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2Universidad Politécnica de Cartagena, UPCT, 30202 Cartagena, Spain

(Received 27 April 2019; published 26 September 2019)

A general method to build the entanglement renormalization (cMERA) for interacting quantum field
theories is presented. We improve upon the well-known Gaussian formalism used in free theories through a
class of variational non-Gaussian wave functionals for which expectation values of local operators can be
efficiently calculated analytically and in a closed form. The method consists of a series of scale-dependent
nonlinear canonical transformations on the fields of the theory under consideration. Here, the λϕ4 and the
sine-Gordon scalar theories are used to illustrate how nonperturbative effects far beyond the Gaussian
approximation are obtained by considering the energy functional and the correlation functions of the
theory.
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I. INTRODUCTION

In recent years, tensor networks, a new and powerful
class of variational states, have proved to be very useful in
addressing both static and dynamical aspects of a wide
number of interacting many-body systems. They represent
a class of systematic variational ansätzewhich, through the
Rayleigh-Ritz variational principle, provide an elegant
approximation to the ground state of an interacting theory
by systematically identifying those degrees of freedom that
are actually relevant for observable physics. These varia-
tional ansätze are nonperturbative and can be applied both
in the lattice and in the continuum. As an example, the
multiscale entanglement renormalization Ansatz (MERA),
a variational real-space renormalization scheme on the
quantum state, represents the wave function of the quantum
system at different length scales [1].
A continuous version of MERA, known as cMERA,

was proposed in [2] for free field theories. It consists of
building a scale-dependent representation of the ground
state wave functional through a scale-dependent linear
canonical transformation of the fields of the theory.
Namely, the renormalization in scale is generated by a
quadratic operator, and thus, the resulting state is given by a
Gaussian wave functional. Despite this fact obviously

limits the interest of this trial state for interacting quantum
field theories (QFT), the Gaussian ansatz has been used in
cMERA and correctly reproduces correlation functions
and entanglement entropy in free field theories [3,4].
Furthermore, as the Gaussian cMERA is currently studied
as a possible realization of holography [5–10], it is timely
to develop interacting versions of cMERA in order to
advance in this program. In [11], the Gaussian cMERAwas
applied to interacting bosonic and fermionic field theories.
In [12], authors developed some techniques to build
systematic perturbative calculations of cMERA circuits
but restricted to the weakly interacting regime.
Our aim here is to provide a nonperturbative method to

build truly non-Gaussian cMERA wave functionals for
interacting QFTs. A justifiable way of doing so would
be to formulate a perturbative expansion for which the
Gaussian wave function appears in its first order [13–16].
Unfortunately, with these methods, expectation values of
operators cannot be calculated exactly and must be
approximated by an additional series expansion. On the
contrary, our approach clings to the variational method, but
using a more elaborated class of trial wave functionals.
Here, we use a set of nonlinear canonical transformations
(NLCT) [17–21] to build a set of scale-dependent extensive
functionals which are certainly non-Gaussian. Remarkably,
with this prescription, observables can be analytically
calculated in a closed form. We illustrate the method by
considering the self-interacting λϕ4 scalar theory and the
sine-Gordon model in (dþ 1) dimensions. For d ¼ 1, these
theories, do not exhibit any issue when renormalization is
considered, and thus the non-Gaussian cMERA lies on a
solid ground. In addition, our variational procedure adds up
a much larger class of Feynman diagrams than the usual
“cactus”-like ones which are captured by the Gaussian
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approach [22]. Therefore, we are certainly generalizing the
variational approach in QFT to non-Gaussian trial states in
the canonical formalism.

II. GAUSSIAN cMERA

cMERA [2,3] is a real-space renormalization group
procedure on the quantum state that builds a scale-
dependent wavefunctional Ψ½ϕ; u�,

Ψ½ϕ; u� ¼ hϕjΨui ¼ hϕjPe−i
R

u

uIR
ðKðu0ÞþLÞdu0 jΩIRi; ð1Þ

where u parametrizes the scale of the renormalization. (1)
contains the path-ordered exponential of the dilatation
operator L and the generating operator Kðu0Þ. The renorm-
alization scale parameter u in cMERA is usually taken to be
in the interval ½uIR; uUV� ¼ ð−∞; 0�. uUV ¼ uϵ is the scale
at the UV cutoff ϵ, and the corresponding momentum space
UV cutoff is Λ ¼ 1=ϵ. uIR ¼ uξ is the scale in the IR limit,
where ξ is a long-wavelength correlation length. The state
jΨUVi is the ground state of a quantum field theory. The
L-invariant state jΩIRi is a Gaussian state with no entan-
glement between spatial regions. The cMERA Hamiltonian
evolution generates translations along the cMERA param-
eter u. The term KðuÞ in the cMERA-Hamiltonian is called
the entangler operator and the only variational parameters
of the ansatz are those which parametrize it. For free scalar
theories, KðuÞ is the quadratic operator given by [2,3]

