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We study the evolution of the holographic entanglement entropy (HEE) and the holographic complexity
(HC) after a thermal quench in 1þ 1 dimensional boundary conformal field theories dual to massive BTZ
black holes. The study indicates how the graviton mass mg, the charge q, and also the size of the boundary
region l determine the evolution of the HEE and HC. We find that for small q and l, the evolutions of the
HEE and the HC is a continuous function. When q or l is tuned larger, the discontinuity emerges, which
could not observed in the neutral AdS3 backgrounds. We show that, the emergence of this discontinuity is a
universal behavior in the charged massive BTZ theory. With the increase of graviton mass, on the other
hand, no emergence of the discontinuity behavior for any small q and l could be observed. We also show
that the evolution of the HEE and HC both become stable at later times, and mg speeds up reaching to the
stability during the evolution of the system. Moreover, we show that mg decreases the final stable value of
HEE but raises the stable value of HC. Additionally, contrary to the usual picture in the literature that the
evolution of HC has only one peak, for big enough widths, we show that graviton mass could introduce two
peaks during the evolution. However, for large enough charges the one peak behavior will be recovered
again. We also examine the evolutions of HEE and HC growths at the early stage, which an almost linear
behavior has been detected.
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I. INTRODUCTION

The interdisciplinary connections of quantum informa-
tion, condensed matter and quantum gravity, and the many
possible applications are becoming increasingly more
important in the realm of the theoretical physics and
quantum information in this era. Specifically, holography
[1–3] has been shown to play a remarkable and crucial role
in this integration. Holography helps to calculate many
physical quantities in various conformal field theories
(CFTs) and specifically in strongly correlated systems.
Specifically, two main quantities of entanglement

entropy (EE) and complexity are very important concepts
in the information theory both of which can be calculated

using holography, although it is extremely difficult to
compute them in the field theory sides when the degrees
of freedom (d.o.f.) of the system become large.
Fortunately though, using holography for these two
important quantities and recently for some related quan-
tities, some elegant and simple geometric descriptions
from gravity side have been provided. For instance, one
of the most important quantum information quantity for
mixed states is entanglement of purification (EoP) intro-
duced in [4], where its holographic dual has been
considered to be the minimal entanglement wedge cross
section [5]. Additionally, bit thread formalism for study-
ing EoP has been addressed in [6–9]. Another one is
complexity of purification (CoP) introduced in [9,10],
which is the minimum number of gates needed to purify a
mixed state. Next but not the last interesting quantum
information quantity is the logarithmic negativity, which
is a quantum entanglement measure for mixed quantum
states and only captures the “quantum correlations” with
the nature of “entanglement” [11]. Its holographic dual
has been studied in [12,13].
In particular, it has been proposed that in holographic

framework, the EE for a subregion on the dual boundary is
proportional to the minimal surface in the bulk geometry,

*Corresponding author.
xmeikuang@yzu.edu.cn

†constaantine@163.com
‡mahdisg@yzu.edu.cn
§jianpinwu@yzu.edu.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 100, 066003 (2019)

2470-0010=2019=100(6)=066003(15) 066003-1 Published by the American Physical Society

https://orcid.org/0000-0002-2432-0522
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.066003&domain=pdf&date_stamp=2019-09-03
https://doi.org/10.1103/PhysRevD.100.066003
https://doi.org/10.1103/PhysRevD.100.066003
https://doi.org/10.1103/PhysRevD.100.066003
https://doi.org/10.1103/PhysRevD.100.066003
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


for which is being called the Hubeny Rangamani-
Takayanagi (HRT) surface [14,15]. One of the most
important applications of holographic entanglement
entropy (HEE) and the studies of HRT surfaces is to
diagnose and study various holographic phase transitions,
e.g., see [16–24].
In addition, quantum complexity measures how many

quantum gates are required to prepare, up to a specific
precision, the target state from the initial state in any
quantum circuit model [25–27]. However, its exact defi-
nition in the quantum fields theory is notoriously difficult
and the complete definition is unclear yet. Some recent
progress, though, in this regard have been made in [28–32].
The difficulty mainly arises due to the fact that, the Hilbert
space is so large, the d.o.f. of the system are infinite, and
there exist some ambiguities on how to define the unitary
operations and also the reference state. In fact, instead of
discrete gates, a continuous definition is called for. On the
other hand, holography could recently provide an alter-
native, well-defined method to study the computational
complexity of different dual field theories.
In the holographic framework, there are two different

proposals to evaluate the computational complexity. One
is the CV conjecture (Complexity ¼ Volume) [33,34],
and the other is being called the CA conjecture
(Complexity ¼ Action) [35,36]. The CV conjecture pro-
poses that the holographic complexity (HC) is proportional
to the volume of a codimension-one hypersurface with the
AdS boundary and the HRT surface. While using the CA
conjecture, one should identify the HC with the gravita-
tional action evaluated on the Wheeler-DeWitt patch in the
bulk. In this paper, we shall follow the CV conjecture and
study its evolution under a thermal quench.
The fascinating point is that the study of HEE and HC,

