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We discuss the emergence of a Kalb-Ramond field and string charge in the lattice and consider the local
bosonic model with rotor variables placed on the faces of a cubic lattice. We give the coupling model
consisting of the Maxwell fields and the Kalb-Ramond field. This construction naturally incorporates the
emerging coupling between both gauge and string fields. In the process, an object that resembles a D-brane
on the lattice is introduced.
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I. INTRODUCTION

Recently a great deal of work has been done on the
subject of the topological phases of matter and topological
order (see for instance [1,2]). Moreover, it is now believed
that the diverse types of matter and their interactions would
originate from the existence of a system formed by
quantum bits of information (see [1,3,4] and references
therein). Thus, the matter can be regarded as an emergent
object coming from diverse ways of organizing a few
degrees of freedom in local lattice bosonic models. In this
context, there is a proposal in which electrons and photons
and their interaction can emerge from qubits in a string-net
liquid. Thus, electrons and photons can be viewed as
collective models of a string-net model [3].
Beyond the model that gives rise to electrodynamics, in

turn, diverse string-net liquids can lead to different types of
gauge bosons and fermions with more general properties.
Thus, it is possible to find gauge bosons and fermions that
behave as gluons and quarks from an appropriate string-net
local qubit model. This means that QCD can be obtained as
an emergent theory [5,6]. Later, interesting generalizations
to theories of gauge fields and massless fermions in any
dimension and for any gauge group were also constructed
[6]. In particular, the standard model of particles can be
stated in this context. However, the prediction of this
description implies the existence of discrete groups,
which can be interpreted as cosmic strings in a very early
Universe.

On the other hand, superstring theory is a theory from
which it is possible as well to incorporate gauge bosons and
fermions in a very different way (see for instance [7–9]).
This procedure requires the introduction of the idea of
compactification. Roughly speaking, this implies making
the extra dimensions compact and small in order to get the
theory in four dimensions. These considerations have been
problematic, and the construction of sensible field theories
requires one to avoid the swampland (for a review see for
instance [10,11]). Thus, it seems natural to search for other
alternatives.
In the 1990s with the advent of string dualities and

M-theory, there were some proposals involving the possible
origin of the fundamental strings and their properties, as
objects derived from more fundamental degrees of free-
dom. These degrees of freedom are the nonperturbative
objects known as D0-branes. A gas ofN of these D0-branes
is, under certain considerations, described by matrix N × N
quantum mechanics known as matrix theory [12]. In
AdS=CFT correspondence [13], the gravitational fields
are also emergent. Gravity also can be considered an
emergent interaction in matrix models of gravity [14].
For a review of different aspects of emergent gravity, see
[15]. Thus, in superstring theories not only do fermions and
gauge fields emerge, in closed strings, gravity arises at low
energies.
The claim of deriving theories for a few degrees of

freedom localized in some region of spacetime is more
general in the sense that not only the diverse types of matter
can be derived from the local models of qubits. The idea is
that the gravitational degrees of freedom, and moreover
spacetime itself, might be obtained in this way.
With the arrival of many new techniques from condensed

matter physics, many efforts have been made to obtain
gravitons and soft gravitons as emergent particles from
lattice models [16–18], starting from a symmetric rank-2
tensor immersed on the vertices (diagonal terms) and on the
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faces of the lattices (off-diagonal terms). Higher-rank
symmetric tensor generalizations of these works were also
proposed in Refs. [19–21].
Thus, in the present article we propose a local bosonic

model that consists of regarding the fundamental string and
some of its properties, such as the Kalb-Ramond charge, as
emergent objects from a local lattice model. We work with
an antisymmetric rank-2 tensor (see [9,22] for a review of
Kalb-Ramond fields) and, in particular, we obtain emergent
Kalb-Ramond fields from a lattice model. With this
purpose, we first introduce the model for electromagnetism,
and then we combine both models to obtain the coupling of
the Kalb-Ramond field potential to the string charge and to
the electric field. Earlier lattice models incorporating Kalb-
Ramond fields were proposed in [23,24]. In [23] a Higgs
mechanism for the Kalb-Ramond fields is proposed by
coupling them to a string that eventually condensates.
Moreover, in Ref. [24] a non-Abelian tensor gauge theory is
implemented in the cubic lattice through the consideration
of Chan-Paton colors in each boundary link.
This article is organized as follows: In Sec. II we give

some preliminary material concerning some facts about the
Kalb-Ramond field, the Maxwell field, and their coupling.
We also revisit the photon model and the partition function.
Section III is the main part of our paper, and it is devoted to
proposing our model of the emerging Kalb-Ramond field
and the string charge. Moreover, in this section we also give
the lattice model of the emerging coupling of the mentioned
fields, which requires the introduction of the idea of a
D-brane in the lattice. Finally, in Sec. IV we give our final
remarks.