KðuÞ ¼ 1

2

Z

p
g0ðp; uÞ½ϕðpÞπð−pÞ þ πðpÞϕð−pÞ�; ð2Þ

where p≡ jpj and R
p ≡

R ð2πÞ−dddp with d, the spatial
dimensions of the theory. The conjugate momentum of the
field ϕðpÞ is πðpÞ ¼ −iδ̄=δϕð−pÞ, such that ½ϕðpÞ; πðqÞ� ¼
iδ̄ðpþ qÞ, with δ̄ðpÞ≡ ð2πÞdδðpÞ. The function g0ðp; uÞ
in (2) is the only variational parameter to optimize in the
Gaussian cMERA. This function factorizes as g0ðp; uÞ ¼
g0ðuÞΓðp=ΛÞ where ΓðxÞ≡ Θð1 − jxjÞ and ΘðxÞ is the
Heaviside step function; g0ðuÞ is a real-valued function
and Γðp=ΛÞ implements a high-frequency cutoff such thatR
p ≡

R
Λ
p . Choosing jΩIRi as [3]
�

ffiffiffiffiffiffi
ωΛ

p ðϕðpÞ − χ0Þ þ
i
ffiffiffiffiffiffi
ωΛ

p πðpÞ
�
jΩIRi ¼ 0; ð3Þ

for all p, where ωΛ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þm2

p
with m the mass of the

particles in the free theory, it is possible to show that the
cMERA ansatz with a quadratic entangler is equivalent to
the Gaussian wave functional given by

Ψ½ϕ; u�SG ¼ Ne
−1
2

R
p
ðϕðpÞ− χ0ÞF−1ðp;uÞðϕð−pÞ− χ0Þ; ð4Þ

where χ0 ¼ hΨSGðu ¼ 0ÞjϕðxÞjΨSGðu ¼ 0Þi and the rela-
tion between the scale-dependent Gaussian kernel Fðp; uÞ

and the variational cMERA parameter g0ðp; uÞ is given
by [11]

F−1ðp; uÞ ¼ ωΛe
2
R

u

0
du0 g0ðpe−u0 ;u0Þ; ð5Þ

with Fðp; 0Þ ¼ ðp2 þm2Þ−1=2.
We note that Ψ½ϕ; u�SG ¼ USΨG½ϕ; u�, where the

operator that shifts the argument of any functional (and
specifically the Gaussian wave functional) by a constant
χ0, is given by US ¼ eOS with OS ¼ −

R
p χ0δ=δϕð−pÞ.

Then, definingUGðu1;u2Þ≡Pe
−i
R

u1
u2

duðKðuÞþLÞ
, theGaussian

state is given by Ψ½ϕ; u�G ¼ hϕjUGðu; uIRÞjΩIRi.
Finally, we remark that the Gaussian cMERA ansatz may

be also understood as the set of scale-dependent linear
transformation of the fields given by

UGð0; uÞ−1ϕðpÞUGð0; uÞ ¼ e−fðp;uÞe−u
2
dϕðpe−uÞ; ð6Þ

UGð0; uÞ−1πðpÞUGð0; uÞ ¼ efðp;uÞe−u
2
dπðpe−uÞ; ð7Þ

with fðp; uÞ ¼ R
u
0 du0g0ðpe−u0 ; u0Þ.

III. NON-GAUSSIAN cMERA

In QFT, trial states created by introducing polyno-
mial corrections to a Gaussian state correspond to a
finite number of particles and those are suppressed in
the thermodynamic limit. Thus, in going beyond the
Gaussian ansatz, it is necessary to use a class of variational
extensive states for which the energy density does not
depend on the volume. Following [17,18,21], we build
extensive non-Gaussian trial states considering wave func-
tionals of the form

