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Compactifying M-theory on a manifold of G2 holonomy gives a UV complete 4D theory. It is
supersymmetric, with soft supersymmetry breaking via gaugino condensation that simultaneously
stabilizes all moduli and generates a hierarchy between the Planck and the Fermi scale. It generically
has gauge matter, chiral fermions, and several other important features of our world. Here we show that
the theory also contains a successful inflaton, which is a linear combination of moduli closely aligned with
the overall volume modulus of the compactified G2 manifold. The scheme does not rely on ad hoc
assumptions, but derives from an effective quantum theory of gravity. Inflation arises near an inflection
point in the potential which can be deformed into a local minimum. This implies that a de Sitter vacuum can
occur in the moduli potential even without uplifting. Generically present charged hidden sector matter
generates a de Sitter vacuum as well.

DOI: 10.1103/PhysRevD.100.066005

I. INTRODUCTION

Countless papers have suggested particles or fields that
can lead to an inflating universe. Most have used ad hoc
mechanisms without identifying a physical origin—what is
the inflaton? Such bottom-up descriptions, furthermore,
rely on strong hidden assumptions on the theory of
quantum gravity. More thorough proposals have identified
the inflaton as part of a string theory construction in which
the ultraviolet (UV) physics can be addressed. In this case,
the inflaton arises in a theory that itself satisfies major
consistency conditions and tests. The theory should also
connect with the Standard Models of particle physics and
cosmology. Ideally, its properties would uniquely deter-
mine the nature of the inflaton.
In this work, we focus on M-theory compactified

spontaneously on a manifold of G2 holonomy. The result-
ing quantum theory is UV complete and describes gravity
plus the Standard Model plus Higgs physics. When its
hidden sector matter is included it has a de Sitter vacuum
[1]. It stabilizes all the moduli and is supersymmetric with
supersymmetry softly broken via gluino condensation [1].
It produces a hierarchy of scales and has quarks and

leptons interacting via Yang-Mills forces. It generically
has radiative electroweak symmetry breaking and cor-
rectly anticipates the ratio of the Higgs boson mass to the
Z mass [2]. It also solves the strong CP problem [3].
In this theory, a particular linear combination of moduli,

that which describes the volume of the compactified region,
generates inflation. By means of Kähler geometry, we will
prove that a tachyonic instability develops if the inflaton is
not “volume-modulus-like.” In contrast to related proposals
in type II string theory [4–7], volume modulus inflation on
G2 does not rely on uplifting or higher order corrections to
the Kähler potential. This follows from the smaller curva-
ture on the associated Kähler submanifold.
Besides being intuitively a likely inflaton, the volume

modulus also resolves a notorious problem of string infla-
tion: the energy density injected by inflation can destabilize
moduli fields and decompactify the extra dimensions.
Prominent moduli stabilization schemes including KKLT
[8], the large volume scenario [9], and Kähler uplifting
[10,11] share the property that the volume modulus partic-
ipates in supersymmetry breaking. Its stability is threatened
once the Hubble scale of inflation H exceeds m3=2 [12–14].
In contrast, the volume modulus of the compactified G2

manifold drives inflation in the models that we will discuss.
Thereby, the inflationary energy density stabilizes the system
and H ≫ m3=2 is realized. The supersymmetry breaking
fields—light moduli and mesons of a strong hidden sector
gauge theory—receive stabilizing Hubble mass terms on the
inflationary trajectory.
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Inflation takes place close to an inflection point in the
potential and lasts for 100–200 e-foldings. If we impose the
observational constraints on the spectral index, we can
predict the tensor-to-scalar ratio r ∼ 10−6. It is unlikely that
other observables will directly probe the nature of the
inflaton. However, inflation emerges as a piece of a theory
which also implies low energy supersymmetry with a
gravitino mass m3=2 ≲ 100 TeV and a specific pattern of
superpartner masses. Gauginos are at the TeV scale and
observable at LHC. Furthermore, a matter dominated cos-
mological history is predicted. In a sense, all aspects and
tests of the theory are also tests of the nature of its inflaton,
although technically they may not be closely related.
Less is known about G2 manifolds than about Calabi-

Yau manifolds. This is being at least partially remedied via
a 4-year, $9 million study sponsored by the Simons
Foundation started in 2017, focusing on G2 manifolds.
Remarkably, the above successes were achieved without
detailed knowledge of the properties of the manifolds.

II. DE SITTER VACUA IN G2
COMPACTIFICATIONS

A. The moduli sector

We study M-theory compactifications on a flux-free
G2-manifold. The size and the shape of the manifold is
controlled by moduli Ti. In our convention, the imaginary
parts of the Ti are axion fields.1 A consistent set of Kähler
potentials is of the form [15,16]

K ¼ −3 log ð4π1=3VÞ; ð1Þ

where V denotes the volume of the manifold in units of the
11-dimensional Planck length. Since the volume must be a
homogeneous function of the ReTi of degree 7=3, the
following simple ansatz has been suggested [16]:

K ¼ − log

�
π

2

Y
i

ðT̄i þ TiÞai
�
;

X
i

ai ¼ 7; ð2Þ

which corresponds to V ¼ Q
iðReTiÞai=3. We will drop the

factor π=2 in the following since it merely leads to an
overall Oð1Þ factor in the potential not relevant for this
discussion. A realistic vacuum structure with stabilized
moduli is realized through hidden sector strong dynamics
such as gaugino condensation. The resulting theory generi-
cally has massless quarks and leptons, and Yang-Mills
forces [1], and it has generic electroweak symmetry break-
ing, and no strong CP problem [3].
We consider one or several hidden sector SUðNÞ gauge

theories. These may include massless quark states Q, Q̄
transforming in the N and N̄ representations. Each hidden

sector induces a nonperturbative superpotential due to
gaugino condensation [17,18],

W ¼ A det ðQQ̄Þ− 1
N−Nf exp

�
−

2πf
N − Nf

�
; ð3Þ

where Nf denotes the number of quark flavors. The
coefficient A is calculable, but depends on the renormal-
ization scheme as well as threshold corrections to the gauge
coupling. The gauge kinetic function f is a linear combi-
nation of the moduli [19],

f ¼ ciTi; ð4Þ

with integer coefficients ci. We now turn to the construction
of de Sitter vacua with broken supersymmetry.

B. Constraints on de Sitter vacua

In this section we introduce some tools of Kähler
geometry which can be used to derive generic constraints
on de Sitter vacua in supergravity [20]. The same frame-
work also applies to inflationary solutions (see, e.g., [5])
and will later be employed to identify the inflaton field. In
order to fix our notation, we introduce the (F-term part) of
the scalar potential in supergravity,

V ¼ eGðGiGi − 3Þ; ð5Þ

with the function G ¼ K þ log jWj2. The subscript i
indicates differentiation with respect to the complex scalar
field ϕi. Indices can be raised and lowered by the Kähler
metric Kij̄ and its inverse Kīj. Extrema of the potential
satisfy the stationary conditions Vi ¼ 0 which can be
expressed as

eGðGi þ Gj∇iGjÞ þ GiV ¼ 0; ð6Þ

where we introduced the Kähler covariant derivatives ∇i.
The mass matrix at stationary points derives from the
second derivatives of the potential [21],

Vij̄ ¼ eGðGij̄ þ∇iGk∇j̄G
k − Rij̄mn̄G

mGn̄Þ
þ ðGij̄ −GiGj̄ÞV; ð7Þ

Vij ¼ eGð2∇iGj þGk∇i∇jGkÞ þ ð∇iGj − GiGjÞV; ð8Þ

where Rij̄mn̄ denotes the Riemann tensor of the Kähler
manifold. (Meta)stable vacua are obtained if the mass matrix
is positive semidefinite. A weaker necessary condition
requires the submatrix Vij̄ to be positive semidefinite. All
complex scalars orthogonal to the sgoldstino may acquire a
large mass from the superpotential. In addition, the above
mass matrix contains the standard soft terms relevant, e.g.,
for the superfields of the visible sector.1Ti in this work corresponds to izi defined in [1].
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Stability constraints apply in particular to the sgoldstino
direction which does not receive a supersymmetric mass.
Via appropriate field redefinitions, we can set all derivatives
of G to zero, except for one which we choose to be Gn. The
curvature scalar of the one-dimensional submanifold asso-
ciated with the sgoldstino is defined as

