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Completeness of the spectrum of charged branes in a quantum theory of gravity naturally motivates the
question of whether the consistency of what lives on the branes can be used to explain some of the
swampland conditions. In this paper, we focus on consistency of what lives on string probes to show that
some of the theories with N ¼ ð1; 0Þ supersymmetry in ten dimensions and six dimensions, which are
otherwise consistent looking, belong to the swampland. Gravitational and gauge group anomaly inflow on
these probes can be used to compute the gravitational central charges ðcL; cRÞ as well as the level of the
group’s current algebra kL. The fact that the left-moving central charge on the string probes should be large
enough to allow unitary representations of the current algebra with a given level can be used to rule out
some theories. This, in particular, explains why it has not been possible to construct the corresponding
theories from string theory.
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I. INTRODUCTION

Increasing evidence points to the fact that some con-
sistent-looking theories cannot emerge as the IR limit of a
quantum gravitational theory and belong to the swampland
(see Refs. [1,2] for a recent review for some of the
swampland criteria). Ultimately, we would like to explain
why the swampland conditions are necessary for the
consistency of quantum gravitational theories. There are
varying degrees of understanding for different swampland
criteria. In this paper, we take a small step to initiate a new
direction for a deeper understanding of the swampland
criteria: we use the consistency of brane probes to explain
why certain consistent-looking supergravity theories
coupled to matter that were conjectured not to exist indeed
belong to the swampland. See Ref. [3] (also Ref. [4] for a
discussion of its generalization) for an early idea of using
string and brane probes to constrain type I’ string theory.
We focus on N ¼ ð1; 0Þ supergravity theories in ten

dimensions and six dimensions (with 16 and 8 super-
charges, respectively). These theories enjoy the following
common property: the gauge and gravitational anomaly
cancellations severely limit the allowed possibilities. In the
ten-dimensional case, we are limited to four choices for

gauge groups [5]: E8 × E8, SOð32Þ, E8 ×Uð1Þ248, and
Uð1Þ496. The latter two theories were conjectured to belong
to the swampland in Ref. [6]. An argument for this was
presented in Ref. [7]. Here, we present an independent
argument, ruling out the latter two theories by showing that
the left-moving central charge on the BPS (supersymmet-
ric) strings in these theories, which should carry the current
algebra of the corresponding group, is too small to realize
the latter two theories.
Similarly, anomaly cancellations for six-dimensional

(1,0) theories were used to show [8] that there are rather
restricted sets of choices for the allowed gauge groups and
matter representations. Many of these were realized
through F theory. But it was found that there are infinitely
many examples that cancel anomalies but seem not to arise
in F theory or any other string realization. These sets arose
by having an unbounded rank for the gauge group or an
unbounded number of tensors or choices of exotic repre-
sentations. In this paper, we show that a subset of these
theories that could not be realized in F theory indeed belong
to the swampland. In particular, it was shown there [8] that
theories with an SUðNÞ × SUðNÞ gauge group with two
bifundamental matter representations and additional neutral
matter are anomaly free for any N. However, only N ≤ 8
has been realized in string theory. We show that indeed all
the theories with N > 9 belong to the swampland by
showing that the central charge of the SUðNÞ × SUðNÞ
current algebra on certain BPS strings, which should exist
due to the completeness assumption for the spectrum in a
gravitational theory [9,10] (see also Ref. [11]), are too
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small to lead to unitary representations for these cases.
Moreover, it was found that a family of models with an
unbounded number of tensors T ¼ 8kþ 9 and gauge group
ðE8Þk, even though their anomalies cancel, cannot be
realized in F theory except for k < 3. We show that for
a similar reason all these theories are ruled out.
We view this work as just the beginning of the program

of using brane probes for a deeper understanding of the
swampland conditions. In a first step, we demonstrate the
power of this approach with a few examples and with
only string probes, but we expect this program to have
wider applicabilities in delineating the landscape from
the swampland. One can, in principle, consider not just
the unitarity of the matter content on the branes but also the
consistency between various types of branes and their
interactions with one another as other possible ways to
better understand the swampland conditions.
The organization of this paper is as follows. In Sec. II,

we discuss the consistency conditions of string probes for
N ¼ ð1; 0Þ supergravity theories in ten dimensions and
show that the two anomaly-free theories with E8 ×Uð1Þ248
andUð1Þ496 gauge groups are in the swampland. In Sec. III,
we discuss similar consistency conditions for six-
dimensional theories and show that unitarity of the current
algebra on the string probes can be used to rule out several
infinite families of anomaly-free six-dimensional N ¼
ð1; 0Þ supergravity theories. We conclude in Sec. IV.
Some details are relegated to the Appendixes.

II. STRINGS IN 10D N = ð1;0Þ SUPERGRAVITY

Consistent quantum supergravity theories in ten dimen-
sions are quite limited due to the existence of anomalies.
The anomalies of ten-dimensional (10D) (1,0) supergravity
theories can be canceled by the Green-Schwarz mechanism
[12]. The anomaly cancellation allows only four choices for
gauge groups:

SOð32Þ; E8 ×E8; E8 ×Uð1Þ248; Uð1Þ496: ð1Þ

See Appendix A for details.
The 10D supergravity theories with the former two

gauge groups SOð32Þ and E8 × E8 are realized as low-
energy limits of the type I and heterotic string theories. On
the other hand, it was argued in Ref. [7] that two other
theories with Abelian gauge factors are not consistent at the
quantum level due to anomalies in the context of Abelian
gauge invariance.
We will now propose a novel stringent condition, ruling

out the latter two theories with Abelian gauge factors by
using two-dimensional (2D) strings coupled to these 10D
theories. When 2D strings couple to the 10D supergravity,
the world sheet degrees of freedom (d.o.f.) in general
develop local gravitational and gauge anomalies. The world
sheet anomalies can be canceled by the anomaly inflow
from the 10D bulk theory toward the 2D strings. In the

following, we will derive the anomaly inflow for 2D strings
in the 10D supergravity by employing the method deve-
loped in Refs. [13–15]. We will then check if the anomaly
inflow can be canceled by local anomalies in a unitary
world sheet theory, using the IR properties of the strings
and the resulting effective conformal field theory (CFT) on
them. When this cancellation cannot occur, the 10D
supergravity becomes an inconsistent theory, hosting non-
trivial anomalies on the 2D strings.
Strings are sources for the 2-form tensor field B2, which

by assumption of completeness of the spectrum in a
gravitational theory should exist. Moreover, it is easy to
show that they are stable due to the BPS condition. A string
with tensor charge Q adds to the 10D action the tensor
coupling

Sstr ¼ Q
Z
M10

B2 ∧
Y8
a¼1

δðxaÞdxa ¼ Q
Z
M2

B: ð2Þ

The 2-form B transforms under the local gauge and the
local Lorentz symmetry [16,17] (with parameters Λi andΘ,
respectively) as

B2 → B2 −
1

4

X
i

TrðΛiFiÞ þ trðΘRÞ; ð3Þ

where Fi denotes the gauge field strengths and R denotes
the curvature 2-form of the 10D spacetime.
The string action Sstr is not invariant under these local

transformations,

δΛ;ΘSstr ¼ Q
Z
M2

�
−
1

4

X
i

TrðΛiFiÞ þ trðΘRÞ
�
: ð4Þ

As a consequence, the introduction of 2D strings induces an
anomaly inflow along the world sheet of the strings. The
anomaly inflow is characterized by the 4-form anomaly
polynomial, which in this case is given by

Iinflow4 ¼ Q

�
−
1

4

X
i

TrF2
i þ trR2

�
: ð5Þ

These anomalies must be canceled by the anomalies
coming from the world sheet d.o.f. living on the strings.
A half-BPS string coupled to the 10D supergravity gives

rise to an N ¼ ð0; 8Þ superconformal field theory (SCFT)
at low energy. To find the chirality of the supersymmetry,
one uses the condition that we start with a chiral theory in
ten dimensions, and for a BPS string, we preserve half of
the supersymmetries, leading to a definite chirality for the
supercurrents on the world sheet. Supersymmetry on the
BPS string also shows that the current for the group
has chirality opposite that of supersymmetry. We choose
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conventions so that the supersymmetry current is right
moving and the current for the group is left moving.
To cancel the anomaly inflow from the bulk gravity

theory, the gravitational and the gauge anomalies of the
SCFT on a string must be

I4 ¼ −Iinflow4

¼ Q

�
1

2
p1ðT2Þ − c2ðSOð8ÞÞ þ 1

4

X
i

TrF2
i

�
: ð6Þ

Here, we used the decomposition

trR2 ¼ −
1

2
p1ðT2Þ þ c2ðSOð8ÞÞ; ð7Þ

where p1ðT2Þ is the first Pontryagin class of the 2-manifold
M2 and c2ðSOð8ÞÞ is the second Chern class of the SOð8Þ
R-symmetry bundle of the world sheet theory.
Note that the above result involves the contribution from

the center-of-mass d.o.f. The center-of-mass modes form a
free (0,8) multiplet ðXμ; λIþÞ with μ, I ¼ 1;…; 8, where Xμ

parametrize the motion of strings along eight transverse
directions and λIþ is the right-moving fermion in the SOð8Þ
spinor representation. From this, we read the anomaly
polynomial for the center-of-mass modes:

Icom4 ¼ −
1

6
p1ðT2Þ − c2ðSOð8ÞÞ: ð8Þ

So, the anomaly polynomial of the interacting sector in the
2D world sheet SCFT is given by I04 ¼ I4 − Icom4 .
Let us now focus on the 2D SCFTon a single string, i.e.,

Q ¼ 1. The anomaly polynomial of this CFT is

I04 ¼ I4 − Icom4 ¼ 2

3
p1ðT2Þ þ

1

4

X
i

TrF2
i : ð9Þ

The left-moving and the right-moving central charges cL
and cR and the level ki’s of gauge algebras in the world
sheet SCFT can be computed from the anomaly polynomial
I04. The relative central charge cR − cL is the coefficient
of the gravitational anomaly − 1

24
p1ðT2Þ, and the right-

moving central charge is cR ¼ 3kR, where kR is the ’t Hooft
anomaly coefficient of the superconformal R-symmetry
current at the IR fixed point. One finds that ’t Hooft
anomalies for the SOð8Þ R symmetry in I04 vanish. The level
ki is the coefficient of the gauge anomaly term 1

4
TrF2

i .
We then compute

cL ¼ 16; cR ¼ 0; ki ¼ 1: ð10Þ

The central charges are constrained by unitarity con-
ditions on 2D CFTs, which can be viewed as IR d.o.f.
on the strings. The central charge realizing the level-k
Kac-Moody algebra of group G is (see, e.g., Ref. [18])

cG ¼ k · dimG
kþ h∨ ; ð11Þ

where dimG is the dimension and h∨ is the dual Coxeter
number of group G, respectively. The central charge for
Uð1Þ current algebra is cUð1Þ ¼ 1 for any kUð1Þ. For (0,8)
SCFTs, the current algebra for group G is on the left-
moving sector. This tells us that

X
i

ci ¼
X
i

ki · dimGi

ki þ h∨i
≤ cL; ð12Þ

for a unitary CFT on a string.
We find that the 10D supergravity theories with Abelian

gauge groups contains nonunitary strings violating this
inequality. The Uð1Þ496 and Uð1Þ248 Abelian factors in
these theories give rise to too many left-moving modes for
the current algebras in the world sheet CFT, and the central
charge of the current algebra exceeds cL ¼ 16, namely,P

ici > cL. Therefore, we conclude that 10D supergravity
theories with Uð1Þ496 and E8 ×Uð1Þ248 gauge groups are
inconsistent when coupled to 2D strings, and thus they
belong to the swampland. On the other hand, the central
charges on a single string in the 10D supergravities with an
SOð32Þ or E8 × E8 gauge group saturate the bound (12) asP

ici ¼ cL ¼ 16, so the string can consistently couple to
these 10D theories.

