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We study relativistic hydrodynamics with chiral anomaly and dynamical electromagnetic fields, namely
chiral magnetohydrodynamics (CMHD). We formulate CMHD as a low-energy effective theory based on a
generalized derivative expansion. We demonstrate that the modification of ordinary magnetohydrody-
namics (MHD) due to chiral anomaly can be obtained from the second law of thermodynamics and is tied to
the chiral magnetic effect. We further study the real-time properties of a chiral fluid by solving linearized
CMHD equations. We discover a remarkable “transition” at an intermediate axial chemical potential μA
between a stable chiral fluid at low μA and an unstable chiral fluid at high μA. We summarize this transition
in a “phase diagram” in terms of μA and the angle of the wave vector relative to the magnetic field. In the
unstable regime, four collective modes carry both magnetic and fluid helicity, in contrary to MHD waves,
which are unpolarized. Half of the helical modes grow exponentially in time, indicating the instability,
while the other half become dissipative.
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I. INTRODUCTION

Hydrodynamics is a versatile theory describing the real-
time dynamics of a given interacting many-body system in
the long-time limit [1]. In this limit, most degrees of
freedom become irrelevant, since they relax within short
timescales. The surviving dynamical variables are typically
those related to the conservation laws. For instance, hydro-
dynamic variables for a normal fluid include the energy
density ϵ and the fluid velocity uμ, which correspond to the
conservation of energy and of momentum, respectively. A
more complicated example is provided by a conducting
fluid which is described by magnetohydrodynamics
(MHD), the theory of which couples the hydrodynamic
motion of the fluid to Maxwell’s theory of electromagnet-
ism. The dynamical variables of MHD include not only
ϵ and uμ, but the magnetic field Bμ as well. Here, the
field strength tensor and its dual are Fμν and F̃μν ¼
1
2
ϵμναβFαβ ¼ Bμuν − Bνuμ þ ϵμναρuαEρ, respectively. The

electric charge density n and electric field Eμ are damped

out at a rate proportional to the electric conductivity σ, and
therefore should not be included as MHD variables (see
Refs. [2–4] and the Appendix B). For this reason, we will
consider a chiral fluid which is (vector) charge neutral
throughout.
The primary purpose of this paper is to study the

properties of chiral matter (systems involving chiral fer-
mions) in the long-time limit. Chiral matter exhibits many
interesting phenomena, some of which are closely tied to
chiral anomaly. We wish to present a hydrodynamic
approach for conducting chiral fluid by coupling the
dynamics of axial (chiral) charge density nA to MHD,
and we refer to the resulting theory as chiral MHD
(CMHD); see Refs. [5–8] for previous studies. This theory
would allow us to study those anomaly-induced effects
which are absent in ordinary MHD. The places where such
a theory can potentially be applied include the quark-gluon
plasma (QGP) created by heavy-ion collisions [9,10],
newly discovered Dirac and Weyl semimetals [11,12],
and the electroweak plasma produced in the primordial
Universe after the big bang [13,14].
However, nA is distinguished from standard MHD

variables because of their difference in the long-wavelength
behavior of the relaxation rate. Specifically, ΓA, the
relaxation rate of nA, is finite in the small wave vector
(or gradient) k limit, since axial current JμA is not conserved
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due to quantum anomaly. Therefore, one has to identify an
additional small parameter to make ΓA parametrically small
so that nA can be counted as a parametrically slow mode
(see Ref. [15] for a discussion on the extension of hydro-
dynamics with parametrically slow modes in generic
situations). We identify this additional small parameter
as the anomaly coefficient CA [see Eq. (3) below], and we
will work in the limit CA ≪ 1. This identification is natural
because CA tracks the effects of quantum anomaly, which
are typically suppressed by the additional power of ℏ.
Without such anomalous effects, nA would be conserved,
and hence ΓA would vanish in the CA → 0 limit. In fact, we
shall see ΓA ∝ C2

A, which is analogous to the relaxation rate
of standard MHD variables, which is proportional to k2.
The very presence of this additional small parameter CA

also necessitates the generalization of the standard pro-
cedure of derivative expansion for hydrodynamics to
construct CMHD. We will formulate CMHD based on
the double expansion in terms of the gradient number k
(times the mean free path lmap) and CA in Sec. II. By double
expansion, we mean that both CA and klmfp are small, but
we do not assume any hierarchy between them. Here and
hereafter, let us use OðδÞ to denote terms of the order OðkÞ
(k times the mean free path) and/or OðCAÞ. As detailed
below, we will express the stress-energy tensor Tμν, JμA, and
Eμ in terms of the CMHD variables ϵ, uμ, Bμ, nA up to the
first order in OðδÞ. From now on, quantities at OðδÞ are
sometimes labeled with the subscript (1). In our derivation,
the stringent constraint imposed by the second law of
thermodynamics is taken into account. The result of doing
so yields

Eμ
ð1Þ ¼ −

1

σ
½CAμABμ þ β−1ϵμναρuν∂αðβHρÞ�: ð1Þ

In Eq. (1), β is the inverse of the temperature and Hμ is the
in-medium magnetic field. While the OðkÞ term in Eq. (1)
already shows up in MHD, the presence of an OðCAÞ term
there, being proportional to the axial chemical potential μA,
is the distinctive feature of CMHD. We shall see that this
term is closely related to the chiral magnetic effect (CME)
[16–18] (see Refs. [10,19–22] for a recent review), the
generation of electric current by a magnetic field in chiral
matter with nonzero nA.
We next explore the real-time properties of a chiral fluid

by solving linearized CMHD, and we study the corre-
sponding collective excitations in Sec. III. Our chief
observation is the “transition” at an intermediate μA
between a stable chiral fluid at low μA and an unstable
chiral fluid at high μA. In the unstable regime, there will be
four collective modes carrying both magnetic and fluid
helicity, in contrary to waves in MHD, which are unpo-
larized. Half of the helical modes have positive imaginary
components, indicating the instability. The formulation of
CMHD based on a new derivative expansion scheme

together with the discovery of a qualitative difference in
the dynamical properties of chiral fluid are the main
findings of this paper.