could provide us with more power and tools to explore the
nature of the spacetime, in particular the physics of the
black hole horizon. Specifically, while studying the infor-
mation paradox in black holes, the authors of [37,38] have
found that the entanglement entropy could not be enough
to understand the black hole horizon. Therefore, they
proposed the ER ¼ EPR conjecture and argued that the
creation of the firewall behind the horizon is essentially a
problem of “quantum computational complexity” [33].
This was an example for how studying the evolution of

information quantities such as HEE and HC could provide
us more with information about the nature of the black hole
horizon and even its thermal and entanglement structures.
Therefore, the evolution of the HEE and HC has been

explored in various dynamical backgrounds such as
Vaidya-AdS spacetime [39] and in Einstein-Born-Infeld
theory [40]. The authors of those works investigated the
HEE and HC under a thermal quench in the related
gravitational background. This kind of quench process in
the dual boundary field theory is described holographically
by the black hole formation from the gravitational collapse,
and it is widely employed as an effective model to study
thermalization process, see e.g., [41,42] as a review. The
study on the evolution of subregion complexity has been
generalized to chaotic system [43] and dS boundary [44].
The evolutions of HEE and HC for quantum quench have
also been studied in [45–47] and therein.
In this paper, we shall investigate the HEE and HC under

a thermal quench in three dimensional massive gravity
theory. We shall separately explore the effects from the
mass of graviton and charge of black hole. Also, we study
the joint, simultaneous effects from both of them.
Our paper is organized as follows. In Sec. II, we

introduce the general framework describing HEE and
HC in Vaidya-AdS3 spacetime. Then, in Sec. III, we
separately explore the effects from the mass of graviton
and charge of black hole. Also, we study their joint effects.
Finally, in Sec. IV, we summarize our results.

II. HOLOGRAPHIC SETUP OF HEE AND HC
IN VAIDYA-AdS3 THEORY

In order to study the evolution of HEE and HC in 1þ 1
dimensional field theory after a thermal quench via
holography, we consider the Vaidya-AdS3 spacetime with
a planar horizion in terms of Poincare coordinate

ds2 ¼ 1

z2
ð−fðv; zÞdv2 − 2dzdvþ dx2Þ; ð1Þ

where fðv; zÞ is the redshift function. Also, v is the ingoing
null trajectory, which coincides with the time coordinate t
on the conformal boundary. Note that in the limit v → −∞,
the above metric reduces to a pure AdS3 spacetime, while
in the limit v → ∞, it describes certain AdS BTZ black
holes. These parameters will be explicitly fixed later.
To study HEE and HC in the dynamical spacetime, we

first consider the subregion asA ¼ x ∈ ð− l
2
; l
2
Þwith finite l

in an asymptotic AdS background. The setup is shown in
Fig. 1. It was proposed in [15] that in the dynamical
spacetime, HEE for a subregion A on the boundary could
be captured by a codimension-two bulk surface with
vanishing expansion of geodesics, i.e., the HRT surface
γA, while the corresponding HC is proportional to the
volume of a codimension-one hypersurface ΓA with the
boundaries A and γA.

FIG. 1. Geometrical description of the subregionA with width l.
The γA denotes a codimension-one surface and the shadow region
is the volume of hypersurface ΓA with boundaries A and γA.
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So we will follow the strategy in [39] to analytically
derive the integral expressions of HEE via the minimal
surface, and for calculating HC we use the CV conjecture.
Due to the symmetry of the system, the corresponding
extremal surface γA in the bulk can be parametrized as

v¼ vðxÞ; z¼ zðxÞ; zð�l=2Þ¼ ϵ; vð�l=2Þ¼ t− ϵ;

ð2Þ

where ϵ is the cutoff. Then the induced metric on the
surface is

ds2 ¼ 1

z2
½−fðv; zÞv02 − 2z0v0 þ 1�dx2; ð3Þ

where the prime denotes the derivative with respect to x.
It is straightforward then to write down the area of the
extremal surface as

AreaðγAÞ ¼
Z

l=2

−l=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðv; zÞv02 − 2z0v0

p
z

dx: ð4Þ

To extract the HEE, one then has to minimize the above
surface. The useful trick is to treat the above function as
an action, and then the corresponding Lagrangian and
Hamiltonian are

LS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðv; zÞv02 − 2z0v0

p
z

; ð5Þ

HS ¼
1

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðv; zÞv02 − 2z0v0

p : ð6Þ

Since the Hamiltonian does not explicitly depend on the
variable x, it is conserved. Beside, the symmetry of the
surface gives us a turning point, ðz�; v�Þ, of the extremal
surface γA which is located at x ¼ 0. So we could set

v0ð0Þ ¼ z0ð0Þ ¼ 0; zð0Þ ¼ z�; vð0Þ ¼ v�: ð7Þ

Subsequently, the conserved Hamiltonian gives

1 − fðv; zÞv02 − 2z0v0 ¼ z2�
z2

: ð8Þ

Combining the result from the derivative of the Lagrangian
(5) with respect to x, and the equations of motion for zðxÞ
and for vðxÞ, we obtain a group of partial differential
equations as

0 ¼ −2þ 2zv00 þ v0½2fðv; xÞv0 þ 4z0 − zv0∂zfðv; zÞ�; ð9Þ

0 ¼ 2fðv; zÞ2v02 þ fðv; zÞ½−2þ 4v0z0 − zv2∂zfðv; zÞ�
− z½2z00 þ v0ð2z0∂zfðv; zÞ þ v0∂vfðv; zÞÞ�: ð10Þ

