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The study of stability of gravitational perturbations in higher derivative gravity has shown that at the
linear level the massive unphysical ghost is not generated from vacuum if the initial seed of metric
perturbation has frequency essentially below the Planck threshold. The mathematical knowledge indicated
that the linear stability is supposed to hold even at the nonperturbative level, but in such a complicated case
it is important to perform a verification of this statement. We compare the asymptotic stability solutions at
the linear and full nonperturbative levels for the Bianchi-I metric with small anisotropies, which can be
regarded as an extreme, zero-frequency limit of a gravitational wave. As one should expect from the
combination of previous analysis and general mathematical theorems, there is a good correspondence
between linear stability and the nonperturbative asymptotic behavior.
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I. INTRODUCTION

There is a well-known controversy between renormaliz-
ability of quantum gravity and the problems which are
caused by the introduction of higher derivatives, which are
capable to provide this renormalizability [1]. The theory
with sufficiently general higher derivatives always has
massive unphysical ghosts in the spectrum, making physi-
cal interpretation of such a theory problematic. In the
presence of ghosts, the vacuum state is not stable, and even
Minkowski space may decay into Planck-mass ghost plus
the gravitons with huge overall energy which compensates
the negative energy of the ghost.
Indeed, the presence of the ghost in the spectrum of the

theory does not necessary mean that there should be such a
particle “alive.” It might happen, e.g., that there is an
unknown physical principle which forbids the concentra-
tion of gravitons with Planck energy density, resolving the
mentioned puzzle with Minkowski space [2,3], and also
providing the stability of a qualitatively similar, low
curvature space-times. Certain arguments that support this
expectation have been given in the recent papers [2,4,5].
In a perfect agreement with the previous works on the

evolution of gravitational waves on the deSitter background
[6–8], we have found that these waves do not have growing
amplitudes, regardless of the presence of higher derivatives.
The situation was analyzed in the context of ghosts in [2],
where it was shown that there are no growing modes also in
other cosmological backgrounds, if the initial frequency of
the gravitational wave is much smaller than the Planck
scale. On the opposite, in case of Planck-scale frequencies,
there is an expected explosion of gravitational waves. Our
interpretation of this situation in [2] was that the presence
of the ghost in the spectrum of the theory does not
necessary mean that there is a ghost as a real particle.
For the low-energy frequencies of the gravitational waves,
the positive energy modes do not form a Planck-density
distribution and then the ghost cannot be created from
vacuum. This solution of the problem is certainly incom-
plete, because (i) quantum gravity is supposed to work at
all frequencies, even over-Planckian ones; (ii) the linear
stability guarantees nonlinear perturbative stability from
the mathematical point of view, but it does not look
sufficient from the point of view of Physics, because
the exponential instabilities are expected at the nonlinear
level [9].
The item (i) has been addressed in [10], where we have

shown that, at least for the cosmological background, if the
cosmological solution corresponds to the rapidly expand-
ing Universe, the explosive behavior of the gravitational
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waves does not last for long, and after that the metric
perturbations get stabilized. The reason is that the wave
equation includes the wave vector k only in the combina-
tion q ¼ k

aðtÞ, such that the physical frequency of the wave is
decreasing as 1=a. Of course, this is not the complete
solution of the problem, but just a useful hint on how the
problem can be eventually solved. What is still needed is
certainly the physical principle explaining why gravitons
cannot accumulate with the over-Planck energy density on
a weak gravitational background, and how this principle
may be violated by the fast expansion of the Universe.
In the present work, we address the point (ii) and check

out whether the situation with stability changes when we go
beyond the linear perturbations level. In fact, we are able to
get even the nonperturbative results, but not for the usual
gravitational waves. Instead, we shall consider the evolu-
tion of anisotropies in the framework of the Bianchi-I
cosmological metric. Since the pioneering work [11], the
Bianchi-I metric has been extensively studied as a model of
anisotropic homogeneous cosmology. For cosmologic sol-
utions and stability in fourth derivative gravity, see recent
works [12–14].
With respect to arbitrary perturbations of the metric, our

approach means the following two restrictions: (i) small
amplitude of the perturbations; and (ii) zero frequencies of
the perturbations. In what follows, we perform numerical
analysis of the dynamics of anisotropies under these two
assumptions.
The paper is organized as follows. In Sec. II, the

equations for the Bianchi-I metric in the fourth derivative
gravity are derived in Misner parametrization [15,16].
Before starting the numerical analysis of the full and
linearized version of these equations, in Sec. III, we present
a brief survey of the mathematical knowledge on the
subject of stability in the systems described by differential
equations. Namely, we discuss to which extent the stability
with respect to linear perturbations defines the behavior of
the system at the nonperturbative. In Sec. IV, we present the
results of numerical analysis including comparison of linear
and full versions of equations. Finally, in Sec. V, we draw
our conclusions and discuss possible extensions of the
present work.

