed only for the
green region in Fig. 4, which is the intersection of the green
regions in Figs. 9 and 10.

100

50

-50

-100
-100 =50 0 50 100

Nu

FIG. 9. Contour plot of the fixed point value of »_ in the
(./V M N v) plane. For the yellow region on the right of the figure
there is no stable solution due to v_ > 1. For the red region no
constant scaling solution is found.
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100

50

-50

-100 . L
-100 -50 0 50 100

Nu

FIG. 10. Contour plot of the fixed point value of w_ in the
(N, Ny) plane. For the yellow region the new fixed point has
unstable gravity due to w_ < 0. The combination of the yellow
and red regions in Figs. 9 and 10 leads to the excluded red and
yellow regions in Fig. 4.

u_
100 L - L
075 o,
SO(10) Ns=100 %,
501, Ui |

SO(10) Ng=50

-50

=50 0 50 100

-100 ===
-100

Nu

FIG. 11. Contour plot of the fixed point value of u_ in the

(./VM,J(/U) plane.
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