III. STRINGS IN 6D N = ð1;0Þ SUPERGRAVITY

We now turn to six-dimensional (6D) supergravity
theories preserving eight supersymmetries. There are four
kinds of massless supermultiplets appearing in such the-
ories: a gravity multiplet, tensor multiplets, vector multip-
lets, and hypermultiplets. Six-dimensional supergravity
theories may have anomalies, which are characterized by
an 8-form anomaly polynomial I8, from the chiral fields in
these multiplets.
Let us consider a gravity theory coupled to T tensor

multiplets and vector multiplets of the gauge group
G ¼ Q

iGi, as well as hypermultiplets transforming in
representation R of the gauge group. The chiral fields
such as the self-dual and anti–self dual two-forms B�

μν, a
gravitino, and other chiral fermions in this theory contribute
to the anomalies for the gauge and Lorentz transformations.
Such anomalies can exactly be computed by evaluating
one-loop box diagrams for the chiral fields with four
external gravitational and gauge sources. Consistent quan-
tum supergravity theories must be free of such anomalies.
Thus, nonvanishing one-loop anomalies must be canceled
for the 6D theories that are consistent at the quantum level,
which leads to quite stringent constraints.
The one-loop anomalies can be canceled by the Green-

Schwarz-Sagnotti mechanism [19] if the anomaly poly-
nomial factorizes as
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I1−loop8 ¼ 1

2
ΩαβXα

4X
β
4;

Xα
4 ¼

1

2
aαtrR2 þ 1

4

X
i

bαi
2

λi
trF2

i ; ð13Þ

where Ωαβ is a symmetric bilinear form of T þ 1 tensors
with a signature ð1; TÞ and aα and bαi are vectors in R1;T

and λi is a group theory factor given in Table I.
The conditions for the factorization can be summarized

as

H − V ¼ 273 − 29T; a · a ¼ 9 − T;

0 ¼ Bi
adj −

X
R

niRB
i
R;

a · bi ¼
λi
6

�
Ai
adj −

X
R

niRA
i
R

�
;

bi · bi ¼
λ2i
3

�X
R

niRC
i
R − Ci

adj

�
;

bi · bj ¼ 2λiλj
X
adj

nijadjA
i
RA

j
S ði ≠ jÞ; ð14Þ

where Ωαβ is used for the inner product of two vectors, like
v · w ¼ Ωαβvαwβ. Here, V and H are the number of vector
and hyper multiplets; niR denotes the number of hyper-
multiplets in the representation R for gauge group Gi; and
Ai
R, B

i
R, and Ci

R are group-theory factors for each repre-
sentation defined as follows:

trRF2 ¼ ARtrF2; trRF4 ¼ BRtrF4 þCRðtrF2Þ2: ð15Þ

When these conditions are satisfied, the perturbative
anomaly factorizes, and it can be canceled by adding to
the action the Green-Schwarz term

SGS ¼
Z

ΩαβBα
2 ∧ Xβ

4: ð16Þ

This term induces tree-level anomalies of the form IGS8 ¼
− 1

2
ΩαβXα

4X
β
4 that exactly cancels the factorized anomaly

I1−loop8 . So, 6D supergravity theories satisfying the con-
ditions in Eq. (14) have no apparent quantum anomalies
and seem to be consistent. Extensive lists of would-be
consistent 6D supergravity theories are given in various
literature [8,20–27] (see Ref. [4] for a review).

A. Central charges of 2D (0,4) SCFTs on strings

Let us now consider 2D strings in 6D supergravity theory
without manifest anomalies. We will discuss additional
conditions from the 6D/2D coupled system. Strings are
sources for the 2-form fields Bα

2 and thus should exist by the
assumption of completeness of the spectrum in a gravita-
tional theory. We shall consider BPS strings preserving half
of the supersymmetries. The world sheet theory on those
strings gives rise to 2D (0,4) SCFT at low energy. As
discussed in the 10D cases, the d.o.f. living on the string
world sheet can have nonzero anomalies, and these
anomalies must be canceled through the anomaly inflow
mechanism. The anomaly inflow in 6D SCFTs was studied
in Refs. [28,29] (see also Ref. [30] for generalization to 6D
supergravities from F-theory compactification). See
Appendix B for a brief review on the anomaly inflow to
2D strings in 6D SCFTs and 6D supergravity theories.
The 2D SCFT on strings with charge Qα in the 6D

supergravity theory has the anomaly polynomial of this
form:

I4 ¼ ΩαβQα

�
1

2
aαtrR2 þ 1

4

X
i

bαi TrF
2
i þ

1

2
Qβχ4ðN4Þ

�

¼ −
Q · a
4

p1ðT2Þ þ
1

4

X
i

Q · biTrF2
i

−
Q ·Q −Q · a

2
c2ðRÞ þ

Q ·QþQ · a
2

c2ðlÞ: ð17Þ

In this computation, we used the decomposition trR2 ¼
− 1

2
p1ðT2Þ þ c2ðlÞ þ c2ðRÞ.
This result involves the contribution from the center-of-

mass d.o.f., which decouples in the IR SCFT. The center-
of-mass modes consist of four bosons common to left and
right movers and four right-moving fermions, and they
form a free hypermultiplet ðXa _a; λaÞ, where a and _a are
indices for SUð2Þl × SUð2ÞR. They contribute to the
anomaly as

