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The particles produced from the vacuum in the dynamical Casimir effect are highly entangled. In
order to quantify the correlations generated by the process of vacuum decay induced by moving mirrors,
we study the entanglement evolution in the dynamical Casimir effect by computing the time-dependent
Rényi and von Neumann entanglement entropy analytically in arbitrary dimensions. We consider the
system at parametric resonance, where the effect is enhanced. We find that, in (1þ 1) dimensions, the
entropies grow logarithmically for large times, SAðτÞ ∼ 1

2
logðτÞ, while in higher dimensions (nþ 1)

the growth is linear, SAðtÞ ∼ λτ, where λ can be identified with the Lyapunov exponent of a classical
instability in the system. In (1þ 1) dimensions, strong interactions among field modes prevent the
parametric resonance from manifesting as a Lyapunov instability, leading to a sublinear entropy growth
associated with a constant rate of particle production in the resonant mode. Interestingly, the logarithmic
growth comes with a prefactor of 1=2 which cannot occur in time-periodic systems with finitely many
degrees of freedom and is thus a special property of bosonic field theories.
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I. INTRODUCTION

The dynamical Casimir effect (DCE) describes the
creation of particles from the vacuum by moving mirrors

]1,2 ]. Many of its basic features, as particle production
and the dynamics of quantum fields with time-dependent
boundary conditions, closely resemble analogous effects
in sophisticated phenomena as the Hawking effect, the
Unruh effect, or particle production in an expanding
Universe. As a result, the DCE has been extensively
investigated as a simple model to explore physical
aspects of these more complicated systems in a more
manageable context [3–7]. In addition, the DCE has been
observed experimentally in a superconducting circuit [8],
opening an avenue for the investigation of processes

of particle production from the vacuum in tabletop
experiments.1

Because the DCE effects are usually small in laboratory
conditions, it is interesting to analyze it in a condition of
resonance [9–12]. In this work, we focus on the case
where a mode of the field is at parametric resonance with
the mirror oscillation, following [10]. The general setup
of the DCE at parametric resonance is depicted in
Fig. 1. A one dimensional cavity is bounded by two
mirrors, one of which is static, while the other is allowed
to move. If the moving mirror is set to oscillate har-
monically with twice the frequency of some mode of the
field, such a mode becomes resonant. This leads to a
strong enhancement of the effect, with particles being
continuously produced from the vacuum, providing a
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1In the experiment [8], the idealized time-dependent boundary
conditions imposed by the moving mirror are implemented in
practice by changing the properties of the superconducting circuit
by the application of a magnetic flux.
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natural scenario for eventual further experimental explo-
rations of the DCE [2].
Several works deal with the most immediate aspects of

the phenomenon, such as the time evolution of particle
production and the Casimir force generated between the
plates (for a review, see Sec. II of [6]). However, a highly
unexplored direction is the dynamics of the quantum
correlations that emerge due to particle creation and the
mixing of field modes induced by the moving mirror. In this
work, we contribute to fill this gap by analytically deter-
mining the time evolution of entanglement measures for the
DCE at parametric resonance.
We compute the Rényi and the entanglement entropy

production from an initial vacuum state for the DCE at
parametric resonance in arbitrary dimensions. We consider
a massless scalar field in a hyperrectangular cavity where
the field is required to vanish on the boundaries. For t ≤ 0,
the cavity is kept fixed. For t > 0, we allow the length of
the cavity to vary in one direction for a finite amount of
time by keeping one mirror fixed and setting the other to
oscillate according to

LðtÞ ¼ L1½1þ ϵ sin ð2πt=TÞ�: ð1Þ

After a finite number of oscillations, we then let the mirror
return to its starting position, and the cavity is kept fixed
again. The frequency of the mirror oscillation is set to twice
that of some cavity mode, giving rise to parametric
resonance. We select the lowest energy mode to be the
resonant, since this is the most likely scenario to be
reproduced in a laboratory. The time evolution of particle
production in such conditions was fully analyzed in [10],
where, under reasonable approximations, the Bogoliubov
transformation between the initial and final states was
computed analytically for all times in both (1þ 1) and
(3þ 1) dimensions.
At the classical level, the effect of parametric resonance is

often associated with an instability. In classical mechanics,
the instability of a system can be characterized by Lyapunov

exponents. Given two initial conditions with an initial
separation δ0 in phase space, the associated Lyapunov
exponent λ describes how the separation evolves in time,
δt ∝ δ0eλt. In periodically driven systems, these Lyapunov
exponents are the real parts of the Floquet exponents, and
describe the nonperiodic aspects of the resulting time
evolution [13]. More specifically, in the presence of a
Floquet instability, the amplitude of an oscillating mode
grows exponentially with time, this growth being charac-
terized by a complex Floquet exponent μ. If we disregard
the mode oscillations and just follow the evolution of the
amplitude of the resonant mode, it is described by the
associated Lyapunov exponent. Interestingly, there is a
quantum counterpart to the classical instability that is related
to the production of entanglement. In particular, instabilities
lead to a linear growth of the entanglement entropy of generic
subsystems with a rate that can be computed from the
classical Lyapunov exponents [14,15].
In order to compute the evolution of the entropies, we

apply recently developed symplectic techniques for the
description of the dynamics of entanglement for Gaussian
states in linear bosonic systems [14,16]. In this framework,
the Rényi entropy is first computed as a volume associated
with the subsystem in phase space. Then, according to a
theorem derived in [14], the asymptotic behavior of
the Rényi and entanglement entropies will converge.
Moreover, in the presence of Lyapunov instabilities, the
asymptotic production of entanglement entropy is com-
pletely determined by the Lyapunov exponents. We show
that in (1þ 1) dimensions the entanglement entropy grows
logarithmically for large times. In higher dimensions, the
resonance is associated with a Lyapunov instability, leading
to an asymptotic exponential particle production and linear
growth of the entanglement entropy, with a production rate
equal to the Lyapunov exponent of the system.
This paper is structured as follows. In Sec. II, we review

the Hamiltonian formalism of the dynamical Casimir effect
and the analytical solution for the case of parametric
resonance obtained in [10]. In Sec. III, we discuss the
necessary background on symplectic techniques for the
dynamics of entanglement of Gaussian states. In Sec. IV,
we compute analytically the time evolution of the Rényi
and entanglement entropies in the dynamical Casimir effect
at parametric resonance. Finally, we summarize and discuss
our results in Sec. V.

II. HAMILTONIAN FORMALISM FOR THE
DYNAMICAL CASIMIR EFFECT

A. The model

Let ϕðt; xÞ be a neutral massless scalar field in (dþ 1)-
dimensions described by the Lagrangian

L ¼ −
1

2

Z
dnxð∂μϕÞð∂μϕÞ; ð2Þ

FIG. 1. Basic scenario of the dynamical Casimir effect in
(1þ 1) dimensions. We have a standing mirror at the origin
(x ¼ 0) and a moving mirror [x ¼ LðtÞ]. The distance between
the mirrors oscillates as LðtÞ ¼ L1½1þ ϵ sin ð2πt=TÞ� with period
T. Note that the mirror only moves during a finite time interval.
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where we adopt the mostly plus convention for the
Minkowski metric, ημν ¼ diagð−;þ; � � � ;þÞ. Requiring
the action to be stationary, one finds that the field satisfies
the Klein-Gordon equation

∂2ϕ

∂t2 −∇2ϕ ¼ 0: ð3Þ

The associated momentum is

πðt; xÞ ¼ ∂tϕðt; xÞ; ð4Þ

and the Hamiltonian is

H ¼ 1

2

Z
dnx½π2 þ ð∇ϕÞ2�: ð5Þ

We are interested in the situation where the field is
confined to a finite spatial volume VðtÞ. More specifically,
we consider a field restricted to a time-dependent paral-
lelepiped bounded in some direction x1 to a finite interval
x1 ∈ ½0; LðtÞ�, where the first boundary is fixed and the
second boundary is allowed to move arbitrarily. In the
remaining directions, the boundaries are fixed, so that
xi ∈ ½0; Li�, i ¼ 2;…; d, for x ∈ VðtÞ. Dirichlet boundary
conditions are imposed at ∂VðtÞ:

ϕðt; xÞj∂VðtÞ ¼ 0: ð6Þ

In particular,

ϕðt; x1 ¼ 0Þ ¼ ϕðt; x1 ¼ LðtÞÞ ¼ 0: ð7Þ

If the field ϕ represents a component of the electromagnetic
field, then these boundary conditions correspond to perfect
mirrors, and the field is confined to a cavity bounded by
perfectly reflecting plates. The boundary is assumed to
move only for a finite period of time T, returning at the end
to the starting position L1:

LðtÞ ¼ L1; for t ≤ 0 and t ≥ T: ð8Þ

In the quantum theory, the motion of the mirrors will lead to
particle production, and under this restriction the number of
produced particles remains finite.
Let S be the space of solutions of the Klein-Gordon

equation (3) with boundary conditions (6). This space is
equipped with an invariant bilinear form