We have to solve the above equations using the boundary
conditions (7) and extract the solutions of v ¼ ṽðxÞ, z ¼
z̃ðxÞ for the extremal surface γA. The extremal surface γA is
then simplified as

AreaðγAÞ ¼ 2

Z
l=2

0

z�
z̃ðxÞ2 dx; ð11Þ

which gives the HEE of the subregion on the boundary.
One should note that the surface does not live on a constant
time slice for the general fðv; zÞ, as both z� and z̃ðxÞwill be
changed by time.
We then derive the general expression of HC via CV

conjecture in the background (1) which has the same profile
as HEE. One should note that, the codimension-one
extremal surface ΓA is bounded by the surface γA in the
bulk. In [39], It has been addressed that there are in fact
two equivalent ways to describe ΓA which is parametrized
by vðzÞ or zðvÞ. Using the profile zðvÞ is usually more
convenient for the dynamical backgrounds, which we will
consider in the following study, i.e., we parametrize the
extremal bulk region ΓA enclosed by v ¼ ṽðxÞ, z ¼ z̃ðxÞ
via z ¼ zðvÞ. Thus, the induced metric on ΓA would be
calculated as

ds2 ¼ 1

z2

�
−
�
fðv; zÞ þ 2

∂z
∂v

�
dv2 þ dx2

�
; ð12Þ

and the volume could be evaluated as

VðΓAÞ¼2

Z
ṽðl=2Þ

v�
dv

Z
x̃ðvÞ

0

dx
z2

�
−fðv;zÞ−2

∂z
∂v

�
1=2

; ð13Þ

where x̃ðvÞ is the coordinate in the codimension-two
extremal surface γA. Similarly, treating the above integral
function as the Lagrangian, we obtain the equation of
motion as

0 ¼ ½4fðv; zÞ2 þ 8z0ðvÞ2 − 3zðvÞz0ðvÞ∂zfðv; zÞ
þ fðv; zÞð12z0ðvÞ − zðvÞ∂zfðv; zÞÞ
− zðvÞð2z00ðvÞ þ ∂vfðv; zÞÞ�
=½zðvÞ3ð−fðv; zÞ − 2z0ðvÞÞ3=2�: ð14Þ

One may solve the above equation using the boundary
condition which is determined by the codimension-two
surface γA ¼ ðṽðxÞ; z̃ðxÞÞ and A. Alternatively, similar to
the case in HEE, the solution to (14) could also be figured
out by finding z̃ðṽÞ on the boundary γA. Subsequently, the
volume is rewritten as
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VðΓAÞ ¼ 2

Z
ṽðl=2Þ

v�
dv

�
−fðv; zðvÞÞ − 2

∂z
∂v

�
1=2

zðvÞ−2x̃ðvÞ;

ð15Þ

which is dual to HC of the subregion in the boundary.
Once, for the strip subregion, we find the general

expressions of HEE from Eq. (11), and HC from
Eq. (15), both holographically and in the background of
Vaidya-AdS3 black hole, we could then go forward by
numerically studying the “evolutions” of HEE and HC for
this specific geometry and setup.

III. EVOLUTION OF HEE AND HC IN THE
MASSIVE CHARGED BTZ BLACK HOLE

In this section, we study the evolution of HEE and HC
after a thermal quench in the background of massive
charged BTZ black hole.

A. The general formulas of HEE and HC in massive
charged BTZ black hole

As for the theory, we choose the Einstein-Maxwell-
massive gravity in three dimensional spacetimes, which is
expressed in the following form [48]

I ¼ −
1

16π

Z
d3x

ffiffiffiffiffiffi
−g

p �
Rþ 2 − F2 þm2

g

X4
i

ciU iðg; hÞ
�
;

ð16Þ

where ci are constants and mg is the mass of the graviton.
Also, F ¼ dA is the Maxwell field strength of gauge field
A, and hμν is the reference metric, which is a symmetric
tensor. Plus, U i are the polynomials of the eigenvalues of
the matrix Kμ

ν ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
gμαhαν

p
, and the forms are

U1 ¼ ½K�; U2 ¼ ½K�2 − ½K2�;
U3 ¼ ½K�3 − 3½K�½K2� þ 2½K3�;
U4 ¼ ½K�4 − 6½K2�½K�2 þ 8½K3�½K� þ 3½K2�2 − 6½K4�:

ð17Þ

Similar to the case in [49], for the reference metric hμν, we
could choose the special case of hμν ¼ diagð0; 0; c2hijÞ and
the corresponding polynomials U i are evaluated as U1 ¼
c=r and U2 ¼ U3 ¼ U4 ¼ 0. One should note that, the
massive terms break the diffeomorphism symmetry of the
bulk, which corresponds to momentum dissipation in the
dual boundary field theory [49,50].
The action (16) gives the following massive charged

