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We study the viability of spontaneous breaking of continuous symmetries in theories with Lifshitz
scaling, according to the number of space-time dimensions d and the dynamical scaling z. Then, the answer
to the question in the title is no (quantum field theoretically) and yes (holographically). With field theory
tools, we show that symmetry breaking is indeed prevented by large quantum fluctuations when d ≤ zþ 1,
as expected from scaling arguments. With holographic tools, on the other hand, we find nothing that
prevents the existence of a vacuum expectation value. This difference is made possible by the large N limit
of holography. An important subtlety in this last framework is that in order to get a proper description of a
conserved current, renormalization of the temporal mode of the bulk vector requires an alternative
quantization. We also comment on the implications of turning on temperature.
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I. INTRODUCTION

Spontaneous symmetry breaking is known to be fragile
in situations where fluctuations are large. This is true for
thermal fluctuations in two spatial dimensions [1,2] and for
quantum fluctuations in two relativistic space-time dimen-
sions [3]. The latter result is quoted as saying that there are
no Goldstone bosons in two dimensions. In fact, it is
precisely the large quantum fluctuations of the would-be
Goldstone boson that destroy any vacuum expectation
value giving a symmetry breaking order.
There is however a class of theories which still displays

spontaneous symmetry breaking in such situations: theories
with a large number N of constituents are known to have
ordered phases, in the N → ∞ limit [4,5]. It can be seen
that the large quantum fluctuations are actually suppressed
by a 1=N power [6]. This is precisely the case for theories
which have a holographic dual.
It was shown in [7] that indeed AdS3 holography

allows for spontaneous symmetry breaking in its dual
two-dimensional QFT. However, it was realized there that
the holographic setup keeps the score of the peculiarity
related to being in two dimensions: the bulk vector dual to
the current of the symmetry which was to be broken has
to undergo alternative quantization to properly account
for the conserved current Ward identities.

In the present paper, we wish to extend the discussion
of the survival of spontaneous symmetry breaking to
theories with Lifshitz scaling. It is expected that below a
certain space-time dimension d, as a function of the scaling
z of the time direction, again the quantum fluctuations
will be strong enough to destroy the symmetry breaking
order (see for instance [8]). Below, we confirm that indeed
(in theories preserving time-reversal invariance) for
d ≤ zþ 1, one-point functions are set to zero by large
quantum fluctuations of the would-be Goldstone boson.
Interestingly, in contrast to relativistic QFTs where only
two dimensions are singled out as a particular case, in
Lifshitz QFTs there is a whole range of dimensions in
which spontaneous symmetry breaking is, in principle,
forbidden.
We then explore what happens to spontaneous symmetry

breaking in Lifshitz scaling theories which are described
holographically (see [9–16]), i.e., in a large N limit. We
extend the analysis of [16] to the above mentioned case of
d ≤ zþ 1. As in the relativistic case [7], we find that
alternative quantization for the vector is needed, albeit in
the present case of Lifshitz scaling, only the temporal
component of the vector is involved. This quantization
which treats space and time differently is actually needed to
enforce the proper gauge invariance of the generating
functional.
The paper is organized as follows. In Sec. II we consider

a QFT invariant under the Lifshitz group, time-reversal and
a global Uð1Þ symmetry. We discuss under which con-
ditions a one-point function vacuum expectation value
survives quantum corrections. We find the condition to
be d > zþ 1, in agreement with a naive dimensional
argument. We then proceed in Sec. III to analyze an
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equivalent holographic setup. With the usual artillery of
holographic renormalization, we establish which counter-
terms need to be selected in order to obtain the correct
gauge invariance of the generating functional, and hence
reproduce the usual Ward identities for the conserved
current. Such counterterms impose alternative quantization
for the temporal component of the bulk vector; i.e., the
leading term in the near boundary expansion is identified
with the VEV rather than the source. Finally, in Sec. IV we
comment on a few open questions.

II. QUANTUM CORRECTIONS TO THE
SYMMETRY BREAKING VEV

We present in this section a generalization of the argu-
ment by Coleman [3] for quantum field theories with
Lifshitz scaling. As a reminder, Coleman’s theorem states
that for a relativistic theory in two-dimensional space-time,
at the quantum level, there cannot be any spontaneous
breaking of symmetries that would lead to Goldstone
bosons. The idea behind this argument is that for this
specific space-time dimension, massless scalars are ill
defined and so is the “would-be” Goldstone boson asso-
ciated with the symmetry breaking. Physically, the inter-
pretation is that quantum fluctuations are large enough to
erase any notion of order, leading to the impossibility of
having spontaneously broken symmetries.
The different Lifshitz theories being studied are identi-

fied by the number of space-time dimensions d and the
value of the dynamical critical exponent z. The argument is
built with respect to a general action of the Lifshitz type,1

which is invariant under a global continuous symmetry
group. For simplicity, we consider the theory of a complex
scalar ψ that is charged under a Uð1Þ global symmetry, is
invariant under time-reversal,2 and possesses a potential V
depending only on the modulus of ψ . To trigger the
spontaneous symmetry breaking at the classical level, we
suppose that V is minimal around a vacuum expectation
value v for jψ j, and there it takes the value zero for
simplicity. The action is then given by