II. CHIRAL MHD

The equations of motion for the CMHD variables ϵ, uμ,
Bμ, and nA consist of the energy-momentum conservation,
the Bianchi identity, and the anomaly equation (we use the
“most minus sign” convention for the metric gμν):

∂μTμν ¼ 0; ð2aÞ

∂μF̃μν ¼ 0; ð2bÞ

∂μJ
μ
A ¼ −CAE · B; ð2cÞ

where JμA is the axial current, and the anomaly coefficient is
given by

CA ¼ e2

2π2
: ð3Þ

Here, Tμν is the energy-momentum tensor of the total
system (i.e., the fluid and EM fields) so that it is conserved.
Equation (2c) shows that the evolution of nA is closely
related to the dynamics of EM fields. Indeed, the recon-
nection of magnetic flux could induce the change of nA
[23]. Depending on the microscopic details of the systems
under study, there could be other processes which contrib-
ute to the relaxation of nA. For example, topological
sphaleron transitions can also change the axial charge in
a quark-gluon plasma (QGP), but the transition rate scales
with g10 for weakly coupled QGP. We have neglected those
additional processes when writing down Eq. (2c) to
simplify the discussion, and we leave their extension to
future work.
At zeroth order [Oðδ0Þ], the form of Tμν; F̃μν is identical

to those of MHD. Therefore,

Tμν ¼ ϵuμuν−pðgμν−uμuνÞ−HμBνþTμν
ð1Þ þOðδ2Þ; ð4aÞ

F̃μν ¼ Bμuν − Bνuμ þ ϵμναρuαEρð1Þ þOðδ2Þ; ð4bÞ

JμA ¼ nAuμ þ JμAð1Þ þOðδ2Þ; ð4cÞ

see also Appendix A for a detailed discussion. Here, the in-
medium magnetic field Hμ is conjugate to Bμ, i.e.,

ds ¼ βdϵ − ðβμAÞdnA þ βHμdBμ: ð5Þ

The entropy density s and pressure p are related by the
thermodynamic relation:

p ¼ −ϵþ μAnA þ β−1s −H · B: ð6Þ
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We remind the reader that Tμν refers to the total stress
tensor (i.e., the sum of the fluid and Maxwell stress tensors)
of the system. Therefore, there is a BμHν term in Eq. (4a),
and a dependence of p on B. They originate from the
Lorentz force that the charged fluid would experience
(cf. Ref. [24]).
We next consider the entropy current Sμ ¼ suμ þ sμð1Þ

and require the positivity of the entropy production
∂μSμ ≥ 0. Transforming βuν∂μTμνþβμA∂μJμþβHμ∂νF̃μν

using Eq. (2), we find (in the Landau fluid frame
uμT

μν
ð1Þ ¼ 0)

βð∂μuνÞTμν
ð1Þ þ ½−∂μðβμAÞJμAð1Þ�

þ Eμð1Þ½CAμABμ þ β−1ϵμναρuν∂αðβHρÞ� ≥ 0; ð7Þ

with Sð1Þ given by (A19); see Appendix A for more details.
We note that ∂μðsuμÞ ¼ 0 (cf. Sec. 1 of Appendix A),
meaning there is no entropy production for zeroth-order
(i.e., ideal) CMHD. In order to satisfy the condition (7), it is
sufficient to require each of the three terms on the lhs of
Eq. (7) to be positive definite [cf. Eq. (A20)]. The
expression for Tμν

ð1Þ in MHD has been determined previ-

ously [2–4,25,26] and satisfies ð∂μuνÞTμν
ð1Þ ≥ 0. In other

words, the constitutive relation for Tμν
ð1Þ is identical to that of

MHD. Meanwhile, ½−∂μðβμAÞJμAð1Þ� ≥ 0 will be satisfied if

JμA ¼ λA∂μðβμAÞ, where λA is a positive transport coeffi-
cient. We finally turn to the condition

Eμð1Þ½CAμABμ þ β−1ϵμναρuν∂αðβHρÞ� ≥ 0; ð8Þ

which requires Eμ to be of the form given by Eq. (1). Here,
a positive constant σ will be identified with the electric
conductivity shortly. For simplicity, we assume that σ is
isotropic, which is the case in a weak-magnetic-field limit.
Nevertheless, our conclusion on the CME current holds
even with a general tensor structure of σ, as is shown in
Sec. 2 of Appendix A.
We now demonstrate that the first term on the rhs of

Eq. (1) is tied to CME. To simplify our analysis, we take β
to be homogeneous and rewrite the spatial part of Eq. (1) in
the local rest frame of fluid:

E ¼ σ−1ð−CAμABþ∇ × BÞ: ð9Þ

Employing Ampere’s law j ¼ ∇ × B, we have

j ¼ CAμABþ σE: ð10Þ

Two implications follow from Eq. (10). First, σ in Eq. (1)
has to be the conductivity so that σE is the usual Ohm
current. Second, we now recover the CME current from
Eq. (1). Notice that the dynamical variables as well as the
counting scheme here are different from those in earlier

works. For example, Eμ, Bμ are nondynamical, and are
counted as OðkÞ in Ref. [27]. Despite these differences, we
find the same form of the CME current, which exemplifies
the universal nature of CME. To the best of our knowledge,
the demonstration of this universality within the framework
of CMHD based on the second law of thermodynamic is
new in literature. In fact, there are studies which show that
the form of other anomaly-induced effects, in particular
those of chiral vortical effect, is nonuniversal with a
dynamical gauge field [28]. In this regard, our result on
the universal form of CME contribution is quite
remarkable.
We wish to reiterate the novelty and necessity of double

expansion in terms of CA and gradient in CHMD, through
which we obtain Eq. (1) and hence the manifestation of
CME in Eqs. (1) and (10). If we were using the conven-
tional gradient expansion, then the first term, i.e., the CME
term, in Eq. (1) has to be counted as zeroth order in
the gradient. This contradicts with the assumption that the
electric field Eμ is not a slow variable and cannot be
counted as the zeroth-order term in the expansion.
Generally speaking, the very existence of nonhydrody-
namic slow modes suggests the presence of at least one
additional small parameter which controls the slowness of
such modes in the system of interest. For the case of chiral
fluid with slow evolving nA, we identify this slow param-
eter as CA. Indeed, let us recover ℏ dependence of the chiral
magnetic conductivity CAμA [29], which is of the order
μA=ℏ2 (cf. Ref. [30]), and that of the Ohm conductivity σ,
which is of the order T=g4, where g generically denotes the
coupling constant. Following Ref. [31], we will require that
g=ℏ approach a constant in the ℏ → 0 limit. Doing so
would make the loop expansion the same as the expansion
in powers of ℏ. Consequently, σ ∼ 1=ℏ4, and the CME term
in Eq. (10) is parametrically smaller than the Ohmic current
term in this limit. This in turn confirms that CA tracks the
quantum effect of chiral anomaly, which is suppressed by
the additional power of ℏ, as we claimed earlier.

III. COLLECTIVE MODES

We now consider fluctuations around a uniform static
background: ϵðt; xÞ ¼ ϵþ δϵðt; xÞ, uμðt; xÞ ¼ ð1; vðt; xÞÞ,
Bμðt; xÞ ¼ ð−B · vðt; xÞ;−Bþ δBðt; xÞÞ, and nAðt; xÞ ¼
nA þ δnAðt; xÞ. Our formulation of CMHD is valid as long
as both CA and the gradient are small. In what follows, we
will solve linearized CMHD for those fluctuations in
frequency ω and wave vector k space by specifying the
following hierarchy among k and other scales. First, our
focus will be on the regime k ≪ CAμA, since early studies
indicate that chiral plasma would become unstable in this
momentum regime. Consequently, we neglect the second
term on the rhs of Eq. (1). In this limit, ∂tnA ¼ CAE · B
will become a relaxation equation of nA upon
substituting E¼−CAμAB=σ. The corresponding relaxation
rate ΓA ∼ C2

A, as we advertised earlier. Next, we will require
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ωðkÞ ≫ ΓA ∼ C2
A so that the evolution of δnAðt; xÞ is

decoupled from other fluctuating variables. In the
small-CA limit, there is indeed a wide range of k satisfying
both conditions. Finally, we assume ηk, ζk ≪ ϵ as in
ordinary hydrodynamics, where η and ζ are the shear
and bulk viscosity, respectively. For this reason, we will not
include the contribution due to Tμν

ð1Þ from now on.

To proceed, we will use a simplified equation of state
p ¼ pfðϵfÞ − B2=2 so that Hμ ¼ Bμ. Here ϵf ¼ ϵ − B2=2
and pf are the fluid parts of the energy density and
pressure, respectively, where we have defined

B≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
−B · B

p
: ð11Þ

For definiteness, we will use pfðϵfÞ ¼ c2sϵf, where cs is the
sound velocity. The linearized equations for (rescaled)
fluctuation fields,

δϵ̃f ≡ δϵf
ðef þ pfÞ

; b≡ δBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵf þ pf

p ; ð12Þ

now read

iωδϵ̃f ¼ −ikvL; ð13aÞ

iωvL ¼ −ikðc2sδϵ̃f − uA sin θb2Þ; ð13bÞ

iωv1 ¼ ikuA cos θb1; iωv2 ¼ ikuA cos θb2; ð13cÞ

iωb1 ¼ ikðuA cos θv1 þ ϵAb2Þ; ð13dÞ

iωb2 ¼ ik½uAðsin θvL þ cos θv2Þ − ϵAb1�; ð13eÞ

where θ is the relative angle between k and B. By
introducing a standard orthogonal unit basis ê1 ∝ B̂ × k̂,
ê2 ¼ k̂ × ê1 and k̂ [32], we have decomposed the fluctuation
fields as v ¼ v1ê1 þ v2ê2 þ vLk̂ and b ¼ b1ê1 þ b2ê2 (note
that ∇ · b ¼ 0). For later convenience, we have introduced
two important dimensionless parameters: namely, Alfvén
velocity uA ≡ B=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵf þ pf