BTZ black hole geometry

ds2 ¼ 1

z2

�
−fðzÞdt2 þ dz2

fðzÞ þ dx2
�

with

fðzÞ ¼ 1 −mz2 þm2
gcc1zþ q2z2 ln z: ð18Þ

Without loss of generality, we will set c ¼ c1 ¼ 1 in the
following study. Then, we reformulate the above massive
BTZ black hole metric into the Vaidya-AdS formula as

ds2 ¼ 1

z2
ð−fðv; zÞdv2 − 2dzdvþ dx2Þ; with

fðv; zÞ ¼ 1 −MðvÞz2 þm2
gzþQðvÞ2z2 ln z: ð19Þ

We assume that the mass MðvÞ and the charge QðvÞ of
the black hole take the following form [42]

MðvÞ ¼ m
2

�
1þ tanh

v
v0

�
;

QðvÞ ¼ q
2

�
1þ tanh

v
v0

�
; ð20Þ

where v0 is the thickness of the shell. It is then straightfor-
ward to check that in the limit of v → −∞, the background
would describe a pure AdS space with corrections in
graviton mass, and in the limit v → ∞, the background
reduces to the static solution (18) in massive gravity.
Since the Hamiltonian (6) is conserved along the x

direction, we can obtain a relation between the length l
and z� as

Z
z�

ϵ

�
ð1−MðvÞz2 þm2

gzþQðvÞ2z2 ln zÞ
�
z2�
z2

− 1

��−1=2
dz

¼
Z

l=2

0

dx¼ l
2
: ð21Þ

Using the above relation, both the extremal surface and the
subregion volume are explicitly derived as

AreaðγAÞ ¼ 2

Z
ϵ

z�

z�
z2

�
ð1 −MðvÞz2 þm2

gz

þQðvÞ2z2 ln zÞ
�
z2�
z2

− 1

��
−1=2

dz; ð22Þ

VðΓAÞ ¼ 2

Z
ṽðl=2Þ

v
dv

�
−ð1 −MðvÞz2 þm2

gz

þQðvÞ2z2 ln zÞ − 2
∂z
∂v

�
1=2

zðvÞ−2x̃ðvÞ: ð23Þ

The group of differential equations (9) and (10) could
also be explicitly expressed as
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0 ¼ 1

4
v0ðxÞ2

�
−4m2

gzðxÞ þ q2zðxÞ2
�
tanh

�
vðxÞ
v0

�
þ 1

�
2

− 8

�
− 2zðxÞv00ðxÞ − 4v0ðxÞz0ðxÞ þ 2 ð24Þ

0 ¼ 1

16

�
2

�
4þ 4m2

gzðxÞ þ
�
tanh

�
vðxÞ
v0

�
þ 1

���
−2mþ q2 ln½zðxÞ� þ q2 ln½zðxÞ� tanh

�
vðxÞ
v0

��
zðxÞ2

�
2

× v0ðxÞ2 −
�
4þ 4m2

gzðxÞ þ
�
1þ tanh

�
vðxÞ
v0

���
−2mþ q2 ln½zðxÞ� þ q2 ln½zðxÞ� tanh

�
vðxÞ
v0

��
zðxÞ2

�

×

�
8þ 4m2

gzðxÞv0ðxÞ2 þ
�
1þ tanh

�
vðxÞ
v0

��

×

�
−4mþ q2 þ 2q2 ln ½zðxÞ� þ q2ð1þ 2 ln ½zðzÞ�Þ tanh

�
vðxÞ
v0

��
zðxÞ2v0ðxÞ2 − 16v0ðxÞz0ðxÞÞ

þ 1

v0
8zðxÞ

�
sech

�
vðxÞ
v0

�
2
�
m − q2 ln ½zðxÞ� − q2 ln ½zðxÞ� tanh

�
vðxÞ
v0

��
zðxÞ2v0ðxÞ2

− v0

�
1þ tanh

�
vðxÞ
v0

���
−4mþ q2 þ 2q2 ln ½zðxÞ� þ q2ð1þ 2 ln ½zðxÞ�Þ tanh

�
vðxÞ
v0

��

− v0

�
1þ tanh

�
vðxÞ
v0

���
−4mþ q2 þ 2q2 ln ½zðxÞ� þ q2ð1þ 2 ln ½zðxÞ�Þ tanh

�
vðxÞ
v0

��
zðxÞv0ðxÞz0ðxÞ

− 4v0ðm2
gv0ðxÞz0ðxÞ þ z00ðxÞÞ

��
: ð25Þ

We can numerically solve the above equations with the
following boundary conditions,

v0ð0Þ ¼ z0ð0Þ ¼ 0; zð0Þ ¼ z�; vð0Þ ¼ v�;

zðl=2Þ ¼ ϵ; vðl=2Þ ¼ t − ϵ: ð26Þ

Once the solution to the above equations is at hands, we
can read off the HEE and HC from Eq. (22) and Eq. (23),
respectively. Note that both HEE and HC are divergent.
However, here we are only interested in the change of the
HEE or the HC during the quench. Therefore, we could
define some finite quantities for HEE and HC by subtracting
the vacuum part which is dual to the AdS geometry. Then,
we define the following finite and well-defined quantities

S ¼ AreaðγAÞ − AreaAdSðγAÞ
2l

; ð27Þ

C ¼ VðΓAÞ − VAdSðΓAÞ
2l

: ð28Þ

Next, we present the numerical results for the evolutions
of these two quantities after quench. We first focus on the
neutral case, i.e., q ¼ 0, and we study the effects from the
massive term in Sec. III B. Later, we explore the effects of
the charge q on the evolutions of HEE and HC by turning
off the mass term in Sec. III C. Finally, the joint effects of
the charge of black hole and massive graviton will be
presented in Sec. III D.