Icom4 ¼ −
1

12
p1ðT2Þ − c2ðlÞ: ð18Þ

Therefore, the anomaly polynomial of the 2D world sheet
theory after removing the center-of-mass contributions
becomes

I04 ¼ I4 − Icom4

¼ −
3Q · a− 1

12
p1ðT2Þ þ

1

4

X
i

Q · biTrF2
i

−
Q ·Q−Q · a

2
c2ðRÞ þ

Q ·QþQ · aþ 2

2
c2ðlÞ: ð19Þ

The central charges of the 2D SCFT can be extracted
from the anomaly polynomial as discussed in the previous

TABLE I. Group theory factors.

G SUðNÞ SOðNÞ SpðNÞ G2 F4 E6 E7 E8

λ 1 2 1 2 6 6 12 60
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section. The relative central charge cR − cL is again the
coefficient of the gravitational anomaly. The right-moving
central charge cR is associated to the anomaly coefficient of
the R-symmetry current. Here, we should be careful about
the R symmetry at the IR fixed point. It is possible that an
accidental symmetry emerges at low energy and it takes
over the role of the R symmetry in the IR (0,4) super-
conformal algebra. It is also possible that a 2D world sheet
theory degenerates to a product of distinct SCFTs carrying
different IR R symmetries.
Indeed, this happens for the strings in local 6D SCFTs or

little string theories (LSTs) embedded in the supergravity
theories. The 2D SCFTs on such strings have an accidental
SUð2ÞI symmetry in the decoupling limit, and this sym-
metry becomes the SUð2Þ R symmetry in the (0,4) super-
conformal algebra. This SUð2ÞI is descended from the
SUð2Þ R symmetry of the local 6D SCFTs or LSTs, but it is
broken in the full supergravity theory. The free theory with
the center-of-mass d.o.f. we discussed above also has the
same accidental SUð2ÞI symmetry.
It is therefore crucial to identify the right R symmetry in

the IR SCFTs. Only after this, we can extract the correct
central charges in the IR SCFTs. From now on, we will
focus on the strings in the 6D supergravity theory that give
rise to a single interacting SCFT at low energy without the
accidental SUð2ÞI symmetry. The IR SCFTs on such
supergravity strings (not strings in local 6D SCFTs or
LSTs) have the (0,4) superconformal algebra with an
SUð2ÞR R symmetry. The conditions for this type of strings
will be given below. The right-moving central charge cR of
these SCFTs can then be read off from the anomaly
coefficient of the SUð2ÞR symmetry. For a nondegenerate
2D SCFT on a supergravity string, the central charges cL
and cR are given by

cL ¼ 3Q ·Q− 9Q · aþ 2; cR ¼ 3Q ·Q− 3Q · a: ð20Þ

The central charges ki and kl for the bulk gauge symmetries
Gi and SUð2Þl can also be extracted from the anomaly
polynomial. We find

ki ¼ Q · bi; kl ¼
1

2
ðQ ·QþQ · aþ 2Þ: ð21Þ

A large class of 6D (1,0) supergravity theories can be
engineered in F theory on elliptic Calabi-Yau 3-folds. In the
context of F theory, the 2D SCFT with string charge Q
arises as a low-energy theory on a D3-brane wrapping
genus g curve C ¼ Q in the base B of the 3-fold. We can
compare the above results against the central charges of the
strings coming from D3-branes in F theory. The 2D SCFT
for a D3-brane wrapping a genus g curve C inside B has the
central charges [31] (see also Ref. [30])

c0L ¼ 3C ·C−9K ·Cþ6; c0R¼ 3C ·C−3K ·Cþ6; ð22Þ

where K is the canonical class of B, and it has an SUð2Þl
current algebra at level k0l ¼ g − 1. Here, the genus g of the
curve C can be computed by the Riemann-Roch theorem

C · Cþ K · C ¼ 2g − 2: ð23Þ

These results again include the contribution from the
center-of-mass modes; four left-moving and four right-
moving bosons and four right-moving fermions. The
central charges of the center-of-mass modes are ccomL ¼ 4
and ccomR ¼ 6, and as discussed in Ref. [31], they contribute
to the SUð2Þl current algebra by kcoml ¼ −1.
One can easily see that the central charges c0L, c

0
R, and k

0
l

in F-theory models after removing the center-of-mass
contributions are in perfect agreement with the central
charges of 2D SCFTs from the anomaly inflow given in
(20) and (21). To see this agreement, one needs to identify
the inner product Ω among tensors with the intersection
form in H2ðB;ZÞ and map the vector a to the canonical
class K in the base of the elliptic CY3. This comparison
confirms our anomaly inflow computation for 2D strings in
6D supergravity theories.

