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We study N = 4 super Yang-Mills theory on the Coulomb branch (cSYM) in the strong coupling limit
by using the AdS/CFT correspondence. The dual geometry is the rotating black 3-brane Type IIB
supergravity solution with a single nonzero rotation parameter r, which sets a fixed mass scale
corresponding to the scalar condensate (O) ~ r$ in the Coulomb branch. We introduce a new ensemble
where T and (O) are held fixed; i.e., the free energy F(T, (O)) is a function of T and (O). We compute the
equation of state (EoS) of A" = 4 ¢SYM at finite 7, as well as the heavy quark-antiquark potential and the
quantized mass spectrum of the scalar and spin-2 glueballs at 7 = 0. By computing the Wilson loop
(minimal surface) at T = 0, we determine the heavy quark-antiquark potential V(L) to be the Cornell
potential, which is confining for large separation L. At T # 0, we find two black hole branches: the large
black hole and small black hole branches. For the large black hole branch, that has positive specific heat, we
find qualitatively similar EoS to that of pure Yang-Mills theory on the lattice. For the small black hole
branch, that has negative specific heat, we find an EoS where the entropy and energy densities decrease
with 7. We also find a second-order phase transition between the large and small black hole branches with

critical temperature 7, = T .-
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I. INTRODUCTION

The AdS/CFT correspondence [1-3] has opened a new
window to the strongly coupled regime of gauge theories
such as A/ = 4 super Yang-Mills (SYM). Unfortunately, so
far, we lack an exact string theory dual to QCD even though
there are various works which explored different non-
conformal deformations of N'=4 SYM both through
bottom-up approaches (where the details of the deformation
of /=4 SYM and its string theory dual are unknown)
[4—12], and top-down approaches (where both the details of
the deformation of A/ =4 SYM and its string theory dual
are known) [13-25].

In N = 4 SYM on the Coulomb branch (cSYM) at zero
temperature, a scale is introduced dynamically through the
Higgs mechanism where the scalar particles ®; (i = 1...6)
of /=4 SYM acquire a nonzero vacuum expectation
value (VEV) that breaks the conformal symmetry, and the
gauge symmetry SU(N..) to its subgroup U(1)¥-=! without
breaking the supersymmetry, and without resulting in a
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running of the coupling constant [19]. At finite temper-
ature, the mechanism is the same except the fact that
supersymmetry will be broken as well.

The string theory dual for N' = 4 ¢SYM at zero temper-
ature is well known. Among various Type IIB supergravity
background solutions that are dual to the strongly coupled
N =4 cSYM at zero temperature [19-22], in this paper,
we will study a Type IIB supergravity background solution
that describes nonextremal rotating black 3-branes (with
mass parameter m and single rotational parameter ry)
which, in the extremal limit, i.e., ro > m'/4, is dual to
N =4 SYM on the Coulomb branch at zero temperature
that arises from N, D3-branes distributed uniformly in the
angular direction, inside a 3-sphere of radius r [20].

So far the studies of the nonextremal rotating black
3-brane supergravity backgrounds have been limited to the
grand canonical ensemble (which is described by fixed
temperature 7" and angular velocity Q or chemical potential
U, i.e., the Gibbs free energy G(T', i) is a function of 7 and
u), and canonical ensemble [which is described by fixed
temperature 7" and angular momentum density J or charge
density (J°) = p, i.e., the Helmholtz free energy F(T, (J°))
is a function of 7 and (J°)]; see [26-36]. The two
ensembles have different physics; for example, in planar
rotating black 3-branes, Hawking-Page phase transition
does not exist in the grand canonical ensemble even though
it does exist in the canonical ensemble [30,35].
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FIG. 1. Hawking temperature (2.4).

In this paper, we will introduce a new ensemble which is
described by a fixed temperature 7 and a scalar condensate
(O); i.e., the Helmholtz free energy F(T, (O)) is a function
of T and (O). The scalar condensate is the expectation
value of dimension 4 operator O = Tr®; ®; ®; @, , that
is, (O) ~lim,_ /=99 0,h ~ A* of the massless metric
fluctuation h = g**h,, = 1 - g"*g,,, where g,, is the met-
ric component of pure AdSs x S° space while Gy 18 our 10-
dimensional metric (4.1) [19], and AE% with R the
radius of the AdSs space.

