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An anti-D3-brane plays a crucial role in the construction of semirealistic cosmological models in string
theory. Part of its action provides an uplift term that has been used to lift anti–de Sitter solutions to
phenomenologically viable de Sitter vacua in the Kachru-Kallosh-Linde-Trivedi and large volume scenario
(LVS) setups. In the last few years it has been shown that this uplift breaks supersymmetry spontaneously
and can be described in the four-dimensional N ¼ 1 supergravity language by using constrained
supermultiplets. Here we derive the complete four-dimensional N ¼ 1 supergravity action for an anti-
D3-brane coupled to all closed-string background fields. In particular, we include the vector field, the scalar
fields, and all fermions that live on the anti-D3-brane.
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I. INTRODUCTION

The Kachru-Kallosh-Linde-Trivedi (KKLT) scenario [1]
provided the first construction of de Sitter (dS) vacua in
string theory. The very existence of such solutions in
quantum gravity has recently been questioned; see
Refs. [2–4] for review articles and references. However,
there is so far no generally agreed-upon flaw in the KKLT
scenario and some past criticisms have already been
refuted. Given this status, it is important to improve our
understanding of the KKLT setup further. One such line of
research has focused on the description of the anti-D3-
brane that provides the uplift from a supersymmetric anti–
de Sitter (AdS) vacuum to a dS vacuum. In particular, it
has become apparent in the last few years that one can
describe the anti-D3-brane in terms of a four-dimensional
(4D)N ¼ 1 supergravity (SUGRA) action. In this paper, we
continue this endeavor by deriving the complete 4DN ¼ 1
supergravity effective action for the KKLT scenario, includ-
ing the anti-D3-brane and all of its world volume fields.

Our supersymmetric low-energy effective action shows
that supersymmetry in the KKLT setup is spontaneously
broken. While this might have been expected because the
anti-D3-branes used as the uplift in the KKLT scenario are
an excited state in a supersymmetric theory [5], it was not
until 2014 that it was understood how to write down a
supergravity action that reproduces the anti-D3-brane uplift
term [6]. The connection of this uplift term to the anti-D3-
brane in the KKLT setup was then clarified in Refs. [7–10].
The subject of brane supersymmetry breaking started

with Refs. [11–15], and the connection to nonlinear
supersymmetry was first studied in Refs. [16,17]. All of
these developments have broadened into a variety of
different research directions and led to many interesting
related results during the last few years; see, e.g., Refs. [18–
32]. However, so far nobody has succeeded in writing down
the full four-dimensional low-energy effective supergravity
action that includes all anti-D3-brane world-volume fields
in the KKLT background. This action consists of a bosonic
part—containing the three complex world-volume scalars
and the U(1) gauge field—and a fermionic part containing
the four 4D fermions. For flux compactifications, this
fermionic world-volume action is currently only known
to quadratic order in the fermions [33–38].
While the bosonic action seems at first to be the easier

part, it is actually the fermionic action that has been studied
most often over the last few years [7–10,20,27]. In
particular, it has been shown that one can do an orientifold
projection that removes all of the bosonic degrees of
freedom (d.o.f.) from the anti-D3-brane. The fermions
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together with the bosonic uplift term can then be combined
into a Volkov-Akulov type action [39] and be described in
the 4D N ¼ 1 supergravity action via constrained chiral
multiplets. Recently, the complete action for the Giddings-
Kachru-Polchinski (GKP) background fields and the four
anti-D3-brane world-volume fermions has been derived in
[27]. Here we extend this work by studying the full KKLT
background and by including also the world-volume scalar
fields and the U(1) gauge vector. Thus, we derive the
complete low-energy effective supergravity action for an
anti-D3-brane in the KKLT background.
The organization of the paper is as follows. In Sec. II we

review the action for an anti-D3-brane in the GKP and
KKLT backgrounds. In Sec. III we discuss the constrained
multiplets in 4D N ¼ 1 supergravity that we need to
describe the anti-D3-brane. In Sec. IV we derive the
four-dimensional N ¼ 1 supergravity action for an anti-
D3-brane in the KKLT background. We summarize our
findings in Sec. V and we draw the conclusions in Sec. VI.
Two Appendixes provide technical details.

II. THE ANTI-D3-BRANE ACTION IN THE GKP
AND KKLT BACKGROUND

In this section we will review and (re)derive the action
for an anti-D3-brane in the GKP [40] and KKLT [1]
backgrounds. While many aspects of this action have been
studied before, we will include here all world-volume fields
of the anti-D3-brane and their couplings to the background
moduli fields, which are the axiodilaton τ ¼ C0 þ ie−ϕ, the
single Kähler modulus T, and the complex structure moduli
UA. The Dp-brane action in flux backgrounds is only
understood up to quadratic order in the fermions [33–38].
The known pieces of the action therefore include a bosonic

part and a fermionic part that is quadratic in the world-
volume fermions.1 We will discuss these separately in the
following two subsections.

A. The bosonic action

The bosonic anti-D3-brane action is the sum of the
Dirac-Born-Infeld (DBI) action and the Chern-Simons
(CS) action and is given in the 4D Einstein frame by

SD3
bos ¼ SDBI þ SCS; ð2:1Þ

SDBI¼−
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−detðP½gμνþe−

ϕ
2Bμν�þe−

ϕ
2FμνÞ

q
; ð2:2Þ

SCS ¼ −
Z

P½ðC0 þ C2 þ C4Þ ∧ eB2 � ∧ eF: ð2:3Þ

Here we have set ls ¼ 2π
ffiffiffiffi
α0

p
¼ 1, while B2 denotes

the Neveu-Schwarz Neveu-Schwarz (NSNS) Kalb-
Ramond field, Fμν is the field strength of the U(1) gauge
field living on the brane, and P is the pullback to the brane
world volume. To simplify the presentation, we have
rescaled the U(1) field strength by 2π with respect to the
textbook by Polchinski [41], i.e., FPolchinski

μν ¼ 2πFus
μν. We

have also rescaled the action by 1=2π to remove the brane
tension T3 ¼ ð2πÞ−3ðα0Þ−2 ¼ 2π.
In a GKP background [40] the metric is warped and the

presence of warping makes the identification of the Kähler
modulus, ImðTÞ in our case, rather cumbersome [42]. For a
single Kähler modulus there is a fixed overall scaling with
respect to the volume for all of the terms in the action. We
can identify this scaling by working with the following
metric in the Einstein frame [43,44]:

ds2 ¼ e−6uðxÞ
�
1þ e−4AðzÞ

e4uðxÞ

�−1
2

gμνdxμdxν þ e2uðxÞ
�
1þ e−4AðzÞ

e4uðxÞ

�1
6

gab̄dz
adzb̄; ð2:4Þ

where the external indices are labeled by μ, ν ¼ 0, 1, 2, 3, the internal indices are labeled by a; b̄ ¼ 1, 2, 3, and e6u ¼ vol6 is
the volume of the internal manifold, whose dependence on ImðTÞ is going to be specified below.2 This metric interpolates
between the unwarped bulk region and the warped throat. We will be interested in the strong-warping regime, namely,
e−4A ≫ e4u, where the metric reduces to

ds2 ¼ e2AðzÞ−4uðxÞgμνdxμdxν þ e
4
3
uðxÞ−2

3
AðzÞgab̄dzadzb̄: ð2:5Þ

1This action does not include terms that are linear in a world-volume fermion and a closed-string fermion.
2The ansatz (2.4) does not solve the mixed components of the ten-dimensional Einstein equations with one internal and one external

index and one has to introduce a compensator field [42]. This subtlety will not affect our result. However, it would be important
to confirm this explicitly by doing a proper dimensional reduction of the anti-D3-brane, extending the result for a supersymmetric
D3-brane of Ref. [45].
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We can now proceed and start to evaluate the DBI action. Following Ref. [46], this becomes3

SDBI ¼ −
Z

d4x
ffiffiffiffiffiffiffiffi
−g4

p �
e4AðH;H̄Þ−8uðxÞ þ 1

2
e
4
3
AðH;H̄Þ−8

3
uðxÞgab̄ðH; H̄Þ∂μHa∂μH̄b̄ þ e−ϕðH;H̄Þ

4
FμνFμν þ…

�
; ð2:6Þ

where the dots denote higher-order terms. These are
corrections, which are small with respect to the couplings
that we wrote down explicitly. The warp factor, the internal
metric, and the dilaton are functions of the world-volume
scalars Ha that indicate the position of the brane and that
enter the action via the pullback P. We will assume that the
brane sits at some position in the strongly warped region,
but we will not need to specify it further. For the rest of our
discussion we will consider small fluctuations around such
a position and we indicate them with the same symbol Ha

for convenience.
The kinetic term for the scalar fields arises entirely from

the DBI part of the action and is therefore the same for D3-
branes and anti-D3-branes. The rewriting of this term in 4D
N ¼ 1 supergravity was first discussed in Ref. [47]. There
it was argued that such a kinetic term stems from a Kähler
potential of the type

K ¼ −3 log ½−iðT − T̄Þ þ kðH; H̄Þ�; ð2:7Þ
where T is our single Kähler modulus and kðH; H̄Þ is the
Kähler potential corresponding to the internal Calabi-Yau
metric ∂Ha∂H̄b̄kðH; H̄Þ ≈ 1

6
e
4
3
ðAþuÞgab̄, where we neglected

subleading terms (cf. Appendix B of Ref. [48]). The Kähler
potential kðH; H̄Þ does not break the no-scale structure and
enters the expression of the overall volume, which indeed
depends on the open- and closed-string moduli via

vol6 ¼ e6u ¼ ð−iðT − T̄Þ þ kðH; H̄ÞÞ32: ð2:8Þ
The DBI action gives also rise to a scalar potential and a

standard Maxwell term for the U(1) gauge field, with a
coupling constant determined by ImðτÞ ¼ e−ϕ evaluated at
the position of the brane. We will discuss both of these
terms further when we combine them with the CS action.
We now look at the CS action for the anti-D3-brane. In

the GKP background it reduces to

SCS¼−
Z �

1

2
C0ðH;H̄ÞF∧FþC4ðH;H̄Þ

�

¼−
Z �

1

2
C0ð0;0ÞF∧FþC4ð0;0Þþ…

�

¼−
Z
d4x

ffiffiffiffiffiffiffiffi
−g4

p �
−
ReðτÞ
8

ϵμνρσffiffiffiffiffiffiffiffi−g4
p FμνFρσþαðH;H̄Þþ…

�
;

ð2:9Þ

where in the second line we expanded around the position
of the brane, Ha ¼ 0, and omitted higher-order terms. We
are using the fact that ReðτÞ ¼ C0ð0; 0Þ and C4 ¼
αðz; z̄Þ ffiffiffiffiffiffiffiffi−g4

p
dx0 ∧ dx1 ∧ dx2 ∧ dx3, where g4 is the deter-

minant of the unwarped four-dimensional metric. Recall
that C2 and B2 with indices along the noncompact
spacetime directions are projected out by the orientifold
projection.
A D3-brane in the background we are considering

preserves linear N ¼ 1 supersymmetry in 4D. The U(1)
gauge field on its world volume has a gauge kinetic
function given by fðτÞ ¼ −iτ. This function is and has
to be holomorphic and depends only on the axiodilaton
modulus τ. The real part, ReðfðτÞÞ ¼ ImðτÞ ¼ e−ϕ, con-
trols the coupling in the Maxwell term and the imaginary
part, ImðfðτÞÞ ¼ −ReðτÞ ¼ −C0, controls the theta term.
This leads to an immediate problem in the case of the anti-
D3-brane. With respect to the D3-brane, the anti-D3-brane
has a sign difference in the CS action and thus, in order to
get the correct sign for the theta term in Eq. (2.9), it seems
that we would have to make the gauge kinetic function
antiholomorphic, fðτ̄Þ ¼ iτ̄. However, this would not be
compatible with supersymmetry, since the closed-string
field τ is part of an unconstrained chiral multiplet. We will
show how to resolve this puzzle and maintain a holomor-
phic gauge kinetic function in Sec. IV. The crucial point
will be that, in the background we are considering, an anti-
D3-brane preserves nonlinear N ¼ 1 supersymmetry
in 4D.
We can now put together the two pieces and

obtain the bosonic action of the anti-D3-brane. The
second term in the CS action (2.9) combines with the
first term in the DBI action (2.6) into what is usually
denoted by

Φ� ≡ e4AðH;H̄Þ−8u � αðH; H̄Þ; ð2:10Þ

with the plus being for the anti-D3-brane and
the minus for the D3-brane. The equations of motion
in the GKP solution enforce Φ− ¼ 0, so that the
potential for a D3-brane, VD3 ¼ Φ−, vanishes because
the DBI part and the CS part exactly cancel. For an
anti-D3-brane the contributions simply add up and
we have

3This action can be recast in the conventions used in Ref. [27]
by sending A → A − u and then gab̄ → gab̄e

−4
3
A.
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SD3
bos¼SDBIþSCS

¼−
Z

d4x
ffiffiffiffiffiffiffiffi
−g4

p �
2e4AðH;H̄Þ−8uþ1

2
e
4
3
AðH;H̄Þ−8

3
uðxÞgab̄∂μHa∂μH̄b̄þ ImðτÞ

4
FμνFμν−

ReðτÞ
8

ϵμνρσffiffiffiffiffiffiffiffi−g4
p FμνFρσþ…

�
; ð2:11Þ

where we can identify the scalar potential

VD3ðH; H̄Þ ¼ Φþ ¼ 2e4AðH;H̄Þ−8u: ð2:12Þ

Since the warp factor is minimized at the bottom of the warped throat, this is also the point where the anti-D3-brane
potential is minimized and that the brane is dynamically attracted to. We can then expand the scalar potential around this
point to obtain