p
and ϵA ¼ CAμA=σ. We have

further assumeduA ≪ 1, and have dropped terms suppressed
u2A ≪ 1 when writing down Eq. (13). However, ϵA=uA can
be Oð1Þ, since ϵA ∝ CA ≪ 1.
The dispersion relation ωðkÞ ¼ Vk of collective modes

can be determined by solving Eq. (13), where “group
velocity” V satisfies

ðV2 − u2Acos
2θÞ½V4 − ðu2A þ c2s ÞV2 þ c2su2Acos

2θ�
þ ϵ2AV

2ðV2 − c2s Þ ¼ 0: ð14Þ
Equation (14) has six roots, corresponding to six collective
modes. Furthermore, by expressing v1;2 in terms of b1;2
using Eq. (13c), and substituting the resulting expressions
into Eq. (13d), we found

v1
v2

¼ b1
b2

¼ ϵAV
u2A cos2 θ − V2

: ð15Þ

Equation (15) is very informative in at least two aspects.
First, it implies that the relative phase between b1, b2 is the
same as that between v1, v2. If a collective mode carries a
positive (negative) magnetic helicity, it also carries a fluid
helicity of the same chirality. Such a modewill be called the
RH (LH) mode below. By definition, magnetic and fluid
helicity are positive (negative) if δA · δB > 0 (< 0) and
ð∇ × vÞ · v > 0 (< 0), respectively. Here δA is the vector
gauge potential satisfying B ¼ ∇ × δA. Second, Eq. (15)
will tell us the polarization of each collective mode with a
given V. For instance, Eq. (15) implies that a mode with a
real-valued V is linearly polarized, whereas that with a
purely imaginary V is circularly polarized.
Let us first consider Eq. (13) in two limiting cases. In the

limit ϵA=uA ¼ 0, Eq. (13) is reduced to the linearized
MHD. The collective modes are well known as the Alfvén
wave and the fast and slow magnetosonic waves [33] with
group velocities given by VA, VF, and VS, respectively.
Solving Eq. (14) at ϵA ¼ 0, one finds

V2
A ¼ u2A cos

2 θ; ð16Þ

V2
F;S ¼

ðu2A þ c2sÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4A þ c4s − 2u2Ac

2
s cos ð2θÞ

p
2

; ð17Þ

where a þ (−) sign corresponds to VF ðVSÞ. We note that
VF;S and VA are real, indicating that MHD waves are
unpolarized and ordinary MHD systems are stable.
Now we turn to the opposite limit, ϵA=uA ≫ 1. In this

case, the evolution of b1 and b2 is decoupled from that of v
and δẽf, and is described by setting uA ¼ 0 in Eqs. (13d)
and (13e). The corresponding collective modes are
ðb1; b2Þ ∝ ð1;�iÞ, corresponding to circularly polarized
(helical) magnetic fields, with purely imaginary V ¼ �iϵA.
Such modes are referred to in literature as Chern-Simon
(CS) modes [34]. Half of the CS modes have a positive
imaginary part, signifying the instability of a chiral plasma,
as discussed earlier in Refs. [14,34,35].
If we put the preceding analysis at small and large μA

(ϵA) together, we conclude that a chiral fluid with a
dynamical magnetic field must have at least one “transi-
tion” at an intermediate μA between a stable chiral fluid at
low μA and a unstable chiral fluid at high μA. We now put
this qualitative expectation on a quantitative basis by
computing the V of each collective mode at a given
ϵA=uA and θ by solving Eq. (14). It is sufficient to consider
0 ≤ θ ≤ π=2, since V determined from Eq. (14) will depend
on cos2ðθÞ only. In Fig. 1, we present a “phase diagram,”
which charts stable and unstable regimes (“phases”) in the
ϵA − θ plane.
In the low-μA “phase,” i.e., “Phase I” (red regime), a

chiral fluid is stable. All modes are akin to MHD waves up
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to the modifications of the group velocities which are real-
valued. However, as we increase ϵA, the system transits to
the unstable phase, i.e., “Phase II.”While there are still two
modes similar to ordinary MHD waves in this phase, the
remaining four modes become helical and have nonzero
ImV. Half of those modes have ImV > 0, indicating their
instability. As a specific example, Figs. 2(a) and 2(b) show
the real and imaginary parts of V for all six modes as
functions of ϵA at a fixed θ ¼ π=4.
Figure 1 reveals that a chiral fluid is stable for a small but

finite μA for any generic θ. This is in stark contrast with the
case of chiral plasma, which would become unstable in
the presence of an infinitesimal small μA [14,34,35]. To
understand this difference, let us consider, without losing
generality, the modification of V at small ϵA of the mode
which corresponds to an Alfvén wave at ϵA ¼ 0.
Substituting V ¼ VA þ ΔV into Eq. (14) and expanding
it to linear order in ΔV, we find

ΔV ¼ −
ϵ2AðV2

A − c2sÞVA

2ðV2
A − V2

FÞðV2
A − V2

SÞ
: ð18Þ

To obtain Eq. (18), we have used the fact that the first
line of Eq. (14) can be put into to the form
ðV2 − V2