S½ψ � ¼
Z

dtdd−1xð∂tψ∂tψ
� − ð−1Þzξ2ψ∇2zψ� − Vðψψ�ÞÞ

ð2:1Þ

where z is the dynamical critical exponent (as we show
later, we can take z ≥ 1), ξ is a positive real number without
dimensions, and d ≥ 2 (to discuss Lifshitz scaling we need
at least one spatial direction and one time direction). We
note that ψ has dimension

½ψ � ¼ d − 1 − z
2

: ð2:2Þ

Doing a perturbation around the classical VEV, the
physical field can be written as

ψðxÞ≡ ðvþ σðxÞÞeiθðxÞ ð2:3Þ

where σ and θ are small fluctuations. The phase-field θ
corresponds to the longitudinal direction of the action of
Uð1Þ on the physical field; hence, it corresponds to the
Goldstone boson if spontaneous symmetry breaking is
allowed. Since we perform an analysis till the quadratic
order (small perturbations), the dynamics of θ is dictated by
the free effective action

S½θ� ¼
Z

dtdd−1xv2ð∂tθ∂tθ − ð−1Þzξ2θ∇2zθ − ξ2λ2zθ2Þ:

ð2:4Þ
A mass term for θ with parameter λ is added by hand in
order to confront the cases of spontaneous and explicit
symmetry breaking. This parameter can also be viewed as
an infrared regulator.
All we need for our argument is the (non-time-ordered)

two-point function of θ,

hθðt; x⃗Þθð0Þijλ ¼
π

ð2πÞdξv2
Z

dd−1p
eip⃗·x⃗−iξ

ffiffiffiffiffiffiffiffiffiffiffiffi
p2zþλ2z

p
tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2z þ λ2z
p ;

ð2:5Þ

where p≡ kp⃗k. On purely dimensional grounds, the
behavior at large (spatial) separation of the propagator
for θ is dictated, in the massless limit, by the dimension
of ψ , (2.2). We thus expect the correlations to vanish at
large separations only for positive dimensions, i.e., for
d > zþ 1. Conversely, for d ≤ zþ 1, we expect large
long-range correlations that can potentially spoil any
vacuum expectation value.
We now show that indeed, after renormalization, the

VEV is preserved in the former case and is set to zero in the
latter. We follow an argument similar to the one given in
[17] for the relativistic case, which is essentially equivalent
to computing the one-loop correction to the ψ-tadpole.
First of all, if θ is approximated by a free field, we can

write θ≡ θþ þ θ− where θþ is associated to the positive
energy modes and is proportional to an annihilation
operator, and θ− is associated to the negative energy modes
and is proportional to a creation operator. If we consider the
two-point function of θ, we find

hθðxÞθð0Þi ¼ hθþðxÞθ−ð0Þi ¼ h½θþðxÞ; θ−ð0Þ�i: ð2:6Þ

We now evaluate the one-point function of ψ using its
decomposition in terms of the fluctuations σ and θ,

1Lifshitz symmetry is considered here as not being emergent.
Namely, (2.1) is seen as defining a fundamental theory.

2We will comment in Sec. IVon the more general situation of a
theory with broken time-reversal invariance.
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hψðxÞi ¼ vheiθðxÞi ¼ vheiθ−ðxÞeiθþðxÞe1=2½θ−ðxÞ;θþðxÞ�i
¼ ve−1=2h½θþðxÞ;θ−ðxÞ�i ¼ ve−1=2hθð0Þθð0Þi; ð2:7Þ

where we used, besides the previous arguments, the fact
that σ is a massive perturbation around v. We thus see that
in order to certify whether the VEV is maintained at the
quantum level, we need the two-point function for θ at
vanishing distance in time and space.
Obviously, such a limit ðt; x⃗Þ → 0 can lead to a UV

divergence, naively giving an ill-defined one-point function
above. However, we know how to deal with such diver-
gence through renormalization. In order to disentangle
potential IR divergences, we use the theory regulated by the
small mass λ, guided by the expectation that explicit
symmetry breaking is always viable, and a nonzero value
for the order parameter should be found in that case. In
consequence, the limit λ → 0 alone must have something to
tell us about the possibility of spontaneous symmetry
breaking.
We now use (2.5) evaluated at coinciding points to find

the needed expression. Analogously, this computation can
be seen as the evaluation of the one-loop correction to the
tadpole. Following standard manipulations (see e.g., [18] or
[19] for a similar context), we have

hθð0Þθð0Þijλ ¼
π

ð2πÞdξv2
Z

dd−1p
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2z þ λ2z
p

¼ Γððd − 1Þ=2zÞΓððzþ 1 − dÞ=2zÞ
ð4πÞd=2Γððd − 1Þ=2Þzξv2 λd−1−z:

ð2:8Þ

From the integral, we note that the IR behavior will be
dictated by the presence of λ, while a UV divergence might
appear when d ≥ zþ 1. This latter divergence ends up
being encoded in the Gamma function Γððzþ 1 − dÞ=2zÞ.
The IR behavior will give a vanishing result for d > zþ 1
and a diverging one for d < zþ 1. At the same time, the
Gamma function is always regular for d < zþ 1, while it
can have singularities for d ≥ zþ 1 (more specifically, it
diverges for d ¼ zþ 1þ 2nz, with n a positive or null
integer). The limiting case is obviously d ¼ zþ 1, which is
actually the only one where we need to disentangle UVand
IR divergences.
For d ¼ zþ 1, let us treat this case with dimensional

regularization. Setting d → zþ 1 − 2zϵ first gives

hθð0Þθð0Þijϵλ ¼
Γð1=2Þ

ð4πÞðzþ1Þ=2Γðz=2Þzξv2
× ðϵ−1 þ const − 2z ln λþOðϵÞÞ: ð2:9Þ

We obtain a UV-regular expression keeping only the finite
λ-dependent piece (and introducing for dimensional rea-
sons the renormalization scale μ):

hθð0Þθð0ÞijRUV
λ ≡ lim

ϵ→0þ
ðhθð0Þθð0Þijϵλ − hθð0Þθð0ÞijϵμÞ

¼ −
Γð1=2Þ

ð4πÞðzþ1Þ=2Γðz=2Þξv2 ln ðλ=μÞ
2:

ð2:10Þ

This expression is free from UV divergence thanks to
renormalization, but still has an IR divergence when λ → 0.
We can thus conclude that the massless same-point corre-
lator diverges to þ∞ when d ¼ zþ 1.
For d < zþ 1, we see from (2.8) that in the limit λ → 0

the expression also diverges to þ∞ (recall we assume
d ≥ 2), without any need to regularize and renormalize in
the UV.
For d > zþ 1, we need to regularize and renormalize in

certain cases as discussed above. However, we see in (2.8)
that the result is multiplied by a positive power of λ, which
will always win in the λ → 0 limit against any term
involving ln λ. We thus conclude that the correlator in this
case always vanishes in the massless limit.
Now, going back to the expression (2.7), inserting the UV-

renormalized two-point function, we observe that the VEV
is preserved when d > zþ 1 while it is set to zero when
d ≤ zþ 1. We summarize the results in the table below.

Condition
for d and z

limλ→0

hθð0Þθð0ÞijRUV
λ

hψðxÞiRUV

Spontaneous
symmetry breaking

d > zþ 1 0 v Yes
d ≤ zþ 1 þ∞ 0 No

We have thus generalized the Coleman theorem on the
possibility of having spontaneous symmetry breaking to
Lifshitz theories. The argument is essentially based on
contradiction. By considering a generic Uð1Þ theory
presenting Lifshitz scaling symmetry, the hypothesis that
Uð1Þ is spontaneously broken leads to the presence of a
massless field, the would-be Goldstone boson. We then
observe that for d ≤ zþ 1 the latter is not well defined,
leading to large quantum fluctuations that set the VEV to
zero. Hence no spontaneous symmetry breaking can occur
in those dimensions.
We now discuss the same kind of theory but with a large

N number of constituents. We employ holography to study
it and enquire whether the large N limit can restore an
ordered vacuum.

III. HOLOGRAPHIC RENORMALIZATION AND
SYMMETRY BREAKING IN d ≤ z + 1

In this section we consider a theory with the exact
same symmetry properties but from a holographic perspec-
tive. This is tantamount to saying that the QFT under
consideration, besides being in the large N limit, is also

ARE THERE GOLDSTONE BOSONS IN d ≤ zþ 1? PHYS. REV. D 100, 066002 (2019)

066002-3



generically strongly coupled. We will use a setup similar to
the one considered in [16], though we will implement time-
reversal symmetry to be consistent with the discussion in
the previous section.
On the bulk gravity side of the holographic corres-

pondence, we thus introduce a complex scalar ϕ charged
under a Uð1Þ gauge symmetry. The charge is set to unity,
and the corresponding gauge field is A. To reproduce a QFT
invariant under Lifshitz scaling, this matter content has to
live on a curved space-time in dþ 1 dimensions dominated
by the presence of a background massive vector field B
[10]. If it is defined as3

B≡ β

rz
dt with β≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðz − 1Þ

z

r
; z ≥ 1; ð3:1Þ

then the background metric reads

ds2 ≡ gmndxmdxn ¼
dr2

r2
−
dt2

r2z
þ dx2j

r2
; ð3:2Þ

with j running from 1 to d − 1, and it is isometric under a
Lifshitz scaling and the rotations of space coordinates. The
part of this metric that is orthogonal to B is given by

γmn ≡ gmn þ β−2BmBn so that γmnBn ¼ 0: ð3:3Þ

A general action invariant under the Lifshitz symmetry
group and time-reversal for a scalar ϕ and a massless vector
A is then given by

S½Am;ϕ�¼
Z

ddþ1x
ffiffiffiffiffiffi
−g

p �
−
1

4
γmn

�
γpq−

2κ

β2
BpBq

�
FmpFnq

−
�
γmn−

1

c2β2
BmBn

�
ðDmϕÞ�Dnϕ−m2ϕ�ϕ

�
;

ð3:4Þ

where Fmn ¼ ∂mAn − ∂nAm and Dm ¼ ∂m − iAm as usual.
Since we do not consider correlators involving the QFT
stress-energy tensor complex, B as well as the metric g are
meant as nondynamical fields. Similarly, we will neglect
backreaction of the scalar on them. This theory has three
free parameters: κ, c2 and m2.
We list here the equations of motion that are obtained

from the action above:

∂m

� ffiffiffiffiffiffi−gp
2

�
γmn

�
γpq −

2κ

β2
BpBq

�

− γpn
�
γmq −

2κ

β2
BmBq

��
Fnq

�

− i
ffiffiffiffiffiffi
−g

p �
γpq −

1

c2β2
BpBq

�
ðϕ�Dqϕ − ϕðDqϕÞ�Þ ¼ 0;

ð3:5Þ

Dm

� ffiffiffiffiffiffi
−g

p �
γmn −

1

c2β2
BmBn

�
Dnϕ

�
−

ffiffiffiffiffiffi
−g

p
m2ϕ ¼ 0:

ð3:6Þ

Of course, when taking the variation of the action with
respect to the dynamical degrees of freedom (d.o.f.), one
has to pay attention to the boundary terms that will play a
prominent role in the holographic renormalization.
Since the radial mode of the vector A does not source any

operator on the QFT side of the correspondence, we can
partially fix the gauge freedom by putting it to zero (i.e., we
work in the radial, or holographic, gauge),

Ar ¼ 0: ð3:7Þ

The spatial modes can be split into transverse and longi-
tudinal modes

Ai ≡ Ti þ ∂iL with the condition ∂iTi ¼ 0: ð3:8Þ

Finally, we consider the real and imaginary parts of the
scalar separately:

ϕ≡ ρþ iπffiffiffi
2

p : ð3:9Þ

The gauge transformations in their infinitesimal form for
the newly introduced fields read

δαρ ¼ −απ; δαπ ¼ þαρ; δαAt ¼ ∂tα; δαL ¼ α;

ð3:10Þ

where α is now a function of t and x⃗ only (to preserve
the holographic gauge). All other quantities are gauge
invariants.
We now switch on a background for the scalar to enforce

the symmetry breaking in the QFT. So, we introduce ϕB,
which only depends on the r coordinate, and shift

ρ → ϕB þ ρ: ð3:11Þ

Moreover, we prescribe that all the d.o.f. that we described
in the previous section are small fluctuations on top of this
background. Assuming the gauge parameter is similarly
small, gauge transformations now read

3Besides the obvious requirement of keeping β real, the
condition z ≥ 1 has strong physical motivations, both in QFT
and in holography [20]; essentially z < 1 would lead to causality
violations.
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δαρ ¼ −απ ≈ 0; δαπ ¼ þαðϕB þ ρÞ ≈ αϕB;

δαAt ¼ ∂tα; δαL ¼ α: ð3:12Þ

First, we find the equation for the background from (3.6):

r∂rðr∂rϕBÞ − ðdþ z − 1Þr∂rϕB −m2ϕB ¼ 0: ð3:13Þ

The gauge fixing we performed in (3.7) gives us, taking
p ¼ r in (3.5), the constraint

−κr2z∂r∂tAt þ r2∂2
j∂rL − ϕB∂rπ þ π∂rϕB ¼ 0: ð3:14Þ

Taking p ¼ t and p ¼ j in (3.5) gives the equations for the
temporal and spatial modes of the vector. We also apply the
projectors ðδij∂2

k − δik∂k∂jÞ=∂2
k and ∂j=∂2

k on the p ¼ j
equation to separate equations for the transverse and
longitudinal modes. The real and imaginary parts of
(3.6) give rise to equations for the real and imaginary
parts of the scalar, respectively. All in all, the equations of
motion for the dynamical d.o.f. are

r∂rðr∂rAtÞ − ðd − z − 1Þr∂rAt þ r2∂2
jðAt − ∂tLÞ

þ 1

κc2
ðϕB∂tπ − ϕ2

BAtÞ ¼ 0; ð3:15Þ

r∂rðr∂rTiÞ − ðdþ z − 3Þr∂rTi − κr2z∂2
t Ti þ r2∂2

jTi

− ϕ2
BTi ¼ 0; ð3:16Þ

r∂rðr∂rLÞ − ðdþ z − 3Þr∂rL − κr2z∂tð∂tL − AtÞ
þ ϕBðπ − ϕBLÞ ¼ 0; ð3:17Þ

r∂rðr∂rρÞ − ðdþ z − 1Þr∂rρ −
r2z

c2
∂2
t ρþ r2∂2

jρ

−m2ρ ¼ 0; ð3:18Þ

r∂rðr∂rπÞ − ðdþ z − 1Þr∂rπ −
r2z

c2
ð∂2

t π − ϕB∂tAtÞ
þ r2∂2

jðπ − ϕBLÞ −m2π ¼ 0: ð3:19Þ

Since we considered small fluctuations for the dynamical
d.o.f., those equations are linear in the fields. The d.o.f. ρ
and Ti are both decoupled from the others.
We now turn to the asymptotic expansions of the fields

near the boundary. Starting from the background for the
scalar field, the exact solution is

ϕB ¼ wr
d̃
2
−ν þ vr

d̃
2
þν; ð3:20Þ

where w and v are real numbers and we have defined

d̃≡ dþ z − 1 and ν≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d̃2

4
þm2

s
: ð3:21Þ

For simplicity we will take 0 < ν < 1.4 For the fluctua-
tions, the radial behavior captured in the equations of
motion imposes the following expansions. Leaving aside
the spatial index i for the mode Ti, we get