Rn ¼
Knnn̄ n̄

K2
nn̄

−
Knnn̄Knn̄ n̄

K3
nn̄

: ð9Þ

From the necessary condition, it follows that Vnn̄ ≥ 0 and,
hence,

eGð2 − 3RnÞ − VRn ≥ 0: ð10Þ

For a tiny positive vacuum energy as in the observed
Universe, the constraint essentially becomes [20]

Rn <
2

3
: ð11Þ

This condition restricts the Kähler potential of the field
responsible for supersymmetry breakdown. Indeed, it
invalidates some early attempts to incorporate supersym-
metry breaking in string theory. For the dilaton S in
heterotic string theory, one can, e.g., derive the curvature
scalar RS ¼ 2 from its Kähler potential K ¼ − logðS̄þ SÞ.
The scenario of dilaton-dominated supersymmetry break-
ing [22] is, hence, inconsistent with the presence of a
de Sitter minimum [20,23]. Kähler potentials of the no-
scale type K ¼ −3 logðT̄ þ TÞ, with T denoting an overall
Kähler modulus, feature RT ¼ 2=3. In this case (11) is
marginally violated. Corrections to the Kähler potential
and/or subdominant F or D terms from other fields may
then reconcile T-dominated supersymmetry breaking with
the bound. Examples of this type include the large volume
scenario [9] as well as Kähler uplifting [10,11].
A less constrained possibility to realize de Sitter vacua

consists in the supersymmetry breaking by a hidden sector
matter field. Hidden sector matter is present in compactified
M-theory. When it is included using the approach of
Seiberg [18], it generically leads to a de Sitter vacuum.
The identification of the Goldstino with the meson of a
hidden sector strong gauge group allows for a natural
explanation of the smallness of the supersymmetry break-
ing scale (and correspondingly the weak scale) through
dimensional transmutation. The simple canonical Kähler
potential, for instance, yields a vanishing curvature scalar
consistent with (11). Matter supersymmetry breaking is
also employed in KKLT modulus stabilization [8] with
F-term uplifting [24] and in heterotic string models [25].
We note, however, that in G2 compactifications of

M-theory, de Sitter vacua can arise even if the hidden
sector matter decouples. As we show in Sec. IV, the G2

Kähler potential (2) features linear combinations of moduli
with curvature scalar as small as 2=7. In contrast to the

previously mentioned string theory examples, condition
(11) can hence be satisfied even in the absence of
corrections to the Kähler potential. The modular inflation
models we discuss in Sec. IVare of this type. We will show
that, by a small parameter deformation, the inflationary
plateau can be turned into a metastable de Sitter minimum.
Let us also briefly allude to the controversy on the

existence of de Sitter vacua in string/M-theory [26]. It is
known that de Sitter vacua do not arise in the classical limit
of string/M-theory [27]. This, however, leaves the pos-
sibility to realize de Sitter vacua at the quantum level.
Indeed, in the G2 compactification we describe, the scalar
potential is generated by quantum effects. The quantum
nature is at the heart of the proposal and tied to the origin
of physical scales.

C. Minimal example of modulus stabilization

We describe the basic mechanism of modulus stabili-
zation in G2 compactifications leaning on [1].2 Some key
features are illustrated within a simple one-modulus
example. Since the single-modulus case faces cosmo-
logical problems which can be resolved in a setup with
two or more moduli, we will later introduce a two-moduli
example and comment on the generalization to many
moduli.
The minimal example3 of modulus stabilization in G2

compactifications invokes two hidden sector gauge groups
SUðN1 þ 1Þ, SUðN2Þ with gauge kinetic functions

f1 ¼ f2 ¼ T: ð12Þ

The SUðN1 þ 1Þ gauge theory shall contain one pair of
massless quarks Q, Q̄ transforming in the fundamental and
antifundamental representation of SUðN1 þ 1Þ. When the
SUðN1 þ 1Þ condenses, the quarks form an effective meson

field ϕ ¼
ffiffiffiffiffiffiffiffiffiffi
2QQ̄

p
. Taking SUðN2Þ to be matter free, the

superpotential and Kähler potential read

W ¼ A1ϕ
− 2
N1e−

2πT
N1 þ A2e

−2πT
N2 ;

K ¼ −7 log ðT̄ þ TÞ þ ϕ̄ϕ: ð13Þ

We neglected the volume dependence of the matter Kähler
potential which does qualitatively not affect the modulus
stabilization [28]. The scalar potential including the modu-
lus and meson field is

V ¼ eGðGTGT þ GϕGϕ − 3Þ: ð14Þ

2Some differences occur since [1] mostly focused on the case
of two hidden sector gauge groups with equal gauge kinetic
functions, while we will consider more general cases.

3Due to the absence of a constant term in the superpotential, a
single gaugino condensate would give rise to a runaway potential.
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The scalar mass spectrum contains two CP even and two
CP odd (axion) states which are linear combinations of
ReT, jϕj and ImT, argϕ, respectively. We will denote the
CP even and odd mass eigenstates by s1;2 and φ1;2,
respectively. The scalar potential is invariant under the shift

T → T þ i
N2

N1 − N2

Δ; ϕ → eiπΔϕ: ð15Þ

This can easily be seen from the fact that the superpotential
merely picks up an overall phase under this transformation.
The light axion

φ1 ∝ N2ImT þ πðN1 − N2Þ argϕ ð16Þ

is, hence, massless which makes it a natural candidate
for the QCD axion [3]. The remaining axionic degree of
freedom (d.o.f.) receives a periodic potential which has an
extremum at the origin of field space. Without loss of
generality, we require signðA1=A2Þ ¼ −1 such that the
extremum is a minimum.4 This allows us to set ImT ¼
argϕ ¼ 0 when discussing the stabilization of the CP even
scalars.
We now want to prove that this setup allows for the

presence of a (local) de Sitter minimum consistent with
observation. For practical purposes, we can neglect the
tiny cosmological constant and require the presence of a
Minkowski minimumwith broken supersymmetry. There is
generically no supersymmetric minimum at finite field
values. Since the negative sign of A1=A2 is required for
axion stabilization, a solution to GT ¼ 0 only exists if
N2 > N1. With this constraint imposed, there is no simul-
taneous solution to Gϕ ¼ 0 with positive jϕj. However, a
minimum ðT0;ϕ0Þ with broken supersymmetry may occur
close to the field value Tsusy at which GT vanishes. This is
because the modulus mass term at Tsusy dominates over the
linear term which drives it away from this point. Given a
minimum with a small shift δT ¼ Tsusy − T0, we can
expand

GT ¼ GT̄ ¼ −ðGTT þGTT̄ÞδT: ð17Þ

Here and in the following, all terms are evaluated at the
minimum if not stated otherwise. Since T0, ϕ0, δT are real,
there is no need to distinguish betweenGT andGT̄ . In order
to determine the shift, we insert (17) into the minimization
condition VT ¼ 0 and keep terms up to linear order in δT.
Notice that all derivatives of G with respect to purely
holomorphic or purely antiholomorphic variables are of
zeroth order in T−1

0 . We find

δT ¼ GϕTGϕ̄

GTTKTT̄GT̄ T̄

þOðT−4
0 Þ: ð18Þ

The leading contribution to the shift is δT ¼ OðT−2
0 Þ. This

justifies our expansion in δT. In the next step, we want to
determine the location of the minimum. As an additional
constraint, we require a vanishing vacuum energy. In order
to provide simple analytic results, we will perform a
volume expansion which is equivalent to an expansion
in T−1

0 . We include terms up to OðT−1
0 Þ. Notice that, at this

order, the modulus minimum satisfies T0 ¼ Tsusy. We,
nevertheless, have to keep track of the shift carefully
since it may appear in a product with the inverse Kähler
metric which compensates its suppression. The conditions
VT ¼ Vϕ ¼ V ¼ 0 lead to the set of equations at order T−1

0

GT ¼0; Gϕϕþ1−
G2

ϕT

GTT
¼0; Gϕ¼

ffiffiffi
3

p
: ð19Þ

The solutions for the modulus and meson minimum read

ϕ0 ¼
ffiffiffi
3

p

2
; T0 ¼

14

π

N2

3ðN2 − N1Þ − 8
: ð20Þ

The meson naturally settles at a finite field value slightly
below 1MP due to the interplay between terms involving
Wϕ (which drive the meson out in field space) and the
supergravity prefactor eK (which rapidly grows towards
large meson field values). Despite the large meson vacuum
expectation value, higher order terms in the meson Kähler
potential, which we neglected in this work, leave the picture
qualitatively unchanged as shown in [28]. Notice, however,
that a minimum of the full system only exists for
N2 ≥ N1 þ 3. On the other hand N2 − N1 ≲ 10 since the
nonperturbative terms in the superpotential would other-
wise exceed unity. Equations (19) fix one additional
parameter which can be taken to be the ratio A1=A2.
We find

A1

A2

¼ −
N1

N2

�
3

4

� 1
N1 exp

�
28

N1

N2 − N1

3ðN2 − N1Þ − 8

�
: ð21Þ

A suppressed vacuum energy can be realized on those G2

manifolds which fulfill the above constraint5 with accept-
able precision. We now turn to the details of supersym-
metry breaking. The gravitino mass is defined as

m3=2 ¼ jeG=2jT0;ϕ0
: ð22Þ

Throughout this work, m3=2 refers to the gravitino mass in
the vacuum of the theory. We will later also introduce the

4If this condition is not satisfied, the relative sign of A1 and A2

can be inverted through field redefinition.