ðϕ;ψÞ ¼ i
Z
VðtÞ

dnx½ϕ�ð∂tψÞ − ð∂tϕ
�Þψ �; ð9Þ

which is not positive definite. The space of solutions can be
decomposed into a direct sum of subspaces of positive and
negative energy, S ¼ Sþ ⊕ S−. The decomposition is

required to be such that (i) positive-energy solutions have
positive squared norm ðϕ;ϕÞ and (ii) the complex conjugate
of a positive-energy solution is a negative-energy solution,
S− ¼ S̄þ. The decomposition is not unique, and distinct
decompositions will correspond to distinct choices of vac-
uum in the quantum theory. The restriction of the invariant
bilinear form toSþ defines an inner product in this subspace,
turning it into a Hilbert spaceH. We denote by funðt; xÞg an
orthonormal basis ofH. The solutions un are positive-energy
normal modes for the Klein-Gordon equation.
The canonical quantization of the scalar field ϕðt; xÞ and

its associated momentum πðt; xÞ provides field operators
satisfying the canonical commutation relations at equal
times:

½ϕ̂ðt; xÞ; π̂ðt; x0Þ� ¼ iδðx − x0Þ; ð10Þ

½ϕ̂ðt; xÞ; ϕ̂ðt; x0Þ� ¼ ½π̂ðt; xÞ; π̂ðt; x0Þ� ¼ 0; ð11Þ

and the equation of motion (3). For each choice of normal
modes un, the field operator can be expanded as

ϕ̂ðt; xÞ ¼
X
n

½unðt; xÞân þ u�nðt; xÞâ†n�; ð12Þ

where the ân; â
†
n are creation and annihilation operators

satisfying the usual commutation relations:

½âm; â†n� ¼ δmn; ½âm; ân� ¼ ½â†m; â†n� ¼ 0: ð13Þ

The quantized canonical momentum operator is obtained by
taking the time derivative of the field operator in the
representation (12). Distinct choices of normal modes
correspond to distinct representations of the quantum field.
The vacuum state j0i is the state annihilated by all ân’s and
depends on the choice of H ¼ Sþ (although not on the
specific basis fung chosen for H).
We introduce two special representations, called the in-

and out-representations. For t < 0, the Hamiltonian is time-
independent, and one can find an orthonormal basis of
positive energy in-solutions for which the time-dependence
is factored out in this region:

uðinÞn ðt; xÞ ¼ ψnðt; xÞ ∝ e−iωnt; for t ≤ 0: ð14Þ

Similarly, one can find an orthonormal basis of positive
energy out-solutions satisfying

uðoutÞk ðt; xÞ ¼ ψkðt; xÞ ∝ e−iωkt; for t ≥ T: ð15Þ

Both sets Bin ¼ fψn;ψn�g and Bout ¼ fψk;ψ�
kg are linear

bases of S, but define distinct decompositions into positive
and negative energy subspaces. The field operator can be
expanded in either set of normal modes:
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ϕ̂ðt; xÞ ¼
X
k

½ψkðt; xÞâk þ ψ�
kðt; xÞâ†k�; ð16Þ

¼
X
n

½ψnðt; xÞb̂n þ ψn�ðt; xÞb̂†n�; ð17Þ

where the b̂n; b̂
†
n are annihilation and creation operators in

the in-representation, and the âk; â
†
k are annihilation and

creation operators in the out-representation. Expanding the
in-modes in the basis of out-modes,

ψn ¼
X
k

ðαnkψk þ βnkψ
�
kÞ; ð18Þ

and substituting into Eq. (17), we find

âk ¼
X
n

ðαnkb̂n þ β�nkb̂
†
nÞ; ð19Þ

â†k ¼
X
n

ðα�nkb̂†n þ βnkb̂nÞ: ð20Þ

This is a Bogoliubov transformation describing the relation
between the two representations. This transformation is
represented in the Hilbert space as a unitary transformation
which corresponds to a composition of a squeezing
operation and an operation that preserves the vacuum.
When a Bogoliubov transformation acts on the vacuum
state, the result is a squeezed state. The constants αnk; βnk
are the Bogoliubov coefficients of the transformation. The
transformation is encoded in a symplectic matrix:

M ¼
�
αT β†

βT α†

�
: ð21Þ

The evolution of any property of the quantum field due to
the motion of the boundaries for t ∈ ½0; T� is completely
characterized by the Bogoliubov coefficients. In particular,
the process of particle creation from the initial vacuum has
a simple description. Let the initial state for t ≤ 0 be the in-
vacuum annihilated by all b̂n:

b̂nj0; ini ¼ 0; ∀ n: ð22Þ

Since we are in the Heisenberg representation, the state of
the field remains unchanged. However, the number of
particles Nk in a mode k observed after the motion of the
boundary is described by the out-operators:

hNki ¼ h0; injâ†kâkj0; ini ¼
X
n

jβnkj2: ð23Þ

We see that the vacuum is unstable if the coefficients βnk do
not vanish. In this case, the initial vacuum states evolves
into a squeezed state with a higher energy than the vacuum

state. The energy injected in the system by the moving
walls is stored in the created particles.
In the next section wewill discuss formulas for the Rényi

and entanglement entropies in the out region in terms of the
coefficients of the Bogoliubov transformation. Before that,
we review the calculation of the Bogoliubov coefficients
for the dynamical Casimir effect at parametric resonance
performed in [10].

B. Dynamical Casimir effect at resonance

Let n be a multi-index n ¼ ðn1;…; ndÞ. The in-modes
ψn are solutions of the Klein-Gordon equation (3) that
reduce to standing waves in the in-region:

ψn ¼
�Yd
i¼1

1ffiffiffiffiffiffiffi
πni

p sin

�
niπ
Li

xi
��

e−iωnt; for t ≤ 0; ð24Þ

where

ωn ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd
i¼1

�
ni
Li

�
2

vuut : ð25Þ

While the mirror is moving, the modes evolve in a
nontrivial way. At each time t, we can expand them in a
basis of instantaneous Fourier modes that satisfy the
imposed boundary conditions,

ψn ¼
X
k

�Yd
i¼1

1ffiffiffiffiffiffiffi
πni

p sin

�
niπ
Li

xi
��

×

ffiffiffiffiffiffiffiffiffi
L1

LðtÞ

s
1ffiffiffiffiffiffiffiffi
πn1

p sin

�
n1π
LðtÞ x

1

�
Qn

kðtÞ: ð26Þ

Substituting this expansion into the Klein-Gordon equa-
tion (3), one finds equations of motion for the Fourier
amplitudes Qn

kðtÞ, which we will discuss in a moment. The
Fourier amplitudes satisfy the initial conditions

Qn
kð0Þ ¼ δkn; _Qn

kð0Þ ¼ −iωnδkn: ð27Þ

In the out-region, the evolution is again trivial. The
positive energy out-modes are defined as

ψk ¼
�Yd
i¼1

1ffiffiffiffiffiffiffi
πki

p sin

�
kiπ
Li

xi
��

e−iωkt; for t ≥ T; ð28Þ

The in-mode ψn evolves into a superposition of out-modes
of positive and negative energy, as written in Eq. (18), with
constant Bogoliubov coefficients α, β determined by:
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Qn
kðtÞ ¼ αnke−iωkt þ βnkeiωkt; for t ≥ T: ð29Þ

Up to this point, we considered a generic motion LðtÞ of
the boundary. Now let the moving boundary oscillate
harmonically around its initial position. When the fre-
quency of the boundary oscillation is twice that of some
normal mode, the system is said to be at parametric
resonance. Explicit formulas for the Bogoliubov coeffi-
cients can then be obtained under an approximation of slow
variation of the coefficients, as first shown in [10], and we
review the relevant results in the following subsections.

1. (1 + 1) dimensions

In one spatial dimension, all multi-indices reduce to
integer numbers, and the expansion (26) of the in-modes in
the instantaneous basis becomes

ψn ¼
X
k

ffiffiffiffiffiffiffiffiffi
L1

LðtÞ

s
1ffiffiffiffiffiffi
πn

p sin
�

nπ
LðtÞ x

�
Qn

kðtÞ: ð30Þ

The evolution equation for the Fourier amplitudes reads

Q̈n
k þ Ω2

kðtÞQn
k ¼ 2λðtÞ

X
j

gkj _Q
n
j þ _λðtÞ

X
j

gkjQn
j

þ λ2ðtÞ
X
j;l

gjkgjlQn
l ; ð31Þ

where

ΩkðtÞ ¼
πk
LðtÞ ; λðtÞ ¼

_LðtÞ
LðtÞ ; ð32Þ

and the coefficients g form an antisymmetric matrix with
components

gjk ¼ ð−1Þkþj 2jk
k2 − j2

; for j ≠ k: ð33Þ

Consider the case where the first normal mode is
resonant, that is, let the moving boundary oscillate har-
monically around its initial position

LðtÞ ¼ L1½1þ ϵ sinð2ω1tÞ�; ð34Þ

with twice the frequency of the first normal mode,

ω1 ¼ π=L1: ð35Þ

The functions ΩkðtÞ and λðtÞ can then be determined from
Eqs. (34) and (32). The oscillation amplitude is assumed to
be small compared to the initial width L1 of the boundary,
ϵ ≪ 1. To first order in ϵ, the parameters λ and _λ in the
evolution equation oscillate harmonically with frequency
2ω1, and λ2 ∼ ϵ2 can be neglected.