ρ ∼r→0
ρ0rd̃=2−ν þ ρ̃0rd̃=2þν þ � � � ð3:22Þ

π ∼r→0
π0rd̃=2−ν þ π̃0rd̃=2þν þ � � � ð3:23Þ

At ∼r→0 ã0r−ð2z−d̃Þ þ � � � þ a0 þ � � � ð3:24Þ

T ∼r→0 t0 þ � � � þ t̃0rd̃−2 þ � � � ð3:25Þ

L ∼r→0 l0 þ � � � þ l̃0rd̃−2 þ � � � ð3:26Þ

where all coefficients are fields with a ðt; xiÞ dependence.
We have anticipated here the special case where d ≤ zþ 1

(i.e., 2z ≥ d̃); the opposite case was treated in [16]. Dots
between leading and subleading orders mean that one
can find some more terms by adding powers of r two
by two, if d̃ − 2 > 2 and/or 2z − d̃ > 2. Logarithms should
also be taken into account starting from the order r0 in
the expansion of At if d̃ − 2z is even and from rd̃−2 in the
expansions of Ti if d̃ − 2 is even. Finally, because of the
presence of the background ϕB, and the particular shape
of the Lifshitz metric, further powers in the expansions
above appear. However it can be checked that they are
all subdominant with respect to the ones shown above
(provided all our previous assumptions hold, that is, ν < 1,
z ≥ 1 and d ≥ 2).
Coefficients crowned with a tilde symbol are leading or

subleading modes that we do not want to play the role of
sources in QFT. For the scalars, it is just a matter of choice
(in this case, it identifies w as an explicit symmetry
breaking parameter and v as a VEV), while for the gauge
field, it is important because only vector modes without a
tilde symbol transform nontrivially under the gauge group
and can actually play the role of sources for a conserved
current in QFT.
Indeed, we can determine the gauge transformations for

the coefficients. Since ρ does not transform at linear order
under the gauged Uð1Þ, we have nontrivial rules for
coefficients of π only,

4Taking ν ≥ 1 makes the procedure of renormalization more
involved. Note also that for ν > d̃=2, we would need to set w ¼ 0
in order for the background not to spoil the asymptotic Lifshitz
scaling.
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δαπ0 ¼ αw; δαπ̃0 ¼ αv: ð3:27Þ

For the gauge vector, only two coefficients transform under
the gauge transformation,

δαa0 ¼ ∂tα; δαl0 ¼ α: ð3:28Þ

For the following, it is important to note that ã0 is a gauge
invariant quantity and therefore cannot be the source for the
temporal part of a conserved current.
Note that in the limiting relativistic case where d ¼ 2 and

z ¼ 1, i.e., d̃ ¼ 2, all leading and subleading terms of the
vector modes have the same order in r, respectively:

At ∼r→0 ã0 ln rþ a0 þ � � � ð3:29Þ

d̃ ¼ 2 ∶ T ∼r→0 t̃0 ln rþ t0 þ � � � ð3:30Þ

L ∼r→0 l̃0 ln rþ l0 þ � � � ð3:31Þ

This case was already discussed in [7] (see also [21,22]) so
we will keep d̃ > 2 from now on.
We can now apply the procedure of holographic renorm-

alization [23,24]. Applying the equations of motion in the
expression (3.4), we find an action on the boundary. To
regularize divergences, we evaluate it on a slice r ¼ ϵ close
to r ¼ 0. This procedure defines the regularized action:

Sreg ≡
Z
r¼ϵ

ddx
r−d̃

2
fr2Tir∂rTi − r2Lr∂r∂2

jL − κr2zAtr∂rAt

þ ϕBr∂rϕB þ 2ρr∂rϕB þ ρr∂rρþ πr∂rπg: ð3:32Þ

We need to add some counterterms to get rid of the
divergences and to see clearly which coefficient of each
expansion seen before is a source for the action. To do it
properly, we look at the variation that has to vanish to
satisfy the variational principle [note that δSreg is not the
variation of Sreg given above, but the regularized variation
of the action (3.4)]

δSreg ¼
Z
r¼ϵ

ddxr−d̃fr2δTir∂rTi − r2δL∂2
jr∂rL

− κr2zδAtr∂rAt þ δρr∂rðϕb þ ρÞ þ δπr∂rπg:
ð3:33Þ

We will now renormalize this expression for the different
sectors separately. We anticipate that the sector that will
contain all the subtleties is the one of the temporal and
longitudinal components of the vector. We start by treating
the other sectors.

For the scalar sector, the procedure goes exactly as in
[16]. We add the counterterm

Sϕct ≡ ðd̃=2 − νÞ
Z
r¼ϵ

ddxr−d̃
�
ϕ�ϕ −

ϕ2
B

2

�
: ð3:34Þ

Using it to define the renormalized action for the scalar
part, we find (neglecting terms of zeroth order in the
fluctuations, which do not concern us here)

Sϕren ≡ lim
ϵ→0

ðSϕreg − SϕctÞ

¼ ν

Z
ddxf2vρ0 þ ρ0ρ̃0 þ π0π̃0g: ð3:35Þ

Then the overall variation reads

δSϕren ¼ lim
ϵ→0

ðδSϕreg − δSϕctÞ

¼ 2ν

Z
ddxfδρ0ðρ̃0 þ vÞ þ δπ0π̃0g; ð3:36Þ

showing explicitly that our counterterm selects ρ0 and π0 to
play the role of the sources; i.e., their variations have to
vanish on the boundary r ¼ 0 to satisfy the variational
principle.
For the transverse sector renormalization, it is again

exactly as in [16], to which we refer for the details. It
suffices here to state the only relevant piece in the
renormalized action

