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In a recent Letter, we have pointed out that the linearized Einstein gravity in de Sitter (dS) spacetime,
besides the spacetime symmetries generated by the Killing vectors and the evident gauge symmetry, also
possesses a hitherto “hidden” local (gaugelike) symmetry which becomes anomalous on the quantum level.
This gaugelike anomaly makes the theory inconsistent and must be canceled at all costs. In this companion
paper, we first review our argument and discuss it in more detail. We argue that the cancellation of this
anomaly makes it impossible to preserve dS symmetry in linearized quantum gravity through the usual
canonical quantization in a consistent manner. Then, demanding that all the classical symmetries to survive
in the quantized theory, we set up a coordinate-independent formalism à la Gupta-Bleuler which allows for
preserving the (manifest) dS covariance in the presence of the gauge and the gaugelike invariance of the
theory. On this basis, considering a new representation of the canonical commutation relations, we present a
graviton quantum field on dS space, transforming correctly under isometries, gauge transformations, and
gaugelike transformations, which acts on a state space containing a vacuum invariant under all of them.
Despite the appearance of negative norm states in this quantization scheme, the energy operator is positive
in all physical states and vanishes in the vacuum.
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I. INTRODUCTION

In a recent work [1], with respect to a coordinate-
independent approach based on ambient space notations,
we have shown that linearized quantum gravity in dS
spacetime, constructed through canonical quantization and
the usual representation of the canonical commutation
relations, suffers from a hitherto “hidden” local (gaugelike)
anomaly. More technically, we have shown that the classical
theory, besides the spacetime symmetries generated by the
Killing vectors and the evident gauge symmetry,1

hμν → hμν þ 2∇ðμξνÞ; ð1Þ

where ξμ is an arbitrary vector field and ∇μ is the covariant
derivative, also possesses the additional symmetry,

hμν → hμν þ Eμνχ; ð2Þ

in which Eμν and χ, respectively, stand for a second-order
differential operator (a spin-two projector tensor) and an
arbitrary constant function [1]. This hitherto “hidden”
gaugelike symmetry, however, becomes anomalous in the
quantized theory. Indeed, this additional symmetry of the
existing physics, reflected by the subspace generated by
the lowest mode (the zero mode) in the set of solutions,
reveals that covariant quantization of the dS graviton field
inevitably contains a proper quantization of the zero mode of
the field. This mode has a positive norm, but it violates
dS boost invariance as an essential part of dS symmetry.
More precisely, under the action of the dS boost generators,
it produces all the negative frequency solutions2 to the field
equation.
As is well-known, quite contrary to global anomalies

which can be phenomenologically welcomed, generally
any local (gauge) symmetry that becomes anomalous
makes the theory inconsistent. Therefore, such anomalies
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1Here, in order to make our discussion explicit, we have used

the so-called conformal (global) coordinates,

x ¼ ðx0 ¼ H−1 tan ρ; ðH cos ρÞ−1uÞ; ρ ∈�−π
2

;
π

2
½; u ∈ S3;

in which, the graviton field hμν can be expressed in terms of the
second-rank symmetric tensor spherical harmonics on the three
spheres. [H is the Hubble constant.]

2Recalling the fact that dS spacetime is not stationary, and
therefore, there is a priori no natural time coordinate and no
natural notion of “positive nor negative frequency” on this
spacetime, the term “positive and negative frequency solutions”
is used here with respect to the conformal time.
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must be canceled at all costs (in this regard, see, for
instance, [2–6]). This cancellation however imposes strong
restrictions on anomalous gauge theories. In our case and
with respect to the usual canonical quantization scheme, it
seems that the dS symmetry breaking is indeed the price
that must be paid for overcoming this difficulty: the natural
way out would be to adopt a restrictive version of
covariance (for which the action of the dS boost generators
is not taken into account) by admitting vacua invariant
under a maximal subgroup of the full dS group, the so-
called spontaneous symmetry breaking.
In the present paper, we elaborate further on these

arguments. However, as dS symmetries are basic sym-
metries of field dynamics in dS space, our approach to
circumvent this local anomaly would be different: we
require full covariance as well as causality. Here, we recall
that constructing a consistent quantum field theory of
gravity in the dS spacetime is of paramount importance,
since the symmetry properties of this spacetime can be
used as a guideline which greatly helps in the otherwise
difficult task of quantizing graviton field in a gravitational
background. Indeed, dS spacetime has a privileged status
as the unique, maximally symmetric solution to the
Einstein equation with a positive cosmological constant,
which also provides the opportunity of controlling the
transition to the flat spacetime by the so-called contraction
procedure (see [7], and references cited therein). The dS
spacetime therefore should at least be respected as an
excellent laboratory.
In this sense, it would be pertinent to extend our

quantization scheme to a more general context transform-
ing correctly under isometries, gauge transformations, and
gaugelike transformations. In this regard, by adopting to
this specific situation the content of the previous papers
[1,8,9], we address in this paper the question of construct-
ing a quantum field theory for the linearized Einstein
gravity in 3þ 1-dimensional dS spacetime that be fully
covariant according to criteria adapted from the Wightman-
Gärding axiomatic for massless fields (Gupta-Bleuler
scheme) [10].
To achieve this goal, the rest of this paper is organized as

follows: In Sec. II, we briefly review the dS machinery. By
this, we mean a set of definitions and notations concerning
geometry and the linearized Einstein wave equations on
one hand, and on the other hand, the corresponding group-
theoretical framework. We particularly focus on describing
the dS graviton field equation as an eigenvalue equation of
the Casimir operators of the dS group, SO0ð1; 4Þ. Our
formalism, based on ambient space notations, constitutes a
coordinate-independent approach to the dS graviton field. It
also turns out being a convenient framework to explicitly
specify the gauge and the gaugelike degrees of freedom
(d.o.f.) of the theory. Of course, we shall consider the
conformal coordinates through this paper to make our
construction explicit.

In Sec. III, we present the smallest, complete, non-
degenerate, and dS-invariant space of solutions to the field
equation which is called the total space. We prove that this
total space is a Krein space. It contains two different types
of nonphysical modes, which are indeed the price to pay for
the fully covariance of the theory. The first one appears due
to the evident gauge symmetry (1) and is similar to the
nonphysical states in gauge quantum field theories in
Minkowski space, while the other appears due to the
presence of the gaugelike symmetry (2) and is similar to
the case of dS minimally coupled scalar field [11–13]. [The
latter with negative frequency, as already pointed out, is
responsible for dS breaking in linearized quantum gravity
with respect to the canonical quantization and the usual
representation of the canonical commutation relations.]
The presence of these nonphysical modes naturally leads
us to adopt a construction à la Gupta-Bleuler. Actually, for
each gauge symmetries of the theory, we have a separate
Gupta-Bleuler triplet. The invariant space is defined here
according to an indecomposable representation of the dS
group carried by these Gupta-Bleuler triplets on the set of
solutions. Physical modes, which would be determined up
to the gauge and the gaugelike transformations, correspond
to the massless3 spin-2 dS UIRs as the central part of the
indecomposable representation.
In Sec. IV, we derive the associated commutator ful-

filling the minimal conditions of field equation, i.e., locality
and covariance, in closed form: it is expressed in terms of
maximally symmetric bitensors (see [14]) in a completely
geometric and coordinate-independent form, and found to
be finite for points that are not null related. We indeed point
out that the only graviton two-point function in dS space,
which naturally appears is the commutator that is not of the
positive type. More precisely, due to the appearance of the
anomalous gaugelike symmetry in the usual quantization
scheme, any definition a priori of a two-point function to
construct a graviton field cannot cause a covariant theory.
In Sec. V, providing a new representation of the

canonical commutation relations, the graviton quantum
field is given. It is causal, and it is covariant in the
usual strong sense: UGhμνðXÞU−1

G ¼ hμνðG:XÞ, for all
G ∈ SO0ð1; 4Þ, while U stands for the corresponding
indecomposable representation of the dS group on the
space of states. This implies that the field is defined on the
whole dS spacetime. The Fock space carrying this repre-
sentation is based on the Krein space. In this section, we
also discuss that, despite the appearance negative norm
states in the quantized theory, no negative energy can be
measured: expressions as hP⃗jT00jP⃗i are always positive in
all physical states jP⃗i. This assures a reasonable physical
interpretation of the theory.

3The term “massless” is used here with respect to conformal
invariance and propagation on the dS light cone.
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Finally, further discussion is given in Sec. VI. We have
also supplied some useful identities and mathematical
details of calculations in the Appendixes.

II. LINEARIZED GRAVITY IN dS SPACETIME

A. Covariant description

We begin our discussion by considering the Einstein-
Hilbert gravity in four spacetime dimensions with a posi-
tive cosmological constant Λ > 0, while the Lagrangian
density is

Li ¼
1

16πG
ðR − 2ΛÞ ffiffiffiffiffiffi

−g
p

; ð3Þ

where G is the Newton’s constant (we will use units such
that ℏ ¼ c ¼ 1, but G is retained explicitly), R is the Ricci
scalar constructed from the metric gμν, and g is the metric
determinant. dS space is the unique, maximally symmetric
solution to the vacuum Einstein’s equations derived from
the Lagrangian density (3). It is positively curved with a
fundamental length H−1 ¼ ffiffiffiffiffiffiffiffiffi

3=Λ
p

.
To uncover the physics of the theory, one must expand

the Lagrangian density (3) about the dS background metric
that it obviously admits by writing gμν ¼ ĝμν þ hμν for dS
metric ĝμν and perturbation hμν. On this basis, the corre-
sponding linearized equations of motion, with respect to the
aforementioned conformal coordinates, would be

ð□H þ 2H2Þhμν − ð□H −H2Þĝμνh0 − 2∇ðμ∇ρhνÞρ
þ ĝμν∇λ∇ρhλρ þ∇μ∇νh0 ¼ 0; ð4Þ

where□H ¼ ĝμν∇μ∇ν is the Laplace-Beltrami operator and
h0 ¼ ĝμνhμν. These equations are invariant under the gauge
transformation in the form of (1). Imposing the Lorenz
gauge condition upon the metric perturbation, that is,
∇μhμν ¼ e∇νh0, with e ¼ 1=2, we will partially fix the
gauge d.o.f.
For the sake of argument, we rewrite the field equa-

tion (4) in a more convenient form defined by the isometric
embedding of dS space in a five-dimensional Minkowski
space R5.