VD3ðH; H̄Þ ¼ 2e4A0−8u0ð1þ 4HaH̄b̄∂Ha∂H̄b̄AjH¼0 þ 2HaHb∂Ha∂HbAjH¼0 þ 2H̄āH̄b̄∂H̄ā∂H̄b̄AjH¼0 þ…Þ; ð2:13Þ

where A0 ≡AjH¼0, u0 ≡ ujH¼0 and the dots stand for
higher-order terms, which are actually suppressed by the
string scale (following the same logic as in Sec. 3.1 of
Ref. [46]). The first contribution in the expansion is the
uplift term for an anti-D3-brane which, in a highly warped
region, scales like 1=ðvol6Þ43 [49].4 In Sec. IV we will show
how to reproduce the above scalar potential using a
modified version of the Kähler potential given in Eq. (2.7).
In the GKP solution the volume direction is a flat

direction. The nonvanishing scalar potential for the anti-
D3-brane in Eq. (2.12), which is proportional to 1=ðvol6Þ43,
would then lead to a runaway for the Kähler modulus. In
order to avoid this, the KKLT scenario [1] includes a
nonperturbative correction that can arise from either
Euclidean D3-branes or a gaugino condensate on a stack
of D7-branes. The effect of this nonperturbative contribu-
tion on the background as well as the anti-D3-brane uplift
has recently received considerable attention [50–61]. At the
heart of this discussion is the question of whether the
gaugino condensation on a stack of D7-branes can be
described in ten dimensions and, if that is the case, what the
detailed backreaction of the gaugino condensate on the
anti-D3-brane is. When the gaugino condensation or
Euclidean D3-brane is taken into account, the KKLT
background will have an extra term in the superpotential
of the form

Wnp ¼ AeiaT; ð2:14Þ

where A is a function that generically depends on the anti-
D3-brane fields. Since the gaugino condensation or
Euclidean D3-brane arise from the Calabi-Yau bulk region,
while we are studying an anti-D3-brane sitting at the
bottom of a highly warped throat, these additional terms
are expected to be highly suppressed compared to the

tree-level potential in Eq. (2.12). After a lively debate in the
recent literature [50–61], there seems to be some consensus
that this is indeed the case. For this reason we will neglect
these corrections here, which is in some sense generic.5

However, many throats (like, e.g., the Klebanov-Strassler
geometry [62]) have isometries so that the scalar potential
in Eq. (2.12) can have flat directions that would be lifted by
higher-order corrections. Such higher-order corrections
could arise in particular setups from the superpotential
in Eq. (2.14). Such light moduli arising from the anti-D3-
brane were first studied in Ref. [63], and it would be
interesting to study this in more detail for concrete setups
using, e.g., the tools developed in Ref. [64].

B. The fermionic action

The fermionic part of the action plays a crucial role in
understanding the low-energy effective description of the
anti-D3-brane in the GKP or KKLT background. The
reason for this is that the anti-D3-brane breaks supersym-
metry spontaneously and one (combination) of the world-
volume fermions has to be the Goldstino. As we will
explain in the next section, this Goldstino can be described
in terms of a nilpotent chiral multiplet that couples to the
standard four-dimensional N ¼ 1 supergravity theory one
obtains from the closed-string sector.
How the anti-D3-brane provides the Goldstino is not

straightforward and requires some explanation. We will
therefore comment on this before actually presenting the
action. The fermionic action for a Dp-brane in a flux
background is only known to quadratic order in the
fermions [33–38] and the anti-D3-brane has been studied
in this context in Refs. [7,8,27,46]. In particular, the four
world-volume fermions on the anti-D3-brane can be
divided into λ, which is a singlet under the SU(3) holonomy

4In the unwarped region the uplift term actually scales like
1=ðvol6Þ2 [1].

5For a supersymmetric D3-brane the tree-level scalar potential
vanishes and these terms provide a very interesting, small
potential that was first studied in Ref. [48].
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group of the internal manifold, and χi, with i ¼ 1, 2, 3,
which transform as a triplet. The masses and some of the
couplings of these fermions are controlled by the imaginary
self-dual (ISD) part

GISD
3 ¼ 1

2
ðG3 − i �6 G3Þ ð2:15Þ

of the background flux G3 ¼ F3 − ie−ϕH3 [8,46], where in
our conventions F3 ¼ dC2 − C0H3. In particular, the mass
of the singlet arises from a flux of (0,3) type, the interaction
between λ and the χi is proportional to a nonprimitive (1,2)
flux, and the masses of the χi are determined by a primitive
(2,1) flux. In a supersymmetric GKP background, λ is the
Goldstino and correspondingly it does not mix with the χi

and has no mass term. This is consistent with the fact that
the anti-D3-brane is the only source of supersymmetry
breaking in this context [8].
In a nonsupersymmetric GKP background we have a

nonvanishing Gukov-Vafa-Witten superpotential [65]

WGVW ¼
Z

G3 ∧ Ω ≠ 0; ð2:16Þ

where Ω is the (3,0)-form of the Calabi-Yau manifold, and
therefore we get a nonvanishing F-term for the Kähler
modulus T,

DTWGVW ¼ KTWGVW ≠ 0: ð2:17Þ

As a consequence, in a nonsupersymmetric GKP back-
ground with Eq. (2.16), the G3 flux must contain a
nonvanishing (0,3) piece and the background itself breaks
supersymmetry spontaneously. In such a situation, the
Goldstino is a closed-string fermion. If we add an anti-
D3-brane to this background, then the singlet λ will also
have a mass and cannot (and does not have to) be the
Goldstino. Indeed, since both the anti-D3-brane as well as
the background (0,3) G3 flux break supersymmetry sponta-
neously, the Goldstino is expected to be a linear combi-
nation of λ and the closed-string fermion which was the
Goldstino before the addition of the anti-D3-brane.
The actual KKLT background of interest has, besides a

nonvanishingWGVW, a nonperturbative superpotential term
given in Eq. (2.14). In this case one can find a super-
symmetric solution,

DTðWGVW þWnpÞ ¼ 0; ð2:18Þ

which gives ∂TWnp ¼ −KTðWGVW þWnpÞ. This solution
is a supersymmetric AdS vacuum that is uplifted by the
anti-D3-brane to the KKLT dS vacuum. At this point,
however, one might have noticed the following issue: the
anti-D3-brane is actually the sole source of supersymmetry
breaking and therefore it needs to provide the massless

Goldstino. On the other hand, the background has a (2,1) as
well as a (0,3) G3 flux, which seem to give a mass to χi and
λ as well [8]. In other words, all fermions appear to be
massive and it is not clear whether a massless Goldstino is
present. The resolution of this apparent puzzle is due to the
behavior of the (0,3) G3 flux in the presence of a gaugino
condensate on a stack of D7-branes. In particular, it was
shown in Refs. [66,67] that the (0,3) G3 flux localizes on
top of the D7-branes that are located in the bulk of the
warped Calabi-Yau manifold. Therefore, the pull-back of
this (0,3) G3 flux onto the anti-D3-brane world volume
vanishes, since the anti-D3-branes sits at the bottom of a
warped throat. Thus, λ does not get a mass and is the
Goldstino provided by the anti-D3-brane, which is the sole
source of supersymmetry breaking.6

Having clarified how the anti-D3-brane action in the
KKLT background provides the massless Goldstino plus
three more massive fermions, we now work out the
couplings of these fermions to the closed-string moduli
τ, T and UA. The fermionic anti-D3-brane action was
studied, e.g., in Refs. [8,27,33,46]. The part of the action
that is quadratic in world-sheet fermions is given in the
Einstein frame by [8,37,68]7

SD3
fer ¼ 2

Z
d4x

ffiffiffiffiffiffiffiffi
−g4

p �
e4A−8uθ̄Γμ

�
∇μ −

1

4
eϕFμΓ̃0123

�
θ

þ 1

8 · 4!
θ̄ðe16A

3
−32u

3 ΓμmnpqFμmnpq

− 2e
8A
3
−16u

3 ΓμνρmnFμνρmnÞΓ̃0123θ

−
i
24

e6A−12uþϕ
2ðGISD

mnp − ḠISD
mnpÞθ̄Γmnpθ

�
; ð2:19Þ

where θ is a 16-component Majorana-Weyl spinor of type
IIB theory, the indices m, n;… ¼ 4; 5;…; 9 are internal,
Γ… has curved but unwarped indices, and Γ̃… has flat
indices. Following Refs. [8,33], we can decompose the
spinor θ into four-dimensional Weyl spinors. In the
notation of Ref. [69], we have an SU(3) singlet PLλ and
a triplet PLχ

i. The reduction of the last line and the kinetic
term of Eq. (2.19) was performed in detail in Ref. [8]. If the

6This is only true in the strict probe limit. Once the anti-D3-
brane backreacts onto the geometry via the uplift term
Vup ∝ 1=ð−iðT − T̄ÞÞ2, the T modulus shifts away from the
supersymmetric minimum. As a consequence, DTW will not
be zero anymore and the Goldstino will be a mixture of λ and the
fermionic partner of the T modulus.

7This can be obtained from the string-frame result in
Refs. [8,68] with gSμν ¼ e

ϕ
2
þ2A−4ugμν and θS ¼ e

ϕ
8
−uþA

2θ. We
follow the conventions of Ref. [8], which uses the action given
in Eqs. (4.4) to (4.6) of Ref. [68]. We rederived the coupling to F1

starting from Eqs. (A.5) and (A.7) in Ref. [68] and found the
opposite sign for the corresponding term. Our expression agrees
with the generic four-dimensional supergravity action, as we
check below.
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brane action is evaluated on a fixed background the
remaining terms vanish. On the contrary, they should be
taken into account when the background fields are dynami-
cal, as is the case in our setup. To the best of our
knowledge, these terms are worked out here for the
first time.
We start by considering the contribution arising from the

spin connection. In particular, we have

θ̄Γμ∇μθ ¼ θ̄Γμ

�
∂μ þ

1

4
ωã b̃
μ Γ̃ã b̃ þ

1

4
ωi{̄
μ Γ̃i{̄

�
θ; ð2:20Þ

where the flat indices take values ã, b̃ ¼ 0, 1, 2, 3 and i,
{̄ ¼ 1, 2, 3. Since the spin connection with mixed indices
vanishes, ωãi

μ ¼ ωã {̄
μ ¼ 0, we have already omitted the

corresponding terms. The first two terms in the equation
above construct the 4D covariant derivative, while the last
term gives rise to a coupling between the fermions and the
complex structure moduli, which can be calculated as

follows. In our setup the metric is block diagonal with a
4D part and a six-dimensional part, and therefore the
vielbein is likewise block diagonal. Then, the six-dimen-
sional internal vielbein part satisfies eai gab̄e

b̄
{̄ ¼ δi{̄, so that

eai is a function of the Kähler modulus T and the complex
structure moduli UA. Since the holomorphic (3,0)-form
Ωabc ¼ ϵijkeiae

j
be

k
c only depends on the UA and not on the

ŪA, we can conclude that eia and its inverse eai depend only
on T, T̄, and the UA, but not on ŪA. Namely, we have

∂μeai ¼ ð∂Teai Þ∂μT þ ð∂T̄e
a
i Þ∂μT̄ þ ð∂UAeai Þ∂μUA: ð2:21Þ

Having a single volume modulus, the metric and the
vielbein have a simple overall volume dependence, i.e.,
they depend to leading order in large volume on ðT − T̄Þ to
some power, so that ∂Teai ¼ −∂ T̄e

a
i ∝ eai . This means that

the relevant spin connection reduces to

ωi{̄
μ ¼ eāi∂μe{̄ā − ea{̄∂μeia ¼ eāið∂ŪAe{̄āÞ∂μŪA − ea{̄ð∂UAeiaÞ∂μUA: ð2:22Þ

We will now use the fact that we have only a single Kähler modulus and correspondingly only a single (1,1)-form to
substantially simplify the above expression. In particular, from the spin connection we can define a 2-form that has to be
proportional to the Kähler form J, or in flat indices to δi{̄, if it is in cohomology8

ωμi{̄eiae{̄b̄ ∝ iJab̄ ¼ δi{̄eiae{̄b̄: ð2:23Þ

We can then write

ωi{̄
μ Γ̃i{̄ ¼

1

3
ωi{̄
μδi{̄δ

j|̄Γ̃j|̄; ð2:24Þ

and the first new fermionic contribution to the 4D anti-D3-brane action is

θ̄Γμωi{̄
μ Γ̃i{̄θ ¼ 1

3
θ̄Γμωi{̄

μδi{̄δ
j|̄Γ̃j|̄θ ¼ 1

3
ωkk̄
μ δkk̄ð3λ̄PRγ

μλ − δi|̄χ̄
|̄PRγ

μχiÞ

¼ 1

3
δi{̄ðeāið∂ŪAe{̄āÞ∂μŪA − ea{̄ð∂UAeiaÞ∂μUAÞð3λ̄PRγ

μλ − δj|̄χ̄
|̄PRγ

μχjÞ: ð2:25Þ

The second new term involves a coupling to the derivative Fμ ¼ ∂μC0 ¼ ∂μReτ. Its calculation is simpler with respect to
the previous case and it gives directly

eϕFμθ̄ΓμΓ̃0123θ ¼ ∂μReðτÞ
ImðτÞ θ̄ΓμΓ̃0123θ ¼ −i

∂μReðτÞ
ImðτÞ ðλ̄PRγ

μλþ δi|̄χ̄
|̄PRγ

μχiÞ: ð2:26Þ

The last contribution in Eq. (2.19) that we have to calculate is a derivative coupling to the C4 axion. To this purpose, we
recall that for a Calabi-Yau manifold with a single Kähler modulus T, there is only a single (2,2)-form that we denote by Y2;2

and that is normalized such that it integrates to one on the single 4-cycle Σ4. In particular, the Kähler modulus is constructed
out of the 4-forms C4 and J ∧ J and it has to be holomorphic, since it is described by a chiral multiplet in four dimensions.
We can therefore decompose it on the basis given by Y2;2 and find

8It is not clear to us that this 2-form indeed has to be in cohomology for generic CY3 manifolds. For toroidal orbifold examples this is
indeed the case, but we lack a generic argument. The following is therefore not a strict mathematical proof. We thank Harald Skarke for
discussing this point.
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T ≡
Z
Σ4