B. HEE and HC in the neutral massive
BTZ black hole

In this subsection, we mainly explore the effect from the
massive graviton and so we turn off the charge of black
hole, i.e., set q ¼ 0. We also fix m ¼ 1 and v0 ¼ 0.01.
First, the effect of graviton mass for small region, i.e.,
l ¼ 2, and then for larger regions, l ¼ 10 are studied.
To gain an intuitive understanding of the evolution of

HEE, we first explore the evolution of the HRT surface γA.
The left plot in Fig. 2 exhibits the evolution in ðx; v; zÞ
space, in which γA evolves from left to right. In the right
plot of Fig. 2, the corresponding projection in ðx; zÞ plan is
shown, in which the evolution is from top to bottom. It is
obvious that γA evolves smoothly from the initial state to
the final state, which is similar with the case in the Einstein
gravity in [39].
Quantitatively, we also show the evolution of the turning

point z� of the HRT for differentmg in the left plot in Fig. 3.
One could see that, for the fixed value of mg, the turning
point z� is almost a constant function at the early stages of
its evolution. This constant is different for different values
of mg. This is because at the limit of t → 0, i.e., v → −∞,
the AdS background geometry is corrected by the mass
parameter of graviton. After such early stage, then z�
rapidly decreases and finally enters into a stable stage,
which is again a constant. In particular, at the limit of t → 0
(i.e., v → −∞), one can see that the HEE vanishes. The
reason is just because the HEE dual to the AdS geometry
has been subtracted [see Eq. (27)]. As the time evolves, the
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HEE climbs up monotonically and finally reaches to a
stable value, which depends on the value of mg.
There are two main characteristics for the z� and the HEE

for different values of mg. These behaviors are summarized
as follows:

(i) With larger values for the graviton mass mg, the two
quantities of z� andHEE both reach the stability faster
than with the small values of mg. So as the graviton
mass becomes larger, the corresponding boundary
theory saturates into equilibrium faster. This result
is similar to the effects of mg on the geodesic probe
during the thermalization process, studied in [51].
Those results show that the inhomogeneity of the
boundary field theory introduced by using mg in the
bulk, makes the thermalization to occur faster, which
here shown to be true for complexity as well.

(ii) The stable value of z� and HEE, in the final stage and
at the later times, are different for various values
of mg. As mg increases, the stable value of the
turning point, z�, increases, while HEE decreases.
We quantitatively exhibit the relation between the
stable value of the HEE and mg in Fig. 3.

After obtaining the HRT surface γA, we can then work
out the codimension-one surface ΓA, which characterizes

the subregion complexity bounded by the HRT surface γA
as well as boundary areaA, which is exhibited in Fig. 4. We
present the evolution of the HC for different mg in Fig. 5.
One could see that, for different values ofmg, the evolution
has a common feature that, at the early stage, the HC rises
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FIG. 3. Left plot: The evolution of z� for differentmg. Middle plot: The evolution of the HEE for differentmg. Right plot: The relation
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FIG. 2. The evolution of extremal surface γA ¼ ðz̃ðxÞ; ṽðxÞÞ in the background of the neutral massive BTZ black hole. Here, we have
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FIG. 4. The evolution of the codimension-one extremal surface
VðΓAÞ which characterizes the subregion complexity bounded by
the HRT surface γA and the boundary area A. Here, we have set
m ¼ 1, q ¼ 0, mg ¼ 1, v0 ¼ 0.01, and l ¼ 2.
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as the time evolves and then arrives at the maximum value.
After that, it quickly drops and reaches to a stable value at
the final stage.
To quantitatively explore what role mg plays, we plot

the maximum value and the stable value of the HC as the
function of mg in Fig. 5. One can observe that with the
increase of mg, the maximum value of HC decreases, while
the stable value at later stage increases, which is in contrary
with the case of HEE. In addition, the HC with large values
of mg takes shorter time to achieve stability, than with the
case with smaller mg, which is also consistent with the
evolutions of the z� and the HEE displayed above.
We then study the effect of mg on HEE and HC with

larger size of the subregion, i.e., l ¼ 10. The results are
shown in Fig. 6. We see that for larger width of the strip
(l ¼ 10), the effect of mg on the turning point z� and HEE
are just very similar to the case with small widths.
However, novel properties are observed for HC with

bigger size, l, (see the right plot of Fig. 6). One could see
that, as mg increases, before the final drops of HC, two
peaks are emerged. This behavior is truly different from the
case with l ¼ 2 where only one peak has been observed.
Note that as mg increases, the stable value of HC
approaches the second peak, and also HC does not fall
from the second peak but just directly reaches to the stable
final region. This phenomena is a novel observation and the
deep physical explanation is called for.
Another interesting phenomena observed at the early

stage is that, the evolution of both HEE and HC seems to

slightly depend on the parameter mg. In order to explicitly
show the effect of mg on the initial evolution, we study the
growth of HEE and HC for the size l ¼ 10, of which the
result is shown in Fig. 7.1 From the figures, one could see
that both growth functions are almost linear with respect to
time. Also, the bigger graviton mass decreases the rate of
growth of both HEE and HC. This result is reasonable since
adding the parameter mg to the system is equivalent to
introducing momentum relaxations in the boundary CFT
theory. We then do the parallel computations for different
values of l. The result is that the linear behavior does not
depend on the size of the system l.