5More accurately, the exact version of the above approximate
constraint.
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gravitino mass during inflation, but will clearly indicate the
latter by an additional superscript I. Within the analytic
approximation, the gravitino mass determined from (19)
and (21) is

m3=2 ≃ jA1j
e3=8π7=2

48N1

�
3N2 − 3N1 − 8

7N2

�
7=2

× exp

�
−
N2

N1

28

3ðN2 − N1Þ − 8

�
: ð23Þ

Up to the overall prefactor, the gravitino mass is fixed by
the rank of the hidden sector gauge groups. A hierarchy
between the Planck scale and the supersymmetry breaking
scale naturally arises from the dimensional transmutation.
If we require a gravitino mass close to the electroweak
scale, this singles out the choice N2 ¼ N1 þ 4. While this
particular result only holds for the single-modulus case,
similar relations between the gravitino mass and the hidden
sector gauge theories can be established in realistic systems
with many moduli [1].6 In order to determine the pattern of
supersymmetry breaking we evaluate the F terms which are
defined in the usual way,

Fi ¼ eG=2Kij̄Gj̄: ð24Þ

From (17) and (18), we derive

jFT j ≃ 2N2

πðN2 − N1Þ
m3=2; jFϕj ≃

ffiffiffi
3

p
m3=2 ð25Þ

at leading order. The meson provides the dominant source
of supersymmetry breaking as can be seen by comparing
the canonically normalized F terms

jFT ffiffiffiffiffiffiffiffiffi
KT̄T

p j
jFϕj ≃

3N2 − 3N1 − 8

2
ffiffiffiffiffi
21

p ðN2 − N1Þ
: ð26Þ

This has important implications for the mediation of
supersymmetry breaking to the visible sector. Since
gravity-mediated gaugino masses only arise from moduli
F terms, they are suppressed against the gravitino and
sfermion masses. We refer to [29] for details.
As stated earlier, the modulus and the meson are subject

to mixing. However, the mixing angle is suppressed
by T0, and the heavy CP even and odd mass eigenstates
s2 and φ2 are moduluslike. Since their mass is dominated
by the supersymmetric contribution mT̄T , they are nearly
degenerate with

ms2 ≃mφ2

≃ eG=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GTTKT̄TGT̄ T̄

KT̄T

s

≃
56

N1

3N2
2 − 3N2

1 − 8N1

ð3N2 − 3N1 − 8Þ2 m3=2: ð27Þ

The mesonlike axion φ1 is massless due to the shift
symmetry. Since the meson is the dominant source of
supersymmetry breaking, the supertrace of masses in the
meson multiplet must approximately cancel. This implies

ms1 ≃ 2m3=2: ð28Þ

The scalar potential vanishes towards large modulus field
values. Hence, the minimum (T0, ϕ0) is only protected by a
finite barrier. We first keep the meson fixed and estimate
its height in a leading order volume expansion.7 Then, we
allow the meson to float, in order to account for a decrease
of the barrier in the mixed modulus-meson direction.
Numerically, we find that the shifting meson generically
reduces the barrier height by another factor ∼T−1

0 . Our final
estimate thus reads

Vbarrier ≃
16π2T0

7e2N2
1

m2
3=2: ð29Þ

The prefactor in front of the gravitino mass is of order
unity. Notice that the above expression is multiplied by two
powers of the Planck mass which is set to unity in our
convention.
For illustration, we now turn to an explicit numerical

example. We choose the following parameter set:

N1 ¼ 8; N2 ¼ 12; A1 ¼ 0.0001: ð30Þ

The prefactor A2 is fixed by requiring a vanishing vacuum
energy. Numerically, we find

A1=A2 ¼ −20.9; ð31Þ

in good agreement with the analytic approximation (21).
We list the resulting minimum, particle masses, supersym-
metry breaking pattern, and barrier height in Table I. The
numerical results are compared with the analytic expres-
sions provided in this section. The approximations are valid
to within a few percent precision. Only for m3=2 is the error
larger due to its exponential dependence on the modulus
minimum.
The scalar potential in the modulus-meson plane is

depicted in Fig. 1. Also shown is the potential along the
6In realistic G2 compactifications, the gauge kinetic function is

set by a linear combination of many moduli. We can effectively
account for this by modifying the gauge kinetic function to f ¼
Oð10 − 100ÞT in the one-modulus example. In this case, the
preferred value of N2 − N1 changes to 3 in agreement with [1].

7We also assumed N1;2 ≫ N2 − N1 when estimating the
barrier height.
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“most shallow” mixed modulus-meson direction. The latter
was determined by minimizing the potential in the meson
direction for each value of T.

D. Generalization to several moduli

Realistic G2 manifolds must contain the full minimal
supersymmetric standard model spectrum with its Oð100Þ
couplings. They will generically feature a large number of
moduli and nonperturbative terms in the superpotential.
The low energy phenomenology, however, mostly depends
on the lightest modulus. In this sense, the mass spectrum
derived in the previous section is realistic, once T is
identified with the lightest modulus. However, in the early
Universe, high energy scales are accessed. This implies
that, for cosmology, the heavier moduli do actually matter.
We will later see that inflation in M-theory relies on large
mass hierarchies in the moduli sector. In order to motivate
their existence, we now introduce an example with two
moduli T1;2.
One linear combination of moduli TL plays the role of

the light modulus as in the previous section. It participates
(subdominantly) in supersymmetry breaking and its mass is
tied to the gravitino mass. The orthogonal linear combi-
nation TH can, however, be decoupled through a large
supersymmetric mass term from the superpotential. In order
to be explicit, we will identify

TH ¼ T1 þ T2

2
; TL ¼ T1 − T2

2
: ð32Þ

The superpotential is assumed to be of the form

W ¼ WðTHÞ þ wðTH; TLÞ: ð33Þ

The part W only depends on TH and provides the large
supersymmetric mass for the heavy linear combination.
The part w is responsible for supersymmetry breaking
and its magnitude is controlled by the (much smaller)
gravitino mass. We require that TH be stabilized super-
symmetrically at a high mass scale. For this we impose that
the high energy theory defined byW has a supersymmetric
Minkowski minimum, i.e.,

W ¼ WH ¼ 0; ð34Þ

where the subscript H indicates differentiation with respect
to TH. The above condition has to be fulfilled at the
minimum which we denote by TH;0. It ensures that TH can
be integrated out at the superfield level. The mass of the
heavy modulus is given as

mTH
≃
����eK=2WHH

�
1

4K11̄

þ 1

4K22̄

�����; ð35Þ

with Kiī denoting the entries of the Kähler metric in the
original field basis. Since mTH

is unrelated to the gravitino
mass, it can be parametrically enhanced against the light
modulus mass. The construction of a Minkowski minimum

FIG. 1. Left: The scalar potential (in Planck units) in the modulus and meson direction rescaled bym2
3=2. A local minimumwith broken

supersymmetry is located at T0 ¼ 12.9, ϕ0 ¼ 0.85. The field direction with the shallowest potential barrier is indicated by the red line.
Right: The potential along this direction is shown.

TABLE I. Location of the minimum, mass spectrum, F terms, and height of the potential barrier for the parameter
choice (30). The upper and lower rows correspond to the exact numerical result and analytic approximation,
respectively.

