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Strongly coupled N =4 supersymmetric Yang-Mills plasma on the Coulomb
branch. II. Transport coefficients and hard probe parameters
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We study N = 4 super Yang-Mills theory on the Coulomb branch (cSYM) by using its Type 1IB
supergravity dual. We compute the transport coefficients and hard probe parameters of N' = 4 ¢SYM at
finite temperature 7. We use the rotating black 3-brane solution of Type IIB supergravity with a single
nonzero rotation parameter r, after analytically continuing r, — —iry, and in an ensemble where the
Hawking temperature 7 and a scalar condensate (O) ~ r§ are held fixed. We find that the bulk viscosity to
entropy density ratio of the large black hole branch decreases with temperature and has a maxima around
the critical temperature 7., while, for the small black hole branch, it increases with temperature. The other
transport coefficients and parameters of hard probes, such as the conductivity, jet quenching parameter,
drag force, and momentum diffusion coefficients of the large black hole branch increase with temperature
and asymptote to their conformal value, while, for the small black hole branch, they decrease with

temperature.
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I. INTRODUCTION

The AdS/CFT correspondence [1-3] is an important
tool to compute the hydrodynamic transport coefficients
and hard probe parameters of a strongly coupled plasma
[4-11].

In this paper, we use the AdS/CFT correspondence to
study a strongly coupled N = 4 super Yang-Mills (SYM)
plasma on the Coulomb branch. In this branch, a scale A is
generated dynamically through the Higgs mechanism where
the scalar particles ®; (i = 1...6) of N' = 4 SYM acquire a
nonzero vacuum expectation value (VEV) that breaks the
conformal symmetry, and the gauge symmetry SU(N,.) to its
subgroup U(1)Ne=!, but preserves N = 4 supersymmetry
and the gauge coupling is not renormalized [12].

The thermodynamics of A" = 4 super Yang-Mills on the
Coulomb (cSYM) is investigated in some detail in [13].
In this paper, we will study its hydrodynamic transport
coefficients and hard probes by using its dual geometry
given by a rotating black 3-brane solution of Type IIB
supergravity with a single nonzero rotation parameter r
[12,14-18], after analytically continuing ry — —ir(, and in
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an ensemble where the Hawking temperature 7 and a scalar
condensate (O) ~ r} are held fixed [13].

So far, the computations of the transport coefficients of
the rotating black 3-brane have been limited to the grand
canonical ensemble (where temperature 7 and angular
velocity Q or chemical potential x are held fixed) and
canonical ensemble (where temperature 7 and angular
momentum density J or charge density p = (J°) are held
fixed), see [17-20]. In [21,22], it was shown that for planar
rotating black 3-branes the two ensembles have different
thermodynamics; for example, there is Hawking-Page
transition in the canonical ensemble but not in the grand
canonical ensemble.

The outline of this paper is as follows: In Sec. II, we write
down the 5-dimensional Type IIB supergravity action and its
rotating black 3-brane or R-charged black hole solution.

In Sec. III, we compute the hydrodynamic transport
coefficients, such as shear viscosity, bulk viscosity and
conductivity of the rotating black 3-brane solution dual to
N = 4 super Yang-Mills on the Coulomb branch (cSYM)
at strong coupling.

In Sec. IV, we calculate the drag force, momentum
diffusion coefficient, and jet quenching parameter on the
rotating black 3-brane solution.

II. TYPE IIB SUPERGRAVITY ACTION AND
BACKGROUND SOLUTION

The action for the U(1)? consistent truncation of Type
IIB supergravity on S° is given by [23,24], see also [25,26],
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= 1671_G5/d5x\/_95£’bu1k’ (2-1)
where
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Xl = e_%(ﬂl_%(f'z’ XZ g e‘%@]*’ﬁ(/’z’ X3 = eﬁ(/)l .
(2.2)