�
C4 −

i
2
J ∧ J

�
¼

Z
Σ4

c4ðxμÞY2;2 þ iImðTÞ
Z
Σ4

Y2;2: ð2:27Þ

From the above we can directly identifyC4 ⊃ c4ðxμÞY2;2 ¼ −c4ðxμÞ J∧J
2ImðTÞ. Using the fact that ie

u
i e

ū
{̄ Juū ¼ δi{̄, where u, ū are

curved and warped indices, while recalling that the matrix Γμnpqr appearing in Eq. (2.19) has real curved but unwarped
indices, we can finally calculate the desired term,

1

4!
e
4A
3
−8u

3 θ̄ΓμnpqrΓ̃0123Fμnpqrθ ¼ ∂μReðTÞ
2ImðTÞ θ̄δi{̄δj|̄ΓμΓ̃i{̄j|̄Γ̃0123θ

¼ −i
∂μReðTÞ
ImðTÞ ð3λ̄PRγ

μλ − δi|̄χ̄
|̄PRγ

μχiÞ: ð2:28Þ

Actually, this is only one of the two contributions containing C4 and appearing in Eq. (2.19). However,

due to the self-duality of dC4 in ten dimensions, one finds that the four-dimensional 2-form C4 ⊃ cð2Þ4;μνdx
μ ∧ dxν ∧

Y1;1 is dual in four dimensions to c4ðxμÞ, so that the two corresponding terms in the 3-brane action are
equal, namely,

FμnpqrΓμnpqr ¼ −2e−8A
3
þ16u

3 FμνρmnΓμνρmnΓ̃�; ð2:29Þ

and therefore the two terms in Eq. (2.19) add up.
Up to total derivatives and written in terms of four-dimensional spinors, the action (2.19) then becomes

SD3
fer ¼ 2

Z
d4x

ffiffiffiffiffiffiffiffi
−g4

p
e4A−8u

�
λ̄PRγ

μ∇μλþ δi|̄χ̄
|̄PRγ

μ∇μχ
i þ i

4ImðτÞ ∂μReðτÞðλ̄PRγ
μλþ δi|̄χ̄

|̄PRγ
μχiÞ

−
i

4ImðTÞ ∂μReðTÞð3λ̄PRγ
μλ − δi|̄χ̄

|̄PRγ
μχiÞ þ 1

12
ωkk̄
μ δkk̄ð3λ̄PRγ

μλ − δi|̄χ̄
|̄PRγ

μχiÞ

þ
�
1

2
mλ̄PLλþmiλ̄PLχ

i þ 1

2
mijχ̄

iPLχ
j þ c:c:

��
: ð2:30Þ

The masses depend on the GISD
3 flux as

m ¼
ffiffiffi
2

p

12
ie2A−4uþϕ

2Ω̄abcḠISD
abc; ð2:31Þ

mi ¼ −
ffiffiffi
2

p

4
e2A−4uþϕ

2eai Ḡ
ISD
abc̄J

bc̄; ð2:32Þ

mij ¼
ffiffiffi
2

p

8
ie2A−4uþϕ

2ðeci edj þ ecje
d
i ÞΩabcgaāgbb̄ḠISD

dā b̄
: ð2:33Þ

As we discussed at the beginning of this subsection, in a
GKP background or in the KKLT setup with gaugino
condensation on a stack of D7-branes in the bulk that is
away from the anti-D3-brane, the pullback of the (0,3) part

of the G3 flux onto the anti-D3-brane world volume
vanishes. In addition, in the same background the (2,1)
part ofGISD

3 is primitive, namely,GISD
abc̄J

bc̄ ¼ 0, where Jab̄ is
the Kähler form on the Calabi-Yau. As a consequence of
these two facts we have that

m ¼ 0 ¼ mi; ð2:34Þ

and then the singlet fermion λ remains massless, while the
χi generically have nonvanishing mass terms. λ will there-
fore be the Goldstino associated to the broken supersym-
metry. It arises from the brane, as is expected for an
anti-D3-brane added to a supersymmetric background.
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Finally, the complete anti-D3-brane action in the KKLT background is

SD3 ¼ SD3
bos þ SD3

fer

¼ −
Z

d4x
ffiffiffiffiffiffiffiffi
−g4

p �
2e4A−8u þ 1

2
e
4
3
A−8

3
ugab̄∂μHa∂μH̄b̄ þ ImðτÞ

4
FμνFμν −

ReðτÞ
8

ϵμνρσffiffiffiffiffiffiffiffi−g4
p FμνFρσ

�

þ 2

Z
d4x

ffiffiffiffiffiffiffiffi
−g4

p
e4A−8u

�
λ̄PRγ

μ∇μλþ δi|̄χ̄
|̄PRγ

μ∇μχ
i þ i

4ImðτÞ ∂μReðτÞðλ̄PRγ
μλþ δi|̄χ̄

|̄PRγ
μχiÞ

−
i

4ImðTÞ ∂μReðTÞð3λ̄PRγ
μλ − δi|̄χ̄

|̄PRγ
μχiÞ þ 1

12
ωkk̄
μ δkk̄ð3λ̄PRγ

μλ − δi|̄χ̄
|̄PRγ

μχiÞ

þ 1

2
mijχ̄

iPLχ
j þ 1

2
m̄{̄ |̄χ̄

{̄PRχ
|̄

�
: ð2:35Þ

C. The supersymmetric D3-brane action

The above action is the leading-order component action
for an anti-D3-brane in the KKLT or GKP background and
we will show how to rewrite it in terms of N ¼ 1 super-
gravity in Sec. IV. However, before doing so, it is
instructive to perform a simple check on our result and
compare it to the known couplings in the D3-brane action.
We devote the present subsection to this purpose.

Recall that the D3-brane differs from the anti-D3-brane
action by a sign flip of the Ramond-Ramond (RR) fields. In
the supersymmetric D3-brane case one also has to take into
account that the first “uplift term” in the bosonic action and
the fermionic mass terms vanish. What remains is then a
standard N ¼ 1 supergravity action for a single vector
multiplet, containing λ and Aμ, and three chiral multiplets,
containing Ha and χa ≡ eai χ

i. Explicitly, it is given by

SD3 ¼ SD3
bos þ SD3

fer

¼ −
Z

d4x
ffiffiffiffiffiffiffiffi
−g4

p �
1

2
e
4
3
A−8

3
ugab̄∂μHa∂μH̄b̄ þ ImðτÞ

4
FμνFμν þ ReðτÞ

8

ϵμνρσffiffiffiffiffiffiffiffi−g4
p FμνFρσ

�

þ 2

Z
d4x

ffiffiffiffiffiffiffiffi
−g4

p
e4A−8u

�
λ̄PRγ

μ∇μλþ δi|̄χ̄
|̄PRγ

μ∇μχ
i −

i
4ImðτÞ ∂μReðτÞðλ̄PRγ

μλþ δi|̄χ̄
|̄PRγ

μχiÞ

þ i
4ImðTÞ ∂μReðTÞð3λ̄PRγ

μλ − δi|̄χ̄
|̄PRγ

μχiÞ þ 1

12
ωkk̄
μ δkk̄ð3λ̄PRγ

μλ − δi|̄χ̄
|̄PRγ

μχiÞ
�
: ð2:36Þ

It is interesting to study the derivative couplings
involving (derivatives of) the closed-string axions and
the open-string fermions on the supersymmetric D3-brane,
since this will provide useful information about the form
of the Kähler potential even for the anti-D3-brane. Let us
begin with the coupling to ∂μτ. The fermions χi come in
chiral multiplets and carry no U(1) charge, but via their
Kähler covariant derivative they couple to all scalars. In
particular, they couple to the axiodilaton τ via interactions
of the type (see, e.g., chapter 18 in Ref. [69])

LSUGRA ⊃ −δi|̄χ̄ |̄PRγ
μ

�
∂μ −

1

4
½∂μτ∂τK − ∂μτ̄∂ τ̄K�

�
χi

−
1

2
δi|̄χ̄

|̄PRγ
μΓi

kτ∂μτχ
k −

1

2
δi|̄χ̄

iPLγ
μΓ|̄

k̄ τ̄
∂μτ̄χ

k̄:

ð2:37Þ

We find that the Kähler potential KðτÞ ¼ − log ½−iðτ − τ̄Þ�
leads precisely to the coupling involving ∂μReðτÞ=ImðτÞ
that is given in Eq. (2.36), via the two terms in square
brackets above. In particular, the prefactor of this term
relative to the kinetic term also agrees with the generic
supergravity result. This means that the mixed Christoffel
symbols Γi

jτ have to vanish, which is indeed the case for
appropriately chosen Kähler potentials, like the one given
in Eq. (2.7) that couples the scalars in the chiral multiplets
only to T and not to τ.
The couplings of τ and λ can be likewise read off from

the general supergravity action. Recall that the gauge
kinetic function for a D3-brane is fðτÞ ¼ −iτ. The kinetic
term for the gaugino is normalized so that its prefactor is

ReðfÞ ¼ ImðτÞ ¼ e−ϕ, so we have to rescale λ ¼ e−
ϕ
2λ0, but

this does not lead to new derivative terms since λ̄γμλ ¼ 0
for Majorana spinors in four dimensions. The standard
supergravity action for λ0 then contains terms of the form
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LSUGRA ⊃ −
1

2
ReðfÞλ̄0γμ

�
∂μ þ

1

4
ð∂μτ∂τK − ∂μτ̄∂ τ̄KÞγ�

�
λ0 þ i

4
∂μImðfÞλ̄0γ�γμλ0: ð2:38Þ

These combine correctly to give the coupling of λ to ∂μReðτÞ=ImðτÞ that is given in Eq. (2.36).
We now proceed and look at the coupling to ∂μReðTÞ by performing a similar analysis. For the χi that are in chiral

multiplets, these couplings arise again from the standard supergravity terms,

LSUGRA ⊃ −δi|̄χ̄ |̄PRγ
μ

�
∂μ −

1

4
½∂μT∂TK − ∂μT̄∂ T̄K�

�
χi

−
1

2
δi|̄χ̄

|̄PRγ
μΓi

kT∂μTχk −
1

2
δi|̄χ̄

iPLγ
μΓ|̄

k̄ T̄
∂μT̄χ k̄: ð2:39Þ

This time, however, the Christoffel symbols are not vanishing. Indeed, we find for the Kähler potential in Eq. (2.7) that
Γi
jT ≈ i

2ImðTÞ in the large-volume limit, where we neglect terms involving kðH; H̄Þ compared to ImðTÞ. These Christoffel

symbols are then combined with the terms involving partial derivatives of the Kähler potential K to again give the terms in
the component action (2.36) with the correct coefficient.
Since for the gauginos λ there is no contribution involving the Christoffel symbols, the standard supergravity action has

terms, written using λ0 ¼ e
ϕ
2λ, that are simply

LSUGRA ⊃ −
1

2
ReðfÞλ̄0γμ

�
∂μ þ

1

4
ð∂μT∂TK − ∂μT̄∂ T̄KÞγ�

�
λ0: ð2:40Þ

Again, they match the component action (2.36) and the very absence of the Christoffel terms for λ compared to χi explains
the different prefactor for the corresponding terms.
Last and most interestingly, we look at the terms involving the complex structure moduli UA. The two terms in the spin

connection in Eq. (2.22) are independent, since one is proportional to ∂μUA and the other to ∂μŪA. Following a reasoning
similar to that of the previous subsection, this means that these terms have to be both proportional to δi{̄. Therefore, using the
fact that ∂μðeiueu{̄Þ ¼ 0, we can rewrite

∂UAeiu ¼ −eivð∂UAev{̄Þeu{̄ ¼ −
1

3
ejvð∂UAev|̄Þδj|̄δi{̄eu{̄ ¼ −

1

3
ejvð∂UAev|̄Þδj|̄eiu; ð2:41Þ

where u, v;… ¼ 1, 2, 3 are curved warped indices. This expression can be rephrased in terms of the holomorphic (3,0)-
form Ω on the Calabi-Yau manifold by using the fact that

∂UAΩ ¼ 1

3! · 3!
∂UAðeiuejvekwϵijkdzu ∧ dzv ∧ dzwÞ

¼ 3

3! · 3!
ð∂UAeiuÞejvekwϵijkdzu ∧ dzv ∧ dzw

¼ −
1

3! · 3!
eltð∂UAet|̄Þδl|̄eiuejvekwϵijkdzu ∧ dzv ∧ dzw

¼ −ejvð∂UAev|̄Þδj|̄Ω: ð2:42Þ

On the other hand, we can expand Ω on a cohomology basis, namely, Ω ¼ ZKαK − FKβ
K, where ZK and FK are functions

of the UA, while the αK and βK are a basis for the 3-forms with the only nonvanishing integrals
R
αK ∧ βL ¼ δLK. In

particular, it follows from Eq. (2.42) that

∂UAZK ¼ −ejvð∂UAev|̄Þδj|̄ZK; ∂UAFK ¼ −ejvð∂UAev|̄Þδj|̄FK: ð2:43Þ

Now we introduce the Kähler potential for the complex structure moduli,

KðUÞ ¼ − log

�
−i

Z
Ω ∧ Ω̄

�
¼ − log ½iðZKF̄K − Z̄KFKÞ�; ð2:44Þ
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and we can use this to eventually find

ωi{̄
μδi{̄ ¼ δi{̄ðeāið∂ŪAe{̄āÞ∂μŪA − ea{̄ð∂UAeiaÞ∂μUAÞ

¼ ∂UAKðUÞ∂μUA − ∂ŪAKðUÞ∂μŪA: ð2:45Þ

With this result at our disposal, we can again match the
component action for the D3-brane with the standard
supergravity expression. It is essential to notice that in

the component action (2.36) the couplings of λ and χi to
∂μReðTÞ and ∂μReðUAÞ (via the spin connection term)
have the same numerical coefficient. As a consequence, the
complex structure sector and the Kähler sector have to
couple to the chiral multiplets on the D3-brane in the same
way. This observation leads us to propose the Kähler
potential