II. DYNAMICAL EQUATIONS

The theory of our interest has the classical action

S ¼
Z

d4x

�
−
M2

P

16π
Rþ a1C2 þ a2R2

�
: ð1Þ

HereMP is the Planck mass, while other parameters a1 and
a2 are arbitrary dimensionless constants. R and C2 are,
respectively, the Ricci scalar and the square of Weyl tensor,

C2 ¼ R2
μναβ − 2R2

αβ þ
1

3
R2:

According to the recent work [12], every vacuum solution
of Einstein field equations is also a solution of the
theory (1). However, since there are higher derivatives,
the theory (1) can develop strong instabilities which are not
present in general relativity. These instabilities represent
our main interest in what follows.
In a comoving and synchronous frame, the Bianchi-I

anisotropic metric is

ds2 ¼ dt2 − a21ðtÞdx2 − a22ðtÞdy2 − a23ðtÞdz2: ð2Þ

One can switch to a more useful parametrization,
introduced by Misner in [15,16], in which there is a
separation between the functions of time responsible
for expansion σðtÞ and shear of the Universe β�ðtÞ,
respectively,

a1ðtÞ ¼ eσeβþþ
ffiffi
3

p
β− ;

a2ðtÞ ¼ eσeβþ−
ffiffi
3

p
β− ;

a3ðtÞ ¼ eσe−2βþ : ð3Þ

In what follows the term anisotropies will refer to the
functions β�. The trivial case β� ¼ 0 corresponds to an
isotropic metric. A usefulness of Misner parametrization
resides in the possibility of perform a local conformal
transformation

gμν ¼ e2σðηÞḡμν; ð4Þ

where the conformal time η is defined by the relation
dt ¼ eσðηÞdη. The fiducial metric ḡμν is given by (3) with
σðtÞ≡ 0. Under a conformal transformation, the Weyl-
squared part of the action (1) is expressed only in terms of
the metric ḡμν, while Ricci scalar transforms as

R ¼ e−2σ½R̄ − 6ðσ0Þ2 − 6σ00�: ð5Þ

It is easy to check that
ffiffiffiffiffiffi
−ḡ

p ¼ 1 and the expressions for R̄
and C̄2 are

R̄ ¼ −6ðβ0þ2 þ β0−2Þ;
C̄2 ¼ 12ðβ00þ2 þ β00−2Þ þ 48ðβ0þ2 þ β0−2Þ2

þ 16½β0þð3β0−2 − β0þ2Þ�0: ð6Þ

In these expressions, the prime stands for the derivative
with respect to conformal time.
Let us remember that we regard the anisotropy param-

eters as a truncated part of the gravitational wave, or the
gravitational wave with zero frequency. The gravitational
wave of our interest is supposed to be created by quantum
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fluctuations [4], and if it does not experience fast growth
due to the presence of ghosts, its amplitude remains very
small. This is our main assumption and we need to know
whether it is violated by the dynamics of the gravitational
wave or, in the truncated case, of the anisotropies. Thus,
consider the physically most interesting case when the
anisotropy parameters in Eq. (3) are small, jβ�j ≪ 1. Then
one can write the space components of the metric in the
form

gik ¼ −δik þ hik;

hik ¼ −diagðβþ þ
ffiffiffi
3

p
β−; βþ −

ffiffiffi
3

p
β−;−2βþÞ: ð7Þ

It is easy to see that the trace of the last expression is zero,
δikhik ¼ 0, exactly as in the case of the gravitational wave,
also in both cases we have 2 degrees of freedom.
Another desired similarity would be a transverse nature