STren ¼
Z

ddxðd̃=2 − 1Þðt0Þiðt̃0Þi; ð3:37Þ

up to possible local terms when d̃ is even and strictly bigger
than 4. Considering the variation, we find that t0 is
identified with the source, as expected.
We finally consider the renormalization of the temporal

and longitudinal sectors. We will treat the case d ¼ zþ 1

(i.e., d̃ ¼ 2z) in detail and see how the result is generalized
to any d and z satisfying d < zþ 1.
When d ¼ zþ 1, the expansions for the temporal and

longitudinal modes until subleading order read5

At ∼r→0 ã0 ln rþ a0 þ � � � ð3:38Þ

L ∼r→0 l0 þ l̃0r2ðz−1Þ þ � � � ð3:39Þ

This leads to

5Note that, in general, the equation of motion (3.17) leads to a
simplification for the expansion of L, setting to zero all the
possible coefficients between l0 and l̃0, and without logarithms
for any d̃.
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St=Lreg ¼
Z
r¼ϵ

ddx

�
−ðz− 1Þl0∂2

j l̃0−
κ

2
ã0ã0 lnr−

κ

2
a0ã0þ� � �

�

ð3:40Þ

and, for the variation

δSt=Lreg ¼
Z
r¼ϵ

ddxf−2ðz − 1Þδl0∂2
j l̃0 − κδã0ã0 ln r

− κδa0ã0 þ � � �g: ð3:41Þ

We see that the only divergence is logarithmic, and it takes
place for the temporal component of the vector.
As in [7], we explore now two ways of renormalizing

this sector. Adding a masslike counterterm

S̃t=Lct ≡ −κ
Z
r¼ϵ

ddx
ðAt − ∂tLÞ2

2 ln r
ð3:42Þ

gives the following renormalized expression for the
variation

δS̃t=Lren ¼
Z
r¼ϵ

ddxf−2ðz − 1Þδl0∂2
i l̃0 − κã0∂tδl0

þ κδã0ða0 − ∂tl0Þg ð3:43Þ

which exhibits ã0 and l0 in the role of the sources. This
choice, which we can call ordinary quantization, is not
good since ã0 does not transform under the residual gauge
transformation. Hence, it cannot reproduce a source for J t
on the QFT side of the correspondence if J μ is a conserved
current.
Inspired again by [7], we propose the following

counterterm,6

Stct ≡ −κ
Z
r¼ϵ

ddx
ln r
2

ðr∂rAtÞ2: ð3:44Þ

We note that it can be obtained by adding a term of the
Legendre transform kind to (3.42):

lim
ϵ→0

Stct ¼ lim
ϵ→0

�
−κ

Z
r¼ϵ

ddxfðAt − ∂tLÞr∂rAtg − S̃t=Lct

�
:

ð3:45Þ

We find

St=Lren ≡ lim
ϵ→0

ðSt=Lreg − StctÞ

¼
Z

ddx

�
−ðz − 1Þl0∂2

j l̃0 −
κ

2
a0ã0

�
; ð3:46Þ

and the expression for the variation

δSt=Lren ¼
Z
r¼ϵ

ddxf−2ðz − 1Þδl0∂2
j l̃0 − κδa0ã0g; ð3:47Þ

which is consistent with a0 having the correct gauge
transformation for being the source of the temporal
component of a conserved current. Since the source is
the subleading term in the expansion, we see that we have
to choose “alternative quantization” [27] for the bulk field
At, and only for this field.
Using the constraint (3.14), l̃0 can be expressed in terms

of other coefficients,

−κ∂tã0 þ ð2z − 2Þ∂2
j l̃0 − 2νwπ̃0 þ 2νvπ0 ¼ 0: ð3:48Þ

Plugging it into our renormalized action, we find

St=Lren ¼
Z

ddx

�
−
κ

2
l0∂tã0 − νl0ðwπ̃0 − vπ0Þ −

κ

2
a0ã0

�

¼
Z

ddx

�
−
κ

2
ða0 − ∂tl0Þã0 − νl0ðwπ̃0 − vπ0Þ

�
:

ð3:49Þ

Generalizing now to the case d < zþ 1, the near
boundary expansions of the bulk fields remain the same
except for the temporal sector, where it is given by (3.24)

At ∼r→0 ã0r−ð2z−d̃Þ þ � � � þ a0 þ � � � ð3:50Þ

with possibly also a ln r term if z − d̃=2 is a positive integer.
As in the case d ¼ zþ 1, the longitudinal sector will not

bring any divergence. Hence, we focus on the variation of
the temporal part, whose relevant terms are

δStreg ¼ κð2z − d̃Þ
Z
r¼ϵ

ddxfδã0ã0r−ð2z−d̃Þ þ � � �

þ δa0ã0 þ � � �g: ð3:51Þ

We directly go to alternative quantization to see if an
adapted version of the counterterm (3.44) remains a good
choice. The numerical coefficient is fixed to cancel the
hardest divergence of the regularized action. We propose