We have dropped the Chern-Simons term from the action
(2.1) since it does not play any role in our discussion below.
In this paper, we compute the hydrodynamic and hard
probe transport coefficients the following rotating black
3-brane solution of the above action (2.1) [19,27]

dsé) = ;H”S(—fdtz L a4+ dy? +dP) + _:2/3 ar.
' (2.3)
where
le_:_“;((r:))’ H:1—:—§, (2.4)
1 1
¢ :76111H, q)2:7§1nH,
Al = i%—rﬁrz If((r;") ,
7= (7 +fri - am). 2.3)
%2’, and A? = A} = 0. Our metric (2.3) is equivalent to

the metric used in [19] after analytically continuing
ro — —i,/q. Note that having an imaginary gauge potential
does not lead to any inconsistencies in the 5-dimensional
bulk spacetime, since all physical quantities in the bulk are
given in terms of (9,A})?. In the field theory side, having a
finite imaginary chemical potential 4 means that we are
exploring the phase diagram of N'=4 c¢SYM at finite
temperature 7 and imaginary chemical potential yu; see
[28-31] for the study of the QCD phase diagram on the
lattice at finite imaginary chemical potential without any
inconsistencies.

The Hawking temperature 7" of the rotating black 3-brane
solution (2.3) is given by
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FIG. 1. Hawking temperature T + Vs the radius of the honzon
(2.6), normalized by the energy scale A and rotation parameter ro,
respectively.

T 1 -1k
= 2, (2.6)
A K — K>
where Ty = ;gz, A= ;?2, andkx = r%‘ = .We have plotted%
h
in Fig. 1. We can also invert (2.6) to ﬁnd
72 12
K= . - , (2.7)
1t 2%
and
T3 2445
T_g — 2T (2.8)

1+ 501 F4/5-2)

Note that in (2.7) and (2.8) “—" corresponds to large black
hole branch and “+” corresponds to small black hole branch.

The entropy density s(7', A), for our ensemble where T
and A are held fixed, is given by

Ay 1
=167 = 16, V9 (r)gc(r)

m*N2T}

s(T,A)
(1-x)"2, (2.9)

where Gs = zR*/2N
volume.

2 and V5 is the three-dimensional

III. HYDRODYNAMIC TRANSPORT
COEFFICIENTS OF N =4
CSYM PLASMA

The transverse metric fluctuation /., (7, z,r) decouples
from other fluctuations; hence the shear viscosity for a
general background metric g,, is given by [32]
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i o

Since, for our background metric (2.3) g,, = gy, the shear
viscosity 7 of N’ =4 ¢SYM is simply

T_ (3.2)

Bulk viscosity ¢ can be computed by closely following
[11]. To this end, we first replace ¢; — 3@; followed by

@y — ?qbl, to bring the Einstein-Maxwell-scalar part of

our action (2.1) in the same form as the action used in
[11], 1.e.,

(162Gs) 2= = (R~ V(1)) ~ 5 (031 + . (33)
9s
where
760 == (7 (14550 3 -y
+ Ze_ﬁg") . (3.4)

In the 7 = ¢,(r) gauge, the bulk viscosity { up to a
constant is [11]

<z
8]

"(74)

(7)*

where ' denotes the derivative with respect to 7 = @, (r).
Note that, in the gauge 7 = @, (r) = %ln H(r), the horizon
of the black hole is located at 7 = 7, :\/igln H(r,) =
%aln(l — k) where « is still given by (2.7). We have plotted

(3.5)

mm

1
S an

<z

% in Fig. 2
The conductivity 6, of a U(1) flavor charge can simply
be computed using the general formula [5,33]

o7 = /900, ()01 (1)

_ NN Ty

pm (1—x)l/o, (3.6)

) flavor action of

—@ f d5x1/— F? which can be derived
5

from the low-energy limit of the Dirac-Born-Infeld action
of probe N, D7-branes [34]. Note that there is no mixing

where we used g2 =

the form Sf =
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FIG. 2. The bulk viscosity to entropy density ratio % of N =4
SYM plasma on the Coulomb branch for both large and small
black holes (3.5).

between the gravitational and flavor gauge field fluctua-
tions. We have plotted o in Fig. 3.