of the wave. However, in the case of Bianchi-I metric, this
feature cannot be verified, because the perturbation in (7) is
dependent only on time, and there is no wave vector.
Therefore, there is no complete correspondence between
(7) and the gravitational wave, and we can speak only about
a qualitative similarity between the two types of the
perturbations. At the same time, since the Ostrogradsky
instabilities which are expected in the higher derivative
theories [17] (see [18] for a recent review) appear due to the
higher derivatives in time, we can expect that the data
obtained by using Bianchi-I metric will provide a useful
hint for the general situation with the stability of metric
perturbations in the higher derivative theories. Since the
wave vector is zero in the case of (7), we can expect that,
according to the results of [2], the classical isotropic
solutions will be stable in the linear approximation. The
Bianchi-I metric offers a possibility to have an independent
check of these results and, most relevant, to go beyond the
linear approximation.
In terms of the new variables, discarding superficial terms

and taking into account that in Bianchi-I case all metric
components depend only on time and not on the spatial
coordinates, the Lagrangian of the action (1) becomes

L¼ −
3MP

2

8π
e2σ½σ02 − ðβ0þ2 þ β0−2Þ�

þ 12ð3a2 þ 4a1Þðβ0þ2 þ β0−2Þ2 þ 12a1ðβ00þ2 þ β00−2Þ
þ 72a2ðσ00 þ σ02Þðβ0þ2 þ β0−2Þ þ 36a2ðσ00 þ σ02Þ2: ð8Þ

It is worth noting that in the limit of general relativity
a1;2 → 0 and after rescaling anisotropies, that does not affect
the dynamics of the conformal factor, we recover the
conventional Lagrangian for the gravitational waves beyond
the horizon [19,20]. This means that, at least in the linear
order, the Bianchi-I model under consideration can be seen
as a zero-frequency approximation of the equation for
the gravitational waves. Thus, we shall assume that this

correspondence holds beyond the linear order and regard the
Bianchi-I as a simplest version of the equation for the
gravitational wave.
It is easy to see that that Lagrangian expression has terms

which are second and fourth order in conformal time
derivatives. It is useful to show explicitly the unit of time
η0. The dynamical equations can be obtained by taking the
variational derivatives of the action with the Lagrangian (9).
The presence of isotropically distributed matter, radiation, or
cosmological constant does not affect the equations for β�
[21,22], but only changes the equation for σ through the trace
of the energy-momentum tensor. We will only consider a
perfect fluid with linear equation of state defined by the
constantωwhich assume thevalues 1

3
, 0, and−1 for radiation,

dust, and cosmological constant, respectively. Taking varia-
tional derivatives with respect to σðηÞ and β�ðηÞ and adding
the matter part, we arrive at the equations

72a2½σð4Þ − 2σ00ð3σ02 þ β0−2 þ β0þ2Þ − 4σ0ðβ0−β00− þ β0þβ00þÞ
þ 2ðβ0−β000− þ β0þβ000þÞ þ 2ðβ00−2 þ β00þ2Þ�

þ 3

4π
e2σM2

pη
2
0½ðβ0−2 þ β0þ2 þ σ00 þ σ02Þ

−
1

2
ð1 − 3ωÞeð1−3ωÞσ� ¼ 0; ð9Þ

and

24a1ð8β0∓2β00� þ 16β0�β
0∓β00∓ þ 24β0�

2β00� − β�ð4ÞÞ

þ 3

4π
e2σM2

pη
2
0ðβ00� þ 2σ0β0�Þ

þ 144a2½β0�ð2σ0σ00 þ 2β0∓β00∓ þ σ000Þ
þ β00�ðσ02 þ 3β0�

2 þ β0∓2 þ σ00Þ� ¼ 0: ð10Þ

Here the primes mean the derivative with respect to the
conformal time measured in the units of η0. Equation (9)
corresponds to the variation with respect to σwith the perfect
fluid contribution, whereΩ0 is the relative energy density of
matter or cosmological constant. The sum of Ω and the
contribution of higher derivative terms is equal to one
identically. Equation (10) describes the nonlinear dynamics
of anisotropies.
We can also express the dynamical equations in terms