ΨNG½ϕ� ¼ UNGΨG½ϕ� ¼ expðBÞΨG½ϕ�; ð8Þ

where the NG subscript refers to non-Gaussian, ΨG½ϕ� is a
normalized Gaussian wave functional and UNG ¼ expðBÞ,
with B† ¼ −B, an anti-Hermitian operator that, for the
moment, it may add new variational parameters, in addition
to those in the Gaussian wave functional. The expectation
value of any operatorOðϕ; πÞ in these states amounts to the
calculation of a Gaussian expectation value for the transfo-
rmed operator Õ¼U†

NGOUNG, i.e., hΨNGjOðϕ; πÞjΨNGi ¼
hΨGjU†

NGOðϕ; πÞUNGjΨGi. The transformed operator Õ is
straightforwardly built once the transformations

ϕ̃ðpÞ ¼ U†
NGϕðpÞUNG; π̃ðpÞ ¼ U†

NGπðpÞUNG; ð9Þ

are known. The transformation on the operatorO generated
by B is given by the Hadamard’s lemma in terms of a series
of nested commutators [27]

Õ ¼ AdBðOÞ ¼ eadBO: ð10Þ
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It can be seen that a suitable choice of B, while leading
to a non-Gaussian trial state, can indeed truncate the
commutator expansion, thus reducing the calculation of
expectation values of functionals to a finite number
of Gaussian expectation values [28]. The exponential form
of the transformation ensures the correct extensive volume
dependence of observables such as the energy of the
system. In addition, as UNG is unitary, the normalization
of the state is preserved. The operator B consists of a
product of π’s and ϕ’s, which is given by

B ¼ −s
Z

pq1���qm

hðp;q1;…;qmÞ
δ

δϕð−pÞϕðq1Þ…ϕðqmÞ;

where hðp;q1;…;qmÞ¼gðp;q1;…;qmÞδ̄ðpþq1þ���þqmÞ,
s is a variational parameter, gðp; q1;…; qmÞ is a variational
function that must be optimized upon energy minimization
and m ∈ N. The other variational parameter is the kernel
FðpÞ entering the Gaussian wave functional. The explicit
dependence of these parameters on the interaction cou-
plings of a theory is established through energy minimi-
zation. This will be discussed later for some concrete
examples. The function gðp; q1;…; qmÞ is symmetric under
the exchange of qi ’s, it must ensure the anti-Hermiticity of
B and is constrained to satisfy gðp; p; q2;…; qmÞ ¼ 0 and
gðp; q1;…; qmÞgðqi; k1;…; kmÞ ¼ 0, for i ¼ 1;…; m. This
constraint ensures that the multiple commutator series in
(10) terminates after the first nontrivial term. Such pro-
cedure yields a variational approximation to the calculation
of observables in an interacting theory which improves
upon the Gaussian ansatz. The parameter s is a truly non-
Gaussian tracking parameter which shows the deviation of
any observable from the Gaussian case.
The action of UNG on the canonical field operators is

given by

ϕ̃ðpÞ ¼ ϕðpÞ þ sΦðpÞ; π̃ðpÞ ¼ πðpÞ þ sΠðpÞ; ð11Þ
with

ΦðpÞ¼
Z

q1���qm

hðp;−q1 ���−qmÞϕðq1Þ���ϕðqmÞ;

ΠðpÞ¼−m
Z

q1���qm
hð−q1;p;���−qmÞπðq1Þϕðq2Þ���ϕðqmÞ:

ð12Þ
The canonical commutation relations (CCR) still hold
under the unitary, albeit nonlinear, transformation of the
fields (11), ½ϕ̃ðpÞ; π̃ðqÞ� ¼ iδ̄ðpþ qÞ. Noticing that the
Gaussian cMERA is generated by the quadratic operator
(2), it is clear that operators B which are linear or quadratic
in π’s and ϕ’s do not yield any improvement upon the
Gaussian ansatz. Therefore, in going beyond, one must
consider operators B that at least are cubic in the products
of these fields.

In terms of wave functionals, the action of UNG on a
functional A½ϕ� can be understood as a nonlinear shifting of
the argument from ϕ to ϕ − sϕm and thus, for the Gaussian
wave functional, UNGΨG½ϕ� ¼ ΨG½ϕ − sϕm� [17,18].
Hence, our proposal to build nonperturbative cMERA

states for interacting field theories is based on the idea of
defining the set of scale-dependent nonlinear transformations

ϕ̃ðp̃Þ ¼ UNGðuÞ†ϕðpÞUNGðuÞ; ð13Þ

π̃ðp̃Þ ¼ UNGðuÞ†πðpÞUNGðuÞ; ð14Þ

where UNGðuÞ≡UNGUSGðuÞ and USGðuÞ≡USUGðu;uIRÞ.
As commented above, in going beyond the Gaussian
approach, for UNG one must consider operators B that at
least are cubic in the products of these fields. Here we will
focus in the simplest one [29], i.e., the casem ¼ 2which we
denote by B ¼ πϕ2 and explicitly reads