B. Embedding space description

In R5, with a metric ηαβ ¼ diagð1;−1;−1;−1;−1Þ, the
four-dimensional dS manifold can be viewed as a one-
sheeted hyperboloid MH defined by all five vectors xα

which satisfy: ηαβxαxβ ¼ −H−2. The dS metric is given by
inducing the natural metric on the hyperboloid,

ds2 ¼ ηαβdxαdxβjx2¼−H−2 ¼ ĝμνdXμdXν; ð5Þ

where μ; ν ¼ 0; 1; 2; 3 and Xμ’s refer to the four local
spacetime coordinates of MH. This way of describing dS

spacetime, constituting the ambient space approach, pro-
vides a more suitable framework in which the expressions
have a convenient 4þ 1-Minkowskian form, and the
symmetries of the theory are easily readable. All this
will appear more clearly after writing down the ambient
space counterpart of the linearized Einstein equations of
motion (4).
In the ambient space notations, a tensor field Kαβ must

satisfy two conditions [15], namely,
(i) Homogeneity: K is a homogeneous function of

degree σ with respect to the R5-variables xα,
xαð∂=∂xαÞK≡ x · ∂K ¼ σK, with σ ∈ R. Note that
σ is an arbitrarily chosen degree. In the following,
we consider σ ¼ 0 for which □H on dS space
coincides with the operator □5 ≡ ∂2 on R5 [16].

(ii) Transversality: K is constrained to be transverse,
x ·K ¼ 0, which ensures that the direction of K lies
in the dS space. [In view of the importance of this
condition for dS fields, the transverse projection T of
a tensor field with arbitrary rank is defined as
ðTKÞα1…αs

¼ θβ1α1…θβsαsKβ1…βs , where θαβ ¼ ηαβ þ
H2xαxβ. This projection operator will guarantee
the transversality in each index.]

In this formalism, the intrinsic tensor field KμνðXÞ is
locally determined by KαβðxÞ through the relation,

KμνðXÞð≡hμνðXÞÞ ¼ xαμx
β
νKαβðxðXÞÞ; ð6Þ

where xαμ ¼ ∂xα=∂Xμ. The covariant derivatives are trans-
formed, for example, as

∇ρ∇λhμν ¼ xαρx
β
λx

γ
μxσνT∂̄αT∂̄βKγσ;

where ∂̄ ¼ T∂ is the transverse derivative in dS space.
Following this transformation, θαβ is indeed the only
symmetric and transverse tensor which is linked to the
dS metric ĝμν.
Considering all of the above identities, the field equa-

tion (4) takes the form [15],

∂̄2K −H2Sx∂ ·K − S∂̄∂ ·Kþ 1

2
S∂̄ ∂̄ K0

þ 1

2
H2Sx∂̄K0 ¼ 0; ð7Þ

where the vector symmetrizer S is defined as SðζαωβÞ ¼
ζαωβ þ ζβωα and K0 denotes the trace of K, and ∂ ·K ¼
∂̄ ·K (because, K is a transverse tensor).
Here, our aim is to express the field equation (7) in terms

of the coordinate-independent Casimir operator of the dS
group, which makes the group theoretical content of the
theory explicit. But before that, let us briefly review the
definitions and properties of the dS group and its repre-
sentations that are physically interesting.
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C. dS group and representations

The dS relativity group is the connected Lorentz group
SO0ð1; 4Þ of the ambient Minkowski space. The ten
infinitesimal generators of the dS group can be split into
the orbital and spinorial parts,

LðrÞ
αβ ¼ Mαβ þ SðrÞαβ ; ð8Þ

where the orbital part is of the form Mαβ ¼ −iðxα∂β −
xβ∂αÞ and SðrÞαβ is the spinorial part acting only on the
indices of the rank-r tensors in the following permutational
way:

SðrÞαβKα1…αr ¼ −i
Xr

i¼1

ðηααiKα1…ðαi→βÞ…αr − ðα⇋βÞÞ:

The second-order Casimir operator Qr ¼ − 1
2
LðrÞ
αβL

ðrÞαβ

commutes with all generator representatives Lαβ and must
therefore, in a given unitary irreducible representation
(UIR), be represented by a number, i.e.,

ðQr − hQriÞK ¼ 0; ð9Þ

where, with respect to the notation given in [17], we have

hQri ¼ ½−pðpþ 1Þ − ðqþ 1Þðq − 2Þ�; ð10Þ

in which p and q are two parameters with 2p ∈ N and
q ∈ C.
According to the possible values for p and q, there are

three distinct classes of UIRs [17,18], i.e., the principal, the
complementary, and the discrete series. The UIRs associ-
ated with our study are those among the discrete series
which are classified as two types:

(i) The scalar case Πp;0, with p ¼ 1; 2;….
(ii) The spinorial case Π�

p;q, with p ¼ 1; 2;…
and q ¼ p; p − 1;…; 1,

in which, the parameter q has a spin meaning. The only
physical representations in the sense of Poincaré limit
are those with p ¼ q ¼ s, and the symbol � stands for
the helicity. These representations are called the mass-
less UIR’s.

D. Casimir operators in the field equation

The action of the second-order Casimir operator on a
rank-2 tensor field K can be written explicitly as follows
(Qr¼2 ≡Q2):

Q2K ¼ ðQ0 − 6ÞKþ 2ηK0 þ 2Sx∂ ·K; ð11Þ

where Q0 ¼ − 1
2
MαβMαβ ¼ −H−2∂̄2 is the scalar Casimir

operator. [The operators Q2, Q0, Lαβ, and ∂̄ commute with
x2, which means that they are intrinsically defined on the

hyperboloid.] With the aid of (11), the wave equation (7)
takes the form [15],

ðQ2 þ 6ÞKþD2∂2 ·K ¼ 0; ð12Þ

where D2 ¼ H−2Sð∂̄ −H2xÞ and ∂2 ·K ¼ ∂ ·K−
H2xK0 − 1

2
∂̄K0.

The Eq. (12) is derivable from the following Lagrangian
density:

Li ¼ −
1

2x2
K · ·ðQ2 þ 6ÞKþ 1

2
ð∂2 ·KÞ2; ð13Þ

where “··” denotes total contraction. The Lagrangian
density (13) is invariant under the ambient space counter-
part of (1), that is, K → KþD2λ, where λ is an arbitrary
vector field. We now need to break this gauge symmetry.
To do this, we use the gauge-fixing term Lgf ¼
ð1=2aÞð∂2 ·KÞ2, where “a” is an arbitrary constant: note
that the ambient space counterpart of the Lorenz gauge
condition is ∂2 ·K ¼ ðb − 1

2
Þ∂̄K0, with b ¼ 1

2
. Finally, a

variation of the action integral
R ðLi þ LgfÞdσ, where dσ is

the volume element in dS space, leads to the following
equation:

ðQ2 þ 6ÞKþ cD2∂2 ·K ¼ 0; ð14Þ

where c ¼ ð1þ aÞ=a is a gauge-fixing parameter.
It is obvious that for c ¼ 1, the field equation (14) is

fully gauge invariant. In the following, we will explicitly
see that the simplest (or optimal) choice of c is precisely
c ¼ 2=5≡ cl.

4 However, gauge freedom still exists by any
choice of c ≠ 1: the choice of the vector fields λ is only
limited to what can be achieved by5

ð1 − cÞD2ðQ1 þ 6Þλ ¼ 0: ð15Þ

This means that the Lorenz gauge partially fixes the gauge
d.o.f. In this sense, the physical solutions which are indeed
among the divergencelessness solutions [i.e., the solutions
to ðQ2 þ 6ÞK ¼ 0] constitute a part of an indecomposable
structure while the gauge solutions are determined by
Eq. (15), and the nonzero divergence solutions, called
the scalar solutions, obey

ð1 − cÞðQ1 þ 6Þ∂2 ·K ¼ 0: ð16Þ

In this indecomposable structure, the physical solutions
carry the massless spin-2 representations Π�

2;2, while
the gauge and the scalar sectors of solutions carry the
dS finite-dimensional representation labeled by the pair

4Generally, for a spin-s field, the simplest choice is cl ¼ 2=
ð2sþ 1Þ [19,20].

5Note that, ∂2 ·D2λ ¼ −ðQ1 þ 6Þλ and Q2D2λ ¼ D2Q1λ.
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ðp ¼ 2; q ¼ −1Þ which is Weyl equivalent to Π�
2;2.

6 As a
matter of fact, regarding the two possible degrees of
homogeneity σ ¼ 0 and σ ¼ −3, which will replace
in dS space the two helicities of the graviton field,
the gauge and the scalar sectors carry the dS finite-
dimensional representation ðp ¼ 2; q ¼ −1Þ and the non-
unitary infinite-dimensional representation ðp ¼ 1; q ¼ 3Þ,
respectively (see the details in Refs. [21,22]). In this study,
however, for the sake of simplicity, we only consider σ ¼ 0,
i.e., x · ∂K ¼ 0, and consequently, the representation
ðp ¼ 2; q ¼ −1Þ: here, by abuse of notation, we denote
this representation by Π2;−1. Of course, our result can be
simply generalized to the case σ ¼ −3.

III. SPACE OF SOLUTIONS

In this section, we define the total space of solutions,
that is, the complete, nondegenerate and fully invariant
space of solutions to the field equation (14). Then, on this
total space, we present the Gupta-Bleuler triplets carrying
the indecomposable structure for the dS group unitary
representation appearing in the linearized gravity in dS
spacetime.

A. Total space

We begin by producing a recurrence formula expressing
the tensor field K of rank-2 in terms of the tensors of
lower ranks to set up general solutions verifying (14).
Such recurrence formula involves operators that obey

commutation/interwining rules with Lð2Þ
αβ and the Casimir

operator Q2.
In such a construction, the contraction of the transverse

projector θ with a constant polarization five vector Z, i.e.,
Sθ · Z, is a key piece in the sense that permits one to
define an operator that makes a symmetric transverse tensor
field K of rank-2 from a transverse tensor field K of rank-1
[22]. The commutation rule between Sθ · ZK and Q2 is
given by

Q2Sθ · ZK ¼ Sθ · ZðQ1 − 4ÞK
− 2H2D2x · ZK þ 4θZ · K:

Regarding the above identity, now we need to calculate the
commutation relations between Q2 and the new elements
θϕ and D2K̃, in which the operators θ and D2 make a
symmetric transverse tensor field K of rank-2 from a tensor
field ϕ of rank-0 and a transverse tensor field K̃ of rank-1,
respectively. For these new elements, we have

Q2θϕ ¼ θQ0ϕ;

Q2D2K̃ ¼ D2Q1K̃:

The above identities explicitly reveal that the elements of
the forms Sθ · ZK, θϕ, and D2K̃ constitute a closed set
under the action of Q2. In this sense, we can obtain the
tensor fieldK in a dS-invariant way in terms ofK, ϕ, and K̃,

K ¼ Sθ · ZK þ θϕþD2K̃: ð17Þ

Substituting the above recurrence formula into the field
equation (14) and writing the tensors ϕ and K̃ in a
completely dS-invariant manner in terms of K (see the
details in [8]), the tensor field K reads

K ¼ Kc¼cl þ cl − c
1 − c

D2ðQ1 þ 6Þ−1∂2 ·Kc¼cl ; c ≠ 1

ð18Þ

in which

Kc¼cl ¼
�
−
2

3
θZ · K þ SZ̄K þ 1

27
H2D2D1Z · K

þ 1

3
H2D2x · ZK

�
þ 1 − cl

9
D2∂2 ·Kc¼cl ;

¼ ½c-independent part� þ 1 − cl
9

D2∂2 ·Kc¼cl ;