One can look for solutions of the evolution equation (31)
of the form

Qn
kðtÞ ¼ αnkðtÞe−iωkt þ βnkðtÞeiωkt; ð36Þ

where the Bogoliubov coefficients are now allowed to be
time-dependent, reaching their asymptotic values αnk; βnk
at t ¼ T. The time-dependent coefficients are assumed to
vary slowly in time: after substituting (36) into Eq. (31),
terms proportional to α̈ and β̈ are neglected, and the
Bogoliubov coefficients are considered approximately
constant during one period of oscillation of any normal
mode. Multiplying the resulting equation of motion by eiωkt

or e−iωkt and averaging over intervals Tk ¼ 2π=ωk, one
obtains a set of coupled differential equations for α and β,
respectively. These are solved in [10]. Let us gather the
relevant results for our purposes.
The complete elliptic integrals of the first and second

kind are defined, respectively, as

KðκÞ ¼
Z

π=2

0

dα
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − κ2 sin2 α
p ð37Þ

EðκÞ ¼
Z

π=2

0

dα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ2 sin2 α

p
: ð38Þ

It is convenient to introduce the new time variable

τ ¼ 1

2
ϵωt; ð39Þ

and define the quantities

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−8τ

p
; κ̃ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ2

p
¼ e−4τ: ð40Þ

The lowest Bogoliubov coefficients are then given by

α11 ¼
2

π

EðκÞ þ κ̃KðκÞ
1þ κ̃

; ð41Þ

β11 ¼ −
2

π

EðκÞ − κ̃KðκÞ
1 − κ̃

: ð42Þ

Coefficients with one larger odd index are obtained from
the recurrence relations

ffiffiffi
3

p
α31 ¼ −β11 − _α11;ffiffiffi
3

p
β31 ¼ −α11 − _β11;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðnþ 2Þ
p

αnþ2;1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 2Þ

p
αn−2;1 − _αn1; n ≥ 3;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðnþ 2Þ
p

βnþ2;1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 2Þ

p
βn−2;1 − _βn1; n ≥ 3;

where the dots represent derivatives with respect to τ, and
the relations
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α1;2jþ1 ¼ ð−1Þjð2jþ 1Þα2jþ1;1;

β1;2jþ1 ¼ ð−1Þjð2jþ 1Þβ2jþ1;1:

All coefficients with some even index vanish. In order to
compute the evolved state of the subsystem formed only by
the resonant mode, it is enough to know the Bogoliubov
coefficients with some index equal to 1, which are all
determined by the relations above.
In our analysis of entanglement production, the follow-

ing formulas for infinite sums of products of Bogoliubov
coefficients will play an important role:

X∞
n¼1

αn1 _αn1 ¼
X∞
n¼1

βn1 _βn1 ¼ −α11β11; ð43Þ

X∞
n¼1

ðαn1 _βn1 þ _αn1βn1Þ ¼ −ðα211 þ β211Þ; ð44Þ

X∞
k;n¼1

βnk _βnk ¼ −
X∞
n¼1

αn1βn1: ð45Þ

2. (d + 1) dimensions

In higher dimensions, the expansion of the in-modes in
the instantaneous basis has the general form (26). Upon
substitution of this expansion into the Klein-Gordon
equation, one obtains equations of motion for the
Fourier coefficients Qn

k similar to (31). The difference is
that j, k, n are now multi-indices, the frequencies of the
normal modes are

ΩkðtÞ ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd
i¼1

�
ki

LiðtÞ
�

2

vuut ; ð46Þ

and the coefficients gjk have a more complicated form,
which is not relevant for our purposes, except for the fact
that they are still constant.
A mode r is set at resonance by letting the boundary

oscillate with twice the time-independent frequency ωr of
the mode. One may take, for instance,

LðtÞ ¼ L1½1 − ϵ cosð2ωrtÞ�Þ ð47Þ

with

ωr ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd
i¼1

�
ki
Li

�
2

vuut ; ð48Þ

as done in [10]. Note that, in contrast to the one-dimen-
sional case, the frequencies are not equidistant for d > 1.
To first order in ϵ, the parameters λ and _λ in the evolution

equation oscillate harmonically with frequency 2ωr, and λ2

can be neglected, as before.
One can look again for solutions of the form (36) under a

slow-variation approximation. The resulting equations for
the Q’s are quite different, however, as compared to the
one-dimensional case. The reason for that is the following.
When multiplied by e�iωkt, to first order in ϵ, the right-hand
side of Eq. (31) becomes a sum of terms proportional to
exp½ið�ωj � ωk � 2ωrÞ�. The integral over a period Tk ¼
2π=ωk of each such term vanishes unless the sum of
frequencies in the exponential vanishes. But since they are
not equally spaced, this never happens, and the equations
for the distinct modes all decouple. One is left with an
infinite set of equations for independent oscillators with
time-dependent frequencies

ΩkðtÞ ∼ ωk½1þ 2γ cosð2ωrtÞ�; ð49Þ

with

γ ¼ ϵ

2

π2ðk1=L1Þ2
ω2
k

: ð50Þ

The calculation of the Bogoliubov coefficients can be
done independently for each mode. Put Qk ¼ Qk

k. Fourier
amplitudes Gn

k with k ≠ n vanish, since the modes are
decoupled. We need to solve

Q̈k þ Ω2
kðtÞQk ¼ 0; ð51Þ

the equation of a time-dependent oscillator with a har-
monically oscillating frequency. One can look again for
solutions of the form (36), which we now write as

QkðtÞ ¼ αkðtÞe−iωkt þ βkðtÞeiωkt; ð52Þ

with αk ¼ αkk and βk ¼ βkk. Under a slow variation
approximation, terms proportional to α̈k and β̈k are
neglected. After averaging over the fast oscillations, one
finds for the resonant mode

_αr ¼ −iωrγβr; _βr ¼ iωrγαr; ð53Þ

while the evolution of the nonresonant modes is trivial in
this approximation: αk, βk ¼ constant, for k ≠ r. Initial
conditions corresponding to the in-vacuum are given by

αrð0Þ ¼ 1; βrð0Þ ¼ 0: ð54Þ

Integrating Eq. (53) with these initial conditions, we obtain
the desired Bogoliubov coefficients
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αrðtÞ ¼ coshðωrγtÞ;
βrðtÞ ¼ i sinhðωrγtÞ: ð55Þ

The time-dependent symplectic transformation associ-
ated with such Bogoliubov coefficients, which describes
the evolution of the resonant mode, is given by

MrðtÞ ¼
�

coshðωrγtÞ −i sinhðωrγtÞ
i sinhðωrγtÞ coshðωrγtÞ

�
; ð56Þ

and has the simple form

MrðtÞ ¼ expðtKrÞ; Kr ¼
�

0 −iωrγ

iωrγ 0

�
ð57Þ

with a time-independent symplectic generator Kr.

III. ENTANGLEMENT DYNAMICS
OF GAUSSIAN STATES

In this section, we review the basic properties of Gaussian
states. We focus on systems with a finite number of bosonic
degrees of freedom (d.o.f.),whichwe can later take to infinity
to recover a bosonic field theory. In particular, we review
compact expressions for the entropy and the von Neumann
entanglement entropy in terms of the covariancematrix of the
Gaussian state. Our conventions closely follow [14,16,17],
while other reviews include [18,19].

A. Gaussian states

Before considering the field theory case, we focus on a
system with N d.o.f. Here, the classical phase space V ≃
R2N is equipped with a symplectic form Ωab, i.e., an
antisymmetric and nondegenerate bilinear form. For the
quantum theory, we choose the basis

ξ̂a ≡ ðb̂1;…; b̂N; b̂
†
1;…; b̂†NÞ ð58Þ

of creation and annihilation operators. This basis also fixes
the form of the symplectic form to get the correct
commutation relations

½ξ̂a; ξ̂b� ¼ iΩab with Ω≡ −i
�

0 1

−1 0

�
: ð59Þ

The basis is not Hermitian, which means that we can define
the 2N × 2N matrix C, such that

ξ̂†a ¼ Ca
bξ̂

b with C≡
�
0 1

1 0

�
: ð60Þ

Given a linear observable O ¼ faξ̂
a, we need to require

f�aCa
b ¼ fb for O to be a Hermitian operator.