The conductivity ogr of a single R-charge can be
computed by directly computing the two-point retarded
correlation functions G** of the spatial component of the
R-current J¥, in the presence background A} which results
in mixing between the gravitational and gauge field
fluctuations, and using Kubo formula, i.e.,

1 NZT 2 2
og = lim — —ImG™ (0, k = 0) = =& 0(2-x)

= , 3.7
o—-0 @ 32r ( )

11—«

ZiQk?NeTow e

3221k
is nothing but Eq. 4.34 of [19] after replacing x — —x,

and G% — %G"" to compensate for the different normali-
zation we have for the gauge fields. We have plotted o
in Fig. 3.

where in the last line we used G** =

0.08
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FIG. 3 The conductivity TN - of a U(1) flavor charge (3.6),
and =% of a single R- charge (3.7) of flavored and unflavored

N = 4 SYM plasma, respectively, on the Coulomb branch for
both large and small black holes.
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IV. DRAG FORCE, MOMENTUM DIFFUSION AND
JET QUENCHING IN N =4 CSYM PLASMA

The Nambu-Goto (NG) action is

Sug — / drdol(hy,) = drdo/~dethy,

(4.1)

where the background induced metric on the string 4, is
given by

hap = G 0ux* (7, 0)0px" (7, 0). (4.2)

Using the embedding (z,0) = (#(7,0),0,0,x(z,0),
r = o), the background induced metric h,;,(2,7') (4.2)
becomes (- = d/dr, =d/do)

hab(jc’ xl) = gttaatabt =+ gxxaaxabx + grraarabr' (43)

Using a particular Ansatz of the form #(z,6) = 7 + K(o)
and z = vt + F(o), which represents a “trailing string”
configuration moving with velocity », the background
induced metric (4.3) becomes [35]

h‘rr(”’xl) = 9u + vzgxx’
hoo(v.X) = gu(K')? + g (X')* + gy

hTO’(U’x,) = g[fK/ + gxxx/v' (4'4)

Finding the equation of motion from the action, we have

a gttgxx(‘xl B UK/) — O
° RV —det hab '

Requiring %,,(v,x") = 0 to fix this gauge freedom, we
have an additional constraint K’ = — %x’ v, which can be

used to diagonalize (4.4) as [35]

h‘t‘f(v’x,) = 9 (1 + v? gxx)

it

(4.5)

oo (0.) = (1 e fj/”)gxxx')z fg,. (46)

1t

Solving the equation of motion, in this gauge, for x/, we
find

C%g,r 1
Fixdn (1+022)(1+-5)

91tYxx

(x')? =

, (4.7)

where the integration constant C is related to the conjugate
momenta II = Since the factor 1+ v? gg” in
1

_grr( r) _ .2

ox 2 o'
(4.7), for v # 0, vanishes when ) =V requiring

(x’)2 to be positive across r = r,, the other factor 1 + %
It

has to vanish at r=r; as well, which will fix the
integration constant C2 = —g,,(r,)g,.(r;) for v # 0.
So, the induced metric (4.6) for v # 0 becomes

gtt(rs) YGxx )

i gxx(rs)

hn’(”vx/) = 9n (1 -

1
! — [
ho’o’(v’x) —grr<1 _M)’

Gxx9u

(4.8)

which can be interpreted as a metric of a 2-dimensional
black hole with a line element ds( %) given by

~ 1
ds?, = h,dt> + h,,do* = —g,,(— dr® + ——do?,
s(z) rdT + o0 gtt( f(r)) T +p<r) o
(4.9)

where f(r) = 1= 2802, p(r) = g7 (1 - 200,
The radius of the horizon r, of the 2-dimensional black hole
is found by solving the algebraic equation — %)) =%, And

the Hawking temperature of the 2-dimensional black hole
denoted as T is

= PP ). (@10)
The drag force is given by [6,7], see also [35],
Fu =~ = —5 w3000 y),  (411)
ol
where Q(k,7) =5 (1 + 2 lk_f) with the Lorentz

factor y = ﬁ and we have used 2 = yr2Q(k,y) which
9u(ry)

xx\’s

solves the algebraic equation — = »2. We have plotted
Fyrag in Fig. 4.

The velocity dependent transverse momentum diffusion
constant per unit time x*(v) is given by [35]

Kkt (v) = (4.12)

,gm( rs),

and the longitudinal momentum diffusion constant per unit
time «/l(v) is [36]

Tx 1 (gttgxx)
70 g (9u/ 90 |1,

ol (v) = (4.13)