FÞðV2 − V2
SÞðV2 − V2

AÞ. Equation (18) shows that
ΔV remains real, i.e., ImV ¼ 0, for sufficiently small ϵA and
for θ at which there is no degeneracy amongVF;S,VA, so that
the denominator of Eq. (18) is nonzero. Consequently, chiral
fluid is stable in this case, except for θ ¼ 0 where
VF ¼ VA ¼ uA, and for θ ¼ π=2 where VS ¼ VA ¼ 0
[cf. Eqs. (16) and (17)]. Putting it in a perhapsmore intuitive,
albeit less rigorous way, we can think of those helical modes
in the unstable phase as originating from a mixture of
different linearly polarized MHD waves. Such a mixture
will not be energetically favorable unless the group velocity
of two different MHD waves becomes identical.
We now focus on those four modes which become

helical in the unstable phase. One can show from Eq. (15)
that those helical modes have the remarkable properties of
“selective growth”—namely, when ϵA > 0 (ϵA < 0), the
ImV of RH (LH) modes is positive, meaning that RH (LH)
modes are “selected” to grow exponentially in time. CS
modes for chiral plasma also exhibit the properties of
selective growth, and its physical origin has been discussed
in many early works (e.g., Refs. [14,34–36]). Since chiral
anomaly can redistribute helicity between the fermionic
and magnetic parts, the chiral plasma will tend to minimize
the energy cost at a fixed helicity by populating modes with
a definite helicity. The physics is similar here. What is
distinctive about helical modes of chiral fluid is that they
carry nonzero fluid helicity in addition to magnetic helicity,
since the magnetic field and fluid field are coupled to
each other.
To illustrate this close relationship between the chirality of

the helicity and the instability of those collective modes,
we plot the trajectories of the Stokes vector [32], s ¼
ðb21 − b22; 2Re½b1b�2�; 2Im½b1b�2�Þ=ðb21 þ b22Þ, corresponding
to those four modes with varying ϵA at θ ¼ π=2 on a unit

FIG. 1. A “phase diagram” charting the stable and unstable
regimes of chiral fluid in the θ-ϵA plane (with cs=uA ¼ 0.6); see
text. The dashed vertical (horizontal) curve represents the fixed
value of θ (ϵA) used in Fig. 2.

FIG. 2. Plots of (a) the real part and (b) the imaginary part of V, and (c) the polarizations vs ϵA=uA at θ ¼ π=4 and cs=uA ¼ 0.6; see the
text for more. The corresponding modes are shown in the same colors from (a) to (c). Vertical lines show the phase boundaries in Fig. 1.
A pair of modes corresponding to the green beaches in (a) and (b) always stay at the equator and are not shown in (c).
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sphere (the Poincaré sphere) in Fig. 2(c). By definition, a
point on the equator of the Poincaré sphere specifies a linear
polarization, while points on the upper and lower hemi-
spheres indicate left-handed and right-handed polarization,
respectively. In particular, the north and south poles corre-
spond to the circular polarizations. The red and blue
trajectories start at s ¼ ð−1; 0; 0Þ and s ¼ ð1; 0; 0Þ (at the
equator of the Poincaré sphere), respectively, corresponding
to ϵA ¼ 0, and “flow” to the upper/lower hemispheres when
the transition occurs from Phase I to II, and eventually
approach the north/south poles. Notice the correspondences
between the polarization states and the dispersion relations
shown in the same colors from Figs. 2(a) to 2(c).
While in the high-μA “phase,” i.e., “Phase IIB,” the

values of V for helical CMHDmodes are purely imaginary;
similarly to CS modes in the chiral plasma, those
four helical modes have complex-valued V at an
intermediate-μA regime (“Phase IIA”). We will call them
“chiral magnetohelical modes (CMHMs).” It might be
useful to view CMHMs as an outcome of an interesting
hybridization of MHD waves and CS modes. They
“inherit” the ability of propagation in space (ReV ≠ 0)
from MHD waves, and that of carrying magnetic helicity
from CS modes. The presence of such new collective
modes has not been reported in the preceding studies of
CMHD [5–8]. CMHMs are also distinct from collective
modes in chiral fluid with a nondynamical magnetic field
[37–40]. The emergence of CMHMs clearly demonstrates
the rich physics underlying CMHD.

IV. SUMMARY AND IMPLICATIONS

We have presented a formulation of hydrodynamic
theory for a chiral fluid with a dynamical magnetic field
based on a generalization of derivative expansion. We
derive the manifestation of CME in CHMD at the first order
in this expansion scheme. It would be interesting to extend
our formulation to a higher order to study chiral vortical
effect and other anomaly-induced phenomena in CMHD
(e.g., Ref. [41]). In addition, we explore the real-time
properties of chiral fluid, and find a qualitative difference in
the aspects of stability and polarization of collective modes.
In this work, we focus on the basic formulation and

general properties of chiral fluid. Our findings can be
applied to specific chiral matter, such as Weyl semimetal
[42] and QGP created in heavy-ion collisions. As for the
latter, the dynamics of baryon density can be potentially
important, and it is particular relevant to the coming low-
beam-energy scan at RHIC. It would be interesting to
extend the present analysis of CMHD by including nB
as well.
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APPENDIX A: THE CONSTITUTIVE
RELATION FOR CHIRAL MHD