B ¼ −s
Z

pq1;q2

gðp;q1; q2ÞπðpÞϕðq1Þϕðq2Þδ̄ðpþ q1 þ q2Þ;

ð15Þ

where, from a cMERA point of view, gðp; q1; q2Þ can be
interpreted as a variational coupling-dependent momentum
cut-off function [24]. With this choice forB, the transformed
fields result

ϕ̃ðp̃Þ ¼ Σð−Þðp̃eu; uÞðϕðp̃Þ þ se
d
2
uΦðp̃ÞÞ;

π̃ðp̃Þ ¼ ΣðþÞðp̃eu; uÞðπðp̃Þ − 2se
d
2
uΠðp̃ÞÞ; ð16Þ

where we have made the change of variables in momenta
p≡ eup̃. In addition, we have defined Σð�Þðp; uÞ≡
e�fðp;uÞe−d

2
u and

Φðp̃Þ¼
Z

q̃1q̃2

g̃ðp̃;q̃1;q̃2Þϕðq̃1Þϕðq̃2Þδðp̃−q̃1− q̃2Þ;

Πðp̃Þ¼
Z

q̃1q̃2

g̃ðq̃1;p̃;q̃2Þπðq̃1Þϕðq̃2Þδðp̃− q̃1−q̃2Þ; ð17Þ

where the scale-transformed non-Gaussian variational cutoff
is given by

g̃ðp̃; q̃1; q̃2Þ≡ efðp̃eu;uÞ−fðq̃1eu;uÞ−fðq̃2eu;uÞgðp̃eu; q̃1eu; q̃2euÞ:

That is to say, as it occurs in the standard cMERA
formulation, the variational parameters explicitly depend
on the scale transformation. Hence, the cMERA scale-
dependent wave functional ΨNG½ϕ; u� ¼ UNGΨG½ϕ; u� is
given by

ΨNG½ϕ; u� ¼ ΨG½Σð−Þðp̃eu; uÞðϕðp̃Þ − se
d
2
uΦðp̃ÞÞ�;
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where we have assumed, for simplicity, that χ0 ¼ 0.
Regarding the solution of the Gaussian variational para-
meter fðp; uÞ given in [2,3], it is straightforward to see
that Σð�Þðp̃eu; uÞju→0 ¼ 1 and thus, (16) reduces to (11)
and ΨNG½ϕ; 0� ¼ ΨG½ϕðpÞ − sΦðpÞ�.

IV. NON-GAUSSIAN CORRELATION
FUNCTIONS

As in the Gaussian case, the non-Gaussian cMERA based
on the πϕ2 presented here is specially well suited to analyze

correlation functions. These observables distinguish the
ground states of interacting theories from those of non-
interacting ones: i.e., while for Gaussian states the connected
correlation functions of order higher than two vanish, those
of interacting systems are generally nonzero. In addition, the
multiscale approach provides a procedure to gain some
understanding of the nonperturbative effects taking place
at different scales.
From (16), we write the following structure of the

n-point correlators at scale u in real space

GðnÞðx1;…;xnÞ≡ hϕ1 � � �ϕniNG

¼ hϕ1 � � �ϕniG
þ s½hΦ1ϕ2 � � �ϕniG þ � � � þ hϕ1 � � �ϕn−1ΦniG�
þ s2½hΦ1Φ2ϕ3 � � �ϕniG þ � � � þ hϕ1 � � �Φn−1ΦniG�
..
.

þ snhΦ1 � � �ΦniG; ð18Þ

where ϕi ≡ ϕðxiÞ and Φj ≡ΦðxjÞ. The correlation func-
tions break up into interactionless disconnected functions
and connected ones containing information about the
interaction. The first four connected functions are

Gð1Þ
c ðx1Þ ¼ s χ̃1;

Gð2Þ
c ðx1;x2Þ ¼ D̃ð12Þ þ s2 χ̃2ð12Þ;

Gð3Þ
c ðx1;x2;x3Þ ¼ s½ χ̃3�ð123Þ þ s3 χ̃4ð12; 23; 31Þ;