We have plotted x*(0) and ! (0) in Fig. 5. Note from Fig. 5
that k- (v) # «ll(v) even at v = 0 in A/ = 4 cSYM plasma,
even though they are equal to each otherat v = 0in V' =4
SYM plasma. Also note that, as can be seen in Fig. 5, the
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FIG. 4. The drag forces Fﬁ”‘g (4.11) and of N =4SYM

plasma on the Coulomb branch for both large and small black

holes with y = 1.0001, normalized by the drag force FY drag =
—%\/Zﬂszv of the conformal N = 4 SYM plasma [6,7].
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FIG. 5. The transverse and longitudinal momentum diffusion

constants ';j((g)) (4.12) and KH O> (4.13), respectively, of N =4

SYM plasma on the Coulomb branch for both large and small
black holes, normalized by the momentum diffusion constant

ko(v) = x9(0) = &g (0) = k(0) = VAxT®
N =4 SYM plasma [8,9]. Note that KU(( )) EI‘EO; for the small
black hole branch.

of the conformal

difference between x(v) and «l(v) gets enhanced with
increasing 7" and v.

The 5-dimensional metric (2.3) can be uplifted to the full
10-dimensional metric as [12,14—18]

dstyg) =

= H1/2( —Fdi* + dx® + dy? + dz?)
+ R2(H'?d6* + HH'?sin*0d¢?
+ H7'2¢0s20dQ3) + 2AL HH'/2R*sin?0dtd¢p
21
+ 74(1’.2’ (414)
=
zf

0.8

—_— ;‘7- (Large BH)
Go

0.6 ”
-------- <L (Small BH)
90

——— < (Large BH)
0.4f so
i -—- f— (Small BH)
0
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FIG. 6. The jet quenching parameter i]— (4.17) and entropy
density - of N =4 SYM plasma on the Coulomb branch for

both large and small black holes, normalized by the jet quenching

o _ 7/'r(3/4) 3
90 = “/3r(s/3) IIT

%ITZNET3 of the conformal N' =4 SYM plasma. Note that % ~
W for the small black hole branch.

parameter and entropy density sy =

where

H = sin%0 + Hcos®9, and f = . (4.15)

f and H are the same as in (2.3). Our 10-dimensional
metric (4.14) is equivalent to Eq. 2.21 of [I8] after
analytically continuing the rotation parameter ro — —iry,
and rewriting (4.14) in terms of u = m'/*. Note that the g,
component of (4.14) is imaginary and one could make it
real by analytically continuing ¢t — —it as in [14,37].
However, since we are interested in real-time dynamics,
such as computation of transport coefficients, we refrain
from analytically continuing ¢t — —if, and we treat our
10-dimensional metric (4.14) as a complex saddle point.
Also note that g,, = A} = 0 in the extremal limit r;, = r,.

In [17] the drag force was studied using the
10-dimensional metric (4.14), and it was shown that the
drag force Fypg(10) 18 (shown below after rewriting it in

terms of x, and making the analytic continuation ry, — —ir
which is equivalent to replacing k — —k)
1
Fag(i0) = =5 VarT3V1 = kyv. (4.16)

Note that (4.16) is equivalent to the y — oo limit of (4.11),
and it has similar v/1 — x dependence as the entropy density
(2.9) indicating that the drag force (4.16) could be the
measure of the color degrees of freedom of the plasma [38].
We have plotted (4.16) in Fig. 4.

And, in [18], it was shown that the jet quenching
parameter ¢, studied using the 10-dimensional metric
(4.14), is (shown below after rewriting it in terms of «,
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and making the analytic continuation ry — —iry which is
equivalent to replacing x — —k)

i _K(1/V2)
4o K(n)
where K(n) is the complete elliptic integral of the first kind,

—K ~ /4T(3/4
n?=1=% ' =112 and §, = ﬁrré//@) VT3 [10,38].

(2n?)%(2n™)'/2, (4.17)

2k
In Mathematica, the complete elliptic integral of the first
kind is implemented using EllipticK[n?] = K(n). We have
plotted g in Fig. 6.

V. CONCLUSION

We have studied the transport coefficients of the non-
extremal rotating black 3-brane dual to strongly coupled

N =4 ¢SYM plasma, such as bulk viscosity to entropy

density ratio ¢ (3.5), and conductivity ¢ (3.6)(3.7), see

s

Fig. 2 and Fig. 3, respectively. We have found that the bulk

viscosity of the large black hole has a maxima around 7,
and its conductivity o asymptotes to its conformal value
starting from below it.

We have also computed the hard probe parameters of
N =4 c¢SYM plasma. We have shown that the drag force
Fl4rag, momentum diffusion coefficient «, and jet quenching
parameter ¢ increase with temperature for the large black
hole, see Figs. 4-6.
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