In this Appendix, we will supplement the discussion in
Sec. II with more details on the form of the constitutive
relation of CMHD. We shall see that the second law of
thermodynamics imposes an important constraint on such
relation.
We would like to express fTμν; JμA; F̃

μνg in terms of
CMHD variables fϵ; B; nAg by generalizing the standard
procedure of derivative expansion to the double expansion
in terms of gradient and CA:

Tμν¼Tμν
ð0Þ þTμν

ð1Þ; F̃μν¼ F̃μν
ð0Þ þ F̃μν

ð1Þ; JμA¼JμAð0Þ þJμAð1Þ;

ðA1Þ

as we explained earlier. We will use the subscripts (0)
and (1) to denote quantities at zeroth and first order in δ,
respectively. As a reminder, OðδÞ denotes quantities of the
order OðkÞ and/or OðCAÞ. CMHD variables are counted as
zeroth order in OðδÞ. Non-CMHD variables are counted as
first order or even a higher order in δ. In particular, Eμ is
counted as OðδÞ.
At zeroth order in δ, the (total) energy momentum tensor,

the axial current, and F̃μν can be written in general as

Tμν
ð0Þ ¼ ϵuμuν − XΔμν − YBμBν; ðA2aÞ

F̃μν
ð0Þ ¼ Bμuν − Bνuμ; ðA2bÞ

JμAð0Þ ¼ nAuμ; ðA2cÞ

where

Δμν ¼ gμν − uμuν: ðA3Þ

Here, X, and Y are functions of CMHD variables, as we
shall determine shortly. A term proportional to Bμ is not
allowed in JμAð0Þ based on the symmetry consideration. For

such a term to be present, its prefactor has to be C-odd,
since Bμ is C-odd and JμA is C-even. However, the electric
charge density n vanishes in the limit δ → 0, and so it is the
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prefactor of such terms. For the same reason, we do not
include a term proportional to ðBμuν þ BνuμÞ in Tμν

ð0Þ. Note

that the expression for F̃μν
ð0Þ follows from the definition

of Bμ.
In what follows, we will obtain the expression for X, Y

and Tμν
ð1Þ, J

μ
Að1Þ, E

μ
ð1Þ via the second law of thermodynamics.

Note that by definition Eμ
ð1Þ is related to F̃μν

ð1Þ as

F̃μν
ð1Þ ¼ ϵμναβuαEð1Þβ: ðA4Þ

For this purpose, we consider the entropy current Sμ:

Sμ ¼ Sμð0Þ þ Sμð1Þ; ðA5Þ

where the zeroth-order entropy current is given by

Sμð0Þ ¼ suμ: ðA6Þ

The divergence of Sμ now reads

∂μSμ ¼Dsþ sθþ∂μS
μ
ð1Þ

¼ βDϵ− ðβμAÞDnAþβHμDBμþ sθþ∂μS
μ
ð1Þ; ðA7Þ

where from the first line to the second line we have
used Eq. (5). Here we have introduced the short-handed
notation:

D≡ uμ∂μ; θ≡ ∂μuμ: ðA8Þ

On the other hand, by substituting Eqs. (A2), (A4),
and (A1) into Eq. (2), we have

Dϵ ¼ −ðϵþ XÞθ − YBνðB · ∂Þuν þ ð∂μuνÞTμν
ð1Þ; ðA9aÞ

DBμ ¼ −Bμθ þ ðB · ∂Þuμ þ uμð∂ · BÞ þ ∂μðϵμναβuαEð1ÞβÞ;
ðA9bÞ

DnA ¼ −nAθ − ∂μJ
μ
Að1Þ − CAEð1Þ · B: ðA9cÞ

In Eq. (A9a), we have used the fact that uνT
μν
ð1Þ ¼ 0, since

we are working in the Landau fluid frame throughout.
Combining Eq. (A9) and Eq. (A7) yields

∂μSμ ¼ Dsþ sθ þ ∂μs
μ
ð1Þ

¼ βθð−X − ϵþ sT þ μAnA −H · BÞ
þ βðHμ − YBμÞðB · ∂Þuμ
þ βð∂μuνÞTμν

ð1Þ þ ðβμAÞð∂ · JAð1Þ þ CAEð1Þ · BÞ
þ βHμ∂νðϵμναρuαEð1ÞρÞ þ ∂ · Sð1Þ: ðA10Þ

Equation (A10) will be the starting point of the analysis in
the subsequent Secs. 1 and 2.

1. The constitutive relation at zeroth order in δ:
Ideal chiral MHD

To determine Tμν
ð0Þ, we consider Eq. (A10) at first order in

δ. By requiring that there be no entropy production at this
order, we have

∂ · Sð0Þ ¼ βθð−X − ϵþ sT þ μAnA −H · BÞ
− βðHμ − YBμÞðB · ∂Þuμ

¼ 0: ðA11Þ

Therefore, X, Y satisfy

Hμ ¼ YBμ; ðA12aÞ

X ¼ −ϵþ sT þ μAnA −H · B; ðA12bÞ

meaning that YBμ is the in-medium magnetic field Hμ, and
X must be identified with pressure p after comparing
Eq. (A12b) with Eq. (6). Substituting Eq. (A12) into
Eq. (A2), we obtain Tμν

ð0Þ used in Eq. (4):