of physical time through the relation dt ¼ eσðηÞdη. The
results are

72a2½σð4Þ þ 12_σ2σ̈ þ 4σ̈2 þ _σð6_βþ; β̈þ þ 6_β−β̈− þ 7σð3ÞÞ
þ 2ðβ̈þ2 þ β̈−

2 þ _βþβ
ð3Þ
þ þ _β−β

ð3Þ
− Þ�

þ 3

4π

�
Mp

H0

�
2
�
2_σ2 þ _β2þ þ _β2−

− 2ΩΛ −
1

2
Ω0e−3σð1þωÞð1 − 3ωÞ

�
¼ 0; ð11Þ
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and

144a2fβ̈�ð2_σ2þ β̈2∓ þ 3_β2� þ σ̈Þ
þ _β�½6_σ3 þ 3_σð_β2þ þ _β2þÞþ 7_σ σ̈þ2_β∓β̈∓þ σð3Þ�g
þ 24a1f _β�½6_σ3 − 16_β∓β̈∓ þ σð3Þ þ 7_σ σ̈−24_σð_β2þ þ _β2−Þ�
þ 6_σβ�ð3Þ þ β�ð4Þ þ β̈�ð11_σ2 − 8_β2∓ − 24_β2� þ 4σ̈Þg

þ 3

4π

�
Mp

H0

�
2

ðβ̈� þ 3_σ _β�Þ ¼ 0: ð12Þ

Here the dots mean derivative with respect of dimensionless
time τ ¼ H0t, where H0 is the Hubble-Lemaître parameter
measured at some instant of time. The set of Eqs. (11) and
(10) or (11) and (12) represents systems of three coupled
ordinary differential equations of the fourth order.
Besides the Einstein space solutions in vacuum (with

cosmological constant), there are no much chances to find
an exact solution of this system, and this is not our purpose
in the complicated case with higher derivative terms
included. Instead, we shall explore the stability of the
cosmological (homogeneous and isotropic) solutions, cor-
responding to β� ¼ 0 and the σðtÞ ¼ σ0ðtÞ given by some
cosmological solutions.
An important point concerns the choice of the back-

ground solution σ0ðtÞ. Let us start from a few preliminary
observations. The first one is that in the action (1) the term
a1C2 (regardless being most relevant for the tensor per-
turbations and massive ghosts) does not affect the dynamics
of the conformal factor and therefore the one of σ0ðtÞ. Thus,
when we choose this function, we do not need to take the
Weyl-squared term into account. Second, our main target in
the previous works on the cosmological stability in the
presence of massive ghosts was the low-energy cosmo-
logical solutions. Thus, the canonical approach would be to
ignore also the a2R2 term as being Planck suppressed (the
last means we consider such solutions for which ja2R2j ≪
jM2

PRj in the action and the corresponding hierarchy in
the equations of motion), and consider the classical
radiation-dominated and dust-radiation solutions only.
Let us stress that this hierarchy can be assumed only for
the background σ0ðtÞ. For the perturbations such as
gravitational waves, the run-away solutions are capable
to easily destroy this hierarchy. The main subject of the
present work is to explore the effect of nonlinearities in this
possible breaking in the framework of the simple Bianchi-I
based model.
The third point is that we can easily extend the low-

energy region for the background up to the inflation scale,
just taking the a2R2 term into account. According to the
available set of observational and experimental data, this
term is the main ingredient of the Starobinsky model [23],
that is exactly the most successful phenomenologically
model of inflation. In order to achieve this success [24], the

value of a2 should be chosen at about 5 × 108. Then the
inflationary solution corresponds to the slowly decreasing
Hubble parameter, with an approximately linear depend-
enceHðtÞ. Then, since our ultimate interest is the dynamics
of the gravitational waves with the initial frequencies much
greater in magnitude than H (and at the same time much
below the Planck scale [2]), it is a very good approximation
to regard H as a constant. Thus, we can safely consider,
instead of the linearHðtÞ, the constantH and derive it from
the classical cosmological constant. All in all, we arrive
at the situation where the main features of our model can
be explored taking the three simplest examples of σ0ðtÞ,
namely cosmological constant-, radiation-, and matter-
dominated classical solutions.
Let us repeat that the main advantage of the Bianchi-I

metrics is that the Eqs. (9) and (9) or (11) and (12) are
relatively simple and can be explored numerically even at
the nonperturbative level. Thus, we get a chance to check
by direct calculation whether the mathematical statements
about the general relation between linear stability and
the nonperturbative asymptotic behavior, which were used
in [2] and [10], are correct. However, before going to
numerics, we shall give a brief survey of the mentioned
mathematical statements in the next section.