T0 ϕ0 m3=2 mφ1
mφ2

ms1 ms2 FT Fϕ Vbarrier

12.9 0.85 57 TeV 0 77.1m3=2 1.98m3=2 75.4m3=2 1.98m3=2 1.72m3=2 0.5m2
3=2

13.4 0.87 33 TeV 0 77m3=2 2m3=2 77m3=2 1.91m3=2 1.73m3=2 0.6m2
3=2
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for TL with softly broken supersymmetry proceeds analo-
gously to the one-modulus case.
As an example we consider five hidden sector gauge

groups SUðN1 þ 1Þ and SUðNiÞ (i ¼ 2;… 5) with gauge
kinetic functions

f1;2 ¼ 2T1 þ T2; f3;4;5 ¼ T1 þ T2: ð36Þ

The SUðN1 þ 1Þ shall again contain one pair of massless

quarks Q, Q̄ forming the meson ϕ ¼
ffiffiffiffiffiffiffiffiffiffi
2QQ̄

p
. The remain-

ing gauge theories are taken to be matter free. The super-
potential and Kähler potential take the form

W ¼ A1ϕ
− 2
N1e−

2πf1
N1 þ A2e

−2πf2
N2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

w

þ A3e
−2πf3

N3 þ A4e
−2πf4

N4 þ A5e
−2πf5

N5|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
W

;

K ¼ − log ðT̄1 þ T1Þ − 6 log ðT̄2 þ T2Þ þ ϕ̄ϕ; ð37Þ

respectively. We have assumed

jA1e
−2πf1

N1 j; jA2e
−2πf2

N2 j≪ jA3e
−2πf3

N3 j; jA4e
−2πf4

N4 j; jA5e
−2πf5

N5 j;
ð38Þ

such that the first two gaugino condensates contribute to w
and the last three toW. In order to obtain a supersymmetric
minimum with vanishing vacuum energy for the heavy
modulus, we impose (34), which fixes one of the coef-
ficients,

A5 ¼ −A3

�
A3

A4

N 53

N 45

�N 53
N 34 − A4

�
A3

A4

N 53

N 45

�N 54
N 34 with

N ij ¼
1

Ni
−

1

Nj
: ð39Þ

The location of the heavy modulus minimum is found to be

TH;0 ¼
log ðA3

A4

N 53

N 45
Þ

4πN 34

: ð40Þ

We can now integrate out TH at the superfield level. In the
limit where TH becomes infinitely heavy, the low energy
effective theory is defined by the superpotential Weff ¼ w
(evaluated at TH ¼ TH;0) and the Kähler potential

Keff ¼ − log ð2TH;0 þ T̄L þ TLÞ
− 6 log ð2TH;0 − T̄L − TLÞ þ ϕ̄ϕ: ð41Þ

The effective theory resembles the one-modulus example
of the previous section. At leading order in the volume
expansion, the minimum with softly broken supersymmetry

derives from the set of equations (19) with T replaced by TL.
We find

ϕ0 ¼
ffiffiffi
3

p

2
; TL;0 ¼ −

4KLTL;0

π

N2

3ðN2 − N1Þ − 8
; ð42Þ

where we wrote the equation for TL;0 in implicit form. In
contrast to the single-modulus example, values N2<N1þ3
may now be realized since the derivative of the Kähler
potential KL can take both signs. In order for the vacuum
energy to vanish, the coefficients A1;2 need to fulfill the
relation

A1

A2

¼ −
N1

N2

�
3

4

� 1
N1e2πð3TH;0þTL;0ÞN 12 ; ð43Þ

with TH;0 and TL;0 taken from (40) and (42). Again, we
neglected higher orders in the inverse volume. In analogy
with Sec. II C, one can show that the meson provides the
dominant source of supersymmetry breaking. The spectrum
of scalar fields now contains three CP even states s1;2;3 and
three CP odd states φ1;2;3, for which the following mass
pattern occurs:

ms3 ≃mTH
ms2 ≃mTL

¼ O
�
m3=2

KLL̄

�
;

ms1 ¼ Oðm3=2Þ;

mφ3
≃mTH

mφ2
≃mTL

¼ O
�
m3=2

KLL̄

�
;

mφ1
¼ O

�
m3=2

ffiffiffiffiffiffiffiffiffi
mTL

mTH

r �
: ð44Þ

The heavy states s3, φ3 with their mass determined from (35)
are the two d.o.f. contained in TH. The lighter states are
composed of TL and ϕ. They exhibit a similar spectrum as in
the single-modulus example (Sec. II C). However, once a
finite mTH

is considered, the effective superpotential and
Kähler potential receive corrections which are suppressed by
inverse powers of mTH

. These corrections break the axionic
shift symmetry which was present in the one-modulus case.
As a result, a nonvanishing mass of the light axion appears.
The latter can no longer be identified with the QCD axion.
An unbroken shift symmetry can, however, easily be
reestablished, once the framework is generalized to include
several light moduli.
In order to provide a numerical example, we pick the

following hidden sector gauge theories:

A1 ¼ A3 ¼ 1; A4 ¼ −0.445; N1 ¼ 8; N2 ¼ 10;

N3 ¼ 11; N4 ¼ 13; N5 ¼ 15: ð45Þ

The (exact numerical versions of the) conditions (39)
and (43) then fix A2 ¼ −0.0306, A5 ¼ 0.0754. One may
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wonder whether the two-moduli example introduces addi-
tional tuning compared to the one-modulus case, since two
of the Ai’s are now fixed in order to realize a vanishing
cosmological constant. However, deviations from (39) and
(43) can compensate without spoiling the moduli stabiliza-
tion.8 Effectively, there is still only a single condition which
must be fulfilled to the precision towhich the vacuum energy
cancels. In Table II we provide the location of the minimum
and the resulting mass spectrum for the choice (45). An
important observation is that large mass hierarchies—in
this example a factor of Oð103Þ—can indeed be realized
in the moduli sector. The origin of such hierarchies lies in
the dimensional transmutation of the hidden sector gauge
theories. A larger modulus mass is linked to a higher gaugino
condensation scale, originating from a gauge group of higher
rank or larger initial gauge coupling.
In Fig. 2, we depict the scalar potential along the light

modulus direction. For each value of TL we have mini-
mized the potential along the orthogonal field directions.
The Minkowski minimum is protected by a potential
barrier, in this case against a deeper minimumwith negative
vacuum energy at TL ¼ 4.6. Similar to the single-modulus
example, the barrier height is controlled by the gravitino
mass. Numerically, we find Vbarrier ¼ 0.2m2

3=2. The poten-
tial rises steeply once TL approaches the pole in the Kähler
metric at TL ¼ TH (corresponding to T2 ¼ 0). The super-
gravity approximation breaks down close to the pole,
which is, however, located sufficiently far away from the
Minkowski minimum we are interested in. Of course, we
need to require that the cosmological history place the
Universe in the right vacuum. But once settled there,
tunneling to the deeper vacuum does not occur on cosmo-
logical timescales as we verified with the formalism [30].
There also exists a supersymmetric runaway minimum for
T1;2 → ∞ in the original field basis. The latter is, however,
separated by a large potential barrier set by the heavy
modulus stabilization scale.
The example of this section can straightforwardly be

generalized to incorporate many moduli and hidden sector
matter fields. A subset of fields may receive a super-
symmetric mass term and decouple from the low energy
effective theory. The remaining light d.o.f. are stabilized by
supersymmetry breaking in the same way as TL and ϕ.
Indeed, it was shown in [1] that an arbitrary number of

light moduli can be fixed through the sum of two gaugino
condensates in complete analogy to the examples discussed
in this work.

III. MODULUS (DE)STABILIZATION
DURING INFLATION?

As was shown in the previous section, the lightest
modulus is only protected by a barrier whose size is
controlled by the gravitino mass. There is danger that,
during inflation, the large potential energy lifts the modulus
over the barrier and destabilizes the extra dimensions.
We will show that in the single-modulus case, indeed, the
bound H < m3=2 on the Hubble scale during inflation
arises. This constraint was previously pointed out in the
context of KKLT modulus stabilization [13] (the analogous
constraint from temperature effects had been derived in
[12]) and later generalized to the large volume scenario and
the Kähler uplifting scheme [14]. The constraint for the
single-modulus case would leave us with the undesirable
choice of either coping with ultralow scale inflation or
of giving up supersymmetry as a solution to the hierarchy
problem.9 As another problematic consequence, supersym-
metry breaking would then generically induce large soft
terms into the inflation sector which tend to spoil the
flatness of the inflaton potential. Fortunately, we will be
able to demonstrate that the bound on H does not apply to
more realistic examples with several moduli. The crucial
point is that in the multifield case, the modulus which
stabilizes the overall volume of the compactified manifold
and the modulus participating in supersymmetry breaking
in the vacuum are generically distinct fields.