Tμν
ð0Þ ¼ ϵuμuν − pΔμν −HμBν: ðA13Þ

While in a large body of literature on relativistic MHD,
energy density and pressure are often divided into the fluid
and EM parts (cf. Refs. [25,26]), in this work, ϵ and p
denote the total energy and pressure, respectively, including
the contributions from both fluid and EM field. The reason
for doing so is that making the above-mentioned division
could be physically impossible if the constitution of the
fluid is strongly coupled to the EM field. As commented by
W. Israel in Ref. [24], “questions about which part should
be called the ‘electromagnetic energy tensor’ are near
semantics and to a large extent, superfluous.” That said,
we could recover the conventional constitutive relation of
ideal MHD from Eq. (A13) as follows: To simplify the
discussion, we will assume Hμ ¼ Bμ and decompose the
total energy density and pressure in the following form:

ϵ ¼ ϵf þ
1

2
B2; p ¼ pf þ

1

2
B2; ðA14Þ

with ef andpf being the fluid parts andB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
−B · B

p
. Then,

the energymomentum tensor of the conventional idealMHD
[cf. Eqs. (3) and (4) in Ref. [26] ] is reproduced as

Tμν
ð0Þ ¼ Tμν

ð0Þfluid þ Tμν
ð0ÞEM; ðA15Þ

where
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Tμν
ð0Þfluid ¼ ϵfuμuν − pfΔμν; ðA16Þ

Tμν
ð0ÞEM ¼ B2uμuν −

1

2
B2gμν − BμBν: ðA17Þ

We note that Tμν
ð0ÞEM is the conventional EM stress-energy

tensor in the absence of electric field.

2. The constitutive relation at first order
in chiral MHD and CME

To constrain the constitutive relation at OðδÞ, we con-
sider Eq. (A10) at second order in δ2. The entropy
production has to be positive definite at this order.
Therefore,

βð∂μuνÞTμν
ð1Þ þ βμAð∂ · JAð1Þ þ CAEð1Þ · BÞ

þ βHμ∂νðϵμναβuαEð1ÞβÞ þ ∂ · Sð1Þ

¼ ∂μ½Sμð1Þ þ βμAJ
μ
Að1Þ − ϵμναββHνuαEð1Þβ� ðA18aÞ

þ Tμν
ð1Þ∂μðβuνÞ − JAð1Þ · ∂ðβμAÞ

þ Eð1Þρ½CAβμABρ þ ϵμναρ∂μðβHνÞuα�;
≥ 0: ðA18bÞ

We first identify the first-order entropy current as those
terms in the bracket of Eq. (A18a):

sμð1Þ ¼ −βμAJ
μ
Að1Þ þ ϵμναρβHνuαEð1Þρ: ðA19Þ

Furthermore, the following relations are sufficient to
guarantee the positivity of entropy production:

Tμν
ð1Þð∂μuνÞ ≥ 0; ðA20aÞ

−JAð1Þ · ∂ðβμAÞ ≥ 0; ðA20bÞ

Eð1Þρ½CAβμABρ þ ϵμναρ∂μðβHνÞuα� ≥ 0: ðA20cÞ

Equations (A20a) and (A20b) are satisfied if we introduce
the viscosities and axial conductivity as

Tμν
ð1Þ ¼ 2η∇hμuνi⊥ þ ζΔμν∇⊥ · u; ðA21Þ

JμAð1Þ ¼ λA∇μ
⊥ðβμAÞ; ðA22Þ

where h…i denotes the symmetric and traceless part, and
∇μ

⊥ ≡ Δμν∂ν. In general, the viscosities and the diffusion
constant λA can be anisotropic, due to the existence of the
magnetic field (see Refs. [2–4,25,26] for further discussion
and Refs. [43–47] for recent computations of those aniso-
tropic transport coefficients for hot QCD matter).

We now focus on Eq. (A20c), which implies

½CAβμABρ þ ϵμναρ∂μðβHνÞuα� ¼ ZρνEð1Þν ðA23Þ

with a semipositive definite Zμν. To further constrain the
form of Zμν, it is convenient to introduce a unit vector in the
direction of the magnetic field,

bμ ≡ BμffiffiffiffiffiffijBjp ; ðA24Þ

which satisfies bμbμ ¼ −1. The spatial projector can be
decomposed into the directions parallel and perpendicular
to B, as

Δμν ¼ −bμbν þ Δμν
⊥ ; ðA25Þ

where Δμν
⊥ ≡ Δμν þ bμbν. We can introduce two indepen-

dent dissipative conductivities and the Hall conductivity
consistent with the second law of thermodynamics as

Zμν ¼ −β½−σjjbμbν þ σ⊥Δμν
⊥ þ σHallϵ

μναβuαbβ�: ðA26Þ

The reader is referred to Refs. [48–50] for a recent
computation of σk, σ⊥ for weakly coupled QGP. Note that
the term involving the Hall conductivity does not produce
entropy. Let us look at the limit where σjj ¼ σ⊥ ≡ σ and
σHall ¼ 0, in which case

½CAμABρ þ ϵμναρβ−1∂μðβHνÞuα� ¼ −σEρ
ð1Þ: ðA27Þ

From Eq. (A27), we obtain Eq. (1). The second term on the
right in Eq. (A27) represents the CME, as we explained
in Sec. II.