We can now introduce a special class of states jψi that
are fully characterized by their displacement vector za and
their covariance matrix Gab, defined as

za ¼ hψ jξ̂ajψi; ð61Þ

Gab ¼ hψ jξ̂aξ̂b þ ξ̂bξ̂ajψi − 2zazb: ð62Þ

We refer to a state jψi as Gaussian state and label it as jG; zi
if its linear complex structure J satisfies the condition

J2 ¼ −1 with Jab ¼ GacΩ−1
cb ; ð63Þ

where we introduced the inverse symplectic form Ω−1
ab with

ΩacΩ−1
cb ¼ δab. The linear map J∶ V → V is called linear

complex structure because it represents the imaginary unit
on the classical phase space, i.e., it squares to minus
identity. We can use directly J to encode the state jG; zi
as solution to the equation

1

2
ðδab − iJabÞðξ̂b − zbÞjG; zi ¼ 0: ð64Þ

While complex structures have been used to describe vacua
of quantum fields in curved spacetime [20,21] for many
years, only recently they became a useful tool in quantum
information to parametrize both bosonic [14,16,17,22] and
fermionic Gaussian states [23–26] in a unified manner. As
an example, we can choose za ¼ 0 and the covariance
matrix to be given by

G0 ≡
�
0 1

1 0

�
⇒ J0 ¼ G0Ω−1 ≡ i

�
1 0

0 −1

�
; ð65Þ

which gives rise to the operator-valued vector

1

2
ðδab − iJabÞðξ̂b − zbÞ≡ ðb̂1;…; b̂N; 0;…; 0Þ ð66Þ

that annihilates the state jG0; 0i, i.e., we just confirmed that
the Gaussian state jG0; 0i is nothing else than the vacuum
associated to the annihilation operators b̂i. For other
choices of Gab and za, we will find that (64) gives rise
to a Bogoliubov transformation of the form

âi ¼
X
j

ðαjib̂j þ β�jib̂
†
jÞ þ zi; ð67Þ

where âi represent a new set of annihilation operators
annihilating the state jG; zi under consideration.
A defining property of bosonic Gaussian states is the

well-known Wick’s theorem, i.e., that higher order n-point
correlation functions can be efficiently computed from 1-
and 2-point correlation functions. To state Wick’s theorem,
it is useful to define the connected n-point correlation
function of the state jG; zi as
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Ca1���an
n ¼ hG; zjðξ̂a1 − za1Þ � � � ðξ̂an − zanÞjG; zi: ð68Þ

We can then use the connected 2-point function given by

Cab
2 ¼ 1

2
ðGab þ iΩabÞ; ð69Þ

to state Wick’s theorem as the equality

Ca1���a2nþ1

2nþ1 ¼ 0; ð70Þ
Ca1���a2n
2n ¼

X
ðall 2-contractions of C2Þ

¼ Ca1a2
2 � � �Ca2n−1a2n

2 þ � � � ; ð71Þ
i.e., the connected n-point correlation function for odd n
vanishes, while for even n, it is given by a sum over
products of Cab

2 .
For the rest of this paper, we will focus on Gaussian

states jG; zi with za ¼ 0, i.e., they are centered at the origin
of phase space. We will write jGi ¼ jG; 0i to simplify
notation.

B. Quadratic Hamiltonians

The most general class of Hamiltonians that preserve the
family of Gaussian states, i.e., for which etĤjG; zi is again
Gaussian, takes the form

Ĥ ¼ 1

2
habξ̂

aξ̂b þ faξ̂
a: ð72Þ

If we only look at Gaussian states jG; zi with za ¼ 0, we
need to choose fa ¼ 0 in our Hamiltonian to ensure that za

remains equal to zero under time evolution. We will
therefore restrict ourselves to the class of quadratic
Hamiltonians

Ĥ ¼ 1

2
habξ̂

aξ̂b; ð73Þ

where we can derive a condition on hab to ensure that Ĥ is
Hermitian. For ξ̂†a ¼ Ca

bξ̂
b, we find the condition

hab ¼ ðC⊺ÞachdcCd
b: ð74Þ

Furthermore, we can require hab to be symmetric, i.e.,
hab ¼ hba, because the antisymmetric part will only con-
tribute a constant to the energy. Defining UðtÞ ¼ e−itĤ, we
can use the well-known Baker-Campbell-Hausdorff iden-
tity to compute

U†ðtÞξ̂aUðtÞ ¼ MðtÞabξ̂b; ð75Þ
where the symplectic transformation is given by

MðtÞ ¼ etK; with Ka
b ¼ Ωachcb: ð76Þ

For the dynamical Casimir effects, we will need to consider
quadratic Hamiltonians with explicit time dependence

ĤðtÞ ¼ 1

2
hðtÞabξ̂aξ̂b; ð77Þ

which leads to a time evolution determined by the time-
ordered exponentials

UðtÞ ¼ T e−i
R

t

0
Ĥðt0Þdt0 ; ð78Þ

MðtÞ ¼ T e
R

t

0
Kðt0Þdt0 with KðtÞab ¼ ΩachðtÞcb: ð79Þ

In practice, we will not compute MðtÞ as a time-ordered
exponential, but rather by solving the underlying equations
of motion explicitly. Using (75), which also continues to be
valid for Hamiltonian with explicit time dependence, we
can compute the time evolution of the covariance matrix to
be given by

GðtÞab ¼ MðtÞacGcdM⊺ðtÞdb: ð80Þ

For our class of Gaussian states, we therefore find

jGti ¼ UðtÞjG0i ¼ jMðtÞG0M⊺ðtÞi: ð81Þ

A special class of time-dependent Hamiltonians are Floquet
Hamiltonians, i.e., time-periodic Hamiltonians with period
T satisfying

Ĥðtþ TÞ ¼ ĤðtÞ: ð82Þ

Such Hamiltonians can be described stroboscopically by
only looking at the evolved states at t ¼ nτ with n ∈ Z. For
this, it is sufficient to compute UðτÞ which allows us to
define a time-independent effective Hamiltonian Ĥeff ¼
1
τ logUðτÞ. For quadratic Hamiltonians ĤðtÞ, we find

Ĥeff ¼ 1
2
heffab ξ̂

aξ̂b to be also quadratic with

heffab ¼ 1

T
Ω−1

ac ðlogMðTÞÞcb; ð83Þ

where MðTÞ can be evaluated as the time-ordered expo-
nential (79) or by integrating the equations of motion.

C. Entanglement measures

Given a pure Gaussian state jGi and a choice of
subsystem A ⊂ V (inducing a tensor product decomposi-
tion H ¼ HA ⊗ HB), we can quantify the amount of
quantum correlations between A and its complement B
using different entanglement measures. We are particularly
interested in the von Neumann entropy SAðjGiÞ and the
Rényi entropy RAðjGiÞ of the reduced state

ρA ¼ TrBjGihGj; ð84Þ

where we trace out the d.o.f. in B.
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One can show that the mixed state ρA is also Gaussian,
i.e., it continues to satisfy Wick’s theorem and can be
efficiently parametrized by the restriction of Gab to the
subsystem A. Mathematically speaking, we have a decom-
position of the classical phase space V as a direct sum
V ¼ A ⊕ B, as well as of its dual V� ¼ A� ⊕ B�, such that
the bilinear form G∶ V� × V� → R can be meaningfully
restricted to

GA∶A� × A�∶ða1; a2Þ ↦ Gða1; a2Þ: ð85Þ

In practice, we use the matrix representation of G with
respect to a basis ðξ̂aA; ξ̂aBÞ

ξ̂aA ≡ ðb̂A1 ;…; b̂NA ; b̂A†1 ;…; b̂A†NA
Þ; ð86Þ

ξ̂aB ≡ ðb̂B1 ;…; b̂BNB
; b̂B†1 ;…; b̂B†NB

Þ; ð87Þ

with ξ̂a ¼ ðξ̂aA; ξ̂aBÞ and N ¼ NA þ NB. Note that this basis
is complex, which implies that also G correspond to the
analytically continued bilinear form on the complexified
phase space VC and its dual V�

C.
The key result is that ρA is fully characterized by GA,

which implies that any function of ρA can be written purely
in terms of GA. The von Neumann entropy SAðjGiÞ and the
Rényi entropy RðnÞ

A ðjGiÞ of order n are

SAðjGiÞ ¼ −TrρA log ρA; ð88Þ

RðnÞ
A ðjGiÞ ¼ 1

1 − n
TrðρnAÞ; ð89Þ

and we define RAðjGiÞ ≔ Rð2Þ
A ðjGiÞ as the Rényi entropy,

dropping the reference to order 2 in this case. To express
these functions in terms of GA, it is useful to define the
restricted linear complex structure

ðJAÞab ¼ −ðGAÞacðΩAÞ−1cb ; ð90Þ

where ΩA is the restriction of Ω to the subsystem A. An
important difference between the full linear complex
structure J (describing a pure Gaussian state) and the
restricted linear complex structure JA (describing in general
a mixed Gaussian state) lies in the fact that −J2A is not
necessarily the identity—instead, we have the inequality

−J2A ≥ 1; ð91Þ

i.e., J2A has negative eigenvalues whose magnitude is at
least 1, but possibly larger. The magnitude of these
eigenvalues or, put differently, the failure of JA to square
to minus identity provides a measure of entanglement
between A and B in the state jGi. The formulas for
SAðjGiÞ and RAðjGiÞ are then given by [15,16,27]

RAðjGiÞ ¼
1

2
log det JA ¼ 1

2
log

detGA

detΩA
; ð92Þ

SAðjGiÞ ¼ Tr

�
1þ iJA

2
log

���� 1þ iJA
2

����
�
; ð93Þ

where the absolute value j · j in the second equation is
meant in terms of eigenvalues. Note that in the basis from
(58) leads to the standard form of Ω (and ΩA) from (59),
which leads to detΩA ¼ ð−1ÞNA .