Stct ≡ κ

2

Z
r¼ϵ

ddxr2z−d̃
ðr∂rAtÞ2
2z − d̃

: ð3:52Þ
6See also [25,26] for similar counterterms, in different setups.
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Note that this term carries the correct power of r to be
covariantly defined with respect to the metric near the
boundary. If 2z − d̃ > 2, we will also need to introduce
further counterterms of the same kind as the one above to
compensate all subleading divergences

StctðkÞ ≡ −
κ

2

Z
r¼ϵ

ddxr2z−d̃þ2k
ðr∂rAtÞ∂2k

j ðr∂rAtÞ
ck

ð3:53Þ

with k positive integers and ck numerical coefficients that
are straightforward to determine. None of the counterterms
will affect the finite term proportional to ã0 in Streg. As a
consequence, a0 remains a source of the renormalized
action, as (3.51) shows. Putting temporal and longitudinal
pieces together, we find

St=Lren ¼
Z

ddxfκðz − d̃=2Þa0ã0 − ðd̃=2 − 1Þl0∂2
j l̃0g;

ð3:54Þ

and for the variation

δSt=Lren ¼
Z

ddxfκð2z − d̃Þδa0ã0 − ðd̃ − 2Þδl0∂2
j l̃0g:

ð3:55Þ

To get rid of l̃0, we use again the constraint (3.14). Its first
order now gives

κð2z − d̃Þ∂tã0 þ ðd̃ − 2Þ∂2
j l̃0 − 2νwπ̃0 þ 2νvπ0 ¼ 0:

ð3:56Þ

Then, we find

St=Lren ½a0; l0; π0� ¼
Z

ddxfκðz − d̃=2Þða0 − ∂tl0Þã0
− νl0ðwπ̃0 − vπ0Þg; ð3:57Þ

up to possible local terms if z − d̃=2 is a positive integer.
We can summarize our results for all d ≤ zþ 1 into the

expression

St=Lren ¼
Z

ddx

�
κ̄

2
ða0 − ∂tl0Þã0 − νl0ðwπ̃0 − vπ0Þ

�
ð3:58Þ

with

κ̄ ≡
�−κ if d ¼ zþ 1;

κð2z − d̃Þ if d < zþ 1:
ð3:59Þ

The sum of the renormalized actions for every sector
gives the complete gauge invariant effective action that can
be used to define the partition function of the QFT,

Sren ≡ STren þ St=Lren þ Sϕren: ð3:60Þ

Thus, we find

Sren½t0; a0; l0; ρ0; π0�

¼ 1

2

Z
ddxfðd̃ − 2Þðt0Þiðt̃0Þi þ κ̄ða0 − ∂tl0Þã0

þ 2νðρ0ρ̃0 þ ðπ0 − wl0Þðπ̃0 − vl0Þ
þ vð2ρ0 þ 2π0l0 − wl0l0ÞÞÞg: ð3:61Þ

The equations of motion for the fluctuations relate, through
the deep bulk (IR) boundary conditions, the gauge invariant
combinations of the tilded coefficients to the gauge
invariant combinations of the sources by nonlocal operators

ã0 ¼ Faða0 − ∂tl0Þ þFπðπ0 − wl0Þ; ð3:62Þ

ρ̃0 ¼ Gρρ0; ð3:63Þ

π̃0 − vl0 ¼ Haða0 − ∂tl0Þ þHπðπ0 − wl0Þ; ð3:64Þ

ðt̃0Þi ¼ Itðt0Þi; ð3:65Þ

where all these operators are nonpolynomial functions of
the derivatives ∂t and ∂2

i , and we have taken into account
that the transverse and ρ sectors are decoupled.
We can thus finally write the renormalized action taking

this into account,

Sren½t0; a0; l0; ρ0; π0�

¼ 1

2

Z
ddxfðd̃ − 2Þðt0ÞiItðt0Þi

þ κ̄ða0 − ∂tl0ÞðFaða0 − ∂tl0Þ þFπðπ0 − wl0ÞÞ
þ 2νρ0Gρρ0 þ 2νðπ0 − wl0ÞðHaða0 − ∂tl0Þ
þHπðπ0 − wl0ÞÞ þ 2νvð2ρ0 þ 2π0l0 − wl0l0Þg: ð3:66Þ

Now, considering

SQFT ⊃
Z

ddxfðt0ÞiJ T
i − l0∂iJ i − a0J t

þ ρ0ReOþ π0ImOg; ð3:67Þ

and the holographic correspondence, we can write for
example

hReOðxÞi ¼ δiSren
δiρ0ðxÞ

; ð3:68Þ

or
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hImOðxÞ∂iJ iðyÞi ¼
δ2iSren

δiπ0ðxÞδð−il0ðyÞÞ
: ð3:69Þ

In this way, we find

hReOðxÞi ¼ 2vν; ð3:70Þ

hImOðxÞImOð0Þi ¼ −i2νHπδ
dðxÞ; ð3:71Þ

− hImOðxÞ∂tJ tð0Þi þ hImOðxÞ∂iJ ið0Þi
¼ ð−i2wνHπ þ 2ivνÞδdðxÞ: ð3:72Þ

The latter relation can be reexpressed as

− hImOðxÞ∂tJ tð0Þi þ hImOðxÞ∂iJ ið0Þi
¼ whImOðxÞImOð0Þi þ ihReOiδdðxÞ; ð3:73Þ

which are the Ward identities for a current associated to a
symmetry which is broken both spontaneously (by v) and
explicitly (by w).
In the purely spontaneous case, the Ward identities imply

the presence of a gapless mode, i.e., a Goldstone boson.
What our holographic analysis has shown is that the
procedure of holographic renormalization is still consistent
with the presence of a nonzero VEV v. This then indicates
that spontaneous symmetry breaking is indeed possible in
holographically realized Lifshitz theories in d ≤ zþ 1.