III. ASYMPTOTIC SERIES EXPANSION
FOR SINGULAR PERTURBATION

Since our intention is to compare the linear approxima-
tion for the anisotropies with the nonperturbative numerical
solution, it makes sense to briefly review the general
mathematical theorems which cover the relation between
first-order stability and nonperturbative behavior in the
systems described by differential equations.
In the zero-order case functions, σ and β� are approxi-

mated by σ0ðtÞ and zero, because in the background
solutions there are no anisotropies, by assumption. This
fact motivates to explore the general solution of the system
of Eqs. (11) and (12) in the form of asymptotic series
expansion

_σ ¼ σ0 þ ϵσ1 þ � � � ;
_β� ¼ 0þ ϵβ1� þ � � � ; ð13Þ

where ϵ is a small parameter, which one can easily
implemented into the perturbations (7).
Equations (11) and (12) can be rewritten in the math-

ematically standard form as a system of 12 autonomous
ordinary differential equations

dty ¼ d
dt

y ¼ fðyÞ; ð14Þ

where the vector y includes σ, β�, and also first, second,
and third derivatives of these functions. Substituting into
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this system the expansion (13), we arrive at the equations
for the power series

dt½y0 þ ϵy1 þ � � �� ¼ fðy0Þ þ ϵ∇fðy0Þy1 þ � � � ; ð15Þ

where ∇fðy0Þ is a Jacobian of the function f calculated on
the background (unperturbed) solution y0. In order to solve
this system, we equate terms with the same order in ϵ.
This procedure is well known in singular perturbation
theory [25].
Let us note that the order zero in ϵ corresponds to the

equation dty0 ¼ fðy0Þ, that is satisfied for the background
under consideration. Then the first-order approximation
corresponds to the linear differential equation

dty1 ¼ ∇fðy0Þy1: ð16Þ

Our main purpose is to compare the solution of this
equation with the one for the complete version (15). For
instance, let us assume that for the certain choice of initial
conditions (small deviations from the background, as we
explained above), linear system (16) does not show grow-
ing modes, but only those which asymptotically vanish or
oscillate without growing amplitude in the limit t → ∞.
Then, under smoothness hypotheses on the dependence
on the small parameter ϵ, the first-order approximation
y0 þ ϵy1 is of the order ϵ close to the solution of the
complete system dty ¼ fðyÞ [25].
Finally, we can quote the following two theorems

concerning sink equilibrium points, which can be found
in the well-known book on differential equations [26]:
Theorem 1: Assume that the system dty ¼ fðyÞ pos-

sesses a sink in the point ỹ, i.e., there exists a constant
c > 0, such that all eigenvalues λi of the Jacobian fðỹÞ
satisfy ReðλiÞ < −c. Then all the solutions starting in some
neighborhood of the point ỹ converge to ỹ exponentially.
Theorem 2: If the system dty ¼ fðyÞ possesses a stable

equilibrium in ỹ, then all eigenvalues λi of the Jacobean
fðỹÞ have nonpositive real part of the eigenvalues
ReðλiÞ ≤ 0.
Let us note that both theorems apply only in the case

when the system of linear equations has a fixed point. In
our case of the radiation-, dust-, and cosmological constant-
dominated backgrounds, this can be achieved by an
obvious change of variables. We have checked that this
change does not modify the conditions of linear asymptotic
stability.
Coming back to the problem of exploring Eqs. (11) and

(12), we know that in the linear approximation there are no
growing modes for the frequencies below the Planck-order
threshold [2,5]. This is certainly true for the zero-frequency
modes, which correspond to the Bianchi-I model. Thus,
we can claim that the conditions of the Theorem 2 are
satisfied and, therefore, the conditions of the Theorem 1 are
also satisfied. Hence, we can expect a good qualitative

correspondence between the dynamics of anisotropies in
the linear approximation and within the full nonperturba-
tive consideration. In the next section, we check this
conclusion by using numerical methods. Let us briefly
discuss how these well-known theorems can be applied to
evaluate the regions where one can expect the validity of
the linear approximation.
First of all, let us construct the presentation (14) for the

nonlinear system formed by (11) and (12). For this end, we
introduce the new variables

_σ ¼ H; _H ¼ Q1; _Q1 ¼ Q2;