ð19Þ

where D1 ¼ H−2∂̄, Z̄ ¼ TZ ¼ θ · Z, and

ðQ1 þ 2ÞK ¼ 0; ∂ · K ¼ 0: ð20Þ

Note that (i) For c ≠ 1, the trace of K is zero, K0 ¼ 0,
then we have ∂2 ·K ¼ ∂ ·K [23]. (ii) The gauge solutions
D2λ only appear coupled to the scalar part, D2∂2 ·Kc¼cl .
(iii) The last term on the right-hand side of (18) is
responsible for the appearance of logarithmic divergences
in the field solutions which implies reverberation inside the
light cone. This term can be eliminated by adjusting c to cl
(the simplest structure). With this choice of the gauge-
fixing parameter even the physically irrelevant gauge
modes propagate only on the dS light cone [24,25]: indeed,
the subscript “l” in cl stands for this fact.
Interestingly, one can pursue the above procedure and

write the tensor field K of rank-1 in a dS-invariant manner
in terms of a tensor field Φ of rank-0 to set up general
solutions verifying (20) [8],

K ¼
�
Z̄0 −

1

2
D1ðZ0 · ∂̄ þ 2H2x · Z0Þ

�
ΦðxÞ; ð21Þ

where Z0
α is another constant five vectors and

6A necessary condition that the representations Π�
2;2 combine

with other ones to form indecomposable representations is that
the latter are Weyl equivalent. [If two representations are Weyl
equivalent, then they share same Casimir eigenvalue.]
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Q0ΦðxÞ ¼ −H−2
□HΦðxÞ ¼ 0: ð22Þ

In this sense, the general solutions to the field equa-
tion (14) can remarkably be written as the resulting action
of a dS-invariant, spin-two projector Eαβðx; ∂; Z; Z0Þ on a
massless minimally coupled scalar fieldΦðxÞ (the structure
function),

Kαβ ¼ Eαβðx; ∂; Z; Z0ÞΦðxÞ; c ≠ 1: ð23Þ

Regarding the structure function obeying (22), there
exists a continuous family of simple solutions, the so-called
coordinate-independent dS plane waves, as [26,27]

ΦðxÞ ¼ ðHx · ξÞ−3; ð24Þ

where the vectors ξ ∈ R5 lying in the null cone
C ¼ fξ ∈ R5; ξ2 ¼ 0g.7 In the conformal coordinates
introduced above, these solutions (24) take the form [see
Appendix A],

ΦLlmðρ; uÞ ¼ iLþ3e−iLρ
ΓðLþ 3Þ

ðLþ 1Þ!Γð3Þ
× 2F1ð−1; L;Lþ 2;−e−2iρÞYLlmðuÞ; ð25Þ

where YLlmðuÞ are the hyperspherical harmonics on S3,
with ðL; l; mÞ ∈ N × N × Z, 0 ≤ l ≤ L, and −l ≤ m ≤ l.
With the aid of (6), the solutions to the equation of

motion in the conformal coordinates can be expressed as

KðL;l;mÞ
μν ¼ xαμx

β
νEαβΦLlmðρ; uÞ≡ EμνΦLlmðρ; uÞ: ð26Þ

We define Vc, the total space of solutions, as the
complete set of solutions in the form (26) which are square
integrable with respect to the following dS-invariant bilin-
ear form (or inner product) [23]:

hK1;K2i ¼
i
H2

Z
S3;ρ¼0

½ðK1Þ� · ·∂ρK2

− 2cðð∂ρxÞ · ðK1Þ�Þ · ð∂ ·K2Þ− ð1�⇋2Þ�dσðuÞ;
ð27Þ

in which K1 and K2 are two arbitrary modes. A closer look
at the behavior of the above inner product however reveals

that Vc suffers from a degeneracy associated with the
lowest mode [the mode corresponding to L ¼ 0 in (26)]. In
fact, considering the behavior of the hypergeometric
functions [28],

2F1ð−1; L;Lþ 2;−e−2iρÞ ¼ 1 −
L

Lþ 2
e−2iρ;

for which the L ¼ 0 mode is determined by EμνΦ0;0;0,
where Φ0;0;0 is a constant function, one can easily see that
this mode is orthogonal to the entire set of solutions
including itself. Of course, this is not an accidental
degeneracy (due to a mathematical artifact). Indeed, with
respect to our formalism it is obvious that, whatever the
value of gauge-fixing parameter c is, the theory (the inner
product and equation of motion) is invariant under the
gaugelike transformations (2). This additional symmetry of
the dS linearized Einstein gravity directly implies that the
null-norm subspace, generated by L ¼ 0, should be viewed
as a space of “gauge” states.
In this sense, we need to delve more deeply into the

lowest graviton mode determined by L ¼ 0 in the set of
solutions in order to circumvent the associated degeneracy
problem. Accordingly, by solving Eq. (22) directly for
L ¼ 0 (see [12]), we obtain the following two independent
solutions:

Kg1 ¼ Eμν

�
H
2π

�
; Ks ¼ Eμν

�
−
iH
2π

½ρþ ð1=2Þ sin 2ρ�
�
;

where the constants are chosen to have hKg1 ;Ksi ¼ 1. Note
that, (i) Both Kg1 and Ks are null norm solutions. (ii) Kg1 is
a solution to (14) which has been already appeared in the
gaugelike symmetry (2).
On this basis, we define the “true” normalized zero

mode, the modified one, as

Kð0;0;0Þ
μν ¼ Kg1 þ

1

2
Ks; hKð0;0;0Þ;Kð0;0;0Þi ¼ 1: ð28Þ

Including this mode, we have a nondegenerate set of
normalized solutions KðL;l;mÞ

μν , with L ≥ 0, but the space
generated by these modes is not closed under the action
of the dS group. More precisely, applying the dS boost
generators on Kð0;0;0Þ produces the whole positive and
negative frequency solutions to the equation of motion.
[Obviously, one cannot drop out the L ¼ 0 mode from the
set of solutions, because it leaves us with a noncomplete set
of solutions violating the gaugelike symmetry (2) of the
existing physics.] For instance, under the action of the dS
boost generator ðL03 þ iL04Þ, we have

7Substituting (24) into (23) and after a direct calculations,
along the lines given in Ref. [16], one can present the general
solutions (23) in the form of (c ≠ 1),

Kαβðx; ξ; Z; Z0Þ ¼ Eαβðx; ξ; Z; Z0ÞðHx · ξÞ−3:

This presentation makes the degree of homogeneity of the
general solutions apparent: the waves Kαβðx; ξ; Z; Z0Þ, as func-
tions on R5, are homogeneous with degree zero [note that,
HðxÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
−x · x

p
].
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ðL03 þ iL04ÞKð0;0;0Þ
μν ¼ ððL03 þ iL04ÞEμνÞ

�
H
2π

−
iH
4π

�
ρþ 1

2
sin 2ρ

��
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

‘invariant terms’

þ Eμν

�
ðM03 þ iM04Þ

�
H
2π

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

þ ðM03 þ iM04Þ
�
−
iH
4π

�
ρþ 1

2
sin 2ρ

���
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ð−
ffiffi
6

p
4
ÞðiΦ1;0;0þiΦ�

1;0;0þΦ1;1;0þΦ�
1;0;0Þ

¼ ‘invariant terms’ −
ffiffiffi
6

p

4
ðKð1;1;0Þ

μν þ iKð1;0;0Þ
μν þ ð1þ iÞðKð1;0;0Þ

μν Þ�Þ: ð29Þ

Note that (i) ðKð1;0;0Þ
μν Þ� refers to the complex conjugate of

Kð1;0;0Þ
μν . (ii) According the procedure that has been con-

sidered to produce the spin-two projector Eμν, it is trivial
that the elements of Eμν for a given c remain in Eμν under
the group action. (iii) To see the behavior of the scalar
structure function Φ under the action of the dS boost
generators, one can refer to Ref. [12].
With respect to the above arguments, it is now clear that

the total space of solutions Vc, if one needs the full
invariance of the theory, must be extended to include all
the positive and negative frequency solutions to the field
equations, i.e.,

Vc ¼ Vþ ⊕ V− ⊕ N ⊕ S; ð30Þ

in which

N ¼
�
cgEμν

�
H
2π

�	
;

S ¼
�
csEμν

�
−i

H
2π

�
ρþ 1

2
sin 2ρ

��	
;

Vþ ¼
� X

Llm;L≥1
cLlmðEμνΦLlmÞ;

X
Llm;L≥1

jcLlmj2 < ∞
	
;

V− ¼ ðVþÞ�; ð31Þ

with cg, cs, cLlm ∈ C. The following relations demonstrate
the behavior of each part of the space of solutions under the
action of the dS group:

UG∶ N → N ;

UG∶ S → S ⊕ Vþ ⊕ V− ⊕ N ;

UG∶ Vþ → Vþ ⊕ N ;

UG∶ V− → V− ⊕ N ; ð32Þ

where, for an arbitrary element G of the dS group, UG is the
dS natural representation on the space of solutions. To see
the point lying behind the above transformations, beside
Eq. (29), for instance, one should also consider

ðL03 þ iL04ÞKð1;0;0Þ
μν ¼ “invariant terms”

þ EμνððM03 þ iM04ÞΦ1;0;0Þ

¼…− i
4ffiffiffi
6

p K2;1;0
μν þK2;0;0

μν þ 3

2
ffiffiffi
6

p Kg1 :

B. Gupta-Bleuler triplets

The above arguments reveals that the quantum field
theory formulated through canonical quantization and the
usual representation of the canonical commutation relations
suffers from an anomalous symmetry associated with the
(local) gaugelike symmetry (2), for which one has to deal
with the propagation of negative frequency statesK�

μν in the
quantized theory. The presence of this local anomaly is
not a gauge artifact, no matter how we choose the gauge-
fixing parameter c, and in general, makes it impossible to
implement the Gauss constraint on the physical states
[2–4]. For this reason, one of the most requirements for
a consistent dS linearized quantum gravity is that this
gaugelike symmetry of the system must be free of anomaly.
As already pointed out, with respect to the usual canonical
quantization, this requirement can be successfully fulfilled
by weakening the covariance condition based on a maximal
subgroup of the full dS group, for example, SOð4Þ, for
which the dS boost invariance is not taken into account. In
this paper, however, our approach is different. We need all
the classical symmetries to survive in the quantized theory.
To achieve this goal, we consider a rather straightforward
application of the Gupta-Bleuler formalism, known to be
well adapted to treat models with gauge symmetries, to
avoid the symmetry breaking altogether.
On this basis, we categorize the total space Vc [see (30)]

as a chain of the solutions, known as the Gupta-Bleuler
triplet, in the following form:

Vg1 ⊂ V1 ⊂ Vc; ð33Þ

in which the space Vg1 ≡N is the space of gaugelike
solutions. On the other hand, we have V1 ≡ Vþ ⊕ N
which is a space of positive frequency solutions to the
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field equation equipped with the degenerate inner product:
hKg1 ;Kg1i ¼ 0 and hKg1 ;Ki ¼ 0, for all K ∈ V1. In this
construction, the coset space Vc=V1 contains auxiliary
solutions which are of negative frequency. These nonphysi-
cal solutions indeed allow one to overcome in a totally
covariant way the aforementioned zero-mode problem.
Here, we must underline that the appearance of the above

structure (33) is not the whole story: besides the gaugelike
d.o.f. there are also the d.o.f. due to the evident gauge
invariance. Indeed, a closer look at the subspaces Vg1 ,
V1=Vg1 ≡ Vþ and Vc=V1 ≡ V− ⊕ S reveals that a further
Gupta-Bleuler triplet appears inside each of them. Let us
start with the quotient space of positive frequency solutions
to (14), i.e., V1=Vg1 ≡ Vþ. Considering (15), (16), and the
associated discussions in Sec. II, one can realize three main
types of solutions in Vþ: the divergencelessness type, the
evident gauge type, and the solutions which are not
divergenceless. On this basis, in the quotient space Vþ,
one can single out the invariant, but not invariantly
complemented, subspace Vþ

2 ⊂ Vþ made up of elements
which are divergenceless and therefore, are c indepen-
dent. The nonzero divergence solutions and the evident
gauge fields Kþ

g2 , respectively, belong to the subspaces
Vþ=Vþ

2 and Vþ
g2 . The latter is an invariant, but again not

invariantly complemented, subspace Vþ
g2 ⊂ Vþ

2 . Note that,
the gauge solutions Kþ

g2 are orthogonal to every element
in Vþ

2 including themselves [23]: hKþ
g2 ;K

þ
g2i¼0 and

hKþ
g2 ;K

þi¼0, for all Kþ ∈ Vþ
2 . [The symbol “þ” stands

for the positivity of frequency in the corresponding sub-
space of solutions.]
This further chain of solutions inside V1=Vg1 ≡ Vþ can

be demonstrated as

Vþ
g2 ⊂ Vþ

2 ⊂ Vþ: ð34Þ

This triplet carries the following indecomposable structure
for the unitary representation of the dS group8:

Π2;−1|ffl{zffl}
Vþ=Vþ

2

→ Πþ
2;2 ⊕ Π−

2;2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Vþ
2
=Vþ

g2

→ Π2;−1|ffl{zffl}
Vþ
g2

: ð35Þ

The arrows show the leaks under the dS group action.
Alternately, we could arrive at a comparable result, i.e.,

the similarity in appearance of the above structure [see (34)
and (35)], for each subspaces Vc=V1 ≡ V− ⊕ S and Vg1 ≡
N separately. Indeed, Vc=V1 carries the same indecom-
posable representation as (35). Of course, as already
mentioned, the subspace Vc=V1 contains auxiliary solu-
tions which are of negative frequency. On the other hand,

the space Vg1 ≡N carries the trivial representations of the
dS group associated with (35).9

Taking all of the above into consideration, the complete
indecomposable group representation structure appearing
in the dS linearized gravity, which is carried by these sets of
Gupta-Bleuler triplets altogether [see (34) and (33)], reads

Vg1∶ ϒ̃0 → ϒ0 → ϒ̃0

↑ ↑ ↑

V1=Vg1∶ Π2;−1 → “Πþ
2;2 ⊕ Π−

2;2” → Π2;−1

↑ ↑ ↑

Vc=V1∶ Π2;−1|ffl{zffl}
Vc=V2

→ Πþ
2;2 ⊕ Π−

2;2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
V2=Vg2

→ Π2;−1|ffl{zffl}
Vg2

:

ð36Þ

The vertical arrows demonstrate the leaks under the dS
group action as well, and they can be understood by the
transformations (32), while ϒ0 and ϒ̃0, respectively,
refer to the trivial UIRs of the dS group and the corre-
sponding Weyl equivalent finite-dimensional represen-
tations associated with the eigenvalue of the Casimir
operator hQri ¼ −6. Note that the space of physical
graviton modes corresponds to the dS UIRs denoted
between quotations symbol in the above indecomposable
representations. The physical space is indeed the invariant
subspace in the quotient space V2=Vg2 (the c-independent
part) which contains no negative norm modes, more
precisely, ðV2=Vg2Þ ⋂ ðV1=Vg1Þ.
At the end, to summarize our discussion in this section, it

would be convenient to express the total space of solutions,
which is indeed a Krein space, in a more applicable form as

Vc ¼ H ⊕ H�; ð37Þ
while

H ¼
� X

Llm;L≥0
cLlmðEμνΦLlmÞ;

X
Llm;L≥0

jcLlmj2 < ∞
	
:

In this way, the invariant subspace of physical states reads

Vphys ≡ ðV2=Vg2Þ ⋂ ðV1=Vg1Þ

¼
� X

Llm;L≥1
cLlmðE

2
g2
μνΦLlmÞ;

X
Llm;L≥1

jcLlmj2 < ∞
	
;

ð38Þ

8See Eqs. (15) and (16) and the associated discussions in
Sec. II.

9Under the action of the dS group (8), we have

L

�
E
�
H
2π

��
¼ ðLEÞ

�
H
2π

�
þ E

�
M

�
H
2π

�
|fflfflfflffl{zfflfflfflffl}

¼0

�
¼ ðLEÞ

�
H
2π

�
:
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in which E
2
g2
μν stands for the projection tensor associated

with the invariant subspace V2=Vg2 , denoted by the
c-independent part in (19). Again, the zero mode
(L ¼ 0) does not contribute to the physical space of
solutions because if it was included, the set of physical
modes would be transformed into modes of negative
frequency violating unitarity. In particular, this means
that only the L ≥ 1 modes will contribute to any physical
quantity.

IV. GRAVITON TWO-POINT FUNCTION

In this section, with respect to the discussions given by
Allen and Jacobson in their seminal paper [14], we aim
to find the graviton two-point function in closed form in
terms of maximally symmetric bitensors. The bitensors
are functions of two points x and x0, and behave like
tensors under coordinate transformations at each point. If
they respect the dS invariance, we call them maximally
symmetric.
As proved in Appendix B, any maximally symmetric

rank-2 bitensor can be presented in the ambient space
formalism in terms of the three basic bitensors θθ0, θ · θ0,
and D2D0

2. Therefore, the graviton two-point function can
be written as

Wαβα0β0 ðx; x0Þ ¼ θαβθ
0
α0β0W0ðx; x0Þ

þ SS0θα · θ0α0W1ββ0 ðx; x0Þ
þD2αD0

2α0Wgββ0 ðx; x0Þ; ð39Þ

whereW0 is a biscalar,W1 andWg are two bivectors. Note
that the primed operators act only on the primed coor-
dinates and vise versa, so that D2D0

2 ¼ D0
2D2.

The above two-point function has to satisfy the following
requirements:

(i) Indefinite sesquilinear form. For any test function
fαβ in the space of functions C∞ with compact
support in MH, an indefinite sesquilinear form
would be [27]

Z
MH×MH

f�αβðxÞWαβα0β0 ðx; x0Þfα0β0 ðx0ÞdσðxÞdσðx0Þ:

(ii) Covariance.

ðG−1ÞγαðG−1ÞδβWγδγ0δ0ðGx;Gx0ÞGγ0
α0G

δ0
β0 ¼Wαβα0β0 ðx; x0Þ;

for all G ∈ SO0ð1; 4Þ.
(iii) Locality. For every spacelike separated pair ðx; x0Þ,

i.e., x · x0 > −H−2,

Wαβα0β0 ðx; x0Þ ¼ Wα0β0αβðx0; xÞ:

(iv) Index symmetrizer.

Wαβα0β0 ðx; x0Þ ¼ Wαββ0α0 ðx; x0Þ ¼ Wβαα0β0 ðx; x0Þ:

(v) Transversality.

xαWαβα0β0 ðx; x0Þ ¼ 0 ¼ x0α0Wαβα0β0 ðx; x0Þ:

This automatically results in the transversality con-
dition on W1 and Wg.

(vi) Tracelessness.

ðWÞααα0β0 ðx; x0Þ ¼ 0 ¼ ðWÞαβα0α0 ðx; x0Þ:

This directly yields

2θ0α0β0W0ðx; x0Þ þ S0θ0α0 ·W1β0 ðx; x0Þ
þH−2D0

2α0 ∂̄ ·Wgβ0 ðx; x0Þ ¼ 0; ð40Þ

or its equivalent form,

2θαβW0ðx; x0Þ þ Sθα ·W1βðx; x0Þ
þH−2D2α∂̄ 0 ·Wgβðx; x0Þ ¼ 0: ð41Þ

Note that, for the sake of simplicity, we also impose
the divergencelessness condition on W1.

By imposing the bitensor (39) to verify Eq. (14) with
respect to variables x and x0 (in the following, we first
consider the choice x) and using the identities given in
Appendix C, we obtain10

ðQ0 þ 6Þθ0W0 ¼ −4S0θ0 ·W1; ð42Þ

ðQ1 þ 2ÞW1 ¼ 0; ð43Þ

and

ð1 − cÞðQ1 þ 6ÞD0
2Wg ¼ ð2 − 5cÞH2S0x · θ0W1

þc

�
−
1

2
H2D1θ

0W0 − TS0θ0 · ∂̄W1

�
þD0

2Ξg; ð44Þ

where TS0θ0 · ∂̄W1 ¼ S0θ0 · ∂̄W1 −H2S0xθ0 ·W1 and
D0

2Ξg appears here because of the canceling property of
D2, i.e., D2ðD0

2ΞgÞ ¼ 0.
Equation (42) allows us to express the biscalar W0 in

terms of W1 as follows:

θ0W0 ¼ −
2

3
S0θ0 ·W1: ð45Þ

10Note that, we here follow a similar procedure to what we
have done in Ref. [8] in order to solve the field equation (14).
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As a matter of fact, considering (43) supplemented with
the divergencelessness condition (∂̄ ·W1 ¼ 0)11 results in
Q0W1 ¼ 0, which means that

Q0θ
0W0 ¼ −

2

3
Q0S0θ0 ·W1 ¼ 0:

On the other hand, by decomposing D0
2Wg ¼ D0

2Wg þ
D0

2W
Ξ
g , while

ð1 − cÞðQ1 þ 6ÞD0
2W

Ξ
g ¼ D0

2Ξg; x ·WΞ
g ¼ 0;

∂̄ ·WΞ
g ¼ 0;

one can rewrite the inhomogeneous Eq. (44) in the
following form:

ðQ1 þ 6ÞD0
2Wg ¼

1

1 − c

�
−c;

c
3
; 2 − 5c

�
; ð46Þ

where ½u; v; w� ∈ E; E is the three-dimensional space
constructed over the following linear combination of three
basic functions:

½u; v; w� ¼ uTS0θ0 · ∂̄W1 þ vH2S0D1θ
0 ·W1

þ wH2S0x · θ0W1:

These three functions interestingly form a closed set under
the action of ðQ1 þ 6Þ,