C. HEE and HC in charged BTZ black hole

In this subsection, we study the effects of the charge q on
the evolutions of the HEE and HC. To this end, we turn off
mg, by setting mg ¼ 0. As in the neutral case, we first fix
the strip width as l ¼ 2. Also, we setm ¼ 1 and v0 ¼ 0.01.
Similarly, we study the evolution of the HRT surface γA

in ðx; v; zÞ space and the projection in ðx; zÞ plane. We
show the evolutions of the turning point z� and the HEE in
Fig. 8. Comparing with the neutral massive gravity case, we
summarize the properties of the charged case as follows:

(i) At the early stages of the evolution, z� behaves
almost same for different q (see the left plot in
Fig. 8). However, this behavior is different from the
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1Due to the numerical precision, the result for the growth of
HC cannot start from the initial time t ¼ 0.01.
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neutral massive gravity case shown in the left plot in
Fig. 3. One could see that, the HEE vanishes at the
early stage for various values of q, which is similar
to the case of neutral massive gravity. As we
mentioned above, it is because we have subtracted
the part of HEE which is dual to the AdS geometry.

(ii) Then, one could notice that, both z� and HEE arrive
at a stable stage finally, and the charge q has a
definite print on the final stable values. As q
increases, the turning point z� decreases but the
HEE increases. Quantitatively, we show the relation
between the stable value of the HEE and q in the
right plot of Fig. 8.

(iii) Another point we find is that, solutions with bigger
charge q is more difficult to saturate into equilib-
rium, which is denoted by the point that, for bigger
charges, HEE needs longer times to become stable.
This phenomena is the same behavior as in the case
of other charged black holes. For those solutions
also, one could see that charge always slows down
the thermalization process, for instance the case in
four dimensional background which has been ad-
dressed in [52].

Now, we turn to study the HC in the background of
charged BTZ black holes. First, we present the evolution of
the codimension-one surface ΓA, and then we plot the

evolutions of the HC for different values of q in Fig. 9. This
evolution behavior is similar to the case of neutral BTZ
black hole (see Fig. 5 or Ref. [39]). Additionally, for bigger
charges, similar to the behavior of z� and HEE, HC also
takes longer times to arrive at the stable stage.
We also present the behavior of the maximum value

and the stable value of the HC as the function of q in Fig. 9.
One could see that the two values increase as q increases
which intuitionally makes sense as charge would introduce
more d.o.f. for each gates and therefore could significantly
increase complexity. This has also been noticed in the case
of complexity of purification studied in [9].
In Fig. 10 we show the evolution of HRT surface γA ¼

ðz̃ðxÞ; ṽðxÞÞ in the background of charged BTZ black hole
for the width of strip set as l ¼ 5. From this figure, it is
obvious that the evolution of γA is no longer a continuous
function, which is different from the case of the small
width strips. The discontinuous evolution is due to the
jump in the minimal area surface, which corresponds to
the swallow tail (gray line in left up plot in Fig. 11) of the
HEE and therefore the multivalued region (gray line in
right up plot in Fig. 11) for the HC. In fact, even for the
size l ¼ 2, with big enough charge q, the swallow tail of
the HEE and the multivaluedness of the HC can emerge
again (Fig. 12). We also show in Fig. 11 the HEE and HC
for l ¼ 10.
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Note that generally, the swallow tail in the behavior of
HEE or the multivaluedness of the HC implies the existence
of multiple solutions for the partial differential equation
(PDE) at a given time. We could note that when q is turned
down, the multivaluedness of the HC disappears even for
the larger width of the strip, (see right plot in Fig. 11). This
behavior has also been observed in [40].
It is worthwhile to emphasize that the swallow tail in the

HEE and the multivalues in the HC can only be emerged in
more than three dimensional theories but not in the neutral
AdS3 theory. Even by increasing the parameters, such as
the mass of black hole, to a very large point this behavior
could not be emerged, as observed in the solutions of [39].
However, in our study, we find that, this feature can emerge
in the charged AdS3 theory with large enough q and l.
Moreover, comparing Fig. 11 and Fig. 12, we find that the
bigger charge of black hole would promote the emergence
of discontinuity with even smaller widths.
Similarly, we study the effects of charge on the evolution

of HEE and HC growth for large l which is shown in
Fig. 13. One could see the behavior is almost linear. Also,
bigger charges produces higher growth rates in both HEE
and HC, which is similar to the effect of the graviton mass.

D. HEE and HC in massive charged BTZ black hole

In this subsection, we briefly discuss the joint effects of
the graviton mass and the charge of the black hole on the
evolution of the HEE and HC.
The properties of the evolutions of the HEE and HC for

small sizes, i.e., l ¼ 2, are summarized as follows:
(i) The evolutions of the HEE and HC for fixed mg and

different q are exhibited in Fig. 14. At the later stage
of the evolution, both HEE and HC finally enter into
the stable stage. By increasing the charge of the
black hole, q, the final stable values of HEE and HC,
and also the maximum value of HC all increases. In
addition, for larger q, both HEE and HC take longer
times to achieve stability. All the properties shown
here are closely similar to the case of charged BTZ
black hole with the massless graviton, which has
been studied in Sec. III C.