K ¼ − log ½−iðτ − τ̄Þ� − 3 log

�
−iðT − T̄Þ

�
−i

Z
Ω ∧ Ω̄

�1
3 þ kðH; H̄Þ

�

¼ − log ½−iðτ − τ̄Þ� − log

�
−i

Z
Ω ∧ Ω̄

�
− 3 log

�
−iðT − T̄Þ þ kðH; H̄Þ

ð−i R Ω ∧ Ω̄Þ13
�
; ð2:46Þ

which indeed produces the couplings to ∂μImðτÞ and ∂μImðTÞ as discussed above. In addition, it gives the correct coupling
to χi via the standard supergravity terms,

LSUGRA ⊃ −δi|̄χ̄ |̄PRγ
μ

�
∂μ −

1

4
½∂μUA∂UAK − ∂μŪA∂ŪAK�

�
χi

−
1

2
δi|̄χ̄

|̄PRγ
μΓi

kUA∂μUAχk −
1

2
δi|̄χ̄

iPLγ
μΓ|̄

k̄ŪA∂μŪAχk̄; ð2:47Þ

if we again drop terms involving kðH; H̄Þ and its derivatives, while the couplings to λ0 can be obtained from

LSUGRA ⊃ −
1

2
ReðfÞλ̄0γμ

�
∂μ þ

1

4
ð∂μUA∂UAK − ∂μŪA∂ŪAKÞγ�

�
λ0: ð2:48Þ

To conclude, notice that the maybe naively expected Kähler potential

K ¼ − log ½−iðτ − τ̄Þ� − log
�
−i

Z
Ω ∧ Ω̄

�
− 3 log ½−iðT − T̄Þ þ kðH; H̄Þ� ð2:49Þ

does not seem to reproduce the component action for the
supersymmetric D3-brane. Instead, we need to use the
Kähler potential given above in Eq. (2.46), which couples
the world-volume scalars Ha to the complex structure
moduli UA. Finally, in order to still reproduce the kinetic
term for the Ha, kðH; H̄Þ now needs to be chosen such that
∂Ha∂H̄b̄kðH; H̄Þ ≈ 1

6
e
4
3
ðAþuÞð−i R Ω ∧ Ω̄Þ13gab̄.

This concludes our analysis of the (anti-)D3-brane action
from the string theory perspective. In Sec. IV we will show
how to obtain the anti-D3-brane action in Eq. (2.35) from
N ¼ 1 supergravity in four dimensions. For this purpose,
nonlinear (local) supersymmetry will be employed in the
language of constrained multiplets. We review the neces-
sary ingredients in the following section.

III. CONSTRAINED MULTIPLETS IN
SUPERGRAVITY

In this section we review some ingredients of nonlinear
realizations and constrained multiplets in supergravity.

We focus on a particular set of constraints that we are
going to employ in order to describe the anti-D3-
brane action [21,22]. It is important to keep in mind,
however, that the choice of the required constraints in
general is not unique, and different possibilities can
occur. See, e.g., Refs. [23,27] for a discussion about
this fact.
We use the conventions of Ref. [69], where 4D fermions

are described by four-component Majorana spinors. In
Appendix A 1, the relevant formulas are also given in the
flat superspace language, following the conventions
of Ref. [70].

A. The Goldstino in a flat background

When supersymmetry is spontaneously broken a
Goldstino is present in the spectrum and transforms non-
homogeneously under supersymmetry transformations.
A minimal action describing the Goldstino was proposed
by Volkov and Akulov [39] and it is of the type
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SVA ¼ −M4

Z
E0 ∧ E1 ∧ E2 ∧ E3; with Eμ ¼ dxμ þ λ̄γμdλ; ð3:1Þ

where λ is the spin-1=2 Goldstino and M is a parameter
of mass-dimension one, related to the supersymmetry-
breaking scale. This action is invariant under the nonlinear
transformation (M ¼ 1)

δϵλ ¼ ϵþ ðλ̄γμϵÞ∂μλ; ð3:2Þ

which closes onto the N ¼ 1 supersymmetry algebra.
We now briefly discuss how to reformulate the Volkov-

Akulov model in a language in which supersymmetry
becomes manifest. When dealing with supersymmetric
theories, it is convenient to embed fields into multi-
plets or superfields. A simple choice consists in identi-
fying the Goldstino with the fermion PLΩ of a chiral
multiplet,9

X ¼ fX;PLΩ; Fg: ð3:3Þ

This multiplet, however, also contains a scalar X which is
not present in the Volkov-Akulov model (3.1). It is possible
to eliminate this scalar in a supersymmetric way by
imposing an additional constraint on the multiplet. If we
require X to be nilpotent [71–74], then the scalar in the
lowest component becomes a function of the Goldstino and
the auxiliary field F:

X2 ¼ 0 ⇔ X ¼
�
Ω̄PLΩ
2F

;PLΩ; F
�
: ð3:4Þ

An invariant action for this nilpotent chiral multiplet is
given by

S ¼ ½XX̄�D þM2½X�F
¼

Z
d4x

�
−Ω̄PL=∂Ωþ Ω̄PLΩ

2F
□
Ω̄PRΩ
2F̄

þ FF̄ þM2ðF þ F̄Þ
�
: ð3:5Þ

Notice that the equations of motion of the auxiliary fields are modified with respect to the case in which supersymmetry is
linearly realized, since the sgoldstino is replaced by a composite expression containing F. This is a general feature of
models with nonlinearly realized supersymmetry and therefore attention has to be paid when going on shell. The equation of
motion for the auxiliary field gives indeed

F ¼ −M2 −
1

4M6
Ω̄PRΩ□ðΩ̄PLΩÞ þ

3

16M14
ðΩ̄PRΩÞðΩ̄PLΩÞ□ðΩ̄PRΩÞ□ðΩ̄PLΩÞ; ð3:6Þ

and the on-shell action is

S ¼
Z

d4x

�
−M4 − Ω̄PL=∂Ωþ 1

4M4
Ω̄PLΩ□ðΩ̄PRΩÞ −

1

16M12
ðΩ̄PRΩÞðΩ̄PLΩÞ□ðΩ̄PRΩÞ□ðΩ̄PLΩÞ

�
: ð3:7Þ

By means of a field redefinition between λ and PLΩ, one
can prove that this action is equivalent to the Volkov-
Akulov model [75].

B. Coupling the Goldstino to gravity

Superconformal methods are very convenient when
constructing supergravity actions. The strategy on which
they rely consists in taking advantage of the full super-
conformal symmetry to fix all of the allowed interactions.
This symmetry is then partially broken in order to

obtain Poincaré supergravity. With such a procedure it is
possible to avoid field redefinitions, that might be needed to
go to the Einstein frame when using other methods. Hence,
in the present work we adopt the superconformal approach
to supergravity, following the conventions of Ref. [69].
The superconformal action we are going to consider is of

the type

S ¼ ½−3X0X̄0e−KðX;X̄Þ=3�D þ ½ðX0Þ3WðXÞ�F
þ ½fABðXÞΛ̄APLΛB�F; ð3:8Þ

where fXIg, I ¼ 0;…; n is a set of chiral multiplets where
X0 is the compensator, ΛA, A ¼ 1;…nv is a set of vector

9We denote multiplets on which supersymmetry acts linearly
with the same letter as their lowest components.
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multiplets, K is the Kähler potential, W is the super-
potential, and fAB is the gauge kinetic function. The
compensator has Weyl weight 1, while the other chiral
multiplets have Weyl weight 0. In order to obtain Poincaré
supergravity one has to fix X0 ¼ κ−1e

K
6 , which introduces

the Planck scale into the theory.
A minimal model in which the Goldstino is coupled to

gravity is given by

K ¼ XX̄; W ¼ W0 þM2X; ð3:9Þ

where X is the nilpotent Goldstino multiplet introduced
before. In the case in which there are no vector multiplets,
the action (3.8) reduces to

S ¼ ½−3X0X̄0 þ X0X̄0XX̄�D
þ ½ðX0Þ3ðW0 þM2XÞ�F; X2 ¼ 0: ð3:10Þ

This is the generalization of Eq. (3.5) to local supersym-
metry and it has been studied in Refs. [76–80]. The model
is sometimes called (pure) de Sitter supergravity because
the only propagating modes are the graviton and the
gravitino, the Goldstino being a pure gauge d.o.f. In
addition, for certain values of the parameters in the scalar
potential, the cosmological constant is positive. We stress
again that, when calculating the component form of

Eq. (3.10), it is important to substitute X ¼ Ω̄PLΩ
2F before

going on shell, since this will contribute to the equations of
motion of the auxiliary fields.

C. Other constrained multiplets

A general procedure to constrain supersymmetric mul-
tiplets and remove any desired component has been given
in Ref. [81]. In the following, besides the nilpotent
Goldstino multiplet X, we are going to use other types
of constrained multiplets, which we briefly review here.
Notice that it is possible to implement them dynamically at
the Lagrangian level, by means of a Lagrange multiplier
[82]. In this way supersymmetry remains linear off shell.

1. Constrained chiral multiplets Yi

Given a set of chiral multiplets Yi ¼ fYi; PLΩi; Fig, by
imposing the constraints [83,84]

X2 ¼ 0; XYi ¼ 0 ð3:11Þ

the scalar fields in the lowest components of X and Yi are
removed and expressed as

X ¼ Ω̄PLΩ
2F

; Yi ¼ Ω̄iPLΩ
F

−
Ω̄PLΩ
2F2

Fi: ð3:12Þ

Therefore, these multiplets only contain fermions
as propagating d.o.f. They have been used in

Refs. [21,22] to describe the world-volume spinors of an
anti-D3-brane.

2. Constrained chiral multiplets Ha

Given another set of chiral multiplets Ha ¼ fHa;
PLΩa; Fag, by imposing the constraints [74]

X2 ¼ 0; XH̄a ¼ chiral ð3:13Þ

the fermion and the auxiliary field in Ha are removed and
expressed as

PLΩa ¼ =DHa

F̄
PRΩ; ð3:14Þ

Fa ¼ Dμ

�
Ω̄
F̄

�
γνγμ

�
PRΩ
F̄

�
DνHa þ Ω̄PRΩ

2F̄2
□Ha: ð3:15Þ

Therefore, the chiral multiplets Ha only contain a complex
scalar as an independent component field. Notice that, due
to this fact, a superpotential of the type W ¼ WðHÞ does
not lead to mass terms for the scalars Ha, but to fermionic
terms containing Goldstino interactions.

3. Constrained chiral field strength multiplet PLΛα

The field strength chiral multiplet that has the gaugino as
its lowest component is

PLΛα ¼ fPLΛα; ðPLχÞβα; FΛ
α g; ð3:16Þ

where

ðPLχÞβα¼
ffiffiffi
2

p �
−
1

4
ðPLγ

abCÞβαF̂abþ
i
2
DðPLCÞβα

�
; ð3:17Þ

FΛ
α ¼ ð=DPRΛÞα; ð3:18Þ

and where we have explicitly written the spinorial indices
to avoid confusion. Cαβ, which satisfies CT ¼ −C, is the
matrix used to raise and lower fermionic indices, while
F̂ab ¼ eμaeνbð2∂ ½μAν� þ ψ̄ ½μγν�λÞ is the covariant vector field
strength and D is the real auxiliary field. This multiplet is
the analog of the superfield strength Wα ¼ − 1

4
D̄2DαV

defined in superspace, which indeed is chiral and has the
gaugino in the lowest component.
The gaugino can be eliminated by imposing the

constraint

XPLΛα ¼ 0; ð3:19Þ

which gives
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PLΛα ¼
1

F
ðΩ̄PLχÞα −

X
F
=Dα

β

�ðΩ̄PRχÞβ
F̄

�

þ X
F
=Dα

β

�
X̄
F̄
=Dβ

γ

�ðΩ̄PLχÞγ
F

��

−
XX̄
F2F̄2

ð=D=DXÞαβðγμÞβδðDμΩ̄PRχÞδ; ð3:20Þ

where X ¼ Ω̄PLΩ
2F and ðΩ̄PLχÞα ¼ ΩβðPLÞβγχγα. Therefore,

the constrained multiplet PLΛα describes only an Abelian
gauge vector as an independent propagating d.o.f. The
superspace constraint corresponding to Eq. (3.19) is
XWα ¼ 0.

IV. CONSTRUCTING A SUPERGRAVITY ACTION
FOR THE ANTI-D3-BRANE

In this section we recast the anti-D3-brane action (2.35)
in the language of N ¼ 1 supergravity in four dimensions.
The rewriting of the fermionic action coupled to the closed-
string moduli was done already in Ref. [27] [see, e.g., their
Eqs. (3.51) and (3.52)].10 Here, we extend this result by
also considering the bosonic part, together with the terms
that mix world-volume bosons and fermions, and the sector
containing the U(1) gauge vector.
The logic consists in embedding each of the world-

volume fields into one of the constrained multiplets
presented in Sec. III. In this way we will be able to use
the standard language of supergravity—namely, to write
down a Kähler potential, a superpotential, and a gauge
kinetic function—but at the same time the nonlinear
realization of supersymmetry will be manifest. The very
fact that it is possible to use nonlinear supersymmetry to
rewrite the anti-D3-brane action confirms that the antibrane
spontaneously breaks supersymmetry.
Note that branes break supersymmetry generically at the

string scale. In our case, the anti-D3-brane sits at the bottom
of a warped throat and therefore the string scale is warped
down compared to the bulk string scale. A recent discussion
of these scales can be found, e.g., in Ref. [44]. The warped-
down string scale, in our conventions with ls ¼
2π

ffiffiffiffi
α0

p
¼ 1, is given by the first term in Eq. (2.35):

M4
s ¼ 2e4A−8u. This sets the supersymmetry-breaking

scale, as can be seen by looking, e.g., at Eqs. (3.6) and
(3.7) above. One expects that at this scale linear super-
symmetry will be restored, and indeed massive open-string
states arise as new d.o.f. The particular Klebanov-Strassler
throat geometry [62], which has been intensively studied in
the KKLT context, has a three-sphere at the bottom of the
warped throat. Anti-D3-branes at the bottom of the throat

can then decay via the nucleation of an NS5-brane that is
wrapping an S2 inside the S3 [5]. Such a decay leads to a
supersymmetric state and one can actually write down a
supergravity theory with linear supersymmetry by includ-
ing the infinite tower of Kaluza-Klein (KK) modes asso-
ciated with the S3 [31]. Therefore, in this particular case
one finds that new states come in already below the
supersymmetry-breaking scale and lead to a restoration
of linear supersymmetry. Having the supersymmetry-
breaking scale at the warped-down string scale, which is
above the warped-down KK scale at which the four-
dimensional effective field theory breaks down, might
seem worrisome. However, the hallmark of a supergravity
theory is the presence of a gravitino and the mass of the
gravitino in the KKLT scenario can be well below the KK
scale. Thus, a description in terms of a four-dimensional
N ¼ 1 theory is appropriate.