A. Single-modulus case

We will now augment the single-modulus example with
an inflation sector. The latter consists of further moduli
or hidden sector matter fields which we denote by ρα. In
order to allow for an analytic discussion of modulus
destabilization we shall make some simplifying assump-
tions. Specifically, we take the superpotential and Kähler
potential to be separable into modulus and inflaton parts,

W¼wðT;ϕÞþWðραÞ; K¼kðT̄;T;ϕ̄;ϕÞþKðρ̄α;ραÞ;
ð46Þ

TABLE II. Minimum and mass spectrum for the parameter set (45). In the original basis, the minimum is located
at T1;0 ¼ 5.6, T2;0 ¼ 13.4. All masses are given in TeV.

TH;0 TL;0 ϕ0 m3=2 mφ1
mφ2

mφ3
ms1 ms2 ms3

9.5 −3.9 0.78 82 2.4 1.4 × 103 3.3 × 106 148 1.2 × 103 3.3 × 106

8In the low energy theory, such deviations would manifest as a
constant in the superpotential which is acceptable as long as the
latter is suppressed against the other superpotential terms.

9Another option may consist in fine-tuning several gaugino
condensates in order to increase the potential barrier as in models
with strong moduli stabilization [13,31].
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respectively. The modulus superpotential w and Kähler
potential k are defined as in (13). As an example inflaton
sector, we consider the class of models with a stabilizer
field defined in [32]. These feature

W ¼ K ¼ Kα ¼ 0 ð47Þ

along the inflationary trajectory.10 For now, we focus on
modulus destabilization during inflation. Whether this par-
ticular inflation model can be realized in M-theory does not
matter at this point. In fact, we merely impose the conditions
(47) for convenience since they lead to particularly simple
analytic expressions. The important element, which appears
universally, is the eK ∝ ðT̄ þ TÞ−7 factor which multiplies
all terms in the scalar potential. The latter reads

V ¼ Vmod þ
ejϕj2

ðT̄ þ TÞ7W
αWα; ð48Þ

where Vmod coincides with the scalar potential without the
inflaton as defined in (14). The second term on the right-
hand side sets the energy scale of inflation. It displaces the
modulus and the meson. Once the inflationary energy
reaches the height of the potential barrier defined in (29),
the minimum in the modulus direction gets washed out and
the system is destabilized. This is illustrated in Fig. 3. The
constraint can also be expressed in the form

H ≲m3=2; ð49Þ

where we employed V ¼ 3H2. The constraint remains
qualitatively unchanged if we couple a different inflation
sector to the modulus.11

B. Two or more moduli

In the previous example, the single modulus T is
apparently the field which sets the overall volume of the
manifold. Destabilization of T, which occurs at H ∼m3=2,
triggers unacceptable decompactification of the extra
dimensions. However, once we extend our consideration
to multiple fields, the modulus participating in supersym-
metry breaking and the modulus controlling the overall
volume can generically be distinct. Consider a simple two-
modulus example for which the volume is determined as

V ¼ ðReT1Þa1=3ðReT2Þa2=3: ð50Þ

The scalar potential (before including the inflaton sector)
shall have a minimum at ðT1;0; T2;0Þ. At the minimum, we
may then define the overall volume modulus

TV ¼ a1
T1

T1;0
þ a2

T2

T2;0
; ð51Þ

such that for an infinitesimal change of the volume
dV ∝ dTV . Let us assume TV receives a large supersym-
metric mass and decouples from the low energy theory. The
orthogonal linear combination shall be identified with the
light modulus which is stabilized by supersymmetry break-
ing. It becomes clear immediately that in this setup the
bound H < m3=2 cannot hold. The overall volume remains
fixed as long as the inflationary energy density does not
exceed the stabilization scale of the heavy volume modu-
lus. Since the latter does not relate to supersymmetry

FIG. 2. Scalar potential along the TL-direction. The remaining
fields were set to their TL-dependent minima (see text). The
Minkowski minimum with softly broken supersymmetry is
located at TL;0 ¼ −3.9.

FIG. 3. Scalar potential in the modulus direction for different
choices of the Hubble scale. For each value of T, the potential in
the meson direction was minimized. The remaining parameters
are chosen as in Fig. 1.

10In this section, we neglect the backreaction of the modulus
sector on the inflaton potential. This is justified since, for the
moment, we are interested in the stabilization of the modulus
during inflation and not in the distinct question, whether the
backreaction spoils the flatness of the inflaton potential. 11See [33] for a possible exception.
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breaking, large hierarchies between H and m3=2 can in
principle be realized.12

In reality, the heavy modulus which protects the extra
dimensions does not need to coincide with the volume
modulus. One can easily show that V in (50) remains finite
given that an arbitrary linear combination T1 þ αT2 with
α > 0 is fixed. If the heavy linear combination is mis-
aligned with the volume modulus, the light modulus still
remains protected, but receives a shift during inflation.
In order to be more explicit, let us consider the two-

modulus example of Sec. II D. We add the inflation sector
again imposing (47). The scalar potential along the infla-
tionary trajectory is

V ¼ Vmod þ
ejϕj2

ðT̄1 þ T1ÞðT̄2 þ T2Þ6
WαWα: ð52Þ

Inflation tends to destabilize moduli since the potential
energy is minimized at T1;2 → ∞. However, the direction
TH ¼ T1 þ T2 is protected by the heavy modulus mass
mTH

. As long as H ≪ mTH
, the heavy modulus remains

close to its vacuum expectation value. For fixed TH, the
inflaton potential energy term [second term on the right-
hand side of (52)] is minimized at

TL ¼ −
5

7
TH: ð53Þ

Hence, TL remains protected as long as TH is stabilized.
It, nevertheless, receives a shift during inflation since TH
is not exactly aligned with the volume modulus. In the
left panel of Fig. 4, we depict the scalar potential in the

light modulus direction for different choices of H. For
each value of TL and H, we have minimized the potential
in the meson and heavy modulus direction. It can be
seen that the light modulus remains stabilized even for
H > m3=2. With growing H it becomes heavier due to the
Hubble mass term induced by inflation. This holds as
long as the heavy modulus is not pushed over its
potential barrier. For our numerical example, destabili-
zation of the heavy modulus occurs at H ≃ 470m3=2 as
can be seen in the right panel of the same figure. The
minima of TH, TL, ϕ as a function of the Hubble scale
are depicted in Fig. 5 up to the destabilization point. It
can be seen that TL slowly shifts from TL;0 to the field
value maximizing the volume as given in (53). Our
findings can easily be generalized to systems with many
moduli. In this case, an arbitrary number of light moduli
remains stabilized during inflation, given at least one
heavy modulus (mTH

≫ H) which bounds the overall
volume.

FIG. 4. Scalar potential during inflation in the light modulus (left panel) and heavy modulus direction (right panel). For each TH;L and
H, the remaining fields have been set to their corresponding minima.

FIG. 5. Minima of TH, TL, ϕ as a function of the Hubble scale.
Moduli destabilization occurs at H ≃ 470m3=2 as indicated by
the stars.

12The idea of trapping a light modulus through a heavy
modulus during inflation has also been applied in [34].
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A particularly appealing possibility is that the modulus
which protects the extra dimensions is itself the inflaton.
In particular, it would seem very natural to identify the
inflaton with the overall volume modulus. We will prove in
the next section that this simple picture is also favored by
the Kähler geometry of the G2 manifold. Indeed, we will
show that inflationary solutions only arise in moduli
directions closely aligned with the overall volume modulus.

IV. MODULAR INFLATION IN M-THEORY

So far we have discussed modulus stabilization during
inflation without specifying the inflaton sector. In this
section, we will select a modulus as the inflaton. The
resulting scheme falls into the class of “inflection point
inflation” which we will briefly review. We will then
identify the overall volume modulus (or a closely aligned
direction) as the inflaton by means of Kähler geometry,
before finally introducing explicit realizations of inflation
and moduli stabilization.