D. Theorems on entanglement asymptotics

For classically unstable quadratic systems and Gaussian
initial states, there exist several theorems that describe the
asymptotic behavior of the entanglement entropy and the
Rényi entropy for large times. For this, let us introduce
the concept of Lyapunov exponents and unstable quadratic
systems.
Definition 1 (Lyapunov exponents): Given a quadratic

Hamiltonian system HðtÞ ¼ 1
2
hðtÞabξaξb with linear

Hamiltonian flow

MðtÞ ¼ T exp
Z

t

0

dt0Kðt0Þ ð94Þ

(whereKðtÞab ¼ ΩachðtÞcb) on the classical phase space V,
we define the Lyapunov exponent λl of a linear observable
l ∈ V� as the limit

λl ¼ lim
t→∞

log
kM⊺ðtÞlk

klk ; ð95Þ

where the norm k · k can be induced by any positive
definite inner product on the dual phase space. Note that
the action on the dual phase space is given by the trans-
pose M⊺ðtÞab ¼ MðtÞba.
Definition 2 (Unstable quadratic system): A classical

quadratic Hamiltonian HðtÞ ¼ 1
2
hðtÞabξaξb is called unsta-

ble if there exists at least one linear observable l ∈ V� with
positive Lyapunov exponent λl > 0. There are at most 2N
distinct Lyapunov exponents and we can always find a
symplectic basis DL ¼ ðl1;…;l2NÞ with associated
Lyapunov exponents λi ≔ λli satisfying

λ1 ≥ � � � ≥ λN ≥ 0 ≥ λNþ1 ≥ � � � ≥ λ2N ð96Þ

and λ2Nþ1−i ¼ −λi, i.e., all Lyapunov exponents come in
conjugate pairs.
Proof.—The proof can be found in definition 2 of

appendix A. 2 in [14]. ▪
With these definitions at hand, we can now review the

key theorems that we will use in subsequent sections to
study dynamics of Rényi entropy (of order 2) and von
Neumann entanglement entropy.

ENTANGLEMENT PRODUCTION IN THE DYNAMICAL CASIMIR … PHYS. REV. D 100, 065022 (2019)

065022-9



Theorem 1 (Rényi entropy as phase space volume):
The Rényi entropy (of order 2) RAðjGiÞ ¼ Rð2Þ

A ðjGiÞ is
given by

RAðjGiÞ ¼ logVolGVA; ð97Þ

where VA ⊂ A� ⊂ V� represents an arbitrary parallelepiped
of symplectic volume 1.
Proof.—The proof can be found in Sec. 6.2 of [14]. ▪
Theorem 2 (Asymptotic entanglement production):

We consider an unstable and regular2 Hamiltonian system
withN d.o.f. and quadratic Hamiltonian ĤðtÞ¼1

2
hðtÞabξ̂aξ̂b,

whose Lyapunov exponents are

λ1 ≥ � � � ≥ λN ≥ 0 ≥ λNþ1 ≥ � � � ≥ λ2N: ð98Þ

An initial Gaussian state jG0iwill evolve into jGti, where the
time-dependent covariance matrix is given by

Gt ¼ MðtÞG0M⊺ðtÞ: ð99Þ

A system decomposition V ¼ A ⊕ B of the classical phase-
space V (with dimA ¼ 2NA and dimB ¼ 2NB) induces a
tensor product decomposition H ¼ HA ⊗ HB that we can
use to compute entanglement entropy SAðjGtiÞ. The asymp-
totics of the Rényi entropy RAðjGtiÞ and the entanglement
entropy SAðjGtiÞ is given by

RAðjGtiÞ ∼ SAðjGtiÞ ∼ ΛAt; with ΛA ¼
X2NA

i¼1

λi; ð100Þ

where we assume the subsystem to be generic, i.e., above
statement applies to all subsystems except a set of mea-
sure zero.
Proof.—A detailed proof can be found in Sec. 2. 1 and

2. 2 of [14]. ▪
Next, we will compare the rate of entanglement entropy

production in the dynamical Casimir effect with these
predictions.

IV. ENTANGLEMENT PRODUCTION
AT PARAMETRIC RESONANCE

In this section, we compute the time-dependent Rényi
and entanglement entropies at resonance. In (1þ 1)-D, the
normal modes are strongly coupled by the evolution and
become highly entangled. We compute the entropies
explicitly for the subsystem associated with the resonant
mode. In higher dimensions, the modes decouple under the
assumed approximations, and the normal modes are not
entangled. In this case, we consider a generic subsystem
that intersects nontrivially the resonant mode.

A. (1 + 1) dimensions

Let the scalar field be initially in its vacuum state j0; ini.
Wework in theHeisenberg representation, so that the state of
the system is constant and the time evolution is encoded in the
observables. Annihilation and creation operators âkðtÞ; â†kðtÞ
for a mode k at each time t are defined in terms of the time-
dependent Bogoliubov coefficients as in Eq. (19):

âkðtÞ ¼
X
n

½αnkðtÞb̂n þ β�nkðtÞb̂†n�: ð101Þ

Such operators are associated with the instantaneous basis at
t. It is convenient to use the variable τ ¼ ϵωt=2 to compute
the evolution of the entropies.
The covariance matrix at time τ is given by

GabðτÞ ¼ h0; injðξ̂aξ̂b þ ξ̂bξ̂aÞj0; ini; ð102Þ

where ξ̂a ¼ ðâkðτÞ; â†kðτÞÞ in the complex representation.
The restriction of the covariance matrix to a subsystem A
defines the reduced covariance matrix GA associated with
it. The Rényi entropy RAðjGiÞ can be computed fromGA as

RA ¼ 1

2
logð− detGAÞ; ð103Þ

where we used Eq. (92) and the fact that detðΩAÞ ¼ −1 for
a single d.o.f. (NA ¼ 1). Similarly, the entanglement
entropy is given by

SAðjGiÞ ¼ Tr

�
1þ iJA

2
log

���� 1þ iJA
2

����
�

ð104Þ

With JA ¼ −GAω
−1
A as explained in Eq. (93). We will now

compute these quantities.
Expressing ξ̂a in terms of creation and annihilation in-

operators b̂†m and b̂m using Eq. (101), and representing the
covariance matrix as

GAðτÞ ¼
�
G11

A G12
A

G21
A G22

A

�
; ð105Þ

we find for the matrix components

G11
A ¼

X
n

2αn1ðτÞβ�n1ðτÞ

G12
A ¼ G21

A ¼
X
n

αn1ðτÞα�n1ðτÞ þ βn1ðτÞβ�n1ðτÞ

G22
A ¼

X
n

2βn1ðτÞα�n1ðτÞ: ð106Þ

From now on, we will omit the arguments of the time-
dependent Bogoliubov coefficients for conciseness.
Since αnm and βnm are real for any m and n, we have

G11
A ¼ G22

A ¼
X
n

2αn1βn1 ð107Þ2The word “regular” is used to exclude some pathological
cases discussed in Appendix A. 3 of [14].
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G12
A ¼ G21

A ¼
X
n

ðα2n1 þ β2n1Þ: ð108Þ

Differentiating with respect to τ, these sums can be
evaluated using Eqs. (43)–(45) and then integrated
analytically.
Let us start with the term G11

A . Taking its derivative with
respect to τ yields

dG11
A

dτ
¼

X
n

2ð _αn1βn1 þ αn1 _βn1Þ: ð109Þ

Then, according to Eq. (44), we have

dG11
A

dτ
¼ −2ðα211 þ β211Þ: ð110Þ

Similarly, taking the derivative of the term G12
A , we find:

dG12
A

dτ
¼

X
n

2ðαn1 _αn1 þ βn1 _βn1Þ: ð111Þ

From Eq. (43), we conclude that

dG12
A

dτ
¼ −4α11β11: ð112Þ

SinceG11
A ¼ G22

A andG12
A ¼ G21

A , the only remaining step is
to integrate Eqs. (110) and (112).
The explicit form of the Bogoliubov coefficients α11 and

β11 is presented in Eq. (41). Inserting these formulas in
Eq. (110) we find

dG11
A

dτ
¼ −

16f½EðκÞ − κ̃2KðκÞ�2 þ κ̃2½EðκÞ − KðκÞ�2g
κ4π2

;

ð113Þ
where the complete elliptic integrals of the first and second
kind, KðκÞ and EðκÞ, are defined in Eqs. (38) and (37), and
κ and κ̃ are given by Eq. (40).
From the definitions of κ and κ̃, we can easily check that

dτ ¼ κdκ
4κ̃2

: ð114Þ

Substituting this relation in (113), we can integrate it
analytically (see [10]), obtaining:

G11
A ¼ −

4

π2κ2
½EðκÞ − κ̃2KðκÞ�½KðκÞ − EðκÞ� þ C1; ð115Þ

where C1 is a constant of integration to be determined from
the initial conditions.
In a similar way, substituting (41) in Eq. (112), we find

dG12
A

dτ
¼ 16

π2κ2
½E2ðκÞ − κ̃2K2ðκÞ�: ð116Þ

This equation can again be integrated [10], leading to

G12
A ¼ 4

π2
EðκÞKðκÞ þ C2; ð117Þ

where C2 is a constant to be determined from the initial
conditions.
To fix the integration constants, we need to evaluate the

expressions in Eqs. (115) and (115) at τ ¼ 0 and compare
them with the components of the initial covariance matrix
GAð0Þ. But at τ ¼ 0, the Bogoliubov transformation is
trivial, αmnð0Þ ¼ δmn; βmnð0Þ ¼ 0. Hence, the initial
covariance matrix is given by