IV. DISCUSSION AND OUTLOOK

In this paper we analyzed the possibility of having
spontaneous symmetry breaking in theories with Lifshitz
scaling, depending on the dimensionality of space-time.
First, we considered the issue from the purely field
theoretic perspective and found the expected result: when
the mass dimension of a scalar is zero or negative, i.e.,
when d ≤ zþ 1, large quantum fluctuations in the massless
case erase any possibility of having an order, i.e., a VEV.
We then proceeded to consider the same situation in a
holographic setup, suitable for a large N theory. We found
that there is no consistency problem in having a nonzero
VEV,7 and hence a propagating massless scalar. This is
consistent with the expectation that order can be restored in
the N → ∞ limit.
With respect to the previous analysis of the relativistic

case in [7], we have seen that, also in the present case, we
have to resort to alternative quantization for the vector.
However, and this is a novel feature, only the temporal
component of the vector has to be treated in this way.
Actually, it is the expected gauge symmetry of the
renormalized action that ultimately dictates to us this

asymmetric treatment of the temporal and spatial compo-
nents of the bulk vector.8

We now comment on some issues that we did not address
in the present paper but that could be worth investigating.

(i) In the present paper, we focused on theories with
time-reversal invariance. An obvious generalization
is to theories with no such invariance, i.e., including
a term linear in the time derivative. Note that the
holographic treatment of [16] includes such a case.
However, consider a candidate Goldstone mode
which has an EFT with Lifshitz scaling and a term
linear in ∂t. The latter will be the most relevant
kinetic term at lowest energies. We can thus consider
a theory where the kinetic term is purely linear. The
dimension of the scalar is then ðd − 1Þ=2, and it is
always positive in our case since d ≥ 2. We thus
naively do not expect to find any space-time di-
mension in which spontaneous symmetry breaking
is prevented by large vacuum fluctuations. It would
nevertheless be interesting to analyze in more detail
how this works for low dimensions. Also, the same
should be true more specifically for type B Gold-
stone modes [28–30], which enjoy a kinetic term
linear in ∂t.

(ii) Having shown in this paper that the holographic
approach, which is pertinent to the N → ∞ limit,
allows for spontaneous symmetry breaking, one can
ask whether 1=N corrections can spoil this result and
set the VEV to zero when d ≤ zþ 1. This amounts
to computing corrections at leading order in the bulk
interactions. Eventually, one is led to perform a one-
loop integral similar to the one performed in Sec. II.
This approach was followed in [31] for the case of
d ¼ 3 and finite temperature, finding that indeed
large fluctuations erase the bulk scalar profile dual to
the VEV. We expect a similar result also in the cases
considered in the present paper.

(iii) Further, we can ask what happens when the temper-
ature is turned on. On the QFT side, a general
argument like in [17] from thermal field theory (see
for instance [32]) gives, for a massless mode at finite
temperature T ¼ 1=β,

hθð0; x⃗Þθð0ÞiT ∝
Z

dd−1p
eip⃗·x⃗

pz

�
1þ 2

eβp
z − 1

�

∼ 2T
Z

dd−1p
eip⃗·x⃗

p2z þ…; ð4:1Þ

7For instance, in principle, a legitimate alternative result could
have been that it was impossible to cancel all divergencies for
v ≠ 0.

8Note that a precondition to have a situation opposite to the one
that we described, i.e., alternative quantization only for the spatial
components of the vector and ordinary quantization for the
temporal component, is to have 2z < d̃ < 2, i.e., z < 1. We
can thus conclude that this possibility does not arise in physically
sensible setups [20].
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where in the last step we have isolated the most IR
divergent term. From the latter, we observe that at
T > 0, such an integral is generically IR divergent
when d ≤ 2zþ 1, hence increasing the critical
dimension below which spontaneous breaking of
continuous symmetries is prevented. Note that for
z ¼ 1 we recover the Mermin-Wagner-Hohenberg
theorem [1,2].9 In holography, one should study
scalar profiles in Lifshitz black hole space-times (see
e.g., [33–37]). In the latter setup, one does not
expect any variation with respect to our results if the
space-time metric is asymptotic to the pure Lifshitz
one. Bulk 1=N corrections should, on the other
hand, be sensitive to the presence of the black hole
horizon.

(iv) Finally, it would be interesting to explore possible
realistic systems which display Lifshitz scaling (see
[38] and references therein), in the d ≤ zþ 1 re-
gime, to verify that indeed the spontaneous breaking
of continuous symmetries does not take place. That
would apply to systems in two spatial dimensions
with z ≥ 2, or in three spatial dimensions with z ≥ 3.
Finding such systems could open the way to an
experimental verification of the phenomenon dis-
cussed in this paper.
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