A. Inflection point inflation

Observations of the cosmic microwave background
(CMB) suggest an epoch of slow roll inflation in the very
early Universe. The nearly scale-invariant spectrum of
density perturbations sets constraints on the first and
second derivative of the inflaton potential,

jV 0j; jV 00j ≪ V: ð54Þ

Unless the inflaton undergoes trans-Planckian excursions,
the above conditions imply a nearly vanishing slope and
curvature of the potential at the relevant field value. An
obvious possibility to realize successful inflation invokes
an inflection point with small slope, i.e., an approximate
saddle point. Most features of this so-called inflection point
inflation can be illustrated by choosing a simple poly-
nomial potential,

V ¼ V0

�
1þ δ

ρ0
ðρ − ρ0Þ þ

1

6ρ30
ðρ − ρ0Þ3

�
þOððρ − ρ0Þ4Þ;

ð55Þ

where ρ is the inflaton which is assumed to be canonically
normalized and ρ0 is the location of the inflection point.
The coefficient in front of ðρ − ρ0Þ4 can be chosen such that
the potential has a minimum with vanishing vacuum energy
at the origin. Since the quartic term does not play a role
during inflation, it has not been specified explicitly. The
height of the inflationary plateau is set by V0. The potential
slow roll parameters follow as

ϵV ¼ 1

2

�
V 0

V

�
2

; ηV ¼ V00

V
: ð56Þ

The number of e-folds N corresponding to a certain field
value can be approximated analytically,

N ≃ Nmax

�
1

2
þ 1

π
arctan

�
Nmaxðρ − ρ0Þ

2πρ30

��
;

Nmax ¼
ffiffiffi
2

p
πρ20ffiffiffi
δ

p ; ð57Þ

where Nmax denotes the maximal e-fold number. Since we
assume ρ0 to be sub-Planckian, the slope parameter δ must
be strongly suppressed for inflation to last 60 e-folds or
longer. The CMB observables, namely, the normalization
of the scalar power spectrum As, the spectral index of scalar
perturbations ns, and the tensor-to-scalar ratio r, are
determined by the standard expressions

As≃
V

24π2ϵV
; ns≃1−6ϵVþ2ηV; r≃16ϵV: ð58Þ

For comparison with observation, these quantities must
be evaluated at the field value for which the scales
relevant to the CMB cross the horizon, i.e., at N ¼
50–60 according to (57). We can use the Planck measured
values ns ¼ 0.96–0.97, As ≃ 2.1 × 10−9 [35] to fix two
parameters of the inflaton potential. This allows us to
predict the tensor-to-scalar ratio

r ∼
�
ρ0
0.1

�
6

× 10−11: ð59Þ

Inflation models rather generically require some degree of
fine-tuning. This is also the case for inflection point inflation
and manifests in the (accidental) strong suppression of the
slope at the inflection point. In addition, the slow roll
analysis only holds for the range of initial conditions which
enable the inflaton to dissipate (most of) its kinetic energy
before the last 60 e-folds of inflation. While initial con-
ditions cannot meaningfully be addressed in the effective
description (55), we note that the problem gets ameliorated
if the inflationary plateau spans a sizable distance in field
space. This favors large ρ0 as is, indeed, expected for a
modulus field. In this case, the typical distance between the
minimum of the potential and an inflection point relates to
the Planck scale (although ρ0 ≲ 1 to avoid uncontrollable
corrections to the setup). Setting ρ0 to a few tens ofMP, we
expect r ∼ 10−8–10−6 according to (59). The maximal
number of e-folds is Nmax ¼ 100–200. While the modulus
potential differs somewhat from (55) (e.g., due to nonca-
nonical kinetic terms), we will still find similar values of r in
the M-theory examples of the next sections.

B. Identifying the inflaton

We now want to realize inflation with a modulus field as
inflaton. Viable inflaton candidates shall be identified by
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means of Kähler geometry. This will allow us to derive
some powerful constraints on the nature of the inflaton
without restricting to any particular superpotential.
Inflationary solutions feature nearly vanishing slope and

curvature of the inflaton potential in some direction of field
space. To very good approximation we can neglect the tiny
slope and apply the supergravity formalism for stationary
points (see Sec. II B). All field directions orthogonal to the
inflaton must be stabilized. Hence, the modulus mass
matrix during inflation should at most have one negative
eigenvalue corresponding to the inflaton mass. The latter
must, however, be strongly suppressed against V due to the
nearly scale-invariant spectrum of scalar perturbations
caused by inflation. We can hence neglect it against the
last term in (7) and require the mass matrix to be positive
semidefinite. This leads to the same necessary condition as
for the realization of de Sitter vacua, namely, that Vij̄ must
be positive semidefinite. During inflation, we expect the
potential energy to be dominated by Fρ. The curvature
scalar of the one-dimensional submanifold associated with
the inflaton ρ [cf. (9)] should, hence, fulfill condition (10).
The latter can be rewritten as

R−1
ρ >

3

2
þ 3

2

�
H

mI
3=2

�
2

: ð60Þ

Here we introduced the inflationary Hubble scale through
the relation H ¼ ffiffiffiffiffiffiffiffiffi

V=3
p

and the “gravitino mass during
inflation” mI

3=2 ¼ eG=2. Note that mI
3=2 is evaluated close to

the inflection point. It is generically different from the
gravitino mass in the vacuum which we denoted by m3=2.
We notice that field directions with a small Kähler curvature
scalar are most promising for realizing inflation. For a simple
logarithmic Kähler potential K ¼ −a logðρ̄þ ρÞ, one finds
Rρ ¼ 2=a. Condition (60) then imposes at least a > 3.
However, more generically, we expect ρ to be a linear
combination of the moduli Ti appearing in the G2 Kähler
potential (2). We perform the following field redefinition:

ρi ¼
X
j

Oij

ffiffiffiffiffiajp
2TI

j
Tj: ð61Þ

Here TI
j denotes the field value of Tj during inflation (more

precisely, at the quasistationary point). Without loss of
generality, we assume that TI

j is real.13 The matrix O is
an element of SOðMÞ, where M denotes the number of
moduli. The coefficients ai must again sum to 7 for G2. The
above field redefinition leads to canonically normalized ρi
at the stationary point. We now choose ρ1 ≡ ρ to be the
inflaton and abbreviate O1i by Oi. The curvature scalar can
then be expressed as

Rρ ¼
X
i

6O4
i

ai
−
X
i;j

4O3
i O

3
jffiffiffiffiffiffiffiffiffiaiaj

p : ð62Þ

Since successful inflation singles out field directions with
small curvature scalar, it is instructive to identify the linear
combination of moduli with minimal Rρ. The latter is
obtained by minimizing Rρ with respect to the Oi, which

yields Oi ¼
ffiffiffiffiffiffiffiffiffi
ai=7

p
and

ρ ∝
X
i

ai
TI
i
Ti: ð63Þ

By comparison with (51), we can identify this combination
as the overall volume modulus (defined at the field location
of inflation). The corresponding minimal value of Rρ ¼ 2=7.
Hence, inflation must take place in the direction of

the overall volume modulus or a closely aligned field
direction—as was independently suggested by modulus
stabilization during inflation (see Sec. III B). In order to be
more explicit, we define θ as the angle14 between ρ and the
volume modulus TV ,

cos θ ¼ Oi

ffiffiffiffi
ai
7

r
: ð64Þ

In other words, cos2 θ is the fraction of volume modulus
contained in the inflaton. The constraint on the angle
depends on the properties of the manifold. However, one
can derive the lower bound

R−1
ρ <

7

6
ð1þ 2 cos2 θÞ; ð65Þ

which holds for an arbitrary number of moduli and inde-
pendent of the coefficients ai (only requiring that the ai sum
up to 7). If we combine this constraint with (60), we find

cos2 θ >
1

7
þ 9

14

�
H

mI
3=2

�
2

: ð66Þ

From this condition, it may seem sufficient to have a
moderate volume modulus admixture in the inflaton.
However, in the absence of fine-tuning, the second term
on the right-hand side is not expected to be much smaller
than unity. Furthermore, for any concrete set of ai, a stronger
bound than (66) may arise. Therefore, values of cos θ close
to unity—corresponding to near alignment between the
inflaton and volume modulus—are preferred.

13Imaginary parts of TI
j can be absorbed by shifting Tj along

the imaginary axis, which leaves the Kähler potential invariant.