ðQ1 þ 6ÞTS0θ0 · ∂̄W1 ¼ ½6; 2; 0�; ð47Þ

ðQ1 þ 6ÞH2S0D1θ
0 ·W1 ¼ ½0; 6; 0�; ð48Þ

ðQ1 þ 6ÞH2S0x · θ0W1 ¼ ½−2; 0; 0�: ð49Þ

On this basis, we can rewrite Eq. (46) in the following
convenient form:

0
B@

6 0 −2
2 6 0

0 0 0

1
CA
0
B@

X

Y

Z

1
CA ¼ 1

1 − c

0
B@

−c
c=3

2 − 5c

1
CA: ð50Þ

We here interested in the simplest structure therefore setting
c ¼ 2=5 ¼ cl, we get the solution to Eq. (46) as

D0
2Wg ¼ ½0; 1=27; 1=3� þ ϱD0

2W
∘
g; ð51Þ

where ϱ and D0
2W

∘
g, respectively, stand for an arbitrary

constant and a function inside E satisfying

ðQ1 þ 6ÞD0
2W

∘
g ¼ 0: ð52Þ

It is given, up to a multiplicative constant, by

D0
2W

∘
g ¼ ½1;−1=3; 3�: ð53Þ

In order to make the group theoretical content of our
construction more clear, we need to determine the value of
ϱ. We begin by noting the fact that D0

2W
∘
g is divergenceless

(D0
2∂̄ ·W∘

g ¼ 0), D0
2Wg however is not, so that we have

D1D0
2∂̄ ·Wg ¼ ½0; 1=3; 0�: ð54Þ

Considering (45), the above result is, by the way, consistent
with (40). We should also point out that the function
H2S0D1θ

0 ·W1 is divergenceless; therefore, with respect to
Eq. (48), we have

Q1ðH2S0D1θ
0 ·W1Þ ¼ Q0ðH2S0D1θ

0 ·W1Þ ¼ 0:

This means that, inside the bitensor (39), the H2S0D2D1θ
0 ·

W1 carries the same representation as θθ0W0. On this basis,
let us separate D0

2Wg into two parts: D0
2Wg ¼ D0

2Wg þ
D0

2Wg
, in which D0

2Wg is the scalar part of D0
2Wg and

D0
2Wg

is what is left from it.

For D0
2Wg

, considering Eq. (51) and Eqs. (47)–(49), we
have

Q1D0
2Wg

¼ ½−2=3 − 6ϱ; 2ϱ;−2 − 18ϱ�: ð55Þ

Since the function D0
2Wg

is not divergenceless, we need to

compare Eq. (55) with (54),

D1D0
2∂̄ ·W

g
¼ ½0; 1=3; 0�: ð56Þ

One can easily observe that D0
2Wg

verifies

Q1D0
2Wg

þ 2

3
D1D0

2∂̄ ·W
g
¼ 0; ð57Þ

if we set

ϱ ¼ −1=9:

The group theoretical meaning of this construction is now
obvious. Indeed, D0

2Wg
carries an indecomposable mass-

less representation with spin-1 while the gauge fixing
parameter is c ¼ 2=3 (see [16]). Accordingly, the solution
to Eq. (44) would be D0

2Wg ¼ D0
2Wg þD0

2Wg
þD0

2W
Ξ
g ,

with

D0
2Wg ¼ ½0; 2=27; 0�; D0

2Wg
¼ ½−1=9; 0; 0�; ð58Þ

11The bivector W1 is transverse; therefore, we have
∂ ·W1 ¼ ∂̄ ·W1.
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or equivalently,12

W ¼ −
2

3
S0θθ0 ·W1 þ SS0θ · θ0W1

þ 2

27
H2S0D2D1θ

0 ·W1 þD2D0
2ðWg

þWΞ
g Þ: ð59Þ

Here and before going any further, it would be interest-
ing to characterize the gauge and the divergencelessness
parts of the graviton bitensor two-point function (59). In a
totally symmetric way, the gauge part D0

2W
Ξ
g obeys

D2ðQ1 þ 6ÞD0
2W

Ξ
g ¼ 0; ð60Þ

and considering the identities given in Appendix C, we get

∂2 ·W ¼ 1

1 − cl

�
TS0θ0 · ∂̄W1 −

1

3
H2S0D1θ

0 ·W1

þ 3H2S0x · θ0W1

�
: ð61Þ

The above equation in comparison with (53) reveals that

D0
2W

∘
g ¼ ð1 − clÞ∂2 ·W:

With respect to (61), the graviton bitensor (59) takes the
form,

W ¼
�
−
2

3
S0θθ0 ·W1 þ SS0θ · θ0W1 þ

1

3
H2S0D2x · θ0W1

þ 1

27
H2S0D2D1θ

0 ·W1

�
þ cl − 1

9
D2∂2 ·W

¼ ½the c-independent part� þ cl − 1

9
D2∂2 ·W: ð62Þ

Note that, the gauge part only appears coupled to the scalar
part, i.e., D2∂2 ·W. Here, it should also be noted that the
physical graviton two-point function (more precisely, the
c-independent part) has been already found in the previous
papers [29,30]. In the present paper, however, we are
interested in the most general form of the graviton two-
point function, in c ¼ cl gauge, to construct the graviton
quantum field.
Thus far, we have shown that the graviton two-point

function can be written in terms of the bivector W1

satisfying Eq. (43). Pursuing a similar procedure to what
we have done above, we can get the general solution to
Eq. (43) by writingW1 as the following linear combination
of two biscalars W2 and W3 [31]:

W1 ¼ θ · θ0W2 þD1D0
1W3: ð63Þ

Putting the above solution into Eq. (43) and utilizing the
following formulas:

Q1D1D0
1W3 ¼ D1Q0D0

1W3; ð64Þ

Q1θ · θ0W2 ¼ ðθ · θ0ðQ0 − 2Þ − 2H2D1x · θ0ÞW2; ð65Þ

we get

Q0W2 ¼ 0; ð66Þ

D0
1W3 ¼ −

1

2
ðθ0 · ∂̄ þ 2H2x · θ0ÞW2: ð67Þ

Therefore, we can rewrite the general solution (63) as

W1 ¼
�
θ · θ0 −

1

2
D1½θ0 · ∂̄ þ 2H2x · θ0�

�
Wmc; ð68Þ

where W2 ≡Wmc stands for a minimally coupled biscalar
two-point function.
Now by substituting Eq. (68) into Eq. (62), we can

explicitly exhibit the graviton bitensor two-point function
(39) as the resulting action of a maximally symmetric
projection bitensor Δαβα0β0 ðx; x0Þ on a minimally coupled
biscalar two-point function Wmcðx; x0Þ as follows:

Wαβα0β0 ðx; x0Þ ¼ Δαβα0β0 ðx; x0ÞWmcðx; x0Þ: ð69Þ

On the other hand, the bitensor (39) must verify Eq. (14)
with respect to variable x0, as well. Pursuing the same
procedure, we obtain

ðQ0
0 þ 6ÞθW0 ¼ −4Sθ ·W1; ð70Þ

ðQ0
1 þ 2ÞW1 ¼ 0; ð71Þ

ð1 − cÞðQ0
1 þ 6ÞD2Wg

¼ ð2 − 5cÞH2Sx0 · θW1

þ c

�
−
1

2
H2D0

1θW0 − T 0Sθ · ∂̄ 0W1

�
þD2Ξg; ð72Þ

with T 0Sθ · ∂̄ 0W1 ¼ Sθ · ∂̄ 0W1 − SH2x0θ ·W1 and D2Ξg

as an arbitrary bivector satisfies D0
2ðD2ΞgÞ ¼ 0.

The solution to Eq. (70) can be simply given by

θW0 ¼ −
2

3
Sθ ·W1:

Now with respect to (71) along with ∂̄ 0 ·W1 ¼ 0, we have
Q0

0W1 ¼ 0, which implies that

Q0
0θW0 ¼ −

2

3
Q0

0Sθ ·W1 ¼ 0:
12For the sake of simplicity, we drop the indices demonstrating

c ¼ cl in our notations: Wc¼cl ≡W.

GUPTA-BLEULER QUANTIZATION FOR LINEARIZED GRAVITY … PHYS. REV. D 100, 066012 (2019)

066012-11



Regarding the decomposition of D2Wg ¼ D2Wg þD2WΞ
g ,

while

ð1 − cÞðQ0
1 þ 6ÞD2WΞ

g ¼ D2Ξg; x0 ·WΞ
g ¼ 0;

∂̄ 0 ·WΞ
g ¼ 0;

Eq. (72) can be written as

ðQ0
1 þ 6ÞD2Wg ¼

1

1 − c

�
−c;

c
3
; 2 − 5c

	
:

The closed three-dimensional space fu0; v0; w0g ∈ E0, under
the action of ðQ0

1 þ 6Þ, is defined by

fu0; v0; w0g ¼ u0T 0Sθ · ∂̄ 0W1 þ v0H2SD0
1θ ·W1

þ w0H2Sx0 · θW1;

while we have

ðQ0
1 þ 6ÞT 0Sθ · ∂̄ 0W1 ¼ f6; 2; 0g;

ðQ0
1 þ 6ÞH2SD0

1θ ·W1 ¼ f0; 6; 0g;

ðQ0
1 þ 6ÞH2Sx0 · θW1 ¼ f−2; 0; 0g:

Equation (72) now can be expressed as

0
B@

6 0 −2
2 6 0

0 0 0

1
CA
0
B@

X0

Y 0

Z0

1
CA ¼ 1

1 − c

0
B@

−c
c=3

2 − 5c

1
CA; ð73Þ

and the solution to it, setting c ¼ 2=5 ¼ cl, would be

D2Wg ¼ f0; 1=27; 1=3g þ ϱ0D2W∘
g;

in which ϱ0 and D2W∘
g are, respectively, an arbitrary

constant and a function inside E0, with

ðQ0
1 þ 6ÞD2W∘

g ¼ 0;

and therefore,

D2W∘
g ¼ f1;−1=3; 3g:

Considering the above calculations, one can easily show
that for ϱ0 ¼ −1=9, the group theoretical content of this
construction becomes clear, so that, the solution to Eq. (72)
can be written as D2Wg ¼ D2Wg þD2Wg

þD2WΞ
g , with

D2Wg ¼ f0; 2=27; 0g; D2Wg
¼ f−1=9; 0; 0g;

or

W ¼ θ0θW0 þ S0Sθ0 · θW1

þ 2

27
H2SD0

2D
0
1θ ·W1 þD0

2D2ðWg
þWΞ

g Þ:

Note that, D2Wg is the scalar part of D2Wg and D2Wg

satisfies

Q0
1D2Wg

þ 2

3
D0

1D2∂̄ 0 ·W
g
¼ 0;

while the gauge and the scalar parts, respectively, obey

D0
2ðQ0

1 þ 6ÞD2WΞ
g ¼ 0;

∂ 0
2 ·W ¼ 1

1 − cl

�
T 0Sθ · ∂̄ 0W1 −

1

3
H2SD0

1θ ·W1

þ 3H2Sx0 · θW1

�
:

The above equation reveals that D2W∘
g ¼ ð1 − clÞ∂ 0

2 ·W.
According to the above formulas, the general bitensor

(39), with respect to x0, can be expressed as

W ¼
�
−
2

3
Sθ0θ ·W1 þ S0Sθ0 · θW1 þ

1

3
H2SD0

2x
0 · θW1

þ 1

27
H2SD0

2D
0
1θ ·W1

�
þ cl − 1

9
D0

2∂ 0
2 ·W: ð74Þ

In (74), the bivector W1 can be obtained by putting the
following linear combination into Eq. (71):

W1 ¼ θ0 · θW2 þD0
1D1W3; ð75Þ

for which, we have

Q0
0W2 ¼ 0; D1W3 ¼ −

1

2
ðθ · ∂̄ 0 þ 2H2x0 · θÞW2:

ð76Þ

Therefore, W1 can be presented as (W2 ≡Wmc)

W1 ¼
�
θ0 · θ −

1

2
D0

1½θ · ∂̄ 0 þ 2H2x0 · θ�
�
Wmc: ð77Þ

Again, by combining Eqs. (74) and (77) together, we can
demonstrate the graviton two-point function as the action of
a maximally symmetric projection bitensor on a minimally
coupled biscalar two-point function,

Wαβα0β0 ðx; x0Þ ¼ Δ0
αβα0β0 ðx; x0ÞWmcðx; x0Þ: ð78Þ

To summarize, thus far we have shown that the graviton
bitensor two-point function (39), with respect to x and x0,
can be written in terms of a maximally symmetric
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projection bitensor on a minimally coupled biscalar two-
point function [see (69) and (78)]. Our result, therefore,
would be dS invariant if and only if its structure function,
the minimally coupled biscalar two-point function Wmc,
could be written in a dS-invariant form. Respecting the
result given by Allen and Folacci in their seminal work [11]
(see also [12,13]), it is clear that if one needs the biscalar
massless minimally coupled two-point function to be dS
invariant, one has to ignore its analyticity properties for
the time being [26,32]. This means that Wmcðx; x0Þ is

only a function of the invariant length Z ¼ −H2x · x0;
Wmc ¼ WmcðZÞ. In the same way, the graviton two-point
function can be written in a full dS-invariant form only
through ignoring its analyticity properties: the only dS-
invariant two-point function that naturally appears in the
case of the linearized gravity in dS spacetime is nothing but
the commutator. This commutator is of course not of a
positive type (see the previous section).
Now, considering Wmc ¼ WmcðZÞ and using the iden-

tities given in Appendix C, we have

θ0α0β0W0ðx; x0Þ ¼
1

3
S0
�
θ0α0β0 þ

4

1 − Z2
H2ðx · θ0α0 Þðx · θ0β0 Þ

�
Z

d
dZ

WmcðZÞ; ð79Þ

W1ββ0 ðx; x0Þ ¼
1

2

�
3þ Z2

1 − Z2
H2ðx0 · θβÞðx · θ0β0 Þ − Zðθβ · θ0β0 Þ

�
d
dZ

WmcðZÞ; ð80Þ

D2αD0
2α0Wgββ0 ðx; x0Þ ¼

H2

54ð1 − Z2Þ2 SS
0
�
H−2Zð7 − 3Z2Þð1 − Z2Þθαβθ0α0β0 þ 24Z3θαβðx · θ0α0 Þðx · θ0β0 Þ

þ Zð−1þ 9Z2Þð1 − Z2ÞH−2ðθα · θ0α0 Þðθβ · θ0β0 Þ þ ð−1 − 50Z2 − 45Z4Þðθα · θ0α0 Þðx · θ0β0 Þðx0 · θβÞ

þ 36Z þ 120Z3 þ 36Z5

1 − Z2
H2ðx0 · θαÞðx0 · θβÞðx · θ0α0 Þðx · θ0β0 Þ þ 12Zð3 − Z2Þθ0α0β0 ðx0 · θαÞðx0 · θβÞ

�

×
d
dZ

WmcðZÞ: ð81Þ

According to the above formulas, the explicit form of the graviton commutator can be written as follows:

Wαβα0β0 ðx; x0Þ ¼
2Z

27ð1−Z2Þ2SS
0½ðθα · θ0α0 Þðθβ · θ0β0 Þf1ðZÞ þH2ðθ0α0β0 ðx0 · θαÞðx0 · θβÞ þ θαβðx · θ0α0 Þðx · θ0β0 ÞÞf2ðZÞ

þ θαβθ
0
α0β0f3ðZÞ þH4ðx0 · θαÞðx0 · θβÞðx · θ0α0 Þðx · θ0β0 Þf4ðZÞ þ ðθα · θ0α0 Þðx · θ0β0 Þðx0 · θβÞf5ðZÞ� d

dZ
WmcðZÞ;

ð82Þ

where

f1ðZÞ ¼ ð1 − Z2Þð−7þ 9Z2Þ;
f2ðZÞ ¼ 3ð3 − Z2Þ;

f3ðZÞ ¼ 1

4
ð16 − 3Z2Þð1 − Z2Þ;

f4ðZÞ ¼ 3

ð1 − Z2Þ ð3þ 10Z2 þ 3Z4Þ;

f5ðZÞ ¼ 1

2Z
ð41 − 50Z2 − 36Z4Þ;

and WmcðZÞ obeys

Q0WmcðZÞ ¼
�
ð1 − Z2Þ d2

dZ2
− 4Z

d
dZ

�
WmcðZÞ ¼ 0:

The general solution to the above equation is

WmcðZÞ ¼ C1

�
−2Z
1 − Z2

þ ln
�
1 − Z
1þ Z

��
þ C2;

where C1, C2 ∈ R.
Using the formula

lnðx� i0Þ ¼ lnðjxjÞ � iπθð−xÞ;

it is easily seen that lnð1−Z
1þZÞ is a nonlocal function [32].

However, in the commutator (82), WmcðZÞ enters only via
its derivative,

d
dZ

WmcðZÞ ¼ −
4C1

ðZ2 − 1Þ2 ; ð83Þ
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which is a local function. One can now easily see that for
points that are not null related, our obtained result (82) is
finite.
Here, it would be also convenient to demonstrate our

result in the intrinsic coordinate (see Appendix B),

Wμνμ0ν0 ðX;X0Þ

¼ 2Z
27

SS0
�

f1
ð1 − Z2Þ2 gμμ0g

0
νν0

þ f2
1 − Z2

ðgμνnμ0nν0 þ g0μ0ν0nμnνÞ þ
f3

ð1 − Z2Þ2 gμνg
0
μ0ν0

þ
�

f1
ð1þ ZÞ2 þ f4 −

f5
1þ Z

�
nμnνnμ0nν0

þ
�
2ðZ − 1Þf1
ð1 − Z2Þ2 þ f5

1 − Z2

�
gμμ0nνnν0

�
d
dZ

WmcðZÞ:

ð84Þ
We end our discussion in this section by commenting on

some existing results which are in contradiction with ours.
In Refs. [33,34], the graviton two-point function in dS
spacetime has been given in terms of maximally symmetric
bitensors. More precisely, it has been argued that without
ignoring the analyticity properties, for the time being, the
dS-invariant, infrared finite graviton two-point function of
the positive type is quite achievable (see the same argument
in [35–46]). Take a closer look at the method which has
been utilized in Refs. [33–46] shows that the authors have
considered the synchronous-transverse-traceless (STT)
gauge to evaluate the graviton two-point function. The
critical point associated with this method is that it is not
possible to find a dS graviton field satisfying the STT gauge
conditions if L ¼ 0 or 1 [47]. Indeed, by solving the field
equation in the conformal coordinate (4) directly, the
normalization factor associated with the lowest graviton
eigenmode, i.e., L ¼ 0, would be broken [48–50]. At first
glance, this mode can be regarded as a spurious mode and
thus, can be dropped from the mode expansion of the
graviton field. It is also discussed that the mode L ¼ 1
suffers from an analogous difficulty (see the details in the
references cited above). However, as already pointed out,
thanks to the mathematical structure of the formulation we
are using, inspired by the ambient space approach, it can be
checked quite easily that the aforementioned break down
in the normalization factor is because of a degeneracy for
L ¼ 0 mode reflecting the gaugelike symmetry (2). This
point explicitly reveals that, quite contrary to the authors
claim in [33–46], such a construction in the STT gauge
conditions (L ≥ 2), by ignoring the L ¼ 0 mode and con-
sequently, the gaugelike symmetry (2) reflected by it, does
not transform correctly under the whole symmetries of the
classical theory, and therefore, even obtaining an infrared
free graviton two-point function in this way is not physi-
cally significant since it is not covariant anyway. To see
other criticisms to this method, one can refer to [51–55].

V. DE SITTER LINEAR QUANTUM GRAVITY

A. The quantum field

Theexplicit knowledgeof the commutatorWμνμ0ν0 ðX;X0Þ,
given in the light cone gauge (c ¼ cl), with the above-
mentioned properties allows us to construct an acceptable
quantum theory of the dS graviton field. The fieldsKμνðXÞ,
which we wish to consider on MH, are expected to be
operator-valued distributions on MH acting on the bosonic
Fock space H ⊕ H� built on the total (Krein) space
H ⊕ H�. In terms of Fock space and a field operator,
the aforementioned properties of Wμνμ0ν0 ðX;X0Þ become
equivalent to the following conditions:

(i) Existence of an indecomposable representation of
the dS group UG which is the extension of the dS
natural representation UG [see (36)] on the space of
states to the Fock space.

(ii) Existence of a distinguished vector jΩi, called “the
vacuum”, in the Fock space, cyclic for the poly-
nomial algebra of field operators and invariant under
the representation UG of the dS group.

(iii) Existence of a complex vector space A, with an
indefinite sesquilinear form, that can be described as
the direct sum,

A ¼ A0 ⊕ ½⊕n SðA1Þ⊗n�;

in which A0 ¼ fϑjΩi; ϑ ∈ Cg, and A1 is defined
with the indefinite sesquilinear form.

(iv) Covariance of the field operators under the repre-
sentation UG, i.e.,

UGKðXÞUG−1 ¼ KðGXÞ;

for any G in the dS group.
(v) Locality,

½KðXÞ;KðX0Þ� ¼ 0;

as long as the points X and X0 are not causally
connected.