A. Goldstino and matter component fields

We start by considering the couplings involving scalars
and fermions, while we will focus on the gauge vector in
Sec. IV B. In particular, we generate the mass terms for the
fermions with a different mechanism with respect to
Ref. [27] and we show how to also include the anti-D3-
brane world-volume scalars Ha in the supergravity action.
An alternative way of producing a fermionic mass term is
presented in Sec. IV C.
The first step is to embed the Goldstino λ and the triplet

of fermions χi into, respectively, a chiral multiplet X and a
triplet of chiral multiplets Yi satisfying the constraints
(3.11). The kinetic terms of the spin-1=2 fields in Eq. (2.35)
can then be generated from the following Kähler potential,
in which the bulk moduli are coupled to world-volume
fermions [27]:

K ¼ − logð−iðτ − τ̄ÞÞ − 3 log ½ð−iðT − T̄ÞÞfðUA; ŪAÞ13�

− 3 log

�
1 −

e−4AXX̄
3ð−iðτ − τ̄ÞÞð−iðT − T̄ÞÞfðUA; ŪAÞ

−
e−4Aδi|̄YiȲ|̄

3ð−iðτ − τ̄ÞÞð−iðT − T̄ÞÞ2fðUA; ŪAÞ13
�
: ð4:1Þ

From now on we use fðUA; ŪAÞ ¼ −i
R
Ω ∧ Ω̄ to avoid

confusion between the holomorphic (3,0)-form and the
fermions Ω, Ωi. The couplings of X and Yi to the bulk
moduli are fixed as follows. The coupling to τ is determined
by requiring modular invariance for the world-volume
action (see Sec. VA below for details). For what concerns
the other moduli, the couplings to X are fixed by matching
with the scalar potential in Eq. (2.35), while those to Yi are
fixed by matching with the Kähler covariant kinetic
terms of the massive spin-1=2 world-volume spinors
(cf. Sec. II C). In particular, the fermions Ωi inside Yi

are related to χi by the field redefinitions

10We thank Flavio Tonioni and the authors of Ref. [27] for
alerting us to a problem with their mass term for the fermions. We
will rectify this and present below two different ways of writing
the fermionic mass term.
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PLΩi ¼ 2ie4A−ϕ
2fðUA; ŪAÞ16PLχ

i þ…; ð4:2Þ

where dots stand for higher-order terms. Notice that we are
not matching the supergravity expression with the kinetic
term of λ in Eq. (2.35) since, due to the fact that such a
fermion is a Goldstino, its couplings are not physical and
they can be set to zero by going to the unitary gauge. For
what follows, it is sufficient to keep in mind that, in our
supergravity description, the Goldstino resides in the
multiplet X, namely, PLΩ ∼ PLλþ � � �, where dots stand
for higher-order terms. We stress that the presence of the
Goldstino is an essential feature of the anti-D3-brane and a
similar reasoning cannot be repeated in the case of the
D3-brane.
The superpotential that sources the supersymmetry

breaking and gives rise to the anti-D3-brane uplift term is

W ¼ WGVW þWnp þM2X; ð4:3Þ

where M2 ¼ ffiffiffi
2

p
. The parameter M is related to the

supersymmetry-breaking scale, which is the warped-down
string scale. By rescaling X we have included the warp

factor in the Kähler potential and we have set the anti-D3-
brane tension to TD3 ¼ 2π ¼ M4π. The very form of the
superpotential (4.3) implies that supersymmetry is sponta-
neously broken by the auxiliary field of X and therefore it is
consistent to identify the Goldstino λ with the fermion Ω
inside X, at leading order.
The Kähler potential and superpotential presented so far

correctly reproduce the kinetic terms for the fermions and
the scalar potential in Eq. (2.35). On the other hand, at this
stage the fermions are massless in the supergravity theory,
since none of the couplings we introduced produce a mass
term for them. In order to give a mass to the fermion triplet,
it was proposed in Refs. [21,27] to add a contribution
Wm ¼ hijYiYj to the superpotential. However, when the
axiodilaton is dynamical and not integrated out, then such a
mass term would require hij ∝ Ḡ3 to be antiholomorphic in
τ, which seems incompatible with supersymmetry. Instead
of adding a term to the superpotential, one can therefore
follow a different strategy and modify the Kähler potential.
The required modification of K given in Eq. (4.1) and that
generates the desired fermionic mass term is

K ¼ − logð−iðτ − τ̄ÞÞ − 3 log ½ð−iðT − T̄ÞÞfðUA; ŪAÞ13�

− 3 log

�
1 −

e−4AXX̄
3ð−iðτ − τ̄ÞÞð−iðT − T̄ÞÞfðUA; ŪAÞ −

e−4Aδi|̄YiȲ|̄

3ð−iðτ − τ̄ÞÞð−iðT − T̄ÞÞ2fðUA; ŪAÞ13

þ e−8AðmijX̄YiYj þ m̄{̄ |̄XȲ{̄Ȳ|̄Þ
6M2ð−iðτ − τ̄ÞÞ32ð−iðT − T̄ÞÞ32fðUA; ŪAÞ56

�
; ð4:4Þ

wheremij is given in Eq. (2.33) above. As we discuss more
extensively in Sec. VA, this modification of the Kähler
potential does not spoil the modular invariance of the
supergravity action. In Sec. IV C we present an alternative
mechanism, in which the mass to the fermion triplet is
given by a superpotential term. However, such a construc-
tion requires some technical explanation in order to be
presented properly and this is the reason why we postpone
it for the time being.
Now we present how to introduce the dependence on the

world-volume scalars Ha parametrizing small fluctuations
around the position of the anti-D3-brane in the warped
throat. The kinetic term of Ha arises from the DBI action,
which is the same for D3-branes and anti-D3-branes. It is

known to be well described by the Kähler potential in
Eq. (2.7) in the case of fixed complex structure moduli and
we have shown that it should be modified as in Eq. (2.46)
when the complex structure and axiodilaton are dynamical.
We can now consider a simple prescription to generalize the
supergravity Kähler potential (4.4). We first embed the
scalar fields into the constrained multiplets Ha introduced
in Sec. III C 2, that contain only a scalar in the lowest
component as an independent d.o.f. Then we let A depend
generically onHa andwe formally shift the volumemodulus
as −iðT− T̄Þ→−iðT− T̄ÞþkðHa;H̄aÞ=fðUA;ŪAÞ13¼e4u to
match the results. As a result, we get the following Kähler
potential of N ¼ 1 supergravity in four dimensions:

K ¼ − logð−iðτ− τ̄ÞÞ− 3 log ½ð−iðT − T̄ÞÞfðUA; ŪAÞ13 þ kðHa; H̄aÞ�

− 3 log

�
1−

e−4AðHa;H̄aÞ−4u

3ð−iðτ− τ̄ÞÞfðUA; ŪAÞXX̄ −
e−4AðHa;H̄aÞ−8u

3ð−iðτ− τ̄ÞÞfðUA; ŪAÞ13 δi|̄Y
iȲ|̄ þ e−8AðHa;H̄aÞ−6uðmijX̄YiYj þ m̄{̄ |̄XȲ{̄Ȳ|̄Þ

6M2ð−iðτ− τ̄ÞÞ32fðUA; ŪAÞ56
�
:

ð4:5Þ
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As a consequence of this last step, the superpotential Wnp
also gets a dependence on the scalars Ha. However, as we
explained previously, the net result of this additional
dependence would be to produce corrections which are
highly suppressed in the regime we are considering. For all
of the purposes of the present work, we can therefore
neglect the dependence ofWnp onHa and keep considering
Eq. (4.3) as the expression for the superpotential.
Having identified the Kähler potential and the super-

potential, we can use the rules of N ¼ 1 supergravity to
calculate the scalar potential. The result is of the form

V ¼ VKKLT þ VD3; ð4:6Þ

where VKKLT contains the contributions from the super-
gravity bulk fields, while VD3 is the uplift term coming
from the anti-D3-brane,

VD3 ¼
M4e4AðHa;H̄aÞ

ð−iðT − T̄Þ þ kðHa; H̄aÞfðUA; ŪAÞ−1
3Þ2

¼ 2e4AðHa;H̄aÞ−8u; ð4:7Þ

which reproduces Eq. (2.12), as desired. We recall that to
calculate the scalar potential with the constrained multiplets

X and Yi, it is sufficient to perform the calculation in the
usual manner and then set X ¼ Yi ¼ 0 in the final result.

B. Gauge vector field and theta term

We now focus on the part of the action containing the
world-volume gauge vector field. As we mentioned in
Sec. II A, the kinetic term originating from the DBI action
is the same as that of the D3-brane vector, whereas the CS
term has the opposite sign due to the difference in the RR
charge. As a consequence of this sign flip, it seems that the
gauge kinetic function needs to depend on an antichiral
multiplet, f̄ ¼ f̄ðτ̄Þ, and this would be an obstruction to
rephrasing the antibrane vector field into an N ¼ 1 super-
symmetric language. However, as we are going to show,
the fact that supersymmetry is spontaneously broken and
nonlinearly realized allows us to also correctly embed the
CS term. In this subsection, therefore, we show explicitly
how to describe such a CS term with the appropriate sign
for the anti-D3-brane case.
As a first step, we embed the world-volume vector field

into a chiral field strength multiplet PLΛα and we constrain
it as in Eq. (3.19). As explained before, this constraint
removes the gaugino, leaving only the U(1) vector as the
independent physical d.o.f. If we then consider the standard
supergravity action for the vector multiplet [69],11

−
1

4
½fðτÞΛ̄PLΛ�F ¼

Z
d4x

ffiffiffiffiffiffiffiffi
−g4

p �
−
ReðfÞ
4

FμνFμν þ ImðfÞ
8

ϵμνρσffiffiffiffiffiffiffiffi−g4
p FμνFρσþ

ReðfÞ
2

D2 þ…

�
; ð4:8Þ

with fðτÞ ¼ −iτ and where the dots stand for fermionic
terms, we notice that the term proportional to ImðfÞ ¼
−ReðτÞ has the opposite sign compared to Eq. (2.35). We
would therefore like to flip this sign by subtracting from the
action twice the same contribution. In order to perform this
step in a supersymmetric way, we construct a deformation
of the action which is similar in spirit to the recently
proposed new Fayet-Iliopoulos D-terms in supergravity
[28,32,85–90]. In Ref. [28] it was shown how to deform
Eq. (4.8) and introduce a coupling linear in the auxiliary
field D, without spoiling the gauge invariance and without
requiring the gauging of the R symmetry, which is needed
for the standard Fayet-Iliopoulos D-term. This new cou-
pling shifts the vacuum expectation value of D and, as a
consequence, supersymmetry is spontaneously broken by a
D-term. In the same spirit, we would like to introduce
a coupling − 1

4
ImðfÞϵμνρσFμνFρσ, together with all of the

additional interactions required by supersymmetry, in order
to flip the sign in the theta term in Eq. (4.8). In the
following we directly give the expression of such a

deformation, but more details about its derivation and
new D-terms in general are given in Appendix B.
Given a constrained field strength multiplet PLΛα,

in order to reproduce the vector multiplet interactions
of Eq. (2.35), we propose the following supergravity
action:

SV ¼−
1

4
½fðτÞΛ̄PLΛ�F

þ
�

XX̄ðX0X̄0e−
K
3Þ3

ΣðX̄0e−
K
6 X̄ÞΣ̄ðX0e−

K
6XÞImðfÞImðΣðω̄2ÞÞ

�
D
; ð4:9Þ

where we defined the multiplets

ω2 ¼ Λ̄PLΛ
ðX0X̄0e−

K
3Þ2 ; ω̄2 ¼ Λ̄PRΛ

ðX0X̄0e−
K
3Þ2 ; ð4:10Þ

and where (Σ̄)Σ is the (anti)chiral projector in the super-
conformal setup. We always assume that X is nilpotent.
This action is made up of the standard kinetic coupling for
the vector multiplet (4.8) and a second, novel term, whose
origin is presented in Appendix B. The property of this
coupling that is important for the present discussion is that

11In Ref. [69] the overall factor − 1
4
was understood, but we

prefer to keep it explicit for convenience.
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its component expansion starts precisely with the desired
theta term,

Sθ-term ¼
�

XX̄ðX0X̄0e−
K
3Þ3

ΣðX̄0e−
K
6 X̄ÞΣ̄ðX0e−

K
6XÞ ImðfÞImðΣðω̄2ÞÞ

�
D

¼ −
1

4

Z
d4xImðfÞϵμνρσFμνFρσ þ…; ð4:11Þ

where the dots stand for fermionic terms. After fixing the
superconformal symmetry with X0 ¼ κ−1e

K
6 , the bosonic

sector of Eq. (4.9) reduces to the desired result (κ ¼ 1)