B. Consistency conditions

We shall now show that the consistency of 2D world
sheet theories encoded in the central charges imposes
additional conditions on 6D supergravity theories.
Let us consider the moduli space of a 6D supergravity

theory that is parametrized by scalar fields in the tensor
multiplets as well as the scalar field in the hypermultiplet
controlling the overall volume of the tensor moduli space.
From supergravity considerations, for this moduli space
being well defined, we should be able to find a linear
combination of these scalar fields, which we call J,
satisfying

J · J > 0; J · bi > 0; −J · a > 0: ð24Þ

This J plays the role of the central charge in the super-
symmetry algebra for the B fields. The first condition
stands for the metric positivity of the tensor branch along J.
The second one is the condition for the gauge kinetic term
along J to have proper sign on the tensor moduli [19].
Otherwise, the gauge kinetic term has a wrong sign, and it
leads to an instability. The last condition ensures, through
supersymmetry, the positivity of the Gauss-Bonnet term in
gravity [32]. While there have been attempts to prove the
positivity of the curvature-squared corrections in D > 4
using, e.g., unitarity [33], the singular UV behavior due to
graviton exchange prevents one from making such a
spectral decomposition argument [34]. Here, we note that,
even if we impose this last condition, there seem to be
infinitely many anomaly-free 6D supergravity theories (see
Ref. [4] for a review). We thus assume its validity, leaving a
derivation for future work.
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In F-theory realization [35], this combination J corre-
sponds to a Kähler form J ∈ H1;1ðBÞ of the base B. The
above conditions on J define a positive-definite Kähler
cone on B. We will call J a Kähler form for all 6D theories,
regardless of whether it has an F-theory realization.
The tensions of 2D BPS strings are determined with

respect to the Kähler form J. This imposes a condition
Q · J ≥ 0 on the string charge Q. A world sheet theory has
non-negative tension only if Q · J ≥ 0.
The strings with Q · J ≥ 0 embedded in 6D supergravity

theories must give rise to unitary 2D SCFTs. For a unitary
2D CFT, the central charges must be non-negative, i.e., cL,
cR ≥ 0. If the central charges computed through the
anomaly inflow for a string are negative, the corresponding
anomalies cannot be canceled by a unitary 2D world sheet
theory. This results in the 6D supergravity theory with such
strings being inconsistent, hosting nonvanishing anomalies
along the 2D string world sheet, and it thus belongs to the
swampland. So, we can use the anomaly inflow on 2D
strings to analyze the consistency of 6D supergravity
theories.
We remark that the strings in 6D SCFTs or LSTs

contained in 6D supergravity theories in general lead to
2D CFTs having a negative value for cR given in (20).
For example, the unit string charge Q for a 2D string in the
6D SOð8Þ non-Higgsable SCFT have the properties
Q ·Q ¼ −4 and Q · K ¼ þ2. So, the value for cR of this
string with unit charge Q is −18. This seems to say that the
theory is inconsistent since its central charge is negative
cR < 0 by the formula in (20). However, this is not the case.
Note that the central charge cR above is obtained by
assuming the R symmetry of the low-energy (0,4) SCFT
is the SUð2ÞR. As discussed, the strings in local 6D SCFTs
or LSTs have an accidental SUð2ÞI symmetry, and this
becomes the R symmetry of the low-energy SCFT.
Therefore, cR in such strings is different from what we
computed above. The central charges of various world
sheet theories in 6D SCFTs are computed in the literature
[28,29], and one can check that those theories have positive
central charges cR and cL with respect to the SUð2ÞI R
symmetry.
We are interested in the configurations of a single string

in the 6D supergravity that have SUð2ÞR as the R symmetry
in the superconformal algebra and that do not degenerate to
a product of disconnected 2D SCFTs at low energy. A
single string state has no bosonic zero mode along the
transverse R4 directions except the center-of-mass d.o.f.
This implies that, after removing the center of mass modes,
the world sheet theory on a string contains the SUð2Þl
current algebra realized on the left movers. So, the SUð2Þl
central charges should be non-negative, i.e., kl ≥ 0. In
F-theory compactification, this condition becomes a trivial
condition, saying that g ≥ 0 for a string wrapped on a genus
g curveQ. The central charge conditions cR ≥ 0 and kl ≥ 0
on these SCFTs can be summarized as

Q ·Q ≥ −1; Q ·QþQ · a ≥ −2: ð25Þ

There are more conditions associated to the flavor central
charges ki ¼ Q · bi. The flavor central charge measures the
index of the bulk fields charged under the gauge group Gi
on the string background with charge Q. So, it counts the
number of zero modes at the intersection between the
tensor carrying the gauge group Gi and the tensor labeled
by the string charge Q. Unless the string degenerates to an
instanton string of the group Gi, namely, unless Q ∼ bi, the
flavor central charge can receive contributions only from
fermionic zero modes that are in the left-moving sector.
This means that the flavor central charges of the 2D SCFTs
on nondegenerate strings (not in local 6D SCFTs or LSTs)
in 6D supergravities should be non-negative. In other
words, for the strings we are interested in,

ki ¼ Q · bi ≥ 0; ð26Þ

where we used the convention that left movers have
positive contributions to flavor central charges. In the
F-theory viewpoint, the condition (26) is the same as the
condition that the curve class Q is effective and irreducible
within the Mori cone of the Kähler base B.
Note that a 2D theory on instanton strings can have right

movers associated to bosonic zero modes parametrizing the
moduli space of Gi instantons. These right movers can
provide negative contributions to the flavor central charges.
However, such instanton strings correspond to the strings in
local 6D SCFTs or 6D LSTs. When a string degenerates to
a product of the instanton strings, the low-energy theory
will include 2D theories for the strings in local 6D SCFTs
or LSTs that have the accidental SUð2ÞI R symmetry. As
discussed above, we are not interested in the world sheet
theories with SUð2ÞI R symmetry. So, we shall only focus
on strings and the associated 2D SCFTs satisfying the
condition (26) as well as (25).
We claim that the conditions (25) and (26) as well as

cL > 0 are also sufficient conditions for the associated
string being a nondegenerate string in the gravity theory.
Consider compactification of the 6D gravity theory on a
circle and also a string wrapped around the circle with
momentum p ¼ n=R along the circle. For large n, the
string forms a black hole in the five-dimensional (5D)
supergravity, and the black hole entropy goes as S ∼ ffiffiffiffiffiffiffiffi

cLn
p

[31,36,37]. The conditions (25), (26), and cL > 0 are
precisely the conditions for the string forming a 5D black
hole with nontrivial entropy, and therefore the string must
be a nondegenerate string in the gravity theory. Note that
such a 5D black hole cannot descend from a string in the
6D CFTs or LSTs upon a circle compactification.
For 2D SCFTs on nondegenerate strings in supergravity

theories, we have Gi [including SUð2Þl] current algebra
with level ki. Using supersymmetry algebra in the context
of BPS strings, one can show that the current algebra is on
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the left movers in the (0,4) SCFTs, and its central charge
contribution is given in (11). Therefore, we find the
following constraint on the 2D world sheet SCFT in the
6D supergravity:

X
i

ki · dimGi

ki þ h∨i
≤ cL: ð27Þ

So, the 2D SCFTs on strings satisfying the conditions in
Eqs. (25) and (26) must have central charges constrained by
Eq. (27). Otherwise, the 2D world sheet theory is nonuni-
tary. In conclusion, we claim that a 6D supergravity theory
embedding 2D strings of which the world sheet theory
violates the condition (27) is inconsistent and it therefore
belongs to the swampland.

C. Examples

The basic structure of our examples is as follows. For
each one, we have the Ω, a, and bi given by anomaly
cancellation conditions. We use this to find the allowed
ranges for J and choose a particular J in the allowed region.
We then use this to restrict the allowed string charges Q’s
and use that to compute central charges cR and cL and kl
and ki and see if we have any contradictions with unitarity.
Let us first consider the 6D supergravity theory coupled

to T ¼ 9 tensors with the SUðNÞ × SUðNÞ gauge group
and two bifundamental hypermultiplets introduced in
Ref. [8] (see also Ref. [20] for T ¼ 1models). The anomaly
polynomial of this model factorizes for an arbitrary N, and
hence it seems that they provide an infinite family of
consistent 6D supergravity theories. It was, however,
shown in Ref. [8] that these models have no F-theory
realization at large enough N.
Let us examine these models with 2D strings to see if the

consistency conditions of the world sheet theory on the
strings can provide any bound on N.
We can always choose a tensor basis such that the

bilinear form Ω and the vectors a, b1, and b2 are given as
follows [8]:

Ω¼ diagðþ1; ð−1Þ9Þ; a¼ ð−3; ðþ1Þ9Þ;
b1 ¼ ð1;−1;−1;−1;06Þ; b2 ¼ ð2;0;0;0; ð−1Þ6Þ: ð28Þ

In this basis, one can easily see that a Kähler form chosen as
J ¼ ð1; 09Þ satisfies the conditions J2 > 0, J · b > 0, and
J · a < 0.
Consider a string of a generic charge Q ¼ ðq0; q1;

…; q9Þ with qi ∈ Z. This string with q0 > 0 has a positive
tension with respect to J. The conditions (25) and (26) on
the IR SCFT for this string can be summarized as

q20−
X9
i¼1

q2i ≥−1; q20−
X9
i¼1

q2i −3q0−q1∶3−q4∶9≥−2;

k1¼q0þq1∶3≥0; k2¼2q0þq4∶9≥0; ð29Þ

where q1∶3 ≡P
3
i¼1 qi and q4∶9 ≡P

9
i¼4 qi. In addition,

the flavor central charges are restricted by the unitarity
bound (27)

k1ðN2 − 1Þ
k1 þ N

þ k2ðN2 − 1Þ
k2 þ N

≤ cL; ð30Þ

where the left-moving central charge is

cL ¼ 3

�
q20 −

X9
i¼1

q2i

�
þ 9ð3q0 þ q1∶3 þ q4∶9Þ þ 2: ð31Þ

As discussed above, if this bound is violated for any Q
satisfying (29), the anomaly inflow from the bulk 6D
supergravity theory cannot be canceled by a unitary 2D
CFT which renders the 6D supergravity inconsistent at the
quantum level.
The bound (30) gives the strongest constraint onN of the

6D supergravity theory when the left-hand side is maxi-
mized, namely, ki’s are minimized, while the right-hand
side is minimized. This implies the strongest bound can be
given by a string with q20 −

P
iq

2
i ¼ −1 and k1 ¼ 0,

k2 ¼ 1. This occurs for Q ¼ ð1;−1; 0; 0;−1; 05Þ. The
central charge bound for the string configuration being
unitary is

k2ðN2 − 1Þ
k2 þ N

≤ cL →
N2 − 1

1þ N
≤ 8 → N ≤ 9: ð32Þ

Therefore, the 6D supergravity theory with N > 9 belongs
to the swampland containing nonunitary string configura-
tions. This bound is stronger than the bound N ≤ 12 from
the Kodaira condition in F theory [8]. It is interesting that
we can thus rule out would-be purely geometric construc-
tions that could have in principle realized this model for
N ¼ 10, 11, 12. In other words, our arguments can be used
to teach us some facts about the geometry of elliptic Calabi-
Yau 3-folds. Also, it is reassuring that this bound does not
rule out the string theory realization for N ¼ 8 given in
Refs. [38,39] and all the N ≤ 8 theories which one can
obtain from it by partial Higgsing. Remarkably, our world
sheet analysis provides a new bound on the rank of gauge
groups in the 6D bulk supergravity theory, and the result is
consistent with the F-theory argument and also the known
string theory realization. It would be interesting to see if
one can construct the N ¼ 9 case, which we were not able
to rule out.
The second example is the 6D supergravity with T ¼ 1

and the SUðNÞ gauge group coupled to one symmetric
and N − 8 fundamental hypermultiplets first introduced in
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Refs. [8,40]. The rank of the gauge group is bounded as
N ≤ 30 from the 6D anomaly cancellation conditions. For
this model, we are free to choose a tensor basis giving