14The angle θ is defined in the M-dimensional space spanned
by the canonically normalized Ti. For two linear combinations of
moduli ρ1 ¼ αiT̂i and ρ2 ¼ βiT̂i, it is obtained from the scalar
product αβ ¼ jαjjβj cos θ. Here, T̂i denotes the canonically
normalized moduli T̂i ¼ ð ffiffiffiffi

ai
p

=TI
i ÞTi=2.
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Let us, finally, point out that the lower limit on the
curvature scalar also implies the following bound on the
Hubble scale:

H <
2mI

3=2ffiffiffi
3

p ; ð67Þ

which must hold for an arbitrary superpotential. One may
now worry that this constraint imposes either low scale
inflation or high scale supersymmetry breaking. This is,
however, not the case sincemI

3=2 can be much larger than the
gravitino mass in the true vacuum. Indeed, if the inflaton is
not identified with the lightest, but with a heavier modulus, it
appears natural to have mI

3=2 ≫ m3=2. Nevertheless, (67)
imposes serious restrictions on the superpotential. In order
for the potential energy during inflation to be positive, while
satisfying (60), one must require15

3 < GρGρ < 7: ð68Þ

A single instanton termW ⊃ e−S in the superpotential would
induce GρGρ ∼ S2. Since perturbativity requires S ≫ 1, one
typically needs to invoke a (mild) cancellation between two
or more instanton terms in order to satisfy (68).

C. An inflation model

We now turn to the construction of an explicit inflation
model. For the moment, we ignore supersymmetry break-
ing and require inflation to end in a supersymmetric
Minkowski minimum. Previous considerations suggested
the overall volume modulus as an inflaton candidate. The
simplest scenario of just one overall modulus and a
superpotential generated from gaugino condensation does,
however, not give rise to an inflection point with the desired
properties. The minimal working example, therefore,
invokes two moduli T1;2. One linear combination TH is
assumed to be stabilized supersymmetrically with a large
mass mTH

≫ H at TH;0. This is achieved through the
superpotential part WðTHÞ which could, e.g., be of the
form described in Sec. II D. The orthogonal, lighter linear
combination ρ is the inflaton. It must contain a large
admixture of the overall volume modulus.

As an example, we take the superpotential and Kähler
potential to be of the form,

W ¼ WðT1 þ T2Þ þ
X
i

Aie−2πT1=Ni ;

K ¼ −a1 log ðT̄1 þ T1Þ − a2 log ðT̄2 þ T2Þ; ð69Þ

respectively. The heavy modulus can be defined as TH ¼
ðT1 þ T2Þ=2 in this case. In the limit where TH becomes
infinitely heavy, integrating out TH at the superfield level is
equivalent to replacing TH by TH;0 in the superpotential and
Kähler potential, i.e., T1 → TH;0 þ ρ and T2 → TH;0 − ρ.
We consider the case where inflation proceeds along the
real axis. The scalar potential features terms which decrease
exponentially towards large ρ which originate from W
and its derivatives. At the same time, the prefactor eK has
positive slope if we choose a2 > a1. For appropriate
parameters, the interplay between the superpotential and
Kähler potential terms leads to an inflection point suitable
for inflation.
We have previously shown model independently that the

inflaton must be volume-modulus-like. But how do the
constraints from Kähler geometry actually enter the con-
crete setup? For this, we have to look at the axion direction
φ orthogonal to the inflaton. In Table III we provide two
parameter choices (PS1 and PS2) which give rise to a
similar scalar potential along the real axis (see the left panel
of Fig. 6).
However, only PS1 leads to a viable inflationary sce-

nario, while PS2 suffers from a tachyonic instability in the
axion direction (at the inflationary plateau). This can be
seen in the right panel of Fig. 6, where we depict the axion
mass as a function of the inflaton field value.
The reason for the tachyonic instability of PS2 becomes

clear, when we study the nature of the inflaton. We express
the inflaton in terms of canonically normalized moduli,

ρ ¼ O1T̂1 þO2T̂2; T̂i ¼
ffiffiffiffi
ai

p
2TI

i
Ti: ð70Þ

The coefficients Oi determine the angle between inflaton
and overall volume modulus [cf. (64)]. In Table IV we
provide the angle, the corresponding curvature scalar,
and the ratio mI

3=2=H for the two parameter sets. One can
easily verify that, for PS1, the inflaton is sufficiently
volume-modulus-like to satisfy the constraint (66) on the

TABLE III. Input parameter sets PS1 and PS2 which give rise to the potential shown in Fig. 6. Two input
parameters are specified with higher precision. This is required to (nearly) cancel the cosmological constant and to
ensure that the spectral index matches precisely with observation.

PS a1 a2 A1 A2 A3 A4 N1 N2 N3 N4 TH;0

1 1 6 1 −1.18 0.719766 −0.178645 11 15 19 23 7.8
2 2 5 −1.35 2.16245 −0.918729 … 15 17 19 … 8.2

15We assume that the inflaton dominantly breaks supersym-
metry during inflation.
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angle [analogously, the curvature scalar is small enough
to satisfy (60)]. Successful inflation can, therefore, be
realized. For PS2, the situation is different since the same
condition is violated. The tachyonic instability which
prevents inflation for PS2 is, hence, due to the misalign-
ment between the (would-be) inflaton and the volume
modulus.
For the parameter choice PS1, the inflationary observ-

ables can be determined from the slow roll expressions
(58), where the normalization of the kinetic term has to be
taken into account [the slow roll parameters are defined as
derivatives with respect to the canonically normalized
inflaton in (56)]. The observables are consistent with
present CMB bounds; specifically we find

ns ¼ 0.96; r ¼ 3 × 10−7; As ¼ 2 × 10−9: ð71Þ

The tensor-to-scalar ratio falls in the expected range for
inflection point inflation with a modulus (see Sec. IVA).
From a theoretical point of view, it is interesting that

the inflationary plateau can be turned into a de Sitter
minimum through a small parameter deformation. If we,
e.g., increase the value of TH;0 (or change one of the Ai)
for PS1 slightly, the potential develops a minimum
close to the inflection point. The consistency of de
Sitter vacua in the moduli potential follows from the
G2 Kähler potential which has a curvature scalar as small
as 2=7 on the submanifold associated with the volume
modulus—in contrast to other prominent string theory
constructions (see Sec. II B).

D. Inflation and supersymmetry breaking

In the final step, we wish to construct a more realistic
model which incorporates inflation and supersymmetry
breaking simultaneously. The plan is to augment the
inflation sector of the previous section by the supersym-
metry breaking sector comprised of the light modulus and
the meson field (cf. Sec. II).
The minimal example contains three moduli fields T1;2;3

which form the linear combinations TH, ρ, and TL. The
inflaton ρ must be approximately aligned with the volume
modulus. An orthogonal light modulus TL participates in
supersymmetry breaking. The third modulus direction TH
is stabilized supersymmetrically at a mass scale above the
inflationary Hubble scale. While it does not play a
dynamical role, its vacuum expectation value manifests
in the Kähler potential of the lighter d.o.f. It assists in
generating the plateau in the inflaton potential. The super-
potential is chosen such that a mass hierarchy mTH

≫
mρ ≫ mTL

arises in the vacuum. This can be achieved via
the form

W ¼ WðTHÞ þWðTH; ρÞ þ wðTH; TLÞ: ð72Þ

All three superpotential parts originate from gaugino
condensation. The desired mass pattern is realized through
an appropriate hierarchy in the condensation scales in W,
W, and w, respectively. For concreteness, we will make the
following identification:

T1 ¼
TH

3
þ ρ

6
þTL

2
; T2 ¼

TH

3
þ ρ

6
−
TL

2
; T3 ¼

TH

3
−
ρ

3
;

ð73Þ

which is just one of many possibilities. Without specifying
W explicitly, we assume W ¼ WH ¼ 0 at TH;0. As shown
previously, this can, e.g., be achieved via three gaugino
condensation terms (see Sec. II D). In the limit of very large
mass mTH

, integrating out the heavy modulus then simply

TABLE IV. Derived parameters for the inputs PS1 and PS2
from Table III.