SV;bos ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−g4

p �
−
1

4
ImðτÞFμνFμν

þ 1

8
ReðτÞ ϵμνρσffiffiffiffiffiffiffiffi−g4

p FμνFρσ

�
; ð4:12Þ

where we used fðτÞ ¼ −iτ and we integrated out the
auxiliary field D. In particular, the sign of the theta term
has been flipped since the contribution coming from the
second term in Eq. (4.9) is minus twice that arising from the
first term.
A few comments are in order at this point. We find that

Eq. (4.9) correctly realizes the bosonic part of the world-
volume vector action (2.11). It is worth noting that the
second term in Eq. (4.9), which is essential in order to
realize the correct CS term, can be consistently introduced
only if the auxiliary field F of X is nonvanishing. This
condition is always satisfied within our setup, since the
anti-D3-brane breaks supersymmetry spontaneously and
the fermion in X provides the Goldstino. Notice also that
the coupling (4.11) contains terms quadratic (and also of
higher order) in the fermions in its component expansion,
which might jeopardize the matching of the anti-D3-brane
action with our supergravity proposal. However, due to the
nonlinear realization of supersymmetry, the fermionic
terms will be functions of the Goldstino and vanish
identically in the unitary gauge. Therefore, even if
differences might be present in the fermionic couplings
between the anti-D3-brane action and the supergravity one,
these differences are not physical and can be removed by an
appropriate gauge choice. We stress that this is true as long
as the fermion in X is completely aligned with the
Goldstino.
By exploiting the properties of the operator Σ and the

constraints (3.4) and (3.19), it is possible to recast the
action (4.9) into a more suggestive form. Notice first
that

½fðτÞΛ̄PLΛ�F ¼
�
ΣðX̄0e−

K
6 X̄fðτÞÞ

ΣðX̄0e−
K
6 X̄Þ Λ̄PLΛ

�
F

¼
�
Σ
�
X̄0e−

K
6 X̄fðτÞ

ΣðX̄0e−
K
6 X̄Þ

�
Λ̄PLΛ

�
F

; ð4:13Þ

where we used the fact that ΣðABÞ ¼ AΣðBÞ if A is chiral
and B has weights ðw;w − 2Þ, as proved in Ref. [82]. Then,
since PLΛα is constrained, we have

Sθ−term ¼
�

XX̄ðX0X̄0e−
K
3Þ3

ΣðX̄0e−
K
6 X̄ÞΣ̄ðX0e−

K
6XÞ ImðfÞImðΣðω̄2ÞÞ

�
D

¼
�
i
2

X̄0e−
K
6 X̄

Σ̄ðX0e−
K
6XÞ ImðfÞΛ̄PLΛþ c:c:

�
D

¼
�
i
2
Σ
�

X̄0e−
K
6 X̄

Σ̄ðX0e−
K
6XÞ ImðfÞ

�
Λ̄PLΛ

�
F

; ð4:14Þ

where in going from the second to the third line we used the
fact that ½C�D ¼ 1

2
½ΣðCÞ�F, another property stated, e.g., in

Ref. [82]. Using these results, the two terms in Eq. (4.9) can
be put together and the vector multiplet action acquires the
more familiar form

SV ¼ −
1

4

�
Σ
�
X̄0e−

K
6 X̄ f̄ðτ̄Þ

ΣðX̄0e−
K
6 X̄Þ

�
Λ̄PLΛ

�
F

≡ −
1

4
½f̂D3ðτ̄; X̄ÞΛ̄PLΛ�F; ð4:15Þ

with f̄ ¼ ReðfÞ − iImðfÞ and where we defined the
composite (or generalized) anti-D3-brane gauge kinetic
function

f̂D3 ¼ Σ
�ðX̄0e−

K
6 X̄Þf̄ðτ̄Þ

ΣðX̄0e−
K
6 X̄Þ

�
: ð4:16Þ

This is a chiral multiplet that is antiholomorphic in τ. It is
important to notice that f̂D3 contains Goldstino inter-
actions, which implement the nonlinear realization of
supersymmetry and are essential in order to consistently
couple the vector multiplet to τ̄. The lowest component of
f̂D3 is given by

f̂D3 ¼ f̄ðτ̄Þ þ fermions ð4:17Þ

and the fermionic terms vanish identically in the unitary
gauge in which the Goldstino is set to zero. Indeed, one can
equally think of f̂D3 as a chiral multiplet that satisfies the
additional constraint

XX̄f̂D3 ¼ XX̄ f̄ðτ̄Þ: ð4:18Þ

C. Superpotential mass for the triplet of fermions

In the previous section we have seen how nonlinear
supersymmetry allows us to consistently couple f̄ðτ̄Þ ¼ iτ̄
to the vector field, using a manifestly supersymmetric
language. This strategy is indeed general and can also be
employed to describe the mass term of the fermion triplet.
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In fact, we recall that the obstruction to producing such a
term from the superpotential was that, in the case of the
anti-D3-brane, it depends on τ̄ instead of τ.
Inspired by the composite anti-D3-brane gauge kinetic

function f̂D3 introduced before, we define the chiral
multiplet

M̂ij ¼ Σ
� ðX̄0e−

K
6 X̄Þe−4A−2umij

ΣðX̄0e−
K
6 X̄Þð−iðτ − τ̄ÞÞ12fðUA; ŪAÞ−1

6

�
; ð4:19Þ

where mij is the fermion mass given in Eq. (2.32). The
lowest component of this multiplet is

M̂ij ¼
e−4A−2u

ð−iðτ − τ̄ÞÞ12fðUA; ŪAÞ−1
6

mij þ fermions ð4:20Þ

and the fermionic terms vanish in the unitary gauge.
Indeed, M̂ij satisfies the constraint

XX̄M̂ij ¼ XX̄

�
e−4A−2umij

ð−iðτ − τ̄ÞÞ12fðUA; ŪAÞ−1
6

�
: ð4:21Þ

A mass for the fermions in Yi can then be produced by a
superpotential holomorphic in M̂ij and Yi of the type

WmðM̂; YÞ ¼ 1

2
M̂ijYiYj: ð4:22Þ

We stress that this type of constructions, namely, f̂D3 and
M̂ij, can be consistently defined only in a setup in which

supersymmetry is spontaneously broken and the auxiliary
field of X acquires a nonvanishing vacuum expectation
value.12

V. SUMMARY: THE SUPERGRAVITY ACTION
AND ITS MODULAR INVARIANCE

In this section we summarize our results and present
some consistency checks on the expected modular proper-
ties of the anti-D3-brane action. We have showed that, up to
quadratic terms in the fermions, the anti-D3-brane action
(2.35) can be described in N ¼ 1 supergravity in four
dimensions by

S ¼ ½f̂D3ðτ̄; X̄ÞΛ̄PLΛ�F þ ½−3X0X̄0e−
K
3 �D þ ½ðX0Þ3W�F:

ð5:1Þ
The anti-D3-brane gauge kinetic function is built out of the
Goldstino and the axiodilaton and is defined as the chiral
multiplet

f̂D3 ¼ Σ
�
X̄0e−

K
6 X̄ f̄ðτ̄Þ

ΣðX̄0e−
K
6 X̄Þ

�
; ð5:2Þ

with f̄ðτ̄Þ ¼ iτ̄. We presented two different expressions for
the Kähler potential and the superpotential, depending on
how the mass term for the fermions in Yi is generated. They
lead to the same physical action and are related by field
redefinitions involving the Goldstino. One possibility is to
generate the mass for the triplet of fermions from the Kähler
potential

K1 ¼ − logð−iðτ − τ̄ÞÞ − 3 log ½ð−iðT − T̄ÞÞfðUA; ŪAÞ13 þ kðHa; H̄aÞ�
− 3 log ð1 − aXX̄ − bδi|̄YiȲ|̄ þ cðmijX̄YiYj þ m̄{̄ |̄XȲ{̄Ȳ |̄ÞÞ; ð5:3Þ

where fðUA; ŪAÞ ¼ −i
R
Ω ∧ Ω̄ and

a ¼ e−4AðHa;H̄aÞ

3ð−iðτ − τ̄ÞÞð−iðT − T̄Þ þ kðHa; H̄aÞfðUA; ŪAÞ−1
3ÞfðUA; ŪAÞ ; ð5:4Þ

b ¼ e−4AðHa;H̄aÞ

3ð−iðτ − τ̄ÞÞð−iðT − T̄Þ þ kðHa; H̄aÞfðUA; ŪAÞ−1
3Þ2fðUA; ŪAÞ13 ; ð5:5Þ

c ¼ e−8AðHa;H̄aÞ

6M2ð−iðτ − τ̄ÞÞ32ð−iðT − T̄Þ þ kðHa; H̄aÞfðUA; ŪAÞ−1
3Þ32fðUA; ŪAÞ56 : ð5:6Þ

12In the language of flat superspace, Eqs. (4.16) and (4.19) are defined as the chiral superfields

f̂D3 ¼ D̄2

�
X̄ f̄
D̄2X̄

�
; M̂ij ¼ D̄2

�
X̄e−4A−2umij

D̄2X̄ð−iðτ − τ̄ÞÞ12fðUA; ŪAÞ−1
6

�
; ð4:23Þ

and one has to require hD2Xi ≠ 0.
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In this case we then choose the superpotential to be

W1 ¼ WGVW þWnp þM2X: ð5:7Þ

As an alternative, one can take a Kähler potential of the type

K2 ¼ − logð−iðτ − τ̄ÞÞ − 3 log ½ð−iðT − T̄ÞÞfðUA; ŪAÞ13 þ kðHa; H̄aÞ� − 3 log ð1 − aXX̄ − bδi|̄YiȲ|̄Þ ð5:8Þ

and give a mass to the fermions using the superpotential

W2 ¼ WGVW þWnp þM2X þ 1

2
M̂ijYiYj; ð5:9Þ

where

M̂ij ¼ Σ
� ðX̄0e−

K
6 X̄Þe−4A−2umij

ΣðX̄0e−
K
6 X̄Þð−iðτ − τ̄ÞÞ12fðUA; ŪAÞ−1

6

�
: ð5:10Þ

In both cases M2 ¼ ffiffiffi
2

p
and mij is given in Eq. (2.32). The supergravity multiplets X, Yi, PLΛα, and Ha describing the

world-volume fields are constrained as

X2 ¼ 0; XYi ¼ 0; XPLΛα ¼ 0; XH̄a ¼ chiral ð5:11Þ

and contain, respectively, the Goldstino, the triplet of
massive fermions, the U(1) gauge vector, and the three
complex scalars as independent physical d.o.f.
Given a Kähler potential and a superpotential, one can

use the standard rules of N ¼ 1 supergravity to calculate
the scalar potential VSUGRA ¼ eKðjDWj2 − 3jWj2Þ. This
will contain an uplift term which exactly matches the anti-
D3-brane contribution (2.12),

VSUGRA ⊃ VD3ðH; H̄Þ ¼ 2e4AðH;H̄Þ−8u: ð5:12Þ

A. On the modular invariance of the Goldstino and
matter sector

As a consistency check for our result, we would like to
analyze the behavior of the action (5.1) under modular
transformations. Since the analysis of the X, Yi sector is
quite different from that of the field strength multiplet
PLΛα, we start from the former and we discuss the latter
separately afterwards.
Therefore, neglecting for the moment the couplings

involving the vector field, the original anti-D3-brane action
(2.35) has to be invariant under SLð2;RÞ transformations,

τ →
aτ þ b
cτ þ d

; G3 →
G3

cτ þ d
: ð5:13Þ

These imply that the world-volume fermions have to
transform as

PLλ → e−iδPLλ; PLχ
i → e−iδPLχ

i; ð5:14Þ

where we defined the phase [27]

e−2iδ ¼
�
cτ̄ þ d
cτ þ d

�1
2

: ð5:15Þ

In particular, the transformation of the triplet of fermions
PLχ

i can be deduced by looking, e.g., at their mass term in
Eq. (2.35). Indeed, Eq. (5.14) together with

mij → e2iδmij ð5:16Þ

[which follows from Eq. (5.13)] imply that mijχ̄
iPLχ

j is
modular invariant. Once the transformation of PLχ

i is
fixed, it seems natural to let PLλ transform in the same
way, since these four fermions originally resided in the
sameN ¼ 4multiplet. However, as we stressed previously,
it is important to keep in mind that the Goldstino compo-
nent field is not a physical d.o.f. in supergravity. Therefore,
we will not insist on studying its modular properties further
at the component level; instead, we will gain information
by analyzing the couplings of the multiplet X, which
(beside the Goldstino) contains the auxiliary field F.
SinceG3 is transforming under modular transformations,

for consistency of the superpotential of the supergravity
theory we have to require that the Goldstino multiplet
transforms as well, namely,
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X →
X

cτ þ d
: ð5:17Þ

Such a requirement, in turn, implies that XX̄
τ−τ̄ is modular

invariant, since ImðτÞ → ImðτÞ
jcτþdj2, and it fixes the coupling

between the axiodilaton and the nilpotent multiplet X in the
Kähler potential according to the following reasoning. For a
variation of the superpotential of the type

W →
W

cτ þ d
; ð5:18Þ

the Kähler potential is allowed to vary as

K → K þ log jcτ þ dj2 ð5:19Þ

so that, if the supergravity theory is Kähler invariant, then it
is also modular invariant. From the form of the Kähler
potential (5.3) we can see that all of the freedom of K to
transform under modular transformations is already
exhausted by the first term, namely, − logð−iðτ − τ̄ÞÞ,
and thus all of the remaining couplings have to be modular
invariant. With a similar argument, we can conclude that
δi|̄

YiȲ|̄

τ−τ̄ is modular invariant if Yi transforms as X, namely,

Yi →
Yi

cτ þ d
: ð5:20Þ

By direct inspection one can finally check that all of the
remaining couplings in the Kähler potential and the super-
potential have the correct behavior under modular trans-
formations, for both choices of K and W that we presented
before. In particular, in the case in which the multiplet X
is nilpotent, it is immediately seen that X

Σ̄ðX0XÞ is modular

invariant,

X
Σ̄ðX0XÞ →

X=ðcτ þ dÞ
Σ̄ðX0X=ðcτ þ dÞÞ ¼

X
Σ̄ðX0XÞ ; ð5:21Þ

where we used the fact that the terms in which the operator
Σ̄ acts on τ are vanishing due to the constraint X2 ¼ 0. This
observation can be helpful in proving the modular invari-
ance of the proposed supergravity action, in particular
for what concerns the superpotential mass term for the
fermions.