II. PRELIMINARIES

In the present section we give some preliminaries for
Sec. III. Here we introduce the notation and conventions we
follow in this article. We start by reviewing the field theory
of the Kalb-Ramond field including its sources [21–23].

A. String charge density

We first review the string charge by introducing the
antisymmetric Kalb-Ramond field potential Aμν ¼ −Aνμ

on a (3þ 1)-dimensional Minkowski spacetime and its
associated field strength F μνρ given by

F μνρ ¼ ∂μAνρ þ ∂νAρμ þ ∂ρAμν: ð1Þ

These fields have a great similarity with the Maxwell gauge
field potential Aμ and the electromagnetic field strength Fμν

(note the ranks). In the electromagnetic theory, the electric
current jk (one index k ¼ 1, 2, 3) and the electric charge
density qð¼j0Þ appear in

∂νFμν ¼ jμ: ð2Þ

For the Kalb-Ramond field strength we have

1

κ2
∂ρF μνρ ¼ jμν; ð3Þ

where κ is a constant, which is needed to keep the units, and
jμν (two indices) is an antisymmetric tensor (jμν ¼ −jνμ).
The components j0k ¼ j⃗0 are called the Kalb-Ramond
charge density or, for simplicity, the string charge density.
They satisfy ∇ · j⃗0 ¼ 0, and in the case of static strings, we
have jik ¼ 0, which is the case we adopt in our lattice
model; only j0k will be nonvanishing.
For static strings, we have to consider that ∂ρF ikρ ¼ 0,

and also that

∂lF 0kl ¼ κ2j0k: ð4Þ

There is a canonical conjugate variable Πkl to the string
field potential Akl which can be obtained as Πkl ¼ F 0kl

(see Sec. II B and [22]). We can also introduce a vector B⃗F
field related to the Kalb-Ramond field strength by

F 0kl ¼ εklmBFm: ð5Þ

It is called the field strength dual to F , and joining these
last equations we obtain

εklm∂lBFm ¼ κ2j0k; ð6Þ

which is like the Ampere’s law but for the string charge
densities.

B. The Hamiltonian

Now we turn to the Hamiltonian formulation of the free
static Kalb-Ramond field strength (see [9,22,23]). First we
check the Lagrangian density

L ¼ −
1

6κ2
F μνρF μνρ; ð7Þ

which is invariant under the gauge transformations Aij →
Aij þ ∂ifj − ∂jfi since we are working in the static case.
The canonical momentum conjugate to Aij is found to be
(check [22] for details)

Πij ¼ Ȧij þ ∂iAj0 þ ∂jA0i: ð8Þ

This is a two-rank antisymmetric tensor that satisfies
_Π0i ¼ ∂kΠki, and the weak constraints

Π0i ≈ 0; ∂iΠik ≈ 0: ð9Þ
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Thus to make the Hamiltonian density

H ¼ 1

4
ΠijΠij þ

1

2
F 123F 123 þAj0∂iΠij − Ȧ0jΠ0j: ð10Þ

The first term is analogous to the term E2 for electro-
dynamics and the second term for B2. They can be put
together in the Hamiltonian as one term like F 2

ijk. The
third and fourth terms have been added to the
Hamiltonian, so we can modify them to fit the lattice
model, keeping them as constraints. As can be observed
from the last section, the term ∂iΠij is the string charge
−κ2j0j, so if there is a term with Aj0 as a coefficient, it
has to be interpreted as the string charge. Depending on
the gauge chosen, this term can be taken as 0, but we leave
this for later.

C. Branes

We present some information about D-branes, which will
help us have a better understanding of how the couplings
occur. In the continuous case (see [25]), the open strings are
free on the space (in our case a 3-dimensional space) but
couple to D-branes on their boundaries or endpoints. These
objects are D-dimensional bodies that also live free on the
space; as a matter of fact, a 0-brane is a point, and a 1-brane
is a string. In this way, we can observe that a 2-brane is a
membrane, which is a 2-dimensional object, and so on for
the following dimensions.
Objects like these can be represented on a lattice by

restricting the space on which one is allowed to work inside
the brane. Different examples are shown in Fig. 1. Also,
it is important to have in mind how a string couples to a
D-brane, as can be seen in Fig. 2, where one of the ends of a

string is attached to a 2-brane. Closed strings do not attach
to D-branes, but open strings attach to D-branes from both
sides—to the same D-brane or to a different one. For the
coupling model, we consider this and restrict ourselves to
the case in which the string carries Kalb-Ramond charge;
only electric fields will be treated on the D-branes.