Therefore, in our ensemble, the variation of the
Helmholtz free energy F(T, (O)) can be written as

dF(T,{(O)) = =SdT + hyd(O), (1.1)
where the source /gy = h(r — o0). One can compare the
variation of the free energy in our ensemble (1.1) to the

variation in the canonical ensemble

dF(T, (J%) = =SdT + AV a(J°), (1.2)

where the source AEO)

canonical ensemble

=A,(r—> o) =y, and grand

dG(T,pu) = —SdT — (J°)du. (1.3)

The outline of this paper is as follows: In Sec. II, we
study the thermodynamics of rotating black 3-brane sol-
ution where a single rotation parameter r is turned on. In
Sec. III, we compute the heavy quark-antiquark potential
V(L) of N =4 ¢SYM. In Sec. IV, we study the mass
spectrum of glueballs in N/ =4 ¢SYM.

II. THERMODYNAMICS OF
N =4 CSYM PLASMA

The rotating black 3-brane solution of the 5-dimensional
Einstein-Maxwell-scalar action found from the U(1)?

consistent truncation of Type IIB supergravity on S°
[37,38], see also [39-41], is given by

’,,2 H—2/3
dsls) = oy H'P (= fd* + dx* + dy* + dz*) + ———dr,
R = f
(2.1)
where
4 2
ry, H(rp) o
le_FH(r)’ H:l—ﬁ, (2.2)
—LlnH —LlnH
?1 _\/5 ) (Pz—\/i )
A]_.rorlzz H(rh)
YR 2
R* r*H(r)

1
r% :§<r(2)+\/r3+4m),

2
T .

k =%, m is the mass parameter, and A? = A} = 0. Note
h

(2.3)

that our metric (2.1) is equivalent to the metric used in [33]
after analytically continuing ry — —i,/q.

We should also note that having an imaginary gauge
potential, in our ensemble, does not lead to any incon-
sistencies, since all physical quantities in the 5-dimensional
spacetime are given in terms of (9,A})?. From the field
theory side, having an imaginary gauge potential or
imaginary chemical potential 4 means that we are studying
the phase diagram of N =4 ¢SYM at finite 7 and
imaginary chemical potential, which is similar to studying
the phase diagram of QCD at finite 7 and imaginary
chemical potential, which is well known in that it does not
lead to any inconsistencies; see [42-45] for the study of
lattice QCD at finite imaginary chemical potential.

Note that we have turned off the other two gauge
potentials A? and A}, but in a future publication [46],
we will address what the phase diagram of the confining
N =4 ¢SYM (studied in this paper) looks like at finite
chemical potentials induced by A? and/or A?.

The Hawking temperature 7 of the black hole (rotating
black 3-brane) solution (2.1) is given by

= 2_, (2.4)

o

r 2
where Ty = 2y, A = 15 and k = é = ’}—g We have plotted

% in Fig. 1. We can also invert (2.4) to find

1+§—§(1 ¥ \/f—i—z)

1 1?
i t2x

(2.5)

K=
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Note that in (2.5) “—" corresponds to a large black hole
branch and “+” corresponds to a small black hole branch.

The entropy density s(7, A), for our ensemble where T
and A are held fixed, is given by

Ay 1
S(T, A) = 4G5V3 = E \/gxx(rh)gyy(rh)gzz(rh)
2N2T3
=T eT0 () )12, (2.6)

where Gs = zR*/2N?2, and V; is the three-dimensional
volume. And, using (1.1) for fixed (O) ~ A%, the corre-
sponding free energy density f (T, A) of our ensemble can
be determined by integrating the entropy density s(7, A)
as [9,12]

rn !
prn == [ st

hmin rh
2A2T4
a°NT; 3 2
= ¢ l—k—>k>—k*log(==2] ), (2.7
8<K4K Kog<K )) (2.7)
where we choose 7 pmin = \/gro, and set the integration
constant (T, A)=0. Also note that 7T, =

T(ry, = rpmin) = T.. We have plotted the free energy
density f(7,A) (2.7) in Fig. 2.