Ω¼ diagð1;−1Þ; a¼ ð−3;1Þ; b¼ ð0;−1Þ: ð33Þ

The Kähler form can always be chosen as J ¼ ðn; 1Þ with
n2 > 1 and n > 0. This theory has no F-theory realization
because when we identify the base B with a Hirzebruch
surface F1 the tensor for b cannot be mapped to any
effective curve class [8].
We shall now see if the consistency conditions on string

configurations of this 6D theory can provide a stronger
bound on the rank N. Consider a generic string with Q ¼
ðq1; q2Þ satisfying the conditions (25) and (26), namely,

q21 − q22 ≥ −1; q21 − q22 − 3q1 − q2 ≥ −2;

k ¼ Q · b ¼ q2 ≥ 0: ð34Þ
Also, nq1 > q2 from J ·Q > 0. These conditions can be
then simplified, for the strings interacting with the gauge
group, as

q1 ≥ 3 q1 − 2 ≥ q2 > 0: ð35Þ
The constraint on the central charges

q2ðN2 − 1Þ
q2 þ N

≤ 3ðq21 − q22Þ þ 9ð3q1 þ q2Þ þ 2 ð36Þ

can provide the strongest bound on N when Q ¼ ð3; 1Þ,
and the bound is N ≤ 117. This bound is weaker than the
bound N ≤ 30 coming from the 6D anomaly cancellation
conditions. This may imply, unless another inconsistency is
revealed by any other means, that these 6D supergravity
models with N ≤ 30 are all consistent theories, though they
do not seem to admit an F-theory realization.
The anomaly inflow consideration can provide a new

bound on a family of models with T ¼ 8kþ 9 and gauge
group G ¼ ðE8Þk for arbitrary large k, which was intro-
duced in Ref. [8]. The vectors a and bi in the anomaly
polynomial satisfy a · bi ¼ 10, bi · bj ¼ −2δij with i,
j ¼ 1;…; k. When k ≥ 3, one can choose a basis for
tensors in Ref. [8] that gives rise to

Ω ¼ diagð1; ð−1Þ8kþ9Þ; a ¼ ð−3; 18kþ9Þ;
bi ¼ ð−1;−1; 04ði−1Þ; ð−1Þ3;−3; 08kþ8−4iÞ; ð37Þ

The Kähler form in this basis can be chosen as

J ¼ ð−j0; 04kþ1; 14kþ8Þ; ð4kþ 8Þ=3 > j0 >
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4kþ 8

p
:

ð38Þ
Now, consider a string with charge Q ¼ ð−q; 08kþ9Þ in

this 6D model. This string has a positive tension if q > 0.

Moreover, the conditions kl ≥ 0, cR ≥ 0 and ki ≥ 0 can be
satisfied if q > 2. However, the bound on the levels of
flavor current algebras ki ¼ Q · bi ¼ q,

Xk
i¼1

248ki
ki þ 30

≤ cL → k
248q
qþ 30

≤ 3qðq − 9Þ þ 2; ð39Þ

cannot be satisfied by, for example, strings with charge
3 ≤ q ≤ 14 for any k ≥ 3. This result demonstrates that all
these 6D supergravity models for k ≥ 3 endowed with the
bilinear form Ω and vectors a and bi given in (37) reveal
nonvanishing anomalies on the 2D strings, and therefore
they are in the swampland.
Note, however, that the 6D supergravity theories of this

type for k ≤ 2 are not ruled out by this analysis. When
k ¼ 1, 2, there exists other solutions of Ω and a, bi
canceling the anomalies, like

Ω ¼ diagð1; ð−1Þ17Þ; a ¼ ð−3; 117Þ;
b1 ¼ ð0; 1; ð−1Þ11; 05Þ ð40Þ

for k ¼ 1 and

Ω¼ diagð1; ð−1Þ25Þ; a¼ ð−3;125Þ;
b1 ¼ ð0;1; ð−1Þ11;013Þ; b2 ¼ ð0;013;1; ð−1Þ11Þ ð41Þ

for k ¼ 2. Thus, the above analysis does not apply to the
k ¼ 1, 2 cases. We do not find any string configuration
showing inconsistencies for these cases. Indeed, the 6D
gravity theory with k ¼ 2 can be realized by the compac-
tification of M theory on K3 × ðS1=Z2Þ, where we place 24
M5 branes on the interval [41].
The last example is the 6D supergravity theory with

T ¼ 0 and the gauge group SUð8Þ coupled to an exotic
hypermultiplet in the “box” representation, which was
introduced in Ref. [23]. This theory cannot be realized
in F theory. The 6D anomaly cancellation sets the vectors as
a ¼ −3 and b ¼ 8.
The 2D SCFTs on a string with charge Q > 0 in this

theory satisfy the conditions (25) and (26). The strongest
constraint on the left-moving central charge is given by the
minimal string with Q ¼ 1. The central charge constraint
for this model is marginally satisfied as

k × 63

kþ 8
≤ cL → 31.5 ≤ 32 for k ¼ Q · b ¼ 8: ð42Þ

Therefore, at least as far as the unitarity constraint is
concerned, this theory is not ruled out, and the strings can
consistently couple to this 6D supergravity theory.