D. Couplings

Now we want to present the different couplings we
encounter in the lattice model, beginning with the coupling
between a charge and its corresponding field, with the final
objective of coupling the electric field with the string field
(or the Kalb-Ramond field).
First, we note the coupling between the gauge field

potential Aμ and the electric charge density vector jμ, which
is given by

Aμjμ ð11Þ

in the Hamiltonian density. The conservation of the electric
charge density ∂μjμ ¼ 0 is implied by the gauge invariance
under the transformation

Aμ ¼ Aμ þ ∂μf; ð12Þ

as can be seen from the variation of the coupling action
(see [9]). Here f is an arbitrary scalar field.
For the Kalb-Ramond charge and field we have the

general form of the coupling as

Aμνjμν; ð13Þ

and, as in the electromagnetic case, invariance under gauge
transformation

Aμν → Aμν þ ∂μλν − ∂νλμ; ð14Þ

where the λμ’s are arbitrary vector fields, implies the
conservation of string charge ∂μjμν ¼ 0.
When the string is open, there is another type of

coupling on the boundaries given between the Kalb-
Ramond field and the electric field. For this case, first
we have to split the coordinates as follows: coordinates
normal or perpendicular to the electric field (μ⊥), and

FIG. 1. Continuous and lattice D-branes. Diagram (a) shows a
0-brane on the lattice, (b) shows a 1-brane on the lattice, and
(c) shows a 2-brane.

FIG. 2. Continuous and lattice strings attached to 2-branes.
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coordinates along the electric field or parallel to it (μk), as
μ ¼ ðμ⊥; μkÞ. Following this, we also have to couple the
gauge transformations as

Aμν → Aμν þ ∂μλν − ∂νλμ; ð15Þ

Aμk → Aμk − λμk ; ð16Þ

where the term added for the Maxwell gauge transforma-
tion is equivalent to Eq. (12).
In order to keep the string action and the Maxwell action

invariant, we have to include the invariant quantity

−
1

4
ðF þAÞμkνðF þAÞμkν ð17Þ

in the Hamiltonian, which, by expansion, gives rise to the
term

−F0kA0k: ð18Þ
This is the coupling between the electric field F0k ¼ Ek,
which takes the place of the string charge away from the
string, and the string field potential A0k (see [9,23]).
It has to be clear that the string charge couples to the

string field potential along the string (which is the place
where the string charge exists). On the other hand, the
electric field couples to the string field potential only
through the D-brane to which the string is attached, as
can be seen in Fig. 3. It can also be appreciated how the
string charge goes along the string, and how the electric
field goes on the 2-brane.

E. The photon model

Now we present a dimer model that gives rise to
photons as emergent particles (there have been many other
models—see for example [16,17,19,26,27]—and many
generalizations to higher order symmetric tensors—see
[16,17,20,21,25]).
Let us first introduce the quantum dimer model (QDM,

see [28]) with the simplest kinetic and potential energy
terms written as

HQD ¼
X
□

f−T1ðj¼ihkj þ H:c:Þ þ T2ðjkihkj þ j¼ih¼jÞg;

ð19Þ

where the summation runs over all the plaquettes (□) of the
lattice, in which the plaquettes are the same as the faces.
In this model, the kinetic term T1 flips pairs of nearest-

neighbor parallel dimers, which are links on the lattice (see
Fig. 4), and the potential term T2 creates a repulsion
between them. This model has been widely used with
different purposes (see [17,20,26,29–31], but we mostly
follow the meaning for the electrical part used in [17] with a
slight variation in the notation as in [32].
We define on each link ði; αÞ [i ¼ ðix; iy; izÞ denotes the

site inwhich the dimer begins, andα ¼ x, y, z the direction to
which it grows], a number operator analogous to the electric
field Êiα and its conjugate angular phase operator analogous
to the potential field Âiα (as defined in [17,26,30,32]), so
these variables satisfy ½Âiα; Êjβ� ¼ iδijδαβ. It is important to
notice that the notation for the operators defined on the links
implies that Êiα ¼ Êiþα̂;−α.
There is a constraint on the system that we have to impose

on the Hilbert space because it represents the discrete form
of Gauss’s law for electric fields (see [16–18]),