_β� ¼ x�; _x� ¼ y�; _y� ¼ z�; ð17Þ

Then the first-order equations include (17)

_Q2 ¼ −½12H2Q1 þ 4Q2
1 þHð6xþyþ þ 6x−y− þ 7Q2Þ

þ 2ðy2þ þ y2− þ xþzþ þ x−z−Þ�

−
M2

p

96πa2H2
0

½2H2 þQ1 þ x2þ þ x2− − 2ΩΛ

−
1

2
Ω0e−3σð1þωÞð1 − 3ωÞ�; ð18Þ

and

_z� ¼ 6
a2
a1

fx�½6H3þ 3Hðx2þ þ x2−Þþ 7HQ1

þ 2x∓y∓þQ2� þ y�ð2H2þ x2∓þ 3x2� þQ1Þg
− fx�½6H3− 16x∓y∓þQ2þ 7HQ1− 24Hðx2þ þ x2−Þ�
þ 6Hz� þ y�ð11H2− 8x2∓ − 24x2� þ 4Q1Þg

þ 3M2
p

4πa1H2
0

ðy� þ 3Hx�Þ: ð19Þ

The first-order version of linearized system consists
from

_β� ¼ x�; _x� ¼ y�; _y� ¼ z�; ð20Þ

and

_z� ¼ 6a2
a1

fx�½6 _σ0
3 þ 7 _σ0 σ̈0þσð3Þ0 � þ y�ð2 _σ0

2 þ σ̈0Þg

− fx�½6 _σ0
3 þ σð3Þ0 þ 7 _σ0 σ̈0�

þ 6 _σ0z� þ y�ð11 _σ0
2 þ 4σ̈0Þg

þ 3

4πa1H2
0

M2
pðy� þ 3 _σ0x�Þ: ð21Þ

In order to estimate the radius of the region where the
linearization procedure is valid for the ordinary differential
equations written in the form (14), one needs to go into
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details of the proofs of the theorems mentioned above. In
both cases, the proofs are based on the Taylor expansions
around the equilibrium point y0 in the form

y0 ¼ ðy0 þ δyÞ0

¼ fðy0Þ þ Jδy þ 1

2
ðδyÞTHδy þOððδyÞ3Þ; ð22Þ

where J and H are the Jacobian and Hessian operators of
the function f evaluates on the background solution y0.
Remember that at the equilibrium point fðy0Þ ¼ 0 by
definition. Thus, the equation above can be rewritten for
the perturbations as

ðδyÞ0 ¼ Jðy0Þδy þ
1

2
ðδyÞTHðy0Þδy þOððδyÞ3Þ: ð23Þ

The theorems cited above are valid in the region where the
terms of the higher order are negligible (or possibly vanish
under certain change of variables) in a small neighborhood
of y0. This means that the linear approximation ceases
validity when linear and quadratic terms are of the same
order of magnitude. A rough estimate for the region where
the linear approximation is valid is

jδyj < R; where R ¼ O
� jjJðy0Þjj
jjHðy0Þjj

�
; ð24Þ

where the Euclidean norm j·j is used for vectors, and
the operator norm k·k follows the standard definition
and can be calculated using Riesz representation (see,
e.g., [27]) as

kJk ¼ max
jyj¼1

jJðy0Þyj; ð25Þ

and kHk ¼ max
jyj¼1;jzj¼1

jyTHðy0Þzj: ð26Þ

One can note that it is not possible to apply this formula to
the linearized model as the Hessian tensor will be singular.
This is a natural situation, because the quantities (25) and
(26) are intended to compare linear and nonlinear cases and
hence should be defined in the framework of the more
general theory.
In order to calculate the radius given in (24) for the

system (19), we just need to evaluate the norms of Jacobian
and Hessian operators at the equilibrium point. The
numerical simulations based on Eqs. (24) with (25) and
(26) have been performed in the radiation and dust models,
using the dimensionless units with MP ¼ 1. The results
were equal for the tested versions with a1 ¼ �1 and
a2 ¼ 5 × 108. In both models, we met the radius
R ¼ ð1=3Þ × 10−9. It is interesting that the sign of a1
did not make any difference for the radius of validity of
the linear approximation R, regardless of the critical

importance of the same sign for the asymptotic stability,
as we will discuss in the next section.
An interesting observation is in order. After we sub-