Gð4Þ
c ðx1;x2;x3;x4Þ ¼

s2

2
½ χ̃5� þ s4ð½ χ̃2 χ̃2� þ ½ χ̃6�Þ; ð19Þ

where we use the notation ab≡ xab ≡ xa − xb. D̃ðabÞ≡
Dðab; uÞ is the scale-dependent propagator

D̃ðabÞ ¼ 1

2

Z

p
e−2fðp;uÞFðpe−uÞeip·xab : ð20Þ

The loop integrals χ̃iðx; uÞ, i ¼ 1; � � � 6 depend both on the
positions and the scale u and their explicit expressions and
bracketed quantities involving them can be found in [24].
Connected functions show how the non-Gaussian

cMERA procedure goes beyond the Gaussian approxima-
tion and captures scale-dependent nonperturbative contri-
butions, which are arranged in powers of the variational
parameter s. Focusing on quantities that usually measure
the non-Gaussianity of a system, we notice that the
skewness, related with the 3-point function, is given by

γ21ðs;uÞ≡ ðGð3Þ
c ð123ÞÞ2
ðGð2Þ

c Þ3 ∼
s→0

ð½χ̃3�123Þ2
½D̃D̃D̃� s

2þOðs4Þ, where ðGð2Þ
c Þ3≡

Gð2Þ
c ð12ÞGð2Þ

c ð13ÞGð2Þ
c ð23Þ. In the limit of large s (s → ∞),

the skewness achieves the limiting value γ21;∞ ∼
χ̃24ð12; 23; 31Þ=½ χ̃2 χ̃2 χ̃2� þOðs−2Þ. In this sense, the
quantities that usually can be measured in the experiments
are the full and connected 2-point and 4-point correlation
functions, as well as the point-dependent excess kurtosis
over a Gaussian model [25]. For the latter, we obtain,

γ2ðs; uÞ≡Gð4Þ
c ð1234Þ
½Gð2Þ

c Gð2Þ
c �

∼
s→0

½ χ̃5�
2½D̃ D̃� s

2 þOðs4Þ; ð21Þ

where ½Gð2Þ
c Gð2Þ

c �¼Gð2Þ
c ð12ÞGð2Þ

c ð34ÞþGð2Þ
c ð13ÞGð2Þ

c ð24Þ þ
Gð2Þ

c ð14ÞGð2Þ
c ð23Þ. In the limit of strong non-Gaussianity,

s → ∞, the excess kurtosis goes to a limiting value
γ2;∞ ∼ 1þ ½ χ̃6�=½ χ̃2 χ̃2� þOðs−2Þ.

V. EQUATIONS FOR THE
VARIATIONAL PARAMETERS

We remark that to fully solve the non-Gaussian cMERA
tensor network and evaluate the previous expressions for a
theory with a Hamiltonian H, we must obtain the optimal
values for the variational parameters FðpÞ, gðp; q1; q2Þ and
s. This is addressed by minimizing the expectation value
of the energy density hHi ¼ hΨGjU†

NGHUNGjΨGi at some
length scale u, that in our case is the UV limit, (i.e., u → 0).
Here, we discuss two different theories. First we
consider the λϕ4 scalar theory whose Hamiltonian density
reads Hϕ4 ¼ Hkin þ 1

2
m2ϕðxÞ2 þ λ

4!
ϕðxÞ4, where Hkin ¼

1=2ðπðxÞ2 þ ½∇ϕðxÞ�2Þ and m and λ are the bare mass and
the bare coupling respectively. As any other polynomial
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interaction is a straightforward extension of this work,
we also discuss a non-power-like potential, such as the
sine-Gordon model whose Hamiltonian is given by
HsG ¼ Hkin − α

β2
½cos βϕðxÞ − 1�, in which β is a dimen-

sionless parameter, while α can be regarded as the square of
the bare mass in the case of vanishing β. The energy
expectation value of the λϕ4 theory is

hHϕ4i ¼ hHkini þ
1

2
m2ðs2 χ2 þ ϕ2

cÞ

þ λ

4!
½3I2 þ 6s2ðI χ2 þ χ5Þ þ 3s4ð χ22 þ χ6Þ

þ 4ϕcð3s χ3 þ s3 χ4Þ þ 6ϕ2
cðI þ s2 χ2Þ þ ϕ4

c�;
ð22Þ

where ϕc¼χ0þsχ1, hHkini¼ 1
4

R
p ½FðpÞ−1þp2FðpÞ�þs2χ7

and I ¼ 1=2
R
p FðpÞ. The notation χi means that the

loop integrals are evaluated at the same spatial point x,
i.e., χi ≡ χ̃iðxab ¼ 0; u ¼ 0Þ.
The equations for the optimal values of the variational