∇αÊiα ¼ 0; ð20Þ

where the symbol ∇α means lattice differentiation or
difference, and it is defined as ∇αÊiβ ¼ Êiþα̂;β − Êiβ.
Because of this constraint, the low-energy Hamiltonian
has to be invariant under the gauge transformation

Âiα → Âiα þ∇αfi; ð21Þ

where fi is an arbitrary scalar field defined on the sites.
This last equation is the discrete version of Eq. (12).
With all this information, the Hamiltonian for our system

is given by

He ¼
K1

2

X
iα

Ê2
iα − K2

X
iγ

cosðεγαβ∇αÂiβÞ: ð22Þ

The notation employed is that of [32]. This Hamiltonian is
the free 3-dimensional compact QED model (see [16]) with

FIG. 3. Continuous and lattice string charge attached to
2-branes. The string charge is shown in blue, while the electric
field is shown in green. FIG. 4. The kinetic term flips the dimers as in Eq. (19).
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a deconfined photon phase (see [17,33]). The term with
coefficient K1 keeps a uniform density of dimers, and the
term with coefficient K2 flips dimers around a plaquette.
The term εγαβ∇αÂiβ is shown in Fig. 5 (see [32]).
In order to include currents and charges in our model, we

have to include a new phase angle operator ϕ̂i on the sites,
and its conjugate number operator n̂i. Also, we mention an
important point about Gauss’s constraint: If it is violated,
some defects will be generated on the sites i where
∇αÊiα ≠ 0, and these defects carry charges of the gauge
field potential Âiα (see Fig. 6 and Ref. [17]). The way in
which the defects couple to the gauge field potential is
given as a term in the Hamiltonian as follows:

HA:q ¼ −c1
X
α

cosð∂αϕ
ðqÞ − AαÞ: ð23Þ

Considering the constraint (20) and the gauge trans-
formation (21), we obtain a new Hamiltonian as

Hẽ ¼
K1

2

X
iα

Ê2
iα − K2

X
iγ

cosðεγαβ∇αÂiβÞ − K3

X
i

n̂iÂiτ

− K4

X
iα

cosð∇αϕ̂i − ÂiαÞ: ð24Þ

The term with coefficient K3 is the coupling between the
electric charge and the electric field potential. It has to be
clear that this term is imposed by Gauss’s law in Eq. (20), in
which the term Âiτ can be seen as a Lagrange multiplier
defined on the vertices. The term with coefficient K4 is the
gauge transformation of Eq. (23) defined on each link. It is
important to notice that for the gauge transformation inside
the cosine of the K4 term to be valid in Eq. (25), there
cannot be a current or K3 → ∞ as mentioned above, and
we work with the low-energy physics.
We now follow Ref. [32], so we write the path integral

representation of the partition function by inserting the
eigenstates of Êiα at small imaginary time intervals Δτ. The
cosine term of K2 can be replaced by the Villain form
approximation as

expfK2Δτ cosðεγαβ∇αÂiβÞg

→
X
fBaγg

exp

�
−

B2
aγ

2K2Δτ
þ iBaγεγαβ∇αÂiβ

�
: ð25Þ

The term corresponding to K4 is given by

expfK4Δτ cosð∇αϕ̂i − ÂiαÞg

→
X
fjiμg

exp

�
−

j2iμ
2K4Δτ

þ ijiαð∇αϕ̂i − ÂiαÞ
�
; ð26Þ

where we have to keep in mind that Gauss’s law, along with
the gauge transformation, keeps this term as 0.
Here, Baγ is an integer dual magnetic field defined on the

links ða; γÞ of the dual lattice (see Fig. 5 and Ref. [34]). The
relationship between the sites of the direct lattice (with
indices i; j;…,) and the sites of the dual lattice (with
indices a; b;…,) will not be taken into account explicitly;
however, it is well understood from the example of the dual
magnetic field that a link in the dual lattice represents a face
in the direct lattice, and sites on the dual lattice are located
at the center of the cubes on the direct lattice and vice versa.
Furthermore, we define an integer dual electromagnetic

tensor F̃aμν on the dual lattice (as a 3-dimensional analog to
the one in [32]), with its row components as F̃axν ¼
ðBax; 0; Eiz;−EiyÞ, F̃ayν ¼ ðBay;−Eiz; 0; EixÞ, and F̃azν ¼
ðBaz; Eiy;−Eix; 0Þ, where Ba;−z is the field generated as in
Fig. 5. We also define the electric current on the direct
lattice as jiμ ¼ ð−ni; kix; kiy; kizÞ, where the kiα can be

FIG. 6. A defect at site i when Gauss’s constraint is violated in
the x̂ direction. Again, blue is positive, red negative, and green is
the charge. One can see that the 2 in the current on Eq. (28) comes
from the difference of the links.