IV. CONCLUSIONS

In summary, we have discussed the consistencies of 10D
and 6D N ¼ ð1; 0Þ supergravity theories as seen from 2D
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strings that couple to the 2-forms in the bulk. We have
identified the central charges of the world sheet SCFTs on
the strings using the anomaly inflow from the bulk super-
gravity theory. The unitarity of the world sheet SCFTs
associated to the central charges leads to novel constraints
on the allowed supergravity models, which are not visible
from the particle viewpoint.
In this paper, we analyzed only a handful of 6D super-

gravity models. A large class of would-be consistent 6D
supergravity theories has been discussed in the literature,
for example, Refs. [8,23,40]. It might be possible to
similarly rule out many such models using more detailed
constraints from string probes that we considered in this
paper. We leave this for future work.
It would be straightforward to generalize the anomaly

inflow consideration discussed in this paper to another type
of branes coupled to the supergravity theories. Our dis-
cussion in this paper is merely a starting point of a bigger
program to understand the consistency of quantum gravi-
tational theories in various dimensions by coupling them to
all possible branes and defects of the theories. We hope this
program ultimately provides a complete classification of
consistent supergravity theories in six and perhaps also
other dimensions and more broadly deepens our under-
standing of the swampland criteria.
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APPENDIX A: ANOMALIES IN 10D
SUPERGRAVITY THEORIES

We adopt the normalization used in Ref. [42], but a factor
of 1=4π is included in the curvature 2-form R, and the field
strength F includes a factor of 1=2π. An N ¼ 1 super-
gravity theory in ten dimensions contains a Majorana-Weyl
gravitino, some spin-1

2
fermions with negative chirality, and

gauginos with positive chirality. The gravitino contributes
to the anomaly as

I3=212 ¼ −
11

126
trR6 þ 5

96
trR4trR2 −

7

1152
ðtrR2Þ3; ðA1Þ

while the contribution from a spin-1
2
fermion is

I1=212 ¼ ðtrR1Þ
�

1

5670
trR6 þ 1

4320
trR4trR2þ 1

10368
ðtrR2Þ3

�

−
1

2
trRF2

�
1

360
trR4 þ 1

288
ðtrR2Þ2

�

þ 1

288
ðtrRF4ÞtrR2 −

1

720
trRF6; ðA2Þ

where R denotes the representation of the fermion under
the gauge algebra. The total one-loop anomaly of the theory
is given by the sum over all fermion contributions as

I1−loop12 ¼ I3=212 − I1=212 jR¼1 þ I1=212 jR¼adj

¼ dimG − 496

5670
trR6 þ dimGþ 224

4320
trR4trR2

þ dimG − 64

10368
ðtrR2Þ3

−
1

2
tradjF2

�
1

360
trR4 þ 1

288
ðtrR2Þ2

�

þ 1

288
tradjF4trR2 −

1

720
tradjF6; ðA3Þ

where dimG is the dimension of the gauge group. When
this one-loop anomaly factorizes as

I1−loop12 ¼ X4 ∧ X8; ðA4Þ

it can be canceled by the Green-Schwarz mechanism [12].
This factorization condition allows only four choices of
gaugegroups:SOð32Þ,E8 × E8,E8 ×Uð1Þ248, andUð1Þ496.
To cancel the one-loop anomaly, we add to the action the

Green-Schwarz term

SGS ¼
Z

B2 ∧ X8: ðA5Þ

Here, the 2-form field B2 in the 10D theory transforms
under the local gauge and Lorentz group as

B2 → B2 −
1

4
TrðΛFÞ þ trðΘRÞ; ðA6Þ

where Λ and Θ are the transformation parameters. It then
follows that the Green-Schwarz term induces anomalies
under the gauge and Lorentz transformations, which may
cancel the one-loop anomalies. We normalize “Tr” such
that the integral of 1

4
TrF2 over a 4-manifold gives the

instanton number Q ∈ Z. Note that the gauge transforma-
tion of B2 is fixed by supersymmetry and the gauge
invariance of the 3-form field strength H3 [16,17].
The Lorentz transformation of B2 is, on the other hand,
fixed by the higher-order correction on H3 in the derivative
expansion.
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APPENDIX B: ANOMALY INFLOWS FROM SIX
TO TWO DIMENSIONS

Let us briefly review the anomaly inflow computation in
6D theories in the presence of 2D strings discussed in
Refs. [28,29] (see also Refs. [43,44] for the anomaly inflow
of self-dual strings in the 6DN ¼ ð2; 0Þ SCFTs). WhenQi

strings are located at x1;2;3;4 ¼ 0, the Bianchi identity for
the 2-form fields is modified as

dHα ¼ Xα
4 þQα

Y4
a¼1

δðxaÞdxa: ðB1Þ

The shift in the right-hand side in the Bianchi identity
applies to for the anomaly contribution from the Green-
Schwarz term as

IGS8 ¼ −
1

2
Ωαβ

�
Xα
4 þQα

Y4
a¼1

δðyaÞdya
�

×

�
Xβ
4 þQα

Y4
a¼1

δðyaÞdya
�
: ðB2Þ

As a result, a nontrivial anomaly inflow is induced toward
the string world sheet. The anomaly inflow can be
computed by integrating the 8-form anomaly polynomial
over the four transverse directions to the strings. One
computes

Iinflow4 ¼ −ΩαβQα

�
Xα
4 þ

1

2
Qβχ4ðN4Þ

�
: ðB3Þ

This inflow must be canceled by the anomalies arising from
the world sheet d.o.f. on the 2D strings. Hence, the anomaly
polynomial of the 2D world sheet SCFT must be

I4 ¼ −Iinflow4 ¼ ΩαβQα

�
Xα
4 þ

1

2
Qβχ4ðN4Þ

�
: ðB4Þ

Here, χ4ðN4Þ is the Euler class of the SOð4Þ ¼ SUð2Þl ×
SUð2ÞR normal bundle for the transverseR4 directions, and
it can also be written as χ4ðN4Þ ¼ c2ðlÞ − c2ðRÞ in terms of
the second Chern classes c2ðlÞ and c2ðRÞ for SUð2Þl
and SUð2ÞR.
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