(vi) Transversality, x ·K ¼ 0.
(vii) Index symmetrizer, Kμν ¼ Kνμ.
(viii) Tracelessness, K0 ¼ 0.
Let us now define the graviton quantum field corre-

sponding to the above commutator. For any test function
fμν ∈ DðMHÞ, we define the vector valued distribution
taking values in the space Vc ¼ spanfKj;Kj�g, with
j ∈ J ,13 by

13Here, for the sake of simplicity, we use the notation,

J ¼ fðL; l; mÞ ∈ N × N × Z;L ≥ 0; 0 ≤ l ≤ L;−l ≤ m ≤ lg:
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X → pμνðfÞðXÞ ¼
Z
MH

Wμνμ0ν0 ðX;X0Þfμ0ν0 ðX0ÞdσðX0Þ

¼
X
j

KjðfÞKj
μνðXÞ: ð85Þ

Here, KjðfÞ is defined by

KjðfÞ ¼
Z
MH

Kj�
μνðXÞfμνðXÞdσðXÞ: ð86Þ

It is indeed the smeared form of the modes. The space
generated by the vector valued distributions [pðfÞ’s] is
equipped with the indefinite invariant inner product
[∀ f; g ∈ DðMHÞ],

hpðfÞ; pðgÞi ¼
Z
MH×MH

f�μνðXÞWμνμ0ν0 ðX;X0Þ

× gμ
0ν0 ðX0ÞdσðX0ÞdσðXÞ: ð87Þ

As usual, the field is expected to be an operator-valued
distribution,

KðfÞ ¼ aðpðfÞÞ þ a†ðpðfÞÞ; ð88Þ

or in the unsmeared form,

KðXÞ ¼ aðpðXÞÞ þ a†ðpðXÞÞ: ð89Þ

Here, the operators a and a† are, respectively, antilinear and
linear in the argument. Hence, the field reads

KðXÞ ¼
X
j∈J

ðajKjðXÞ þ H:c:Þ

−
X
j∈J

ðbjKj�ðXÞ þ H:c:Þ; ð90Þ

where the operators aj and bj are, respectively, the
annihilators of the modes Kj and Kj�. The nonvanishing
commutation relations between these operators are

½aj; a†j0 � ¼ δjj0 ¼ −½bj; b†j0 �: ð91Þ

These operators are defined by

ajjΩi ¼ 0 ¼ bjjΩi; ð92Þ

where jΩi is a dS-invariant vacuum. We call it the Krein-
Gupta-Bleuler (KGB) vacuum.
Finally, one finds the commutation relations between

fields as follows:

½KðXÞ;KðX0Þ� ¼ 2iImhpðXÞ; pðX0Þi
¼ 2iImWðX;X0Þ: ð93Þ

Having shown that the field we constructed is causal and
has all the covariance properties of the classical field, we
can now turn to an investigation of the physical content of
the theory. In this regard, in the following part, to interpret
the theory, we define its physical states and its observables.
We particularly discuss that the presence of nonphysical
states do not yield any trouble in the theory (e.g., the
appearance of negative energies).

B. Quantum observables

Let us start with determining the physical states.
Considering the chain (33), the whole Fock space Vc ¼
H ⊕ H� has the following second-quantized Gupta-
Bleuler structure:

V
g1
⊂ V1 ⊂ Vc: ð94Þ

Here, we designate by V1 the space generated from the
Fock vacuum by creating elements of V1. It is actually the
space generated by14

V1 ≡ fða†ðg1ÞÞn0
Y

j∈J≥1
ða†jÞnj jΩig;

where a†ðg1Þ ≡ a†ðKg1Þ. We also designate by V
g1

the

subspace of gaugelike states that are orthogonal to V1,

Ψ ∈ V
g1

iff Ψ ∈ V1 and hΨ;Φi ¼ 0; ∀Φ ∈ V1:

Note that the subspace V
g1

is strictly greater than Vg1

defined by

Vg1 ≡ fða†ðg1ÞÞn0 jΩig:

Indeed, for any state Ψ ∈ V1, the state ða†ðg1ÞÞn0Ψ belongs

to V
g1

but not to Vg1 .

In the above structure, the quotient space V1=Vg1
contains all physical states, but it is not restricted to them:
with respect to the evident gauge symmetry, it also contains
some nonphysical states. Indeed, as already pointed out, in
the case of the dS linearized quantum gravity, we encounter
with two kinds of the gauge d.o.f. which are distinguished
by their Gupta-Bleuler structures. Technically, according to
the evident gauge symmetry, another Gupta-Bleuler struc-
ture also appears in the Fock space,

V
g2
⊂ V2 ⊂ Vc; ð95Þ

where

14By j ∈ J ≥ 1, in comparison with j ∈ J , we mean the set of
fðL; l; mÞg, with L ≥ 1.
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V2 ≡
�Y

j∈J
ða†ðg2ÞjÞmjðb†

ðg2ÞjÞ
m0

jða†ð 2
g2
ÞjÞnjðb†

ð 2
g2
ÞjÞn

0
j jΩi

	
;

with

a†ðg2Þj ≡ a†ðKjÞ; b†
ðg2Þj ≡ b†ðKj�Þ; ∀Kj; Kj� ∈ Vg2 ;

and

a†ð 2
g2
Þj ≡ a†ðKjÞ; b†

ð 2
g2
Þj ≡ b†ðKj�Þ; ∀Kj;

Kj� ∈ V2=Vg2 :

Here, V
g2
is the space of gauge states which is orthogonal

to V2.
The physical states, therefore, would be those elements

of V1=Vg1
which can also be found in the quotient space

V2=Vg2
. More accurately, they are the elements of the

invariant subspace,

Vphys ¼ ðV1=Vg1
Þ ⋂ ðV2=Vg2

Þ

¼
� Y

j∈J≥1
ða†ð 2

g2
ÞjÞnj jΩi

	
: ð96Þ

It is also should be noted that two physical states, e.g., Ψ
and Ψ0, are physically equivalent if they differ by an
element of gauge and/or gaugelike states (Ψ −Ψ0 belongs
to V

g2
and/or V

g1
).

Before going to define the observables of the theory,
it will be well to clear up one point. According to the
Gupta-Bleuler structures associated with the evident gauge
symmetry and the gaugelike symmetry, the spaces of the
dS-invariant states of Vc are Vg1 and Vg2 , which are,
respectively, generated from the vacuum by ða†ðg1ÞÞn0 and

ða†ðg2ÞjÞmjðb†
ðg2ÞjÞ

m0
j . These spaces are, respectively, an

infinite-dimensional subspace of V
g1

and V
g2
; hence, one

may say that the Fock vacuum is not the only dS-invariant
state. Nevertheless, it is obvious that all these states are
physically equivalent to an element of the one-dimensional
space generated by the vacuum state. In this sense, we can
say that the Fock vacuum is unique. [Of course, this does
not mean that the Bogolyubov transformations, which are
indeed changes of physical states, are no longer valid in this
construction: the above construction gives a framework in
which, instead of having a multiplicity of vacua, we have
several possibilities for the space of physical states, while
there exist only one field and one vacuum (the latter being
invariant under Bogoliubov transformations). See [56] for a
detailed discussion on the Bogolyubov transformations in
the Krein space.]
We are now in a position to define the observables of the

theory. As is well-known, observables are defined by the

property that they do not “see” the gauge states: technically,
with the assumption that Ψ and Ψ0 are equivalent physical
states of the system, we must have

hΨjAjΨi ¼ hΨ0jAjΨ0i; ð97Þ

for any observable A which is a symmetric operator on the
Fock space. We note that, according to the above dis-
cussion, the field itself is not an observable.
In this context, let us discuss the general features of the

stress tensor Tμν which is primary among the observables.
In general, the mean values of the stress tensor on the KGB
vacuum state is

hΩjTμνjΩi ¼
X
j∈J

Tμν½Kj
μν;K

j�
μν�

−
X
j∈J

Tμν½Kj�
μν;K

j
μν� ¼ 0; ð98Þ

where Tμν½K;K� denotes the bilinear expression of the
stress tensor Tμν. The cancellation appeared in (98),
because of the unusual second term with the minus sign,
is indeed due to the terms of the quantum field (90)
containing bj and b

†
j . As a direct consequence, the vacuum

energy of the free field in this construction automatically
vanishes, hΩjT00jΩi ¼ 0. This property has an interesting
link to the cosmological constant problem (see [57]).
Similarly, we can evaluate the behavior of the mean

values of the stress tensor on physical states jP⃗i ∈ Vphys.
Obviously, the same cancellation occurs again, and we have

hP⃗jTμνjP⃗i ¼ 2Re
X

j∈J≥1
njTμν½Kj

μν;K
j�
μν�: ð99Þ

As a result, for any physical state jP⃗i, one gets

hP⃗jT00jP⃗i > 0;

which along with (98), despite the use of negative norm
solutions in the definition of the field, guarantees the
positivity of the energy operator in all physical states.
Indeed, this construction remarkably provides a framework
allowing for an automatic and covariant renormalization of
the stress tensor (note that the above expression is free of
any infinite term) which meets the so-called Wald axioms,
namely: (i) hTμνi is covariant and causal since the field

itself is, (ii) hP⃗jT00jP⃗i ≥ 0, for any physical state jP⃗i (the
equality holds if and only if jP⃗i ¼ jΩi), and finally (iii) the
commutation relation ½bj; b†j � ¼ −1 implies that

aja
†
j þ a†jaj þ bjb

†
j þ b†jbj ¼ 2a†jaj þ 2b†jbj;

which is equivalent to reordering when we compute the
mean values of the stress tensor on physical states.
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VI. DISCUSSION

We have presented a new (free) graviton quantum field
in dS spacetime which transforms correctly under isome-
tries, gauge transformations, and gaugelike transforma-
tions, admitting a dS-invariant vacuum à la Gupta-Bleuler,
known as the Krein-Gupta-Bleuler vacuum. Let us recall
that if one uses the natural dS vacuum state (the Bunch-
Davies vacuum) to construct the graviton quantum field,
not only dS invariance but also the gaugelike invariance of
the theory would be broken [1,8,9,51–55]. The KGB
quantization approach, which does not prohibit negative
norm states in the definition of the field, however, pro-
vides a unified framework to treat gauge and gaugelike
symmetry of the theory. The use of this quantization
scheme, as we have shown, is justified by the fact that
the theory possesses all the properties one might expect
from a free field on dS spacetime with high symmetry,
namely:

(i) All physical states have positive norms, as needed
for a reasonable quantum mechanical interpretation
of the theory (of course, all positive norm states are
not physical).

(ii) The graviton field we have constructed is causal, and
it is covariant in the usual strong sense.

(iii) The graviton field transforms correctly under gauge
and gaugelike transformations.

(iv) In spite of the fact that the operator T00ðXÞ is not
positively definite as an operator on the full space of
states, the expected values of T00ðXÞ between
excited physical states are clearly positive.

Beside these, there are at least three related but distinct
reasons for which one might be interested in the KGB
quantization method:

(i) This method fulfills all common results in the flat
limit [56].

(ii) It provides a remarkable automatic and covariant
renormalization mechanism of the mean value of the
stress tensor verifying the so-called Wald axioms
(interestingly, the vacuum energy independent of the
curvature is zero) [58–60].

(iii) In the semiclassical description of general relativity
(Λ > 0) when a matter field is present, a preliminary
estimate of the expected order of magnitude of
vacuum energy density stored in the cosmological
constant today with respect to the KGB vacuum
yields a remarkable coincidence with the empirical
data [57].