FIG. 5. The argument of the cosine function in Eq. (22) is visible,
and we show how it gives rise to a dual magnetic field −Baz. The
positive field potentials are shown in blue, while the negative ones
are shown in red. The magnetic field that is generated is in the
opposite direction and negative, as shown in green.
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written in terms of the variation of the defects ϕ̂ between
the vertex i and the vertex iþ α. Note that for both the dual
electromagnetic tensor and the current, we use λ; μ; ν; ρ ¼
τ; x; y; z and α; β; γ; δ ¼ x; y; z.
We are now ready to obtain the following partition

function after working with the Villain form for the cosine
terms:

Zẽ ¼
X

fF̃aμν;jiμg
exp

�
−
e21
2
F̃2
aμν þ

g1
2
jiμAiμ

�
; ð27Þ

restricted to

ελμνρ∇μF̃aνρ þ 2jiλ ¼ 0 ð28Þ

and

∇λF̃aλμ ¼ 0; ð29Þ

where the time interval is chosen to give e21 ¼ K1Δτ ¼ 1
K2Δτ

,

and g1 ¼ K3Δτ ¼ 1
K4Δτ

. It is also important to observe that
Eqs. (28) and (29) give rise to∇λjiλ ¼ 0, where in every case
we are using all the subindices without taking assumptions
on the time differentiation, which can be taken as 0 for
simplicity.
Notice that the phases obtained in this case can be

compared to those obtained in Refs. [17,26,32], but the
main difference is that we are not working with holes
because our Hamiltonian does not include a term that takes
it into account, which means 0 hole average, as reflected on
the partition function and Gauss’s constraint.
In order to give some solutions, we use the restrictions to

obtain

jiλ ¼ ελμνρ∇μaiνρ ð30Þ

and

F̃aνρ ¼ ∇νNaρ − 2aaνρ: ð31Þ

These equations are like those of Ref. [32] but on 3
dimensions (þ1 if the time is taken into account as
evolution). We observe that the current jiλ is generated
by a field on the faces of the direct lattice aiνρ, which is an
integer field on the links of the dual lattice.
The important phase to consider for the photon model is

when the term g1 → ∞, we can see that either the gauge a
or the field potential A has to be 0, which means that there is
no coupling. On the other side, the other term always gives
rise to a stable phase with a maximum on the energy when
Eq. (31) is 0, which implies that the creation of current is
directly given by the integer N variable. In Ref. [32] it is
called the Higgs scalar, and it is defined on the vertices;
however, in our case it is defined on the links, so it can be

taken as a scalar number quantity that gives rise to the
electric and magnetic fields as this Higgs quantity fluc-
tuates. The term g1 serves as an order parameter between
these two phases as g1 > 0 on the phase with no couplings,
to the phases on which there are couplings and currents
with g1 < 0.

III. KALB-RAMOND MODEL

Now we turn to the model for the string charges, which
has the same lattice as the model above for electromag-
netism, but now we define different variables. First, we
introduce the integer number operators or boson numbers
as n̂iαβ on each face iþ α̂

2
þ β̂

2
(with the constraint α ≠ β).

Conjugate to these variables, we have the phase angle
operators θ̂iαβ, defined on the same faces, related to the

boson (n̂iαβ) creation operators by b̂iαβ ∝ e−iθ̂iαβ and by the
commutation relations on the face i by

½n̂iαβ; θ̂iγδ� ¼ iδαγδβδ: ð32Þ

We also define an antisymmetric tensor Π̂iαβ ¼
εαβðn̂iαβ − n̄Þ and its conjugate antisymmetric tensor

Âiαβ ¼ εαβθ̂iαβ, where both are defined purely on the faces
because of the antisymmetry (Π̂αβ ¼ −Π̂βα). The average
density of bosons per site and face is written as n̄.
The Hamiltonian of our system is written as follows:

Hk ¼ Ht þHu þH0; ð33Þ

with

Ht ¼ −t
X
iαβγδ

b̂†iαβb̂iγδ; ð34Þ

Hu ¼ u
X
αβ

ðn̂iαβ − n̄Þ2; ð35Þ

H0jði;xÞ ¼ Uðn̂iþx̂
2
þẑ

2
;zx þ n̂iþx̂

2
−ẑ
2
;zx − n̂iþx̂

2
þŷ

2
;xy − n̂iþx̂

2
−ŷ
2
;xyÞ2:
ð36Þ

The first term Ht is a hopping term between the bosons
that are on the nearest neighbor faces, the second termHu is
a repulsive interaction between them, and the last term
H0jði;xÞ is the component along the link in the x direction
beginning at the site i relating the bosons that are on the
faces touching that link. For the term H0, the terms along
the y and the z direction are defined similarly (see Fig. 7 for
reference).
This Hamiltonian is the lattice version of Eq. (10), with

the modifications mentioned below it. The H0 term is a
local constraint like the one of electromagnetism (similar to
the one exposed in [16,17,26] for soft gravitons and linear
gravity), which is given by
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∇αΠαβ ¼ 0 ð37Þ

(with summation over the repeated index). This can take us
back to the canonical momentum (Πij) conjugate to the
string field potential (Aij) in the continuous case, which
has a gauge transformation (14). In our lattice system,
if we impose U → ∞, the constraint has to be kept equal
to 0, and in the low-energy Hamiltonian, this constraint
imposes the Hamiltonian to be invariant under a gauge
transformation

Âiαβ → Âiαβ þ∇αλiβ −∇βλiα; ð38Þ

with the λiα’s arbitrary vector fields defined on the links.
In the low-energy physics, the Ht term of the

Hamiltonian is compactified (see [16,17,26]), and writing
the Hu with the antisymmetric tensor Πiαβ, we have the
following effective Hamiltonian:

Hkeff ¼ −t̃
X

iα;β≠α;γ≠β
cosðK∇½αÂiβγ�Þ þ u

X
iα;β≠α

Π̂2
iαβ; ð39Þ

where the term inside the cosine is related to the term
F 123F 123 by a constant K (a modification is shown below),
and the summation is carried out along the face. Here t̃ is a
constant related to a high order perturbation of t=U derived
in the compactification process. Comparing our model to
that of electromagnetism of the last section, we have
plaquettes instead of dimers for the terms inside the cosine,
as seen in Fig. 8 (see [19–21]).
If Eq. (37) is violated, we obtain the string charge (Kalb-

Ramond charge) as can be seen in the continuous case in
Eqs. (4) and (8). This string charge is a defect and is taken
by the string field potential Âiαβ. As can be observed from
the constraints (35) and (37), and from the behavior of the
string charge (6), these defects have to travel along the

links. To couple these defects to the string field in a gauge
invariant way, we need to consider the gauge transforma-
tion (38) and observe that the defects can be added by
arbitrary vector fields, so we have the following gauge
invariant coupling term for the Hamiltonian (see [17]):

HA·j ¼ −c2
X
α;β

cosð∂αϕ
ðjÞ
β − ∂βϕ

ðjÞ
α −AαβÞ; ð40Þ

where the ϕðjÞ
a ’s are interpreted as the creation operators of

the string charge, and the sum is along all the links
surrounding the face αβ.
In order to obtain a dimer model like the electromagnetic

one, we first have to define the variables required for
Eq. (40). In this way, we have the boson number operator
n̂iα on the link ðiαÞ, as well as the conjugate operator and
the phase angle operator ϕ̂iα defined likewise. Then, we can
work with the following description:

Hk̃ ¼
K5

2

X
iαβ

Π̂2
iαβ − K6

X
i

cosð∇xÂiyzÞ − K7

X
iα

n̂iαÂiτα

− K8

X
iαβ

cosð∇αϕ̂iβ −∇βϕ̂iα − ÂiαβÞ: ð41Þ

The term with coefficientK5 of Eq. (41) is kept the same,
but the one with coefficient K6 is modified as mentioned.
The term K7 uses Âiατ as a Lagrange multiplier defined on
the links, and we need K7 → ∞ in order to keep the Gauss-
like constraint. The last term with coefficient K8 is the
modification for the lattice of Eq. (40), implied by the K7

restrictions.
We now take the Villain form approximation in the path

integral representation for theK8 term of Eq. (41). This will
result in the following process:

FIG. 7. The dimer ði; xÞ (in green) is created by the interaction
of the positive boson numbers (in blue) and the negative ones
(in red) as the constraint H0 dictates.

FIG. 8. The terms inside of the cosine of Eq. (39) are plaquettes
instead of dimers.