APPENDIX B: A DISCUSSION ON VECTOR
CHARGE DENSITY AND ELECTRIC FIELD Eμ

In this work, we did not include vector charge density n
and electric field Fμ as CMHD variables. As we explained
in the Introduction, both n and Eμ are damped out at rates
proportional to the electric conductivity σ. The reason can
be understood as follows in this paragraph, where we will
discuss the damping of n. The case for the electric field is
similar. To see the key physics in the simplest way, let us
consider the nonrelativistic case. If we substitute Ohm’s
law j ¼ σE for the current conservation and use the Gauss
law ∇ · E ¼ n, we obtain

∂tn ¼ −σn; ðB1Þ

which indicates that n is damped out with the rate σ.
Instead, the value of n is slaved by the hydrodynamic
variables. For example, in Ref. [41], it is found that
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n ¼ CAω · B for a chiral fluid in the strong magnetic
field limit.
We note in passing that the relativistic Ampere law,

∂μFμν ¼ Jν; ðB2Þ

can be recast into a relaxation equation which tells us that
Eμ will approach the expression given by Eq. (1) at a
timescale much longer than 1=σ. To make the argument
simple and clear, let us consider a local rest frame, where
Eq. (B2) takes the usual form in terms of spatial electric and
magnetic fields:

−
∂E
∂t þ∇ × B ¼ J ¼ σEþ CAμAB; ðB3Þ

where we have used Eq. (10). This may be written as

∂E
∂t ¼ −σ

�
E −

�
1

σ
∇ × Bþ CAμA

σ
B

��
: ðB4Þ

What appears inside the bracket on the right-hand side
is precisely the first-order constitutive relation for E
[cf. Eq. (9)], and the above equation is the relaxation
equation of E to its constitutive relation with the relaxation
time 1=σ. This is similar to the Israel-Stewart theory of
dissipative hydrodynamics. In the CMHD timescale
(≫ 1=σ), the iterations of Eq. (B4) will reduce to the
conventional derivative expansions in space-time and CA
that our study is based on, but the microscopic theory is
consistent with causality in a way similar to how the Israel-
Stewart theory restores causality. This suggests that a
numerical simulation of CMHD that is consistent with
causality may need to use the original Maxwell equations
à la Israel-Stewart theory, instead of a finite truncation of
derivative expansions.

APPENDIX C: A KUBO FORMULA FOR CHIRAL
MAGNETIC CONDUCTIVITY IN CMHD

In the literature, σA ≡ CAμA is sometimes referred to as
the chiral magnetic conductivity [29]. It is useful to derive a
Kubo formula for σA in CMHD. For this purpose, we
consider a fluid at rest, i.e., uμ ¼ ð1; 0; 0; 0Þ, and we replace
j in Eq. (10) with ∇ ×H. Keeping only the contribution
from CME in Eq. (10), we obtain B ¼ σ−1A ∇ ×H. Since H
is conjugate to B, we then have

σ−1A ¼ lim
k→0ω→0

1

kl
ϵijkhBiBji; ðC1Þ

where hBi Bji denotes the retarded Green’s function of B in
Fourier space. Equation (C1) is different from the Kubo

formula for σA in usual cases where magnetic field is
considered to be nondynamical (cf. Ref. [29]). Here σA is
related to the retarded Green’s function of the magnetic
field. The Kubo formula, Eq. (C1), which is new in the
literature, opens a possibility to compute σA in chiral
systems in which EM fields are dynamical.

APPENDIX D: ANALYTIC SOLUTIONS OF THE
SECULAR EQUATION IN EQ. (14) WITH

LIMITING VALUES OF θ

When θ ¼ 0, Eq. (14) reduces to

ðw − c̃2s Þ½ðw − 1Þ2 þ ϵ̃2Aw� ¼ 0; ðD1Þ

where ϵ̃A ¼ ϵA=uA, w ¼ V=uA, and we find the six
solutions as

V ¼ �cs; V ¼ �
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2A −
ϵ2A
4

r
� i

ϵA
2

�
; ðD2Þ

where the signs are taken for all combinations. The first two
are ordinary sound modes without any modification by the
magnetic field or anomaly, since the pressure of the
magnetic field does not contribute to that along the wave
vector. The remaining four modes arise as the results of the
mixing between the Alfvén and magnetosonic waves,
where the V’s are complex when ϵ2A < 4u2A, and are pure
imaginary when ϵ2A > 4u2A. Those regions correspond to
Phases IIA and IIB, respectively. In both phases, positive
and negative imaginary parts appear in pairs, and the signs
depend on that of ϵA.
When θ ¼ �π=2, the secular equation reduces to

w½w2 − wð1þ c̃2s − ϵ̃2AÞ − ðϵ̃Ac̃sÞ2� ¼ 0; ðD3Þ

and we find the six solutions as

V ¼ 0; V ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ ν

pq
; ðD4Þ

where κ ¼ ðu2A þ c2s − ϵ2AÞ and ν ¼ ðϵAcsÞ2. The presence
of two vanishing solutions means that group velocity
becomes zero. There are two real solutions, which provide
the waves propagating in the opposite directions. Their
velocities are modified by the anomaly effect. The remain-
ing two solutions are vanishing in the absence of anomaly
effects (ν ¼ 0), which, however, become a pair of positive
and negative pure imaginary numbers when ν ≠ 0. They do
not propagate, but grow or dissipate exponentially in time,
respectively.
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