B. Self-duality of the vector

As explained in the seminal paper [91], when a vector
field is coupled to the axiodilaton, the original U(1) duality
group is enhanced to SLð2;RÞ. This corresponds precisely
to the group of modular transformations we have discussed
so far. With respect to the previous discussion, however,
under duality rotations the action of the vector multiplet is
not expected to be invariant. Indeed, the authors of

Ref. [91] calculated the general form of the induced
variation. A duality transformation is in fact a symmetry
of the equations of motion of the vector field, which is
sometimes called self-duality since it exchanges the electric
field strength with its magnetic dual and the gauge coupling
with its inverse. In the following we check that the vector
multiplet part of the anti-D3-brane action enjoys this
property, namely, that it is on-shell equivalent to an action
of the same functional form, in which the vector field is
exchanged with its dual and the gauge kinetic function with
its inverse:

PLΛα ↔ PLΛDα; f̂D̄3 ↔ ðf̂D3Þ−1: ð5:22Þ

Since self-duality is an on-shell property, we are allowed
to use any form of the action which reduces on shell to the
vector multiplet part of the anti-D3-brane action,

SV ¼ −
1

4
½f̂D3Λ̄PLΛ�F: ð5:23Þ

In particular, it is convenient to relax the constraint (3.19)
on the vector multiplet and impose it by means of a
Lagrange multiplier. Therefore, we consider the action

S̃V ¼ −
1

4
½f̂D3Λ̄PLΛ�F þ 1

2
½Φ̄PLΛX�F þ

�
i
2
Λ̄DPLΛ

�
F
;

ð5:24Þ

where PLΛα is chiral but otherwise unconstrained, PLΦα is
a Lagrange multiplier chiral multiplet that implements the
constraint (3.19), and PLΛDα is the dual of PLΛα. In
particular, the chiral multiplet PLΛα does not satisfy any
Bianchi identity. It is also convenient to express the dual
multiplet PLΛDα as

PLΛDα ¼ ΣðDαUÞ; ð5:25Þ

where Dα is an operator, analogous to the superspace
derivative [92], that maps

Dα∶ðw; cÞ →
�
wþ 1

2
; c −

3

2

�
ð5:26Þ

and U is a vector multiplet with vanishing weights. Notice
that, by using the properties of the Σ and Dα operators, up
to boundary terms we have

½iΛ̄DPLΛ�F ¼ ½iΣðDαUPLΛαÞ�F
¼ ½iDαUPLΛα − iD̄αUPRΛα�D
¼ −½iUDαPLΛα − iUD̄αPRΛα�D: ð5:27Þ

As a consistency check, we first verify that by integrating
out U we get back the original action (5.23). The variation
of U gives
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δU∶DαPLΛα ¼ D̄αPRΛα; ð5:28Þ

which is the supersymmetric form of the Bianchi identities,
implying that PLΛα is the field strength of a vector
multiplet V: PLΛα ¼ ΣðDαVÞ. Inserting this result into
Eq. (5.24), the action correctly reduces to Eq. (5.23). On the
other hand, by integrating out the Lagrange multiplier
PLΦα and the unconstrained chiral multiplet PLΛα, we
obtain

δPLΦα∶ PLΛαX ¼ 0; ð5:29Þ

δPLΛα∶ f̂D̄3PLΛα ¼ iPLΛDα − PLΦαX: ð5:30Þ

By multiplying the second equation by X and using the
assumption that X is nilpotent, we obtain the additional on-
shell information

PLΛDαX ¼ 0; ð5:31Þ

which means that the fermion in the dual multiplet PLΛDα

is removed. Inserting Eq. (5.30) back into the action (5.24)
and also using Eq. (5.31), we eventually obtain the on-shell
expression

S̃V ¼ −
1

4
½f̂−1D̄3Λ̄DPLΛD�F: ð5:32Þ

Thus, we have shown that the vector multiplet sector of the
anti-D3-brane action enjoys self-duality. Finally, we notice
that, due to the nilpotent constraint on X, f̂D3 satisfies the
property

ðf̂D3ðf̄ÞÞ−1 ¼ f̂D3ðf̄−1Þ; ð5:33Þ

since

ðf̂D3ðf̄ÞÞ−1 ¼ Σ
�

X̄0e−
K
6 X̄

ΣðX̄0e−
K
6 X̄ f̄Þ

�

¼ Σ
�

X̄0e−
K
6 X̄

ΣðX̄0e−
K
6 X̄Þf̄

�
¼ f̂D3ðf̄−1Þ: ð5:34Þ

As a consequence, for the particular choice fðτÞ ¼ −iτ, the
transformation f̂D3 → ðf̂D3Þ−1 corresponds to τ → −1=τ.
This, together with τ → τ þ 1 (which is a trivial symmetry
of the action), generates the full SLð2;RÞ group.

VI. CONCLUSION

In this paper we studied the low-energy effective action
for the KKLT scenario [1]. In particular, we kept track of all
world-volume fields on the anti-D3-brane, i.e., the vector
field, the scalars, and the fermions. Following Ref. [46], we
showed how the corresponding world-volume fields couple
to closed-string moduli, i.e., the axiodilaton, the complex

structure moduli, and the single Kähler modulus. We then
rewrote this 4D effective action in a manifestly super-
symmetric way, making use of constrained multi-
plets [74] that have played an important role in recent
advances in our understanding of supergravity (see, e.g.,
Refs. [77,93–97]).
Our manifestly supersymmetric 4DN ¼ 1 action shows

that the anti-D3-brane in the KKLT scenario breaks
supersymmetry spontaneously. It also provides a useful
reformulation of the anti-D3-brane action that should
facilitate future, more phenomenological studies of anti-
branes in string compactifications. Furthermore, it goes
beyond what was in the literature in an important way.
Indeed, initial studies of the uplift term in the KKLT
scenario in supergravity have focused on the Goldstino,
which can be packaged into a nilpotent chiral multiplet
[7,8], but the bosonic world-volume fields on the anti-D3-
brane have been neglected in this analysis because they can
be projected out by placing the anti-D3-brane on top of an
O3-plane [9,10,98]. This work culminated in Ref. [27],
where the full action for all world-volume fermions—
including their couplings to the closed-string moduli—was
derived.
When adding the bosonic world-volume fields, we

followed the proposal of Refs. [21,22] of how one can
package the bosons into constrained N ¼ 1 multiplets.
While this choice might not be unique, it allowed us to
rewrite the action in a manifestly supersymmetric way. One
particular challenge one faces is related to the U(1) gauge
field on the anti-D3-brane. Recall that the gauge kinetic
function f for a D3-brane in the KKLT background is given
by the axion dilaton fðτÞ ¼ −iτ ¼ −iðC0 þ ie−ϕÞ. This is
and has to be a holomorphic function. However, the anti-
D3-brane has the opposite sign in the Wess-Zumino part of
its action and therefore the U(1) world-volume gauge field
naturally couples to iτ̄ ¼ −ið−C0 þ ie−ϕÞ. The latter is
antiholomorphic and such a gauge kinetic function is
forbidden by supersymmetry. As explained in Sec. IV,
we resolved this puzzle by using a construction inspired by
the recently discovered new D-term in supergravity [28].
While our paper completes the study of a single anti-D3-

brane in the KKLT setup, there are a variety of future
research directions that should be pursued:
(1) It should be straightforward to generalize our results

to a stack of ND3 anti-D3-branes by simply promot-
ing the world-volume fields to fields that transform
in the adjoint of SUðND3Þ. This should amount to
inserting traces into our formulas and adding com-
mutator terms that appear in general [46] but vanish
in the Abelian case. Note, however, that such a stack
of anti-D3-branes in the KKLT background would
want to polarize into an NS5-brane [5]. Two recent
papers [25,31] studied the effective NS5-brane
theory that arises from a stack of anti-D3-branes
in the Klebanov-Strassler throat geometry [62].
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The authors showed that in the metastable mini-
mum supersymmetry is nonlinearly realized. This
nonlinearly realized and spontaneously broken
supersymmetry can be linearly realized if one
includes a tower of massive Kaluza-Klein states
[31]. It would be interesting to study the polarization
process in more detail and include all world-volume
fields on the anti-D3-branes.

(2) Since a reformulation in terms of constrained mul-
tiplets is not necessarily unique, one should explore
other supersymmetric formulations of the action. For
example, in Refs. [23,27] the authors also discussed
a constrained vector superfield that contains the
Goldstino as the only d.o.f. This vector superfield
can replace the nilpotent chiral superfield and gen-
erates the KKLT uplift term via a D-term. It is
conceivable that for the other constrained multiplets
there are also alternative formulations that should be
explored.

(3) Our results should be extendible to the large-volume
scenario [99,100]. There, the AdS vacuum breaks
supersymmetry already before adding the uplifting
anti-D3-brane. This means that the Goldstino is
always a combination of closed-string fermions
and the fermions on the anti-D3-brane. Nevertheless,
one should be able to describe the anti-D3-brane
action in the same way that we did here. In
particular, the nilpotent chiral superfield still consists
of only a world-volume fermion.

(4) Recently it was shown that the anti-D3-brane in the
KKLT scenario is one particular case of flux
compactifications with anti-Dp-branes that can all
be described by a 4D effective N ¼ 1 supergravity
action that includes a nilpotent chiral multiplet
[101]. It would be interesting to work out the proper
description of the world-volume fields for anti-Dp-
branes with p > 3. While this is not easy, one should
be able to adapt existing results for the light d.o.f. on
supersymmetric branes (see, e.g., Refs. [102–106])
since the DBI action for branes and antibranes is
the same.

(5) It would be very interesting to derive the brane
action in a nontrivial background beyond quadratic
order in the fermions. In particular, the quartic terms
play an important role in the study of the ten-
dimensional lift of the 4D KKLT solution [50–61].
While technically challenging to obtain, these higher-
order fermionic terms would have applications well
beyond the study of anti-D-branes in flux compacti-
fications.

We hope to study some of these issues in the future.
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APPENDIX A: SUPERSPACE

In this Appendix we translate the relevant formulas into
the language of superspace, following the conventions of
Ref. [70]. In this case fermions are described by two-
component Weyl spinors. We recall that a four-component
spinor can be written in terms of a two-component one

as Ω ¼ ðψ
ψ̄
Þ.

1. Constrained superfields

Here we describe constrained superfields in flat
superspace.
(1) The nilpotent chiral Goldstino superfield is given by

X ¼ G2

2F
þ

ffiffiffi
2

p
θGþ θ2F ⇔ X2 ¼ 0; ðA1Þ

where Gα is the spin-1=2 Goldstino. Upon substitut-
ing θ → Θ, this expression is also valid in super-
gravity.

(2) A chiral superfield Y, such that XY ¼ 0, is instead

Y ¼ Gχ
F

−
G2

2F2
FY þ

ffiffiffi
2

p
θχ þ θ2FY: ðA2Þ

Upon substituting θ → Θ, this expression is also
valid in supergravity.

(3) A chiral superfield H

H ¼ hþ
ffiffiffi
2

p
θχH þ θ2FH ðA3Þ

containing only the complex scalar in the lowest
component is subjected to the constraint

XD̄ _αH̄ ¼ 0; ðA4Þ

where X2 ¼ 0 is assumed. Its fermion and auxiliary
fields are given by

χH ¼ iσμ
�
Ḡ
F̄

�
∂μh; ðA5Þ

FH ¼ −∂μ

�
Ḡ
F̄

�
σ̄νσμ

Ḡ
F̄
∂νhþ Ḡ2

2F̄2
□h: ðA6Þ
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The generalization to supergravity can be found
in Ref. [93].

(4) Given a real Abelian vector superfield V, the field
strength chiral superfield is

Wα ¼ −
1

4
D̄2DαV ¼ −iΛα þ Lβ

αθβ þ σμα _α∂μΛ̄ _αθ2;

ðA7Þ

where

Lβ
α ¼ δβαD −

i
2
ðσμσνÞβαFμν: ðA8Þ

The gaugino Λα can be removed via the constraint

XWα ¼ 0; ðA9Þ

which leads to

Λα ¼
iffiffiffi
2

p
F
Lβ
αGβ −

G2

2F2
∂μ

�Ḡ _̄αL̄
_α
_βffiffiffi

2
p

F̄

�
σ̄μ _βγϵγα

− i
G2

2F2
σμ
α _β
σ̄ν _βγ∂μ

�
Ḡ2

2F̄2
∂ν

�
Lδ
γGδffiffiffi
2

p
F

��

−
1

2

G2

F2

Ḡ2

F̄2

�
∂
�

Gffiffiffi
2

p
F

��
2∂μ

�Ḡ _αL̄ _α
_βffiffiffi

2
p

F̄

�
σ̄μ _βγϵγα:

ðA10Þ

The supergravity expression for the removed gau-
gino can be found in Ref. [93].