EMERGENT KALB-RAMOND FIELDS FROM A DIMER MODEL PHYS. REV. D 100, 066015 (2019)

066015-7



expfK8Δτ cosð∇αϕ̂iβ −∇βϕ̂iα − ÂiαβÞg

→
X
fjiμβg

exp

�
−

j2iμβ
2K8Δτ

þ ijiαβð∇αϕ̂iβ −∇βϕ̂iα − ÂiαβÞ
�
;

ð42Þ

where we have to take into account that both terms will sum
up to 0 and we keep the Gauss-like constraint (37) and the
gauge transformation.
Now, we can proceed by defining the string field

with components as F iταβ ¼ Πiαβ and F iαβγ ¼∇αAiβγ þ∇βAiγα þ∇γAiαβ, where we are working with
the eigenvalues of the operators. As in the electromagnetic
case, we can work with the Villain form approximation
for the last term of Eq. (41) to obtain the partition function
(see [32])

Zk̃ ¼
X

fF aμαβ;jiμαg
exp

�
−
e22
2
F 2

aμαβ þ
g2
2
jiταAiτα

�
; ð43Þ

restricted to

∇αF iμαβ þmjiμβ ¼ 0; ð44Þ

with conserved string charge. The index μ runs over τ, x, y,
z, and the other indices are only on the spatial dimensions.
The term m ¼ 2, 4 depending on how many variables
create the charge (see Fig. 7). Only the jiτα components
survive for the string charge; the other terms appear when
we have a D-brane with D > 1 and with time evolution.
The time interval is chosen to give e22 ¼ K5Δτ ¼ 1

K6Δτ

and g2 ¼ K7Δτ ¼ 1
K8Δτ

.
We can make an analysis similar to the one in Ref. [17],

but our interest is in the stable phase on the partition
function of Eq. (43). We observe how the string charge jiτα
appears in the last step of the process as in the electro-
magnetic case. The spatial components of this charge are
canceled by the constraint because we are working in a
quasistatic case (see Ref. [9]). Also, it has to be clear that
this phase is made only of closed strings formed along the
links of the direct lattice, at the links where the string
charge is defined.
Here we could also do the same analysis as we did for the

photon model, but we observe that the pure Kalb-Ramond
field can be seen as a photon model but placed on a dual
lattice since all the variables defined on the links for QED
are now defined on the faces. Thus, pure electrodynamics
and pure antisymmetric fields are analogous or “dual.”
A different analysis will be obtained when working with
the coupling model.

A. Coupling model

Now, we use the coupling of the Kalb-Ramond charge
with the electric field, but there will be no electric charges
or currents on the system; thus, we will have to modify the
term K4 of the Hamiltonian Hẽ. For this, we go back to
Eqs. (15) and (16), where we can see that the coupling is
through the potentials and that the defects created will be
along the links. Following this, we find that the way in
which these defects couple to the electromagnetic field
potential is

HA:j ¼ −c3
X
αk

cosðϕðjÞ
α þ AαÞ; ð45Þ

where the sum is along the coordinates parallel to the
direction of the electric field. With its modification to fit in
the lattice, we obtain the He0 for our total Hamiltonian,
which is

He0 ¼
K10

2

X
ibα

Ê2
ibα − K30

X
ibα

n̂ibαÊibα; ð46Þ

where the K30 is the term that couples the electric field with
the string charge. The coupling term with the electric field
is only along the terms parallel to the electric field, on the
D-branes as

Hint ¼ −K40
X
ibαk

cosðϕ̂ibαk þ ÂibαkÞ; ð47Þ

where the vertices ib are the vertices that belong to the
D-branes where the electric fields are defined.
The Hamiltonian for the Kalb-Ramond charge and fields

is kept exactly as in Eq. (41). Then, the total Hamiltonian
will be

H ¼ Hk̃ þHe0 þHint; ð48Þ

and, given that we have the modification for the electric
part, we will obtain a Villain form approximation in the
path integral representation for the K40 term as

expfK40Δτ cosðϕ̂ibαk þ Âibαk Þg
→

X
expfiAibταk ϕ̂ibαk þ iAibταkÂibαkg: ð49Þ

Here, the defect ϕ̂ibαk can be interpreted as the electric
field, given the fact that away from the open string, the
string potential couples to the electric field through a τα
component. In this way, we obtain the partition function as
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Z ¼
X

fEibαk ;F aμαβ;jiμαg
exp

�
−
e21
2
E2
ibαk −

e22
2
F 2

aμαβ

þ g1
2
EibαkAibταk þ

g2
2
jiταAiτα

�
; ð50Þ

restricted to

∇αF iμαβ þmjiμβ ¼ 0; ð51Þ

and the Maxwell equations without charges [see Eqs. (28)
and (29)].
We have no magnetic field here because it is a stationary