The other thermodynamic quantities can be determined
from the free energy density f(7,A) (2.7) as: pressure
p =—f, energy density e¢= p+Ts, specific heat
Cp = T(&),, and speed of sound ¢? = g—’e’ = ¢~ We have
plotted the thermodynamics quantities in Figs. 4-7. To
compare our results with pure Yang-Mills theory on the
lattice and improved holographic QCD see Fig. 5-9 in [12].

As a comparison to N' = 4 ¢SYM, we have also plotted,
see Fig. 3, the free energy density of N'=4 SYM on
sphere fphere, Which is given by [16], see also [47],
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FIG. 2. The free energy density # of N/ =4 ¢SYM plasma
(2.7) for the large and small black holes. Note that T, = 7.
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FIG. 4. The energy density 5 entropy density %#, and
pressure % of N/ =4 ¢SYM plasma for the large and small
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FIG. 6. The specific heat C, of N’ =4 ¢SYM plasma for the
large and small black holes.
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FIG. 7. The speed of sound ¢ of N' = 4 ¢cSYM plasma for the
large and small black holes.

o Fsphere - HZNng 1 28
fsphere - V3 - ] ( - Ksphere)’ ( . )
h = B N i Ay = and Ty = L
WRETE Kgphere = T% T w1 sphere = 7 a4l 0 — Zr®
and the Hawking temperature L — " 2omer
g p Asphcrc /Ksphere :

Comparing Fig. 2 and Fig. 3, one can see that we have a
second-order phase transition for N' =4 ¢SYM at T, =
T min [it is second-order since the second-derivative of our
order parameter (the free energy) or its specific heat
capacity is discontinuous, see Fig. 6, while the first
derivative of its free energy or the entropy is continuous
as one goes from the large black hole to small black hole,
see Fig. 4; also see [34,36] for similar second-order phase
transitions between large and small black holes in ' = 4
SYM at finite-chemical potential]. And we have a first-
order (Hawking-Page) phase transition in N' = 4 SYM on
sphere at T, = %Asphere = 52 (it is first-order since the first

27R
derivative of the free energy or its entropy changes

discontinuously as one goes from the large black hole
with s ~ N2 to the thermal-AdS with s ~ 0).

III. CORNELL POTENTIAL IN N =4 CSYM
The Nambu-Goto (NG) action is

1
SNG:/deaﬁ(hah):—zﬂa//drdm/—dethab, (3.1)

where the background induced metric on the string 4, =
Guw0ax"(t,0)0,x"(7,0). Using the embedding (z,0) =
(t(z,0),0,0,x(z,0), r = o), the background induced met-
ric hg,(x") becomes (/ = d/do)

hee(X') = gy

1
" —
ho‘a(x ) grr<1 2 >7

Gxx Gt
where we used

(x/)z — _ngrr 1

gzzcxgzz (1+ y“C;X) ’

(3.3)

which is the solution of the NG equation of motion, and
the integration constant C is related to the conjugate
momenta IT = %6 = — €.

Considering a string configuration where a heavy quark
is attached to each end of the string, we can extract the
potential energy V(L), of the two quarks separated by
length L, from the on-shell Nambu-Goto action Sy as

_ 28y6

V(L) ==

(3.4)

where

S S = / " dr(\/=dethy,(¥) - \/=deth ;,0))

_ / " dr\/=dethy(0),

T'n

(3.5)

and r,, is related to L through the boundary condition
L = [~ x'dr, and we also fix the integration constant C by

2 I'm

demanding x — oo which is satisfied only when

/

|r=rm
C? = =g, (1) gxx (7). Note that we have a factor of 2
in (3.4) because our gauge covers only half of the full string
configuration which accounts to only half of the full
potential energy between the quarks; see [47] for discussion
on how to compute V(L) in the x(r) gauge instead of the

widely used r(x) gauge of [48].

066010-4



STRONGLY COUPLED N = 4 SUPERSYMMETRIC YANG-MILLS ...