2. The anti-D3-brane supergravity Lagrangian

The supergravity Lagrangian for the anti-D3-brane can
be expressed in superspace as

L ¼ −3
Z

d4θEe−
K
3 þ 1

4

�Z
d2Θ2Ef̂D3W

αWα þ c:c:

�
þ
�Z

d2Θ2EW þ c:c:

�
; ðA11Þ

where K is the Kähler potential, W is the superpotential,
and Wα ¼ − 1

4
ðD̄2 − 8RÞDαV is the field strength super-

field. The anti-D3-brane gauge kinetic function is

f̂D3 ¼ ðD̄2 − 8RÞ
�
X̄ f̄

D̄2X̄

�
; ðA12Þ

where fðτÞ ¼ −iτ. Equations (5.3), (5.7) and (5.8), (5.9) we
gave for K and W can be used directly without any
modification. When using the second alternative, the
superpotential mass for the fermions in Yi is generated
by the chiral superfield

M̂ij¼ðD̄2−8RÞ
�

e−4A−2uX̄mij

D̄2X̄ð−iðτ− τ̄ÞÞ12fðUA;ŪAÞ−1
6

�
; ðA13Þ

where mij is given in Eq. (2.32).
We notice finally that Eqs. (A12) and (A13) can be

written in an alternative form that may be preferred in some
applications. Given a nilpotent Goldstino superfield X, we
can define a superfield [23,107]

Γα ¼ −2
ffiffiffi
2

p DαX
D2X

: ðA14Þ

It is possible to check that such a superfield satisfies

DβΓα ¼
ffiffiffi
2

p
ϵαβð1 − R̄Γ2Þ;

D̄ _βΓα ¼
ffiffiffi
2

p
iðσ̄bΓÞ _βDbΓα þ 1

2
ffiffiffi
2

p Γ2B_βα; ðA15Þ

where DaΓα ¼ embDmΓα − 1
2
ψβ
aDβΓα − 1

2
ψ̄b _βD̄

_βΓα is the
supercovariant derivative in superspace and the definition
of the superfieldBα_β can be found in Ref. [70]. These are the
conditions given in Ref. [108] in order for Γα to describe a
Goldstino. Indeed, the lowest component Γαj ¼ γα, is the
(chiral) Volkov-Akulov Goldstino, while all of the other
fields inside Γα are removed.With this new ingredient at our
disposal, the gauge kinetic function and the superpotential
mass can be expressed in a more compact form as

f̂D3 ¼ −
1

8
ðD̄2 − 8RÞðΓ̄2f̄Þ;

M̂ij ¼ −
1

8
ðD̄2 − 8RÞ

�
Γ̄2

e−4A−2u

ð−iðτ − τ̄ÞÞ12fðUA; ŪAÞ−1
6

mij

�
:

ðA16Þ

Their lowest components in the unitary gauge γα ¼ 0 are

f̂D3j¼ f̄; M̂ijj¼
e−4A−2u

ð−iðτ− τ̄ÞÞ12fðUA;ŪAÞ−1
6

mij: ðA17Þ

We stress that such a construction is general, namely, given
an arbitrary superfield Φ, which can also be composite, the
chiral superfield
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Φ̂ ¼ −
1

8
ðD̄2 − 8RÞðΓ̄2ΦÞ ðA18Þ

has the lowest component

Φ̂j ¼ Φþ fermions ðA19Þ

and the fermionic terms vanish in the unitary gauge. It
satisfies the constraint

Γ2Γ̄2Φ̂ ¼ Γ2Γ̄2Φ: ðA20Þ

For completeness, we give the components of f̂D3 in global
supersymmetry. The chiral superfield f̂D3 can be expanded
in superspace as

f̂D3 ¼ f̂D3j þ θαDαf̂D3j −
1

4
θ2D2f̂D3j; ðA21Þ

where

f̂D3j ¼ f̄ þ 2D̄ _αX̄D̄ _αf̄ þ X̄D̄2f̄
D̄2X̄

; ðA22Þ

Dαf̂D3j ¼ −4i∂α _αX̄
D̄ _αf̄
D̄2X̄

− 4i∂α _αf̄
D̄ _αX̄
D̄2X̄

− 4i
X̄

D̄2X̄
∂α _αD̄

_βf̄ þ 4i∂α _αD̄ _αX̄

�
2D̄_βX̄D̄

_βf̄ þ X̄D̄2f̄

ðD̄2X̄Þ2
�
; ðA23Þ

D2f̂D3j ¼ −16
∂α _αX̄∂ _ααf̄

D̄2X̄
− 32

∂α _αX̄D̄ _αf̄∂ _βαD̄_βX̄

ðD̄2X̄Þ2 − 32
∂α _αf̄D̄ _αX̄∂ _βαD̄_βX̄

ðD̄2X̄Þ2

þ 16
X̄□f̄
D̄2X̄

− 32
X̄∂ _βαD̄ _βX̄∂α_γD̄_γf̄

ðD̄2X̄Þ2 − 16
□X̄ð2D̄ _αX̄D̄ _αf̄ þ X̄D̄2f̄Þ

ðD̄2X̄Þ2

− 64
∂α_βD̄

_βX̄D̄_γX̄D̄_γf̄∂ _ααD̄ _αX̄

ðD̄2X̄Þ3 − 32
X̄∂α _βD̄

_βX̄D̄2f̄∂ _ααD̄ _αX̄

ðD̄2X̄Þ3 : ðA24Þ

The projection to θ ¼ 0 on the right-hand sides of the
expressions above is understood and X2 ¼ 0 is always
assumed.

APPENDIX B: NEW D-TERMS IN
SUPERGRAVITY AND THE THETA TERM

In this Appendix we review some ingredients
concerning the construction of the new Fayet-
Iliopoulos D-terms in supergravity originally proposed
in Ref. [28]. This discussion is needed to understand the
origin of the coupling (4.9), which we introduced in
order to flip the sign of the theta term in the super-
gravity action.
Let us start by considering the chiral field strength

multiplet PLΛα given in Eq. (3.16) with weight 3
2
. In

particular, PLΛα is the gaugino, Fab is the covariant field
strength of the U(1) vector, andD is the real auxiliary field.
It is known that the standard embedding of a Fayet-
Iliopoulos (FI) term

SFI ¼ −ξ
Z

d4x
ffiffiffiffiffiffiffiffi
−g4

p
D ðB1Þ

in supergravity requires the gauging of the U(1) R
symmetry, by means of the vector field. In Ref. [28] a
new embedding was proposed that avoids such a restriction
and that is of the type

SFI new ¼ −ξ
�

ω2ω̄2

Σðω̄2ÞΣ̄ðω2ÞX
0X̄0D

�
D

¼ −ξ
Z

d4x
ffiffiffiffiffiffiffiffi
−g4

p
X0X̄0Dþ…; ðB2Þ

where the dots stand for fermionic terms. In this
expression, X0 is the compensator chiral multiplet, D
is a real multiplet which has the auxiliary field in the
lowest component [see Eq. (3.3) of Ref. [28] ], and we
defined the multiplets

ω2 ¼ Λ̄PLΛ
ðX0X̄0Þ2 ; ω̄2 ¼ Λ̄PRΛ

ðX0X̄0Þ2 : ðB3Þ

Σ and Σ̄ are the superconformal generalizations of the
chiral projectors D̄2 and D2 of superspace. They act on
multiplets with weights ðWeyl; chiralÞ ¼ ðw;�ðw − 2ÞÞ
and produce, respectively, chiral and antichiral multiplets,
namely,

Σ∶ ðw;w − 2Þ → ðwþ 1; wþ 1Þ;
Σ̄∶ ðw;−wþ 2Þ → ðwþ 1;−w − 1Þ: ðB4Þ

More details about these operators can be found, e.g., in
Ref. [82], where they are denoted as T and T̄. We also
need the components of the chiral multiplet
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Λ̄PLΛ ¼
�
Λ̄PLΛ;

ffiffiffi
2

p
PL

�
iD −

1

2
=̂F

�
Λ; 2Λ̄PL=DΛ

þ F̂− · F̂− − D2

�
; ðB5Þ

from which one can calculate

Σ̄ðω2Þ¼ðX0X̄0Þ−2
�
1

2
FμνFμνþ i

4

ϵμνρσffiffiffiffiffiffiffiffi−g4
p FμνFρσ−D2þ…

�
;

ðB6Þ

where the dots stand for fermionic terms. We recall that
we are following the notation and the conventions
of Ref. [69].
The important property of the coupling (B2) is that its

pure bosonic sector contains just a term linear in the
auxiliary field D, while all of the remaining fermionic
terms are required by superconformal symmetry. After
gauge fixing the superconformal symmetry to Poincaré
supergravity, X0 ¼ κ−1e

K
6 , the new D-term reduces to

(κ ¼ 1)

SFI new ¼ −ξ
Z

d4x
ffiffiffiffiffiffiffiffi
−g4

p
e
K
3Dþ…; ðB7Þ

and therefore, when this is added to the standard super-
gravity action (4.8) for the vector multiplet, the auxiliary
field D acquires a nonvanishing vacuum expectation value
and supersymmetry is spontaneously broken. Then, by
setting the Goldstino to zero by a unitary gauge choice, all
of the fermionic interactions in Eq. (B7) vanish. Notice that
the presence of this coupling spoils the Kähler invariance
of the theory, since the Kähler potential appears explicitly
in the action. The Kähler invariant version of Eq. (B2) was
constructed in Ref. [87] and it amounts to replacing
X0X̄0 → X0X̄0e−

K
3 in order to cancel the undesired depend-

ence on K in the Poincaré frame. In what follows we
systematically perform this replacement.
The logic behind Eq. (B2) is the following. First, notice

that it is constructed out of the two real multiplets

R1 ¼
ω2ω̄2

Σðω̄2ÞΣ̄ðω2Þ ; R2 ¼ X0X̄0e−
K
3D; ðB8Þ

with weights (−2,0) and (4,0), respectively, and that the
component expansion starts precisely with the lowest
component of R2. This means that the role of R1 is to
provide higher-order fermionic interactions which are
needed in order to write down a consistent superconformal
embedding of R2. The procedure can be easily generalized
in order to construct the superconformal completion of any
arbitrary real multiplet R2 with weights (4,0). A similar
logic was followed in Ref. [109] by using only chiral
multiplets.

In Sec. IV B we are interested in deforming a given
supergravity action in a supersymmetric way with a theta
term

Sθ-term ¼ −
1

4

Z
d4xImðfÞϵμνρσFμνFρσ þ…; ðB9Þ

where the dots are additional couplings which are needed
from supersymmetry and which we would like to deter-
mine. The standard procedure to find them consists in
varying Eq. (B9) and adding the required terms in order to
cancel the total variation and obtain a superconformal
invariant coupling. This strategy is conceptually simple but
tedious and it is not clear at which step it is going to end.
However, when supersymmetry is spontaneously broken
the problem can be solved at once by considering the
multiplet R1 as defined in Eq. (B8) and multiplying it by

R2 ¼ ImðfÞϵμνρσFμνFρσ; ðB10Þ

which has to be thought of as a real multiplet with weights
(4,0). In particular, fðτÞ ¼ −iτ can be understood as the
lowest component of a chiral multiplet with vanishing
weight. This strategy is formally correct, but there is one
additional subtlety one needs to be careful about in our
case. In the anti-D3-brane action we propose, the auxiliary
field of the vector multiplet does not acquire a vacuum
expectation value, since supersymmetry is spontaneously
broken by the auxiliary field F of X. As a consequence, we
are not allowed to divide by the quantity Σ̄ðω2Þ, as it
vanishes in the vacuum. However, in the case in which the
field strength multiplet is constrained as in Eq. (3.19), we
can use the identity (proven in Ref. [28])

ω2ω̄2

Σðω̄2ÞΣ̄ðω2Þ ¼
X0X̄0XX̄

ΣðX̄0X̄ÞΣ̄ðX0XÞ ¼
X0X̄0e−

K
3XX̄

ΣðX̄0e−
K
6 X̄ÞΣ̄ðX0e−

K
6XÞ

ðB11Þ

to formally trade ω2 for the nilpotent X inside R1. In
particular, the right-hand side is well defined in our setup,
since the denominator can never vanish. We are therefore in
a position to propose the following superconformal invari-
ant interaction:

Sθ-term¼−
1

4

�
X0X̄0e−

K
3XX̄

ΣðX̄0e−
K
6 X̄ÞΣ̄ðX0e−

K
6XÞImðfÞ ϵ

μνρσffiffiffiffiffiffiffiffi−g4
p FμνFρσ

�
D

¼−
1

4
ImðfÞϵμνρσFμνFρσþ…; ðB12Þ

which has the desired property of providing a consistent
superconformal completion of Eq. (B9), much in the same
way that Eq. (B2) provides it for the Fayet-Iliopoulos term
(B1). We can also express the multiplet ϵμνρσFμνFρσ in
terms of the more familiar field strength multiplet PLΛ.
One can indeed check that
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ðX0X̄0e−
K
3Þ2 1

2i
½Σ̄ðω2Þ − Σðω̄2Þ� ¼ 1

4

ϵμνρσffiffiffiffiffiffiffiffi−g4
p FμνFρσ þ…; ðB13Þ

where the dots stand for fermionic terms containing at least one gaugino Λα without derivatives acting on it. Due to the
Grassmann nature of Λα, these terms vanish if multiplied by XX̄ and we directly have the constraint

XX̄ðX0X̄0e−
K
3Þ2 1

2i
½Σ̄ðω2Þ − Σðω̄2Þ� ¼ 1

4
XX̄

ϵμνρσffiffiffiffiffiffiffiffi−g4
p FμνFρσ; ðB14Þ

where every quantity can be understood as a full supersymmetric multiplet. The proposed coupling (B12) then becomes

Sθ-term ¼ −
1

4

�
X0X̄0e−

K
3XX̄

ΣðX̄0e−
K
6 X̄ÞΣ̄ðX0e−

K
6XÞ ImðfÞ ϵμνρσffiffiffiffiffiffiffiffi−g4

p FμνFρσ

�
D

¼ −
1

2i

�
XX̄

ΣðX̄0e−
K
6 X̄ÞΣ̄ðX0e−

K
6XÞ ðX

0X̄0e−
K
3Þ3ImðfÞðΣ̄ðω2Þ − Σðω̄2ÞÞ

�
D

¼
�

XX̄

ΣðX̄0e−
K
6 X̄ÞΣ̄ðX0e−

K
6XÞ ðX

0X̄0e−
K
3Þ3ImðfÞImðΣðω̄2ÞÞ

�
D

¼ −
1

4

Z
d4xImðfÞϵμνρσFμνFρσ þ…; ðB15Þ

which is the expression that appears in Eq. (4.9).
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