parameters s, FðpÞ and gðp; q1; q2Þ are obtained, for a
fixed ϕc, by deriving hHϕ4i with respect to them and then
equating to zero [24]. This yields a set of nonlinear coupled
equations that must be self-consistently and numerically
solved. However, our aim here is to provide expressions
that explicitly show the relation between the variational
parameters and the coupling constants of the models
under consideration. To proceed, we note that hHϕ4i and
their related optimization equations greatly simplify for
ϕc ∼ 0 where the kernel FðpÞ reduces to FðpÞ ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ μ2

p
þOðϕ2

cÞ, with μ a variational parameter
[21,24]. In that case, μ2 ¼ m2 þ ðλ=2ÞI0ðμ2Þ, where
I0ðμ2Þ ¼ 1

2

R
pðp2 þ μ2Þ−1

2. Further, we note that only the
product sg is meaningful and thus, fixing s to be s ¼ −4λϕc
is a way to conveniently normalize g[30]. Finally, denoting
fðp;qÞ≡ gðjpþ qj; p; qÞ, the optimal cutoff function is
the solution of

fðp;qÞ ¼ Gðp;qÞ
�
1 − 4λ

Z

k
½fðp;kÞ þ fðq;kÞ�FðkÞ

�
;

ð23Þ

with Gðp;qÞ a combination of kernels given in [24]. The
term proportional to s χ3 in (22) is the major contribution to
the improvement of the energy value compared to the
Gaussian estimate [17,18]. Indeed, the optimal χ3 (given in
terms of the solution of (23) is seen to contain an infinite
series of diagrammatic contributions to the two-point
function that are complementary to the “cactus”-diagrams
resummation [20]. This highlights to what extent, the trial
wave functionals of the non-Gaussian cMERA, may
produce approximations that go far beyond the Gaussian

approximation. Remarkably, the NLCT procedure in d ¼ 1
includes more physics but no further infinities than those
posed by the cactus-diagrams. However, the renormaliza-
tion of the non-Gaussian variational calculations in d > 1 is
shown to be much more involved and the contributions
generated by the NLCT need infinite rescalings of the bare
parameters [18].
Regarding the sine-Gordon model, when computing

hHsGi, the term hcos βϕi poses a challenge to the NLCT
method as this interaction term is nonpolynomial. In [24] it
is shown that when the momentum support of the p-modes
in gðp; q1; q2Þ is sufficiently small in comparison with the
support of the q-modes, one may write hcos βϕi ¼
exp ð−β2=2I0ðμ2ÞÞ cos βφc with φc ¼ s χ1 and μ a varia-
tional mass parameter. In this limit, the optimization
procedure can be applied to this model.

VI. DISCUSSION

In this work, a general method for building non-Gaussian
generalizations of the cMERA has been presented. The
method uses a class of nonlinear canonical transformations
which are then applied to a Gaussian wave functional. We
have shown how to obtain nonperturbative effects on the
correlation functions far beyond the Gaussian approxima-
tion in two scalar field theories. We expect this can be
useful in addressing recent experimental data on higher
order correlation functions in many body systems [25,26].
Furthermore, our method shows how the cMERA formal-
ism could provide a systematic UV regularization scheme
for generic interacting QFTs. In this sense, our approach
can be generalized to fermionic and gauge field theories. In
particular, we propose the following fermionic transforma-
tion acting on a spinor ψðkÞ:

B ¼
Z

pq1���ql
gαβ1���βlðp;q1;…;qlÞπαðpÞ

× ψβ1ðq1Þ � � �ψβlðqlÞδðpþ q1 þ � � � þ qlÞ; ð24Þ

where Greek indices denote spinor components, g is a
variational (non-)Grassmannian function and παðpÞ≡
δ=δψαð−pÞ is the conjugate momentum. Despite this
transformation also truncates, a model-dependent analysis,
which is beyond the scope of this paper, would impose
additional restrictions on the indices βi. We expect this
transformation to be useful in addressing relevant physical
phenomena in strongly coupled theories including chiral
field theories.
Regarding dynamical settings such as quantum

quenches, the method promises to be useful as for the
moment, all studies with the Gaussian cMERA, assume
that the time-evolved state after the quench remains
Gaussian along the evolution. Finally, it is worthwhile to
explore what geometrical interpretation can be found for
the non-Gaussian cMERA ansatz presented in this work.
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