On this basis, while there is definitely a tremendous
amount of work still to be performed, we would argue that
the KGB method could very well in its own right be a
promising alternative for quantum field theory in the
presence of a nonzero (positive) cosmological constant.
Last but certainly not least, this method is one of very few
choices that has any realistic hope of direct confrontation
with the long-standing problem of dS breaking in linearized

quantum gravity and the dark energy problem, while it
recovers all common results in the Minkowskian limit.
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APPENDIX A: DS PLANE WAVES AS
GENERATING FUNCTIONS

The fields carrying the representations Πp;0, with
p ¼ 1; 2; ::, in the scalar discrete series are solutions to
the following equation [issued from Eq. (9)]:

ðQ0 þ κðκ þ 3ÞÞΦðxÞ ¼ 0; ðA1Þ

where we have considered the unifying complex parameter
κ given by κ ¼ p − 1 or ¼ −p − 2. [The irreducible
representation associated with our study is the massless
minimally coupled representation Π1;0, the lowest case in
the scalar discrete series representations, corresponds to
κ ¼ −3. Note that the case κ ¼ 0 can be considered as the
associated trivial representation.] With the notation of (24),
a continuous family of simple solutions to (A1) can be
written as

ΦðxÞ ¼ ðHx · ξÞκ: ðA2Þ

Setting ξ ¼ ðξ0; ξÞ, with ξ ¼ kξkv ∈ R4, v ∈ S3, and
jξ0j ¼ kξk, the dot productHx · ξ takes the following form:

Hx · ξ ¼ ðtan ρÞξ0 − 1

cos ρ
u · ξ ¼ ξ0eiρ

2i cos ρ
ð1þ z2 − 2ztÞ;

where z ¼ ie−iρsgnξ0 and t ¼ u · v≡ cosϖ. Now, utiliz-
ing the generating function for Gegenbauer polynomials,

ð1þ z2 − 2ztÞ−λ ¼
X∞
n¼0

znCλ
nðtÞ; ðA3Þ

with jzj < 1, and making use of this expression with
λ ¼ −κ, the following expansion can be established:

ðHx · ξÞκ ¼
��

ξ0eiρ

2i cos ρ

�
κ X∞
n¼0

znC−κ
n ðtÞ

�
; ℜκ <

1

2
:

ðA4Þ

Although (A4) is not valid in the sense of functions since
jzj ¼ 1, the convergence is ensured if we give a negative
imaginary part to the angle ρ. In this regard, the ambient
coordinates is extended to the forward tube [27],
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T þ ¼ fR5 − iV̄þ
5 ∩ MC

Hg;
V̄þ
5 ¼ fx ∈ R5∶x2 ≥ 0; x0 > 0g:

Now, we make use of two expansion formulas involving
Gegenbauer polynomials [61] and normalized hyperspher-
ical harmonics on S3, i.e.,

Cλ
nðtÞ ¼

1

ΓðλÞΓðλ − 1Þ
X½n2�
k¼0

ckC1
n−2kðtÞ; ðA5Þ

with

ck ¼
ðn − 2kþ 1ÞΓðkþ λ − 1ÞΓðλþ n − kÞ

k!Γðn − kþ 2Þ ;

and

C1
Lðv · v0Þ ¼

2π2

Lþ 1

X
lm

YLlmðvÞY�
Llmðv0Þ; ðA6Þ

in which v; v0 ∈ S3 and ðL; l;mÞ ∈ N × N × Z, with 0 ≤
l ≤ L and −l ≤ m ≤ l. Combining the Gegenbauer poly-
nomials generating function (A3) and two expansion
formulas, (A5) and (A6), we have

ð1þ z2 − 2zv · v0Þ−λ ¼ 2π2
X
Llm

zLpλ
Lðz2ÞYLlmðvÞY�

Llmðv0Þ;

ðA7Þ

and the integral representation,

zLpλ
Lðz2ÞYLlmðvÞ ¼

1

2π2

Z
S3
ð1þ z2 − 2zv · v0Þ−λ

× YLlmðv0Þdσðv0Þ; ðA8Þ

where

pλ
Lðz2Þ ¼

1

ðLþ 1Þ!
Γðλþ LÞ
ΓðλÞ 2F1ðLþ λ; λ − 1;Lþ 2; z2Þ:

Finally, let us return to the dS plane waves ðHx · ξÞκ.
Considering (A4) and (A7), the expansion of the dS plane
waves becomes

ðHx · ξÞκ ¼ 2π2
X
Llm

Φκ
LlmðxÞðξ0Þκðsgnξ0ÞLY�

LlmðvÞ; ðA9Þ

where the functions,

Φκ
LlmðxÞ ¼

iL−κe−iðL−κÞρ

ð2 cos ρÞκ p−κ
L ð−e−2iρÞYLlmðuÞ; ðA10Þ

are introduced on the dS hyperboloid. By making use of the
following relation between hypergeometric functions [28]:

2F1ða; b; c; zÞ ¼ ð1 − zÞðc−a−bÞ2F1ðc − a; c − b; c; zÞ;

the functions Φκ
LlmðxÞ take the form,

Φκ
LlmðxÞ ¼ iL−κe−iðLþκþ3Þρð2 cos ρÞκþ3

ΓðL − κÞ
ðLþ 1Þ!Γð−κÞ

× 2F1ðκ þ 2; Lþ κ þ 3;Lþ 2;−e−2iρÞYLlmðuÞ:

Since YLlm’s are linearly independent, it is clear that
Φκ

LlmðxÞ’s are solutions to (A1) when adopting the appro-
priate separation of variables. In addition, the hyperspher-
ical harmonics possess the important property that they are
orthonormal. From it, we get

Φκ
LlmðxÞ ¼

ðsgnξ0ÞL
2π2ðξ0Þκ

Z
S3
dσðvÞðHx · ξÞκYLlmðvÞ: ðA11Þ

The above relations make explicit the “spherical” modes in
dS spacetime in terms of the dS plane waves.

APPENDIX B: THE TWO-POINT FUNCTION
FROM MAXIMALLY SYMMETRIC
BITENSORS IN AMBIENT SPACE

Following Allen and Jacobson in Ref. [14], any max-
imally symmetric bitensor can be presented as a sum of
products of three basic tensors [14], while the expansion
coefficients are determined by the geodesic distance
σðx; x0Þ. [The geodesic distance is defined as the distance
along the geodesic connecting the two points x and x0.] Of
course, it can also be defined by a unique analytic extension
when no geodesic connects x and x0. On this basis, the
bitensors constitute a complete set. These fundamental
tensors can be obtained by

nμ ¼ ∇μσðx; x0Þ; nμ0 ¼ ∇μ0σðx; x0Þ;
gμν0 ¼ −c−1ðZÞ∇μnν0 þ nμnν0 : ðB1Þ

The geodesic distance, for Z ¼ −H2x · x0, can be implicitly
given by [27]

�
Z ¼ coshðHσÞ; if x and x0 are time like separated;

Z ¼ cosðHσÞ; if x and x0 are spacelike separated:

The two-point function, with respect to these basis biten-
sors, then can be written as follows:

Wμνμ0ν0 ¼ A1ðσÞgμνg0μ0ν0 þA2ðσÞgμμ0g0νν0
þA3ðσÞðgμνnμ0nν0 þ g0μ0ν0nμnνÞ
þA4ðσÞgμμ0nνnν0 þA5ðσÞnμnνnμ0nν0 : ðB2Þ

Since in the present paper we use the ambient space
notations to evaluate the graviton two-point function, let
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us accordingly rewrite the basic bitensors based upon the
associated notations.
In the ambient space formalism, we claim that the basic

bitensors associated with nμ, nμ0 , and gμν0 can be, respec-
tively, written as

∂̄ασðx; x0Þ; ∂̄ 0
β0σðx; x0Þ; θα · θ0β0 ; ðB3Þ

In order to prove this, one only should respect the
restriction to the hyperboloid determined by

T μν0 ¼ xαμx0
β0
ν0Tαβ0 : ðB4Þ

(i) When Z ¼ cosðHσÞ, we have

nμ ¼ xαμ∂̄ασðx; x0Þ ¼ cðZÞxαμðx0 · θαÞ;
nν0 ¼ x0β

0
ν0 ∂̄ 0

β0σðx; x0Þ ¼ cðZÞx0β0ν0 ðx · θ0β0 Þ;
∇μnν0 ¼ xαμx0

β0
ν0θ

ϱ
αθ0γ

0
β0 ∂̄ϱ∂̄ 0

γ0σðx; x0Þ
¼ cðZÞ½xαμx0β

0
ν0θα · θ

0
β0 − nμnν0Z�;

where cðZÞ ¼ H=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p
, xαμ ¼ ∂xα=∂Xμ, and

x0β
0

ν0 ¼ ∂x0β0=∂X0ν0 .
(ii) When Z ¼ coshðHσÞ, nμ and nν0 are multiplied by i

and cðZÞ ¼ iH=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p
. For both cases, one finds

gμν0 þ ðZ − 1Þnμnν0 ¼ xαμx0
β0
ν0θα · θ

0
β0 :

APPENDIX C: SOME USEFUL RELATIONS

To obtain the two-point function, the following identities
are used:

∂2 ·D2D0
2Wg ¼ −ðQ1 þ 6ÞD0

2Wg; ðC1Þ

Q2D2D0
2Wg ¼ D2Q1D0

2Wg; ðC2Þ

Q2θθ
0W0 ¼ θQ0θ

0W0; ðC3Þ

∂2 · θθ0W0 ¼ −H2D1θ
0W0; ðC4Þ

Q2SS0θ · θ0W1 ¼ SS0θ · θ0ðQ1 − 4ÞW1

− 2H2S0D2x · θ0W1 þ 4S0θθ0 ·W1;

ðC5Þ

∂2 · SS0θ · θ0W1 ¼ TS0θ0 · ∂̄W1 −H2S0D1θ
0 ·W1

þ 5H2S0x · θ0W1; ðC6Þ

∂̄αfðZÞ ¼ −ðx0 · θαÞ
dfðZÞ
dZ

; ðC7Þ

θαβθ0αβ ¼ θ · ·θ0 ¼ 3þ Z2; ðC8Þ

ðx:θ0α0 Þðx · θ0α
0 Þ ¼ Z2 − 1; ðC9Þ

ðx:θ0αÞðx0 · θαÞ ¼ Zð1 − Z2Þ; ðC10Þ

∂̄αðx · θ0β0 Þ ¼ θα · θ0β0 ; ðC11Þ

∂̄αðx0 · θβÞ ¼ xβðx0 · θαÞ − Zθαβ; ðC12Þ

∂̄αðθβ · θ0β0 Þ ¼ xβðθα · θ0β0 Þ þ θαβðx · θ0β0 Þ; ðC13Þ

θ0βα0 ðx0 · θβÞ ¼ −Zðx · θ0α0 Þ; ðC14Þ

θ0γα0 ðθγ · θ0β0 Þ ¼ θ0α0β0 þ ðx · θ0α0 Þðx · θ0β0 Þ; ðC15Þ

Q0fðZÞ ¼ ð1 − Z2Þ d
2fðZÞ
dZ2

− 4Z
dfðZÞ
dZ

: ðC16Þ
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