(ii) We also present the evolutions of HEE and HC for
fixed values of q, but different values of mg in
Fig. 15. One could notice that, as mg increases, the
final stable value of the HEE decreases. The maxi-
mum value of the HC also decreases but the stable
value of the HC increases. One could also notice that
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m ¼ 1, mg ¼ 0, v0 ¼ 0.01 and l ¼ 2.
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the time to achieve the stable region decreases as
the parameter mg increases. These observations are
similar to the case of neutral black hole studied in
Sec. III B.

(iii) One could also observe, specifically from Fig. 16,
that similar to the case ofmg ¼ 0, as q increases, the

swallow tail of the HEE and also the multivalued-
ness of the HC emerge again. In fact, for any specific
mg, there exists a critical value of q, which beyond
that, the swallow tail of the HEE and the multi-
valuedness of the HC emerge. The main point is that,
by just increasing the charge q, the swallow tail of
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FIG. 14. Left plot: The evolution of the HEE in massive charged BTZ black hole for different q. Right plot: The evolution of the HC in
massive charged BTZ black hole for different q. Here we fix mg ¼ 0.5.
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the HEE and the multivaluedness of the HC emerge,
and this behavior is universal, see [53,54] and the
references therein.

Then, as for the case of bigger size of strip, for instance
l ¼ 10, of which the result is shown in Fig. 17, one could
observe that, with large enough charge, one of the peaks
would be smoothed out. This effect is actually introduced
by the graviton mass. Also, for the case where the diagrams
of HC has one peak, just the same figure of cases with small
width will be reproduced.
Another important point is that we check that in all of

these examples, the Lloyd’s bound conjecture [35,36],
stating

d
dt

CðtÞ ≤ 2

π
E; ð29Þ

is satisfied. Note that E is the average energy of the state at
any time t.
One more important point that we have observed by

comparing our various plots, is that at early times, and in
the first stage of the evolution, the behavior of HC is almost
the same for both small and big size of the strip l. This point
indicates that the growth of complexity is due to the
local operator excitations, even when we have dissipations
in the system.
Moreover, similar as emphasized in [39],we also

observed here in our theory and even for the case of
massive black hole with massive gravitons, was that both
HEE and HC would keep constant after approximately the
time t≳ l=2, which could be explained using the behavior
of thermalization of local states. As shown in [55], this is
actually due to the fact that after t≳ l=2, the density matrix
of subsystem will approach the thermal density matrix
exponentially and the correction to the thermal state will
just be suppressed as e−4πΔminðt−l=2Þ=βfðmgÞ. Note that here,
for our case we should add a function of mg (or dissipation
in the dual field theory) which as we showed affect the final

stable value and also the exponential drops. Also, β is the
inverse temperature and Δmin is the dimension of the
smallest operator with a nonzero expectation value at
the early stage.
Note that these results could have applications in study-

ing the thermalization process in real systems of quark-
Gluon and lattice QCD as the effects from the massive
graviton in the bulk could be considered as the effects from
lattice in the dual field theory.

IV. CONCLUSION AND DISCUSSION

In this paper, we study the evolutions of the holographic
entanglement entropy (HEE) and holographic complexity
(HC) in the background of massive charged BTZ black
holes where the dual CFT goes under a global quench. We
separately explore the effects of the mass of graviton in this
theory and the charge of black hole in this solution. After
that, we study the joint effects from both of them. We
separated the results into two categories of small size and
big size of the system. The qualitative picture we found is
summarized as follows:

(i) Both the charge of the black hole q and the width of
the strip l, together determine whether the evolution
of HEE and HC would be a continuous function or
not. For small q and l, the evolution of the HEE and
the HC is always continuous. We saw that, the HEE
climbs up at the first stage of the evolution and then
finally it arrives to a stable final region. However, for
the case of HC, we saw that it grows until it arrives at
a maximum point, and then after that it quickly drops
to reach to a stable final stage. When q or l is tuned
larger, the discontinuity emerges. We also observed a
swallow tail in the evolution of HEE and also noticed
that HC is a multivalued function. These features are
special for the charged case and they could not been
observed in the neutral AdS3 backgrounds [39].

(ii) The mass of the graviton plays a crucial role in the
evolution of HEE as in the boundary CFT, it
corresponds to the dissipations in the system. Its
effect is to speed up reaching up to the stability
during the evolution of HEE. However, it makes the
final stable value lower.

As for the HC, the mass of the graviton also
speeds up reaching to the stability during the
evolution of the system and it reduces the maximum
point, but it raises the final stable value, which is
different from the behavior of HEE. Note that this
effect has been observed for the holographic ther-
malization where the inhomogeneity of the boun-
dary field theory which has been introduced in the
bulk by mg could render the thermalization faster.
This also implies a significant role in defining
thermodynamic laws for complexity as well [56,57].

A novel phenomena that we have observed in the
behavior of HC, in charged massive BTZ theory,
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FIG. 17. The evolution of the HC for different q, but with fixed
mg ¼ 1. Here we have set m ¼ 1, v0 ¼ 0.01 and l ¼ 10.
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was that for the systems with large widths, the
graviton mass can introduce two peaks in the
evolution of HC. For bigger enough mg, the second
peak then evolves to the stable value of HC. More-
over, the charge of the black hole could smooth one
of the peaks. For large enough charges, however, the
evolution of HC is recovered to usual behavior.