PS O1 O2 cos2 θ Rρ H mI
3=2

1 0.12 −0.99 0.76 0.34 5.9 × 10−8 1.7H
2 0.29 −0.96 0.42 0.47 5.9 × 10−8 1.1H

FIG. 6. Left: The inflaton potential for the two parameter sets of Table III. The inflection point at ρ − ρ0 ¼ 4 is indicated by the thick
gray dot. Right: The squared mass of the axion direction in units of H2.
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amounts to replacing TH by TH;0 in the superpotential and
Kähler potential. In addition, we choose

w¼A1ϕ
− 2
N1e−

2πf1
N1 þA2e

−2πf2
N2 ; W¼

X6
i¼3

Aie
−2πfi

Ni : ð74Þ

The gauge kinetic functions are defined as

f1;2 ¼ 2T1 þ T3 ¼ TH þ TL;

f3;4;5;6 ¼ T1 þ T2 ¼
2

3
TH þ 1

3
ρ; ð75Þ

such that W only depends on ρ, while w only depends on
TL and ϕ (once TH has been integrated out). The G2 Kähler
potential,

K ¼ −
X3
i¼1

ai log ðT̄i þ TiÞ; ð76Þ

can be expressed in terms of ρ, TL via (73). For an exact
numerical evaluation, we choose the parameter set of
Table V.
The latter gives rise to a Minkowski minimum with

broken supersymmetry at ϕ0 ¼ 0.78, ρ0 ¼ −3.5, TL;0 ¼
6.7 (corresponding to T1 ¼ 10, T2 ¼ 3.3, T3 ¼ 8.4 in the
original field basis). An additional AdS minimum appears

outside the validity of the supergravity approximation
(T2 < 1). In the Minkowski minimum, where we can trust
our calculation, the mass spectrum shown in Fig. 7 arises.
The light modulus and meson are responsible for super-
symmetry breaking. Their masses cluster around the
gravitino mass m3=2 ∼ 200 TeV. A slight suppression of
the mesonlike axion mass arises due to an approximate shift
symmetry (see Sec. II D). The inflaton is substantially
heavier compared to the other fields since it decouples from
supersymmetry breaking.
Inflation occurs along the real axis of ρ. The poten-

tial along this direction is shown in Fig. 8, where the
remaining fields have been set to their ρ-dependent
minima. A (quasistationary) inflection point occurs at
ρ − ρ0 ¼ 15.5, where we can still trust the supergravity
approximation. Corrections to the moduli Kähler potential,
which are expected at small compactification volume,
are suppressed in this regime. Even if they slightly
perturbed the inflaton potential, this could easily be
compensated for by adjusting the superpotential parame-
ters. Inflation, hence, appears to be robust with respect to
any higher order effects.
For applying the constraints from Kähler geometry, we

express the inflaton in terms of the (canonically normal-
ized) original field basis

ρ ∝ 0.09T̂1 þ 0.07T̂2 − 0.99T̂3; ð77Þ

where the T̂i have been defined in (70). As can be seen,
the inflaton is dominantly T3. The curvature scalar along
the inflaton direction is Rρ ¼ 0.45. The Hubble scale and

TABLE V. Parameter choice giving rise to the inflaton potential shown in Fig. 8. The parameter A5 has been
specified with higher precision in order to ensure that inflation with the correct spectral index arises. Cancellation of
the cosmological constant fixes the remaining input parameter, A6 ¼ 2.4213062895.

a1 a2 a3 A1 A2 A3 A4 A5 N1 N2 N3 N4 N5 N6 TA;0

1
2

2 9
2

−7 0.117 −4.9 22.52 −20.52678 8 10 24 30 32 38 21.7

FIG. 7. Spectrum of scalar (þ) and pseudoscalar (−) masses in
the vacuum and during inflation. The dominant field components
of the mass eigenstates are given in the plot legend (the orange
lines, e.g., refer to the mesonlike mass eigenstates). Also shown
are the gravitino mass and the Hubble parameter during inflation.

FIG. 8. Scalar potential in the inflaton direction with the other
fields eliminated through their minimization condition.
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the gravitino mass during inflation are depicted in Fig. 7.
One easily verifies that the curvature constraint (60) is
satisfied and viable inflation without tachyons can thus be
achieved. This can be related to the fact that the inflaton is
sufficiently aligned with the volume modulus. The fraction
of volume modulus contained in the inflaton is given by
cos2 θ ¼ 0.54, in agreement with (66).
In Fig. 7, we also provide the scalar mass spectrum

during inflation. The inflaton mass is not shown since its
squared mass is negative as required by the constraints
on the spectral index, specifically m2

ρ ¼ −0.05H2 during
inflation (corresponding to ηV ¼ −0.015). The other sca-
lars receive positive Hubble scale masses during inflation
(as described in Sec. III B). Only the mesonlike axion is
about an order of magnitude lighter than H due to the
approximate shift symmetry. The resulting isocurvature
perturbations in the light axion are not expected to be
dangerous since they are transferred into adiabatic pertur-
bations once the axion has decayed into radiation. For the
parameter example, this decay occurs before primordial
nucleosynthesis.
In order to describe the dynamics of the multifield

system, the coupled equations of motion need to be solved.
For noncanonical fields, the most general set of equations
reads [36]

ψ̈α þ Γα
βγ _ψ

β _ψγ þ 3H _ψα þ Gαβ ∂V
∂ψβ ¼ 0: ð78Þ

Here the fields ψα label the real and imaginary parts of ρ,
TL, ϕ. The field space metric Gαβ can be determined from
the Kähler metric and Γα

βγ is the Christoffel symbol with
respect to the field metric Gαβ and its inverse Gαβ. The
solution to the field equations is depicted in Fig. 9. For a
range of initial conditions, the fields approach the infla-
tionary attractor solution. This means that TL, ϕ settle at
finite field values which do not depend on the initial
condition after a few oscillations. Their minima during
inflation, however, differ from their vacuum expectation
values. The inflaton ρ slowly rolls down its potential close
to the inflection point. Inflation ends when it reaches the
steeper part of the potential. Then, ρ oscillates around its
vacuum expectation value with the amplitude decreasing
due to the Hubble friction. The inflationary observables
can again be determined from a slow roll analysis. The
parametric example was chosen to be consistent with
observation. It has

ns ¼ 0.97; r ¼ 5 × 10−7; As ¼ 2 × 10−9: ð79Þ

The field evolution shown in Fig. 9 spans 5 orders of
magnitude in energy. All scalar fields remain stabilized
over the full energy range. After inflation, the volume of
the compactified manifold remains protected by the large
inflaton mass. If the scalar potential features more than one

minimum, the postinflationary field evolution should
ensure that the Universe ends up in the desired vacuum.16

This might impose additional constraints on the moduli
couplings including those to the visible sector. A compre-
hensive discussion of the reheating process is, however,
beyond the scope of this work. Let us just note that the
energy density stored in the light d.o.f. redshifts slower than
the thermal energy of the radiation bath and may dominate
the energy content of the Universe before they decay. We,
therefore, expect a nonstandard cosmology with late time
entropy production to occur (see [37]). Notice that this
scenario is consistent with the observed element abundan-
ces since all particles are sufficiently heavy to decay before
primordial nucleosynthesis.

V. CONCLUSION

M-theory compactified on a manifold of G2 holonomy
successfully describes many microphysical features of our
world. It has chiral fermions interacting via gauge forces
and explains the hierarchy of scales. We have now
identified the inflaton within this theory. The latter is
essentially the overall volume modulus of the compactified
region (or a closely aligned field direction). This statement
is model independent and derives from the Kähler geom-
etry of the G2 manifold.
We provided concrete realizations of volume modulus

inflation which satisfy all consistency conditions. Inflation
occurs close to an inflection point in the scalar potential. In
the relevant parameter regime, string theory corrections to
the supergravity approximation are under full control. We
solved the system of coupled field equations and proved
that all moduli are stabilized during inflation. The scalar
fields orthogonal to the inflaton receive Hubble mass terms
such that inflation is effectively described as a single field
slow roll model. However, several scalar fields are dis-
placed from their vacuum expectation values during

FIG. 9. Solution to the coupled system of equations of motion
for the fields ρ, TL, ϕ.

16In the parameter example, an additional AdS minimum
occurs. It may, however, get lifted since it appears outside the
range, where we can trust the supergravity calculation.
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inflation. They are expected to undergo coherent oscilla-
tions when the Hubble scale drops below their mass.
The energy stored in these d.o.f. generically induces late
time entropy production at their decay (which happens
before primordial nucleosynthesis).
The scale of inflation emerges from hidden sector strong

dynamics. The Planck scale is the only dimensionful input to
the theory. We predict V1=4 ∼ 1015 GeV and the correspond-
ing tensor-to-scalar ratio r ∼ 10−6. Despite the large energy
density of inflation, the theory is consistent with, and
generically has low energy supersymmetry. It has a de
Sitter vacuum in which the (s)goldstino dominantly descends
from a hidden sector meson field. Supersymmetry breaking
is transmitted to the visible sector via gravity mediation.
It generates a hierarchy with heavy sfermions and lighter
gauginos. The gauginos are expected to reside at the TeV
scale, close to the present LHC sensitivity.

While experiments will not directly probe the inflaton of
compactified M-theory, indirect evidence may be collected.
This is because inflation sets the initial conditions for a
nonthermal cosmology which affects many other phenom-
ena including baryogenesis and dark matter. Further pre-
dictions of the compactified M-theory will soon be tested
by laboratory experiments.
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