mitted the first version of this work to arXiv, we learned
about a similar investigation [28]. The results of numerical
analysis in this work concern the nonlinear case and are
qualitatively the same as ours, that are also close to those of
the earlier paper [13], which did not link the study of the
dynamics of anisotropies with the problem of massive
ghosts in higher derivative gravity. The correspondence
between the three independent investigations are certainly
adding an extra safety to our conclusions. At the same
time, the results of [28] include the growing solution for
the initial conditions with relatively large first derivatives of
the anisotropies. This output may look as a contradiction
with our interpretation of Bianchi-I perturbations as a
zero- frequency gravitational wave. The analysis presented
in this section shows that this is not a correct interpretation.
The frequency is still zero, but in this case, we have the
situation when the initial conditions correspond to the
point which is out of the region satisfying the condition
(24). As we have discussed, out of this region we
cannot expect correspondence between linear and nonlinear
approximations.

IV. LINEAR AND NONLINEAR
NUMERICAL SOLUTIONS

In this section, we present the numerical solutions of
differential equations (11) and (12) in both linear and full
version. The first part requires the linearization. Let us note
that in this section we exclusively work with set of
Eqs. (11) and (12) in terms of dimensionless physical
time.
As we have explained above, the linearization is per-

formed around isotropic cosmological solutions, which
means null values for anisotropies and the well-known
cosmological solutions of general relativity σ0ðτÞ. It is easy
to check that at the linear level the perturbations for σðτÞ
and anisotropies completely decouple. Thus, in the linear-
ized case, one can restrict consideration by the equations
for anisotropies, which have the form

β̈�

�
ð11a1 − 12a2Þ _σ02 þ 2ð2a1 − 3a2Þσ̈0 −

3

4π

�
Mp

H0

�
2
�

þ 3 _β�

�
8ða1 − 6a2Þð6 _σ0

3 þ 7 _σ0 σ̈0þσð3Þ0 Þ

−
3

4π

�
Mp

H0

�
2

_σ0

�
þ 24a1½βð4Þ� þ 6 _σ0β

ð3Þ
� � ¼ 0: ð27Þ

The free parameters of the systems are Hubble—Lemaître
parameter at the reference time instant H0 and the coef-
ficients a1 and a2. The theory with a1 > 0 manifests
instabilities for anisotropies as we know from the more
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general gravitational wave solutions [2] (see also more
detailed discussion in [29]). For the sake of completeness,
we present the corresponding plots in Figs. 1 and 2 for the
cosmological constant-dominated and matter-dominated
backgrounds. The radiation case is very similar to these
two and hence will not be included here. In what follows,
we consider only negative values of a1. The examples of
the results of numerical analysis can be seen in the figures
presented below. The qualitative behavior is pretty much
the same for any choice of initial data which we tried.
The values for the plots which we selected are specified
at the captions of the figures. In all cases, the initial
conditions for βþðτÞ for both linear and nonlinear equations
which we show in the plots are β�ð0Þ ¼ 0, _β�ð0Þ ¼ 0.01,

β̈�ð0Þ ¼ −0.001, βð3Þ� ð0Þ ¼ 0.0001. Furthermore, in order
to shorten the numerical procedure, the value of Hubble—
Lemaître parameter has been taken asH0 ¼ 10−2Mp. In the
figures, we present the plots of numerical solutions for
σðτÞ and anisotropies. In the last case, we show only
βþðτÞ solutions, because it turns out that both anisotropies
β�ðτÞ have similar behavior, which may differ only

due to the choice of initial conditions and do not
define the asymptotic behavior. The time τ is measured
in units of 1=H0, where we choose H0 ¼ 0.01MP for the
sake of convenience of numerical analysis and plotting the
figures.
In the first set, illustrated in Figs. 3–5 the system of

nonlinear equations has initial conditions for σðτÞ which
are the same as for isotropic radiation-dominated Universe
in general relativity. Linearization is done around σ0ðτÞ of
isotropic radiation-dominated Universe.
The second set of Figs. 6–8 illustrates the solutions for

the background of σ0ðτÞ corresponding to the matter-
dominated Universe.
The last cases are shown in Figs. 9–11; they correspond

to equations for the variation of conformal factor and
anisotropies on the background of isotropic solution in the
Universe dominated by cosmological constant. Let us
conclude this section by repeating that we have also
checked other choices of initial data and the results are
always qualitatively the same as in the plots shown above.
In general, there is a very good correspondence between

FIG. 1. Plots for a1 ¼ þ1 and a2 ¼ 1 in the cosmological
constant-dominated case. For the anisotropies, one can observe
the instability which is typical for the tachyonic ghost case for the
more general gravitational wave case [2,29].