PHYS. REV. D 100, 066010 (2019)

For r > r,,, after approximating h,,(x") = h,,(0) = g,,,

1

V(L) >~ —E dr —dethab(O)
2VA1  mVAA? 5vVAA
- — L 4 )
37 L ) + G +O(ry). (3.6)

where we used % f°° xX'dr = lR— with x/ & 9aln) Jom ~
3r Grx Gxx

R for r>> r,, and we have set r, = ry and f = 1 in the
extremal limit.

In [20], the heavy quark-antiquark potential energy V(L)
was computed for the 10-dimensional background metric
(4.1) after analytically continuing ¢ — —it and in the
extremal limit where r, =ry, or f=f=1 Ccase.
The authors have shown that, for § =%, V(L) smoothly

interpolates between a Coulombic potential V(L) =
_20(3/4)*VA |
r(1/4)?
#L for large L. See curve (b) in Fig. 5 of [20]. Their
numerical result agrees qualitatively with our analytic result
(3.6) on the 5-dimensional metric (2.1).

rm

7 for small L and a confining potential V(L) =

IV. GLUEBALLS IN A =4 CSYM

It can easily be shown that bulk fluctuations in the 5-
dimensional metric (2.1), at least in the near boundary limit
where the metric is essentially AdS5 space with IR cut-off
at r = ry, have a mass-gap and quantized mass spectrum
proportional to A = &,

In [20], it was shown that a scalar bulk fluctuation in a
10-dimensional metric [which is the 10-dimensional uplift
of (2.1)]

2
= L HVA(=fdf + dx® + dy? + d2?)
HI/ZH 1
————dr* + R2(H'?d0* + HH'/*sin20d >
R2
+ ﬁ_l/ZCOSZQdQ%) —+ ZA;HH_I/zRZSinzgdldQS,
(4.1)

where

H = sin?0 + Hcos?0, and

f and H are the same as in (2.1), after analytically
continuing ¢t — —it, indeed has mass gap proportional to
A and a quantized mass spectrum M2 = 47°A%n(n + 1),
see Eq. 54 in [20]. Since a scalar bulk fluctuation in (4.1)
has the same 5-dimensional bulk equation of motion as in
[20], which is the Jacobi equation, we can use this result to
calculate the mass spectrum of glueballs in N' = 4 ¢cSYM.

The transverse gravitational tensor fluctuation hf,(t, Z, r)
in the 10-dimensional metric (4.1), which is a source to
dimension 4 stress-energy tensor operator Tx, also has the
same 5-dimensional bulk equation of motion as the scalar
field which is the Jacobi equation. Therefore, we can infer
that the operator 7 which corresponds to spin-2 glueballs
of JP€ =2%F [49] has mass spectrum given by M2 =
4r’AN°n(n+1) forn = 1,2, ....

The real and imaginary parts of the bulk fluctuation of a
massless complex scalar field ® = e + iy, in the 10-
dimensional metric (4.1), are sources to the dimension 4
scalar operators Oy = TrF? and @4 =TrF N F, respec-
tively [50], and their 5-dimensional bulk equation of
motion is the Jacobi equation. Therefore, @, and @, which
correspond to the scalar glueballs of J¢ =0*" and
JP€ = 0=+, respectively, have a degenerate mass spectrum
given by M2 = 4z’A’n(n+1) forn = 1,2, ....

V. CONCLUSION

We have shown that the large black hole branch of the
nonextremal rotating black 3-brane background solution
(2.1) has a pure Yang-Mills-like equation of state: the
pressure p vanishes at critical temperature 7, = T =
V2A, see Fig. 4; the trace anomaly € — 3p has a maxima
around 7. and vanishes at very high temperature, see
Fig. 5; and the speed of sound ¢? approaches its conformal
limit 1/3 from below. In order to compare our results with
pure Yang-Mills theory on the lattice and improved holo-
graphic QCD see Fig. 5-9 in [12].

Note that we have investigated the hydrodynamic trans-
port coefficients and hard probe parameters of the strongly
coupled NV =4 ¢SYM plasma in [41].
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