case with no electric currents and charges. The string field
potential couples to the electric field (on the D-brane
where the electric field can be defined) and to the string
charge (only along the string). In this stable phase, we
have open strings attached to D-branes where electric
fields are defined up to short distances (because it
costs energy to keep electric fields), and we also have
closed strings with only string charge. The string
charge may only have a value different from 0 for the
coordinates τα.
Now we see that the phases on the Hamiltonian for this

coupling model are diverse, but by focusing on the different
locations where these couplings happen, we can obtain the
stable phases. First, we get a solution from the restrictions
for the electric fields as

Eibαk ¼ εαkβμν∇βeibμν; ð52Þ

where the electric field on the D-branes can be generated
from fluctuations of another integer variable b. The current
has to be conserved, and given that it travels only along the
strings, we have

jiτβ ¼ εβμνρ∇μbiνρ; ð53Þ

where the term b is an integer gauge field that gives
rise to the string charge. The difference between the string
charge and the electric field is where they are located,
as given on the subindices. The string charge is only
defined on the strings, and the electric field is only defined
on the D-branes. Finally, for the restriction on Eq. (51), we
obtain

F iμαβ ¼ ∇μNiαβ −mδτμbiαβ; ð54Þ

where the term N can be seen as an integer defined on the
faces of the direct lattice.
We observe that along the strings e1 → ∞, g1 ¼ 0, and

we will be working only with the string variables. Here, the
important phase is when g2 → ∞, which is when there is no
coupling, so the Kalb-Ramond field potential and its
conjugate field are given by the fluctuations of the integer

quantity N, which can be considered as the Higgs variable
on the faces. At the maximum for the Hamiltonian, this
term has to be 0, so there is a balance between these
fluctuations and the gauge fields b that generate the string
charge; however, this can only happen when the term g2 is
finite or close to 0. When this happens, the current is
created by the fluctuations of the variable b, which also
affects the creation of the string fields.
The term g2 can work as an order parameter that takes the

system from a stable phase with pure string fields g2 > 0 to
a stable phase with couplings between the string charges
and the gauge potential fields g2 < 0.
When we take into consideration the D-branes, we have

g2 ¼ 0, where the electric fields are generated, as men-
tioned, by the fluctuations of an integer gauge field
variable b. Here, the string fields are only generated by
the fluctuations of the Higgs term N when g1 is finite. As
the term g1 → ∞ there is no coupling; thus, the b does not
generate the electric field, and only the string terms are
generated.

IV. FINAL REMARKS

In the present article we have proposed a model to
obtain electromagnetism (3þ 1) dimensions from a dimer
model. We have also found its corresponding partition
function and the dual electromagnetic tensor in 3þ 1
dimensions. The model is assumed to be quasistatic in 3
spatial dimensions, but the extensions to evolve in time
have been emphasized on the model. It is also important to
remark that we used, as the source for the electric and
magnetic fields, the electric charges and currents instead
of the field potentials (see Refs. [17,18,35]). This has
to be taken into account when calculating the correlation
functions.
In addition, we have obtained Kalb-Ramond fields and

charges from a dimer model in 3þ 1 dimensions. We
again assumed that the system is quasistatic, but we have
pointed out on the model how to evolve in time and the
places where the field potentials grow. Its source is the
string charge, and because the model is quasistatic, only
the components that run along the strings jiτα can be
different from 0.
In the last section, we have been able to couple both

models into one 3þ 1-dimensional dimer model, this time
taking the string charges as the source. We have also
pointed out that the coupling of the string charges with the
string field potentials has to be along the strings (open or
closed), while the coupling of the string field potential with
the electric field has to be on the D-branes attached at the
endpoints of the open strings.
In Ref. [35], the correlation functions were obtained

using Monte Carlo simulations. It would be interesting to
apply these methods within this context and compute some
quantum observables. In the near future we would like to
search for a relation to the results involving Kalb-Ramond
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fields [23,24]. Moreover, the model of the antisymmetric
field studied in the present article could be coupled to the
symmetric model (as in Refs. [16–18]) as a solution to the
problem of finding linearized gravity as an emergent theory
from lattice models. The resulting model would be inter-
esting in the study of gravitational models with torsion [36].
We are also interested in studying the possible relationship

of our results in the context of fermion-fermion duality
[37]. Some of these issues will be reported elsewhere.
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