FIG. 2. For a1 ¼ þ1 and a2 ¼ 1 in the matter-dominated case.
The tachyonic ghost instability is qualitatively the same as in the
cosmological constant case, confirming the correspondence with
zero-frequencies limit of the gravitational wave.
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linearized Bianchi-I system and the dynamics of
gravitational waves with low frequencies from one side,
and the linearized and nonperturbative treatments from
another side.

FIG. 3. For a1 ¼ −1 and a2 ¼ 1 case, we compare the plots of
σðτÞ and anisotropies from numerical solution on the background
of isotropic radiation-dominated solution of general relativity.

FIG. 6. The plots for the values a1 ¼ −1 and a2 ¼ 1 with the
background of isotropic matter-dominated solutions of general
relativity.

FIG. 4. The same plots as in Fig. 3, but for the different
parameters a1 ¼ −1 and a2 ¼ 100. This shows the changes due
to the large R2 term, which is typical for the Starobinsky
inflation [23,24].

FIG. 5. The same plots, but with the large Weyl-squared term,
a1 ¼ −100 and a2 ¼ 1.
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σ solutions

anisotropies

FIG. 8. The same of Fig. 6, but with the values a1 ¼ −100 and
a2 ¼ 1.

FIG. 7. The same as Fig. 6, but with the values a1 ¼ −1 and
a2 ¼ 100, intended to illustrate the effect of large R2 term in the
Starobinsky inflation. The background is dominated by dust. FIG. 9. The plots for a1 ¼ −1 and a2 ¼ 1, for equations on the

isotropic cosmological constant-dominated background.

σ solutions

anisotropies

FIG. 10. The same as Fig. 9, but with the values a1 ¼ −1 and
a2 ¼ 100.
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V. CONCLUSIONS

We have explored the time dependence of anisotropies in
the Bianchi-I model with fourth derivatives, which can be
seen as a zero-frequency approximation for the gravita-
tional waves in the model (1). Qualitatively we observe
from the plots presented in the figures that in all cases there
is no qualitative difference between the behavior of
linearized and nonperturbative systems, exactly as it should
be in accordance with the standard mathematical results
cited in Sec. III.
In all cases which were analyzed, the dynamics of both

linearized and general systems does not show instabilities
related to the presence of higher derivatives, exactly as one
should expect from the previous considerations of the
gravitational waves from one side [2] and the mentioned
mathematical theorems from another side. Since Bianchi-I

can be regarded as a zero-frequency approximation to the
gravitational waves dynamics, we gain a strong reasons to
expect the absence of explosive exponential type instabil-
ities for the gravitational waves, even in the nonperturbative
regime.
For the cases of radiation-dominated and dust-dominated

background solutions, the numerical results confirm show
that for the values a1 ¼ −1 and a2 ¼ 1 the numerical
solutions of σðτÞ asymptotically tend to the isotropic ones
with the same matter contents. At the same time, for larger
value a2 ¼ 100, we can note stronger deviation between
linear and nonperturbative regimes. This effect should be
expected much stronger for the phenomenologically opti-
mized value a2 ≈ 5 × 108, required for the successful
Starobinsky inflation [23,24].
In general, we confirmed the expectations of [2] and [10]

concerning the correspondence between linear and general
nonlinear results. It would be certainly interesting to extend
the analysis in several directions. For instance, to include
the cases of the background cosmological metrics with
strong curvature, such that the effect of higher derivatives
on the background should be taken into account.
Regardless of that this case is not expected to give great
surprises (the reason is that the large a2 is known to
increase the value of H0, in the first approximation), this
check has to be done. In fact, the solutions for more
complicated cosmological backgrounds would be an inter-
esting issue to explore. A much more challenging problem
is to consider more complicated anisotropic solutions, with
a nonzero frequency. Such an investigation would require
more serious calculation, but in some cases it does not look
impossible. Anyway, the results of the present work show
that we have strong reasons to believe to the validity of
the first-order perturbations if they show the strong signs
of asymptotic stability.
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