GAð0Þ ¼
�
0 1

1 0

�
: ð118Þ

Now, in the small-time limit τ ≪ 1, the elliptic integrals can
be expanded as [28]

KðκÞ ¼ π

2

�
1þ 1

4
κ2 þ 9

64
κ4 þ � � �

	
; ð119Þ

EðκÞ ¼ π

2

�
1 −

1

4
κ2 −

3

64
κ4 − � � �

	
: ð120Þ

In addition, in this limit we see that κ → 0 and κ̃ → 1.
Keeping only terms up to first order in τ, we find the matrix
elements

G11
A ¼ G22

A ∼ −2τ þ C1; ð121Þ

G12
A ¼ G21

A ∼ 1þ C2: ð122Þ

Hence, the integration constants are C1 ¼ C2 ¼ 0, and the
matrix GAðτÞ assumes the form

GAðτÞ ¼
�− 4

π2κ2
½EðκÞ − κ̃2KðκÞ�½KðκÞ − EðκÞ� 4

π2
EðκÞKðκÞ

4
π2
EðκÞKðκÞ − 4

π2κ2
½EðκÞ − κ̃2KðκÞ�½KðκÞ − EðκÞ�

�
: ð123Þ

Furthermore, we can analyze the long-time behavior of the Rényi entropy. According to [28], when τ ≫ 1, the leading
terms of the asymptotic expansion of the elliptic integrals are

KðκÞ ∼ log
4

κ̃
þ 1

4

�
log

4

κ̃
− 1

�
κ̃2 þ � � � ð124Þ
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EðκÞ ∼ 1þ 1

2

�
log

4

κ̃
−
1

2

�
κ̃2 þ � � � ð125Þ

Therefore, the covariance matrix becomes

GAðτÞ ¼
4

π2

�
1 − ζ ζ

ζ 1 − ζ

�
; ð126Þ

where ζ ≡ log 4þ 4τ. We find that, in the asymptotic limit,
the Rényi entropy is

RAðτÞ ∼
1

2
log

�
16ð8τ þ log 16 − 1Þ

π4

�
ð127Þ

∼
1

2
log

128

π4
þ 1

2
log τ: ð128Þ

The Rényi entropy converges fast to its asymptotic behav-
ior, as shown in Fig. 2. In particular, we see in Fig. 3 that the
first asymptotic expansion from Eq. (127) approaches the
exact solution exponentially fast, while the leading behav-
ior from Eq. (128) keeps a finite offset.
For a single d.o.f., the relation between the Rényi

entropy RA and the entanglement entropy SA is given by

SAðτÞ ¼ sðeRAðτÞÞ; ð129Þ

with

sðxÞ ¼
�
xþ 1

2

�
log

�
xþ 1

2

�
−
�
x − 1

2

�
log

�
x − 1

2

�
:

ð130Þ

This function behaves as

sðxÞ ∼ log xþ ð1 − log 2Þ as x → ∞: ð131Þ

Hence, for large x, we have

SAðτÞ ∼ RAðτÞ þ ð1 − log 2Þ as xτ → ∞: ð132Þ

Combining Eqs. (128) and (132), we obtain the asymptotic
behavior of the entanglement entropy given by

SAðτÞ ∼ 1þ 1

2
log

32

π4
þ 1

2
log τ; ð133Þ

where we find the constant to be 1þ 1
2
log 32=π2 ≈ 0.44.

This asymptotic expression is compared with the exact
solution given by Eq. (129) in Fig. 4. We see that the
asymptotic regime is already reached for τ ∼ 1
In short, we found that in one spatial dimension, the

asymptotic growth of the Rényi and entanglement entropies
is logarithmic. As discussed in Sec. III B, to any system with
a periodic quadratic Hamiltonian there is an associated
effective time-independent Hamiltonian that describes its
stroboscopic evolution. Moreover, if such an effective
Hamiltonian displays a Lyapunov instability, then the
asymptotic growth of the entropy is linear, according to
the general results summarized in Sec. III D. Therefore, we
conclude that for d ¼ 1 the DCE displays no Lyapunov
instability, despite the presence of parametric resonance. As
stressed in [10], the case of d ¼ 1 is special in the sense that,
after the averaging of the fast oscillations, the field modes
remain strongly coupled. The intermode interactions com-
pete with the effect of parametric resonance, keeping the
production of particles in the resonant mode linear, in
opposition to what happens in higher dimensions, where it
grows exponentially. Our result show that this suppression of
particle creation is reflected in the absence of a Lyapunov
instability for the stroboscopic evolution.
The possible asymptotic behaviors of the entanglement

entropy for systems with time-independent quadratic
Hamiltonians and a finite number of d.o.f. was fully analyzed

FIG. 2. Comparison of the exact time-dependent Rényi entropy
RAðτÞ of a resonant mode in (1þ 1) dimensions with its
asymptotic expansions given in Eqs. (127) and (128).

FIG. 3. Difference between the exact Rényi entropy RAðτÞ of a
resonant mode in (1þ 1) dimensions and the asymptotic ex-
pansions given in Eqs. (127) and (128).
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in [15]. In the presence of instabilities, the asymptotic growth
is linear, in agreement with the previous results obtained in
[14], discussed inSec. III D. In the absenceof instabilities, the
entanglement entropy either grows logarithmically, for so-
called metastable systems, or is bounded. Hence, the DCE in
d ¼ 1 behaves qualitatively as a metastable system, but there
is an important difference. In [15], it was proved that the
prefactor multiplying the logarithmic function must be an
integer, i.e., SAðtÞ ∼ n log t, n ∈ N. In contrast, we found
SAðtÞ ∼ 1=2 log t, according to Eq. (133). This provides
evidence that the extension of the results of [15] to systems
with an infinite number of d.o.f. is nontrivial,with newclasses
of asymptotic behavior arising in this limit. In fact, in
preliminary numerical investigations, we found that, by
truncating the number of d.o.f. in the one dimensional
DCE, the entanglement entropy becomes bounded, with an
initial regime of logarithmic growth. As the size of the
truncated system is increased, the regime of logarithmic
growth becomes longer, consistently with the fact that for the
infinite system such a regime has an infinite duration. This
mechanism illustrates how a new class of logarithmic
asymptotic growth can arise in the nontrivial limit of infinite
number of d.o.f. and may be investigated elsewhere.

B. (2 + 1) dimensions

We now proceed to the case of 2 dimensions. The
frequencies of the normal modes are determined by
Eq. (46), where k is now a set of two integers. We let
the moving mirror oscillate with twice the frequency ωr ¼
ω11 of the first mode r ¼ ð1; 1Þ,

LðtÞ ¼ L1½1 − ϵ cosð2ωrtÞ�; ð134Þ
so that the resonant mode is r. The length of the cavity along
the x2-direction is kept fixed. The resonant frequency is

ωr ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L2
1

þ 1

L2
2

s
: ð135Þ

The Rényi entropy can be computed from Eq. (92)
as before. The main difference is that, as discussed in
Sec. II B 2, the evolution of the system is nowmuch simpler.
Under the slow-variation approximation, all normal modes
decouple, and the evolution is nontrivial only for the resonant
mode. The problem is thus reduced to that of a one dimen-
sional parametric oscillator at resonance. The nontrivial
Bogoliubov coefficients are given by Eq. (55)

α11ðtÞ ¼ coshðωrγtÞ;
β11ðtÞ ¼ −i sinhðωrγtÞ; ð136Þ

where γ, defined in (50), now reads

γ ¼ ϵπ2

2L2
1ω

2
r
¼ ϵ

2

L2
2

L2
1 þ L2

2

: ð137Þ

We start again from the covariance matrix in order to
compute the Rényi entropy. The sums in the formulas (106)
for the matrix components for each mode are now easily
computed, since only the first term of each sum is nonzero.
For the resonant mode r ¼ ð1; 1Þ, we obtain

GrðtÞ ¼
�
G11

r G12
r

G21
r G22

r

�
; ð138Þ

with

G11
r ¼ −G11

1 ¼ 2i coshðωrγtÞ; ð139Þ

G12
r ¼ G21

1 ¼ cosh2ðωrγtÞ þ sinh2ðωrγtÞ: ð140Þ

For the remaining modes, the covariance matrix keeps its
initial form throughout the evolution,

GkðtÞ ¼
�
0 1

1 0

�
; k ≠ ð1; 1Þ: ð141Þ

In order to compute the entanglement entropy via
Eq. (93), we need to project the covariance matrix to a
subspace of interest. Here, a special care must be taken so
that a nontrivial evolution is obtained. Since distinct modes
evolve independently, if we choose the subsystem to be a
single mode, then the entropy will be zero. In order for the
entropy to be nonzero, we should consider subspaces that
intersect both the resonant mode and its complement.
As a simple example, we study a mixture of two modes.