(iii) The emergence of the discontinuity in the HEE and
the HC is universal when we tune q or l larger.
However, by increasing the graviton mass mg, we
could not observe any emergence of the disconti-
nuity, when the charge q and l are small.

Moreover, we investigated the evolution of HEE and HC
growths for big widths at the early stages, and we found
that the growth rates are almost linear. Both larger graviton
mass and charge correspond to higher growth rates for the
evolution of HEE and HC.
In addition to the HEE and HC studied here, there are

more information related quantities which could be imple-
mented in various setups, such as quenches, and specifi-
cally using models with a mass term and therefore
dissipations, like the work here, in order to probe various
phase transitions in close to real world systems. As we have
mentioned in the introduction section, these quantities
include EoP, CoP and logarithmic negativity, etc., each
of which based on their specific characteristics, such as
how much they are sensitive to classical or quantum
correlations among mixed states in distinct parts of the
system, could depict a different, or similar pictures of the
phase transitions and evolutions of the system. EoP
captures both classical and quantum correlations, it is a
great quantity to use for probing the phase transitions
completely. It has been holographically generalized in
[58,59]. Specially when the case is massive, one could
check further how it affects both classical and quantum
correlations inside the entanglement wedge [9,60] and then
later for the dynamical and quenched systems. CoP could
also be very sensitive to the dynamics of the system, and
may produce the phase structures of specially quantum
mixed states and those under time evolutions or quenches.
Logarithmic negativity is another quantum information
quantity which can be used in detecting phase transitions
of different physical systems. Since this measure is blind to

the classical correlations and only captures the “quantum
correlations” with the nature of “entanglement.” Therefore,
one would expect the outcomes using this quantity is
different from those that come from EoP and CoP.
Other quantum information measures which could be

used would be mutual information [61–63], the Rényi
entropy [64–66], Relative Renyi entropy [67], multipartite
EoP [68], etc. It would be interesting to study the evolution
of all these quantities under the thermal quench using
similar methods. By comparing the results from each of
these quantum information quantities, many interesting
results both about the particular system under study and
also the characteristics of the implemented quantum infor-
mation quantity could be derived.
Recently, in [69], from the other side of story, the

problem of quench has been investigated. In that work,
however, the quench is a double local, i.e., it is created
locally and instantaneously, in a joining or splitting form,
and at two different points in the boundary CFT. The
authors found that the difference between the double local
quench and the sum of two local quenches is negative for
various quantities such as energy stress tensor and entan-
glement entropy which could be interpreted as the gravi-
tational force in the dual gravity theory. This study could be
repeated for the complexity and complexity of purification
as well. Specifically, the change in the strength of this force
when the graviton is massive could be calculated.
Other generalizations of this study, such as the behavior

of HEE and HC in higher dimensions, higher derivative
gravities, composite systems, various quench speeds, or
using CA instead of CV would be possible future direc-
tions. Comparing the results with other probes such as
Wilson loops or two-point correlation functions during
quench would also be of interest.
Our work on some of these subjects is under progress.
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Rényi relative entropy, arXiv:1904.08433.

[68] K. Umemoto and Y. Zhou, Entanglement of purification for
multipartite states and its holographic dual, J. High Energy
Phys. 10 (2018) 152.

[69] P. Caputa, T. Numasawa, T. Shimaji, T. Takayanagi, and Z.
Wei, Double local quenches in 2D CFTs and gravitational
force, arXiv:1905.08265.

EVOLUTIONS OF ENTANGLEMENT AND COMPLEXITY … PHYS. REV. D 100, 066003 (2019)

066003-15

http://arXiv.org/abs/1301.0537
https://doi.org/10.1103/PhysRevD.88.106004
https://doi.org/10.1016/j.physletb.2016.12.028
https://doi.org/10.1007/JHEP02(2015)103
https://doi.org/10.1007/JHEP02(2015)103
https://doi.org/10.1103/PhysRevD.92.065015
https://doi.org/10.1103/PhysRevD.98.106011
https://doi.org/10.1103/PhysRevLett.112.220401
https://doi.org/10.1103/PhysRevLett.112.220401
http://arXiv.org/abs/1903.04511
https://doi.org/10.1103/PhysRevD.97.086015
https://doi.org/10.1007/JHEP01(2019)114
http://arXiv.org/abs/1902.02243
http://arXiv.org/abs/1907.12555
https://doi.org/10.1007/JHEP01(2012)102
https://doi.org/10.1103/PhysRevD.87.046003
https://doi.org/10.1103/PhysRevD.87.046003
https://doi.org/10.1016/j.physletb.2019.07.035
https://doi.org/10.1103/PhysRevD.82.126010
https://doi.org/10.1038/ncomms12472
https://doi.org/10.1038/ncomms12472
https://doi.org/10.1007/JHEP12(2013)050
http://arXiv.org/abs/1904.08433
https://doi.org/10.1007/JHEP10(2018)152
https://doi.org/10.1007/JHEP10(2018)152
http://arXiv.org/abs/1905.08265