In order to define the subsystem A of interest, let us first
introduce an extended subsystem E including the resonant
mode and some other (arbitrary) mode s. The only mode
with a nontrivial evolution is the resonant mode; for all
others, the covariance matrix keeps its initial form. As a
result, regardless of which mode s one chooses to build the
subsystem E, the projection of the covariance matrix to E
will always have the form

GEðtÞ ¼

0
BBB@

2i coshðωrγtÞ 0 cosh2ðωrγtÞ þ sinh2ðωrγtÞ 0

0 0 0 1

cosh2ðωrγtÞ þ sinh2ðωrγtÞ 0 −2i coshðωrγtÞ 0

0 1 0 0

1
CCCA: ð142Þ
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We now define a new set of annihilation operators

ˆ̃a1 ¼
â1 þ âsffiffiffi

2
p ; ˆ̃as ¼

â1 − âsffiffiffi
2

p ð143Þ

and their conjugates ˆ̃a†1 and ˆ̃a†s . This symplectic trans-
formation defines a new basis on the subsystem E. The
transformation matrix B that connects the new and the old
basis is

B ¼ 1ffiffiffi
2

p

0
BBB@

1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1

1
CCCA: ð144Þ

In order to mix the modes and find a nonzero entropy, we
apply this transformation to GE

G̃EðtÞ ¼ BGEB−1; ð145Þ
and then restrict to the subspace spanned by the first
transformed mode, which gives the 2 × 2 restricted covari-
ance matrix in the transformed basis, which we write as

G̃AðtÞ ¼
� 1

2
i sinhð2ωrγtÞ cosh2ðωrγtÞ
cosh2ðωrγtÞ − 1

2
i sinhð2ωrγtÞ

�
: ð146Þ

It is now simple to compute the Rényi entropy as

RAðtÞ ¼
1

2
log ð− detðG̃AÞÞ ¼

1

2
log ðcosh2ðωrγtÞÞ: ð147Þ

In the limit of t ≫ 1, the Rényi entropy becomes

RAðtÞ ∼ − log 2þ ωrγt: ð148Þ
From Eq. (132), the entanglement entropy has the same

asymptotic behavior, differing only by an offset

SAðtÞ ∼ 1 − 2 log 2þ ωrγt: ð149Þ

Hence, entropy is produced at a constant rate for large times,
with a rate determined by the frequency ωr of the resonant
mode, the amplitude of oscillation ϵ of the mirror, and the
dimensions L1, L2 of the cavity, via the parameter γ. We see
in Fig. 5 that, for large t, Eq. (149) gives the same asymptotic
behavior of the exact entanglement entropy computed from
Eqs. (129) and (147).
This result can be interpreted as signaling the presence of

an instability in the system, associated with the fast
amplification of excitations in the resonant mode. As
discussed in [14], in any system displaying Lyapunov
instabilities, the asymptotic production of entropy for a
generic subsystem takes place at a constant rate ΛA, which
is determined by the Lyapunov exponents of the system.
We will now show that ΛA ¼ ωrγ in the present case, in
agreement with Eq. (149).
The asymptotic rate of entanglement entropy production

ΛA for a generic subsystemwithNA d.o.f. is given by the sum
of the largest 2NA Lyapunov exponents [14]. Since we are
dealing with a single d.o.f., NA ¼ 1 here, and ΛA is the sum
of the two largest Lyapunov exponents. We will later give a
precise characterization of such generic subsystems.
The Lyapunov exponents can be computed from the

Hamiltonian flow MðtÞ of the system. In the special case
where MðtÞ ¼ expðKtÞ, they are simply the eigenvalues of
the time-independent symplectic generatorK. In our case, the
generator decomposes into a series of 2 × 2 blocks Kk
associated with the independent modes k, as discussed in
Sec. II B 2. The evolution of the nonresonant modes is trivial,
Kk ¼ 0, for k ≠ r, and the associated Lyapunov exponents
vanish. The symplectic generator of the resonant mode is
given in Eq. (57). The Lyapunov exponents are the eigen-
values

λðrÞ1 ¼ ωrγ; λðrÞ2 ¼ −ωrγ: ð150Þ
The two largest Lyapunov exponents of the system are then

λðrÞ1 ¼ ωrγ and 0, leading to

FIG. 4. Comparison of the time-dependent entanglement en-
tropy SAðτÞ of a resonant mode in (1þ 1) dimensions with its
asymptotic expansion given in Eq. (133).

FIG. 5. Comparison of the time-dependent entanglement en-
tropy SAðτÞ of a resonant mode in (2þ 1) dimensions with its
asymptotic expansion given in Eq. (149).
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SAðtÞ ∼ ΛAt; ΛA ¼ ωrγ: ð151Þ

Comparing Eqs. (149), (150) and (151), we see that the
asymptotic rate of growth of the entanglement entropy is
precisely the value of the positive Lyapunov exponent, which
is also equal to ΛA.
The coefficient ΛA can also be computed directly from

the equation of motion of the normal modes in the case of
parametric resonance. A simple model of parametric
resonance is provided by the Mathieu equation

ẍðtÞ þ ω2ðtÞxðtÞ ¼ 0; ð152Þ

where

ω2ðtÞ ¼ ω2
0 þ α cosðΩtÞ ð153Þ

is the time-dependent natural frequency, which oscillates
around ω0 with frequency Ω ¼ 2ω0 and amplitude α. It is a
well-known fact that the Floquet exponents μ can be
computed directly from this equation as

μ ¼ α

4ω0

: ð154Þ

In addition, the Floquet exponent is the positive Lyapunov
exponent for the stroboscopic evolution in this case.
Therefore, in the dynamical Casimir effect, we can write
the time-dependent frequency ΩrðtÞ of the resonant mode,
given by Eq. (46), in the form (153) and compute the
Lyapunov exponents directly from Eq. (154). With
r ¼ ð1; 1Þ, we have

Ω2
r ¼ π2

�
1

L2
1ð1 − ϵ cosð2ωrtÞÞ2

þ 1

L2
2

�
: ð155Þ

To first order in ϵ,

Ω2
r ¼ ω2

r þ 2ϵ
π2

L2
1

cosð2ωrtÞ: ð156Þ

Comparing with the Mathieu equation, we see that α ¼
2ϵπ2=L2

1. Substituting into Eq. (154), setting ω0 ¼ ωr, and
using Eq. (137), we find

μ ¼ ωrγ ¼ ΛA; ð157Þ

which agrees with (150).
In the more explicit derivation of the entropy production

rate leading to Eq. (149), we considered a special choice of
subsystem A. The result remains valid in a much more
general context, however. In fact, the arguments leading to
the same result in Eq. (151) apply to a large class of generic
finite-dimensional subsystems, which can be fully charac-
terized from Theorem 2. In the next section, we provide a

detailed characterization of such generic subsystems that
applies to any spatial dimension d ≥ 2.

C. Higher dimensions

For any spatial dimension d ≥ 2, the dynamical Casimir
effect at resonance for the lowest energy mode has the same
overall features in the slow-variation approximation, as
discussed in Sec. II B 2. The time evolution is trivial for all
modes, except for the resonant one, which behaves as a
single oscillator at parametric resonance. The evolution of
the resonant mode is described by the symplectic trans-
formation (56), with the natural frequency ωr and the
coefficient γ given by Eqs. (48) and (50), respectively. A
Lyapunov instability is associated with the resonance. For a
generic subsystem, entropy is then produced asymptoti-
cally at a constant rate ΛA ¼ ωrγ, which is equal to the

positive Lyapunov exponent, ΛA ¼ λðrÞ1 . We now present a
simple characterization of such generic subsystems and
prove that they satisfy ΛA ¼ ωrγ.
Let l1, l2 ∈ V� be the eigenvectors of the generator K⊺

whose eigenvalues λ1, λ2 are the nonzero Lyapunov

exponents λðrÞ1 ¼ −λðrÞ2 ,

l1 ¼
1ffiffiffi
2

p
�
1

i

�
; l2 ¼

1ffiffiffi
2

p
�−1

i

�
: ð158Þ

They form a canonical pair of V, Ωabðl1Þaðl2Þb ¼ 1. The
remaining eigenvectors of K⊺ have vanishing eigenvalues.
We can construct a linear basis DL ¼ flig of V composed
of canonically conjugate eigenvectors of K that includes l1

and l2. The evolution of the basis vectors under the
Hamiltonian flow has a simple form:

M⊺ðtÞl1 ¼ eωrγtl1;

M⊺ðtÞl2 ¼ e−ωrγtl2;

M⊺ðtÞli ¼ li; i > 2: ð159Þ

This basis is adequate for analyzing the expansion of
subsystems with time, which determines the asymptotic
growth of the Rényi and entanglement entropies, as
discussed in Sec. III D.
Let A be a proper symplectic subspace of V representing

a subsystem of interest. Its symplectic complement B is
defined as

B ¼ fv ∈ VjΩabvaub ¼ 0; ∀ u ∈ Ag: ð160Þ

We have V ¼ A ⊕ B, and any vector can be uniquely
decomposed as v ¼ vA þ vB, with vA ∈ A and vB ∈ B. The
symplectic projection of v to the subsystem A is the
component vA in this decomposition. The decomposition
V ¼ A ⊕ B induces a unique decomposition V� ¼ A� ⊕
B� of the dual phase space based on the isomorphism
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induced by Ω−1
ab, i.e., we can define A� ¼ fΩ−1

abv
bjva ∈ Ag

and B� ¼ fΩ−1
abv

bjva ∈ Bg. We call A (or, equivalently, A�)
a generic subsystem if:

(i) l2 has a nonzero symplectic projection on A�;
(ii) l2 has a nonzero symplectic projection on B�.
The condition (i) implies that there exists a vector θ1 ∈

A� such that

Ωabðθ1Þaðl2Þb ≠ 0: ð161Þ

Expanding θ1 in the basis DL, θ1 ¼
P

k0 θ
k0
1 lk0 , and

exploring the fact that DL is a Darboux basis, we find
that θ1

0
1 ≠ 0, that is, θ1 has a nonzero expansion coefficient

in the first basis vector of DL.
Now let DA ¼ fθrjr ¼ 1;…; 2NAg be a Darboux basis

of the subsystem A that includes θ1. Expanding its elements
in the basis DL, we can write θr ¼ θk

0
r lk0 . By a simple

procedure of Gaussian elimination, we can construct a new
linear basis D̃A ¼ fθ̃rg of A such that θ̃1 ¼ θ1, and θ̃

1
r ¼ 0,

for r ≠ 1. Moreover, it follows from condition (ii) that, for
all r, θ̃k

0
r ≠ 0 for some k0 ≠ 2, otherwise l2 would be an

element of A and have a vanishing symplectic projection on
B. In short, the only vector with a contribution from the
expanding unstable mode is θ1, and all other modes have a
contribution from some stable mode. As a result, for large
times, we have

kMðtÞθ1k ∝ eωrγt;

kMðtÞθik → constant; i ≥ 2: ð162Þ

We are interested in computing how the volume of the
unit cube with sides θr evolves for large times,
VolðM⊺ðtÞDAÞ. Since the basis DA is related to D̃A by a
fixed transformation, their volumes are related by a time-
independent factor, VolðMðtÞDAÞ ∝ VolðMðtÞD̃AÞ. But
then, from Eq. (162),

VolðM⊺ðtÞDAÞ ∝ eωrγt; ð163Þ

and we find for the subsystem exponent:

ΛA ¼ lim
t→∞

1

t
log

VolðM⊺ðtÞDAÞ
VolðDAÞ

ð164Þ

¼ ωrγ: ð165Þ

This completes the proof that ΛA ¼ ωrγ for a generic
subsystem satisfying conditions (i) and (ii).
Note that in (2þ 1) dimensions and higher, the Lyapunov

instability is restricted to the resonant mode, so that the
condition (ii) is violated for the subsystem composed of the
resonant mode only. This is the reason why we had to
consider a subsystemmixingmore than onemode to obtain a
nontrivial behavior in Sec. IV B.

V. DISCUSSION

We analyzed the production of Rényi and entanglement
entropies for the dynamical Casimir effect at resonance in
arbitrary dimensions. In our settings, a d-dimensional
parallelepided has one of its perfectly reflecting boundaries
oscillating harmonically, while all others are fixed. By
setting the frequency of oscillation equal to twice that of
some normal mode r, the system is set at parametric
resonance and particles are continuously produced from
the vacuum. We considered the regime where the oscil-
lations of the mirror are small, with a relative amplitude
ϵ ¼ ΔL=L ≪ 1. We combined analytical techniques intro-
duced in [10] for the study of pair creation under these
circumstances with general symplectic techniques appli-
cable to the analysis of entanglement production in general
time-dependent linear systems [14,16] in order to provide a
thorough description of the build up of correlations and
entanglement at resonance.
The system has two characteristic timescales: the period

of the resonant mode, ω−1
r , and the timescale ðωrϵÞ−1 for

which the system starts to depart considerably from the
initial configuration at the ground state, which depends on
the amplitude of oscillation of the mirror. Since ϵ ≪ 1,
these scales are well separated. By averaging over the fast
oscillations of normal modes, the equations of motion for
the mode amplitudes are simplified and can be solved
exactly, as shown in [10]. The cases of d ¼ 1 and 3 are
treated in [10], where a Heisenberg representation is used
for d ¼ 1 and a Schrödinger representation for d ¼ 3. We
extended the treatment for arbitrary dimensions, and
showed that it can be implemented in the Heisenberg
representation in any dimension.
The moving boundary induces a nontrivial evolution of

the cavity modes, which in general includes two kinds of
interactions: particle creation from the vacuum and mode
coupling. The vacuum becomes unstable due to the time-
dependent boundary conditions, and the created excitations
can be transferred from one mode to another.
For any spatial dimension d ≥ 2, the intermode inter-

actions are strongly suppressed. This is due to the fact that the
energies required to excite nonresonant modes do not match
differences between energy levels of the resonant mode,
making such transitions unlikely. The amplitude of the
resonant mode then increases exponentially, being continu-
ously pumped by the parametric resonance, providing an
example of a Floquet instability. In the approximation where
the fast oscillations are integrated out, the mode amplitude
growsmonotonically, and the original Floquet instability then
corresponds to a Lyapunov instability. We found that, for any
subsystem that intersects both the resonant mode and its
complement, Rényi and entanglement entropies are produced
at a constant rate for large times, SA ∼ RA ∼ ΛAt, where the
production rate is equal to the positive Lyapunov exponent of
the system, as expected from general results of [14]. It can be

explicitly written asΛA ¼ λðrÞ1 ¼ ωrγ, withωr and γ given by
Eqs. (48) and (50).
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An alternate technique for studying a Floquet instability in
a system with periodicity τ consists of looking at its
stroboscopic evolution. That is, if MðtÞ is its Hamiltonian
flow, one focus on the discrete series of instants MðnτÞ,
n ∈ Z. An effective, time-independent Hamiltonian can then
bedefined in terms of τ−1 logMðτÞ such that at full periods its
evolution agrees with that of the original system. This
effective Hamiltonian displays a Lyapunov instability asso-
ciated with the original Floquet instability. Production of
entropy in systems with Floquet instabilities was studied in
detail in [14] within the stroboscopic approach. Applying it
to the dynamical Casimir effect at resonance for d ≥ 2, we
found the same results for the entanglement entropy pro-
duction as in the approximation introduced in [10], where the
fast oscillations are integrated out. Our result suggests that,
for systems satisfying a slow-variation condition,MðτÞ ∼ 1,
the technique of averaging out the fast oscillations provides a
good approximation for computing the Lyapunov exponents
of the effectiveHamiltonian associated with the stroboscopic
dynamics of the system.
The case of one spatial dimension displays special

features that lead to a different asymptotic behavior for
the Rényi and entanglement entropies. In contrast to what
happens in higher dimensions, for d ¼ 1, the energy
required to excite any normal mode is a multiple of the
difference ℏωr between energy levels of the lowest energy
mode, which we set at resonance. All modes are then
strongly coupled, and excitations produced at the resonant
mode can transition to other modes. The energy injected in
the field by the moving mirror thereby spreads throughout
an infinite number of modes. As a result, two new effects
take place. First, the number of particles in the resonant
mode, instead of growing exponentially, increases only
linearly with time, as first recognized in [10]. In addition,
the resonant mode is strongly entangled with the nonreso-
nant modes. We found that the associated Rényi and
entanglement entropies of the resonant mode display a
logarithmic growth, SA ∼ 1=2 log τ, where τ ¼ ϵωt=2 is a
dimensionless time variable. It is interesting that, even in
the presence of parametric resonance, the system does not
display features expected for unstable systems, i.e., a linear
production of entropy. Instead, its behavior is qualitatively
similar to that of metastable Hamiltonians discussed in
[15], except for the fact that the logarithmic function is here

multiplied by a factor of 1=2, while for metastable systems
the prefactor is always an integer.
The techniques here applied for the analysis of entropy

production in the dynamical Casimir effect at resonance
can also be applied to other mirror trajectories. For finite
cavities, the adaptation of the procedure followed in this
work should be straightforward. A natural question for
further developments is how to implement our techniques
for the dynamical Casimir effect with a single mirror. As is
well known, one of the main motivations for the study of
the dynamical Casimir effect is that it can mimic the
Hawking effect [29]. The application of symplectic tech-
niques for the study of entropy production in general field
theories is discussed in [14], and we hope our approach can
be extended along such lines to the analysis of the time
evolution of the entanglement entropy in models simulating
aspects of particle creation in the Hawking effect [4,30].

ACKNOWLEDGMENTS

We thank Eugenio Bianchi and Rodolfo R. Soldati for
inspiring discussions during the development of this
project. We thank Eugenio Bianchi for sharing his notes
on Floquet instabilities and for many invaluable discussions
during the conception and initial stages of this work. I. R.
acknowledges support from Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
and Conselho Nacional de Desenvolvimento Científico e
Tecnológico (CNPq). L. H. thanks the members of the
physics department at the Universidade Federal de Minas
Gerais for their hospitality during his visit in the summer of
2018. L. H. acknowledges support through the Brazil-U.S.
Exchange Program of the American Physical Society
which made this visit possible. L. H. is funded by the
Max Planck Harvard Research Center for Quantum Optics
and supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s
Excellence Strategy EXC-2111 39081486. N. Y. acknowl-
edges support from CNPq, Brazil, under the grant PQ
306744/2018-0, and from the Programa Institucional de
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