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We present new results on the causality violations introduced by the rotating wave approximation
commonly used in quantum optics and high-energy physics. We find that the causality violations and
faster-than-light signaling induced by the approximation have “fat tails,” i.e., they are polynomially
decaying with the distance from the light-cone of the emitter. Furthermore, we also show that the
fundamental problems with the incompatibility between the approximation and relativity are not cured even
in the long interaction time regime (where the approximation is often taken). This renders the
approximation unsuitable for any regime where we are concerned about relativistic causality and
information transmission via the electromagnetic field.
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I. INTRODUCTION

Early on in the study of quantized light and its interaction
with matter it became evident that there was a need for
approximations that would allow one to reduce the inherent
complexity of quantum electrodynamical approaches to
the light-matter interaction. It was therefore quickly deter-
mined that certain approximations could be made to
facilitate predictions and intuition in most experimentally
achievable regimes. The first of these intuitive steps would
be to replace the minimal coupling model by the dipole
model [1] and a larger step would involve the study of
scalar field interactions rather than electromagnetic field
interactions, together with the reduction of the matter
systems (typically atoms) to two-level quantum systems.
We know that such approximations can capture most of the
relevant features of the light-matter interaction where
angular momentum exchange is not involved [2,3]. This
motivated the study of the simpler Unruh-DeWitt type
couplings in scalar field theories as a simplified, yet
effective, form of the light-matter interaction. Concretely,
this interaction is described by the following interaction
picture Hamiltonian:

ĤI ¼ ðeiΩtσ̂þ þ e−iΩtσ̂−Þϕ̂ðy; tÞ; ð1Þ

where σ̂� are the raising and lowering operators of the
detector and Ω is the frequency of the energy gap between
the ground and excited state of the detector.
Within certain disciplines, e.g., quantum optics, this

model can still be unnecessarily complex for the purpose of
modelling observable experiments; therefore, it is common
practice to implement further approximations to the already

simplified Unruh-DeWitt model. The two most popular
ones are the single-mode (or few-mode) approximation
(SMA) and the rotating wave approximation (RWA). They
are used extensively in quantum optics [4], but they are also
a fundamental part of some scattering theory techniques in
high-energy physics such as Fermi’s golden rule [5]. A few-
mode approximation has been already shown to be incom-
patible with a relativistic description of the light-matter
interaction and leads, unsurprisingly, to faster-then-light
predictions that are not present in the fully covariant Unruh-
DeWitt model [6,7].
We will turn our attention in this manuscript to the RWA

instead. This approximation, (implicitly) employed early
on by Fermi himself (Eq. (51) of [8]), can be illustrated by
first expanding the field in (1) into plane wave modes for a
3þ 1D flat spacetime:

ðeiΩtσ̂þ þ e−iΩtσ̂−Þϕ̂ðy; tÞ

¼
Z

d3k

ð2πÞ3=2 ffiffiffiffiffiffi
2ω

p ðe−iðω−ΩÞtþik·yâkσ̂þ þ eiðω−ΩÞt−ik·yâ†kσ̂
−

þ e−iðωþΩÞtþik·yâkσ̂− þ eiðωþΩÞt−ik·yâ†kσ̂
þÞ; ð2Þ

where âk and â†k are the usual annihilation and creation
operators satisfying that all commutators between them are
zero except for ½âk; â†k0 � ¼ δ3ðk − k0Þ. The usual (RWA)
argument goes as follows: given that ω;Ω > 0, the terms of
the form e�iðω−ΩÞt (rotating terms) oscillate much slower
than terms of the form e�iðωþΩÞt (counterrotating terms).
Given that to compute time evolution, the Hamiltonian
must ultimately be integrated over time, the RWA involves
neglecting the counterrotating terms, reasoning that, once
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integrated over a long enough time, their highly oscillatory
behaviour will be dominated by the relative “stationary”
terms of the rotating terms. This leaves

ðeiΩtσ̂þþe−iΩtσ̂−Þϕ̂ðy;tÞ

≈
RWA

Z
d3k

ð2πÞ3=2 ffiffiffiffiffiffi
2ω

p ðe−iðω−ΩÞtþik·yâkσ̂þþeiðω−ΩÞt−ik·yâ†kσ̂
−Þ:

ð3Þ

This model is easy to understand even from a classical point
of view since it has built-in some (misplaced) intuition
coming from the early times of spectroscopy and
Kirchhoff’s spectroscopy laws [9], i.e., the idea that the
absorption of 1 photon leads to a single atomic excitation
and vice versa and that an atom in its ground state cannot
get excited via photon emission. In particular when coupled
with the single-mode approximated Hamiltonian this
model seems to respect classical notions of energy con-
servation. However, it would be a misconception to think
that the counterrotating terms do not conserve energy: the
Hamiltonians in the Schrödinger picture are time indepen-
dent and therefore they conserve the expectation of energy
at all times. One should realize, however, that single-photon
states and the excited and ground state of the atoms are not
eigenstates of the interaction Hamiltonian and therefore
they do not have a well-defined value of energy and hence
the total Hamiltonian eigenstates will not include the
eigenstates of the free theories (such as the ground state
of the atom and the vacuum of the field), so the whole
energy conservation argument of the RWA cannot be
carried out a priori to establish the model’s Hamiltonian.
In spite of the issues associated with the rotating wave

approximation and the single mode approximation, they
have been commonly used in condensed matter [10] as well
as in quantum optics [11] in the form of Jaynes-Cummings
models or as rotating-frame approximations. Due to the
frequent use of finite size cavities within these commun-
ities, the RWA and SMA are in general good approxima-
tions when causality and relativistic considerations are not
of paramount importance, i.e., extremely long times.
The RWA is indeed very tempting, given the enormous

mathematical simplifications it brings with it as well as the
coincidence with empirical observations from spectral lines
and the seemingly intuitive “conservation of energy”
arguments of the model; however, from a relativist’s
standpoint, it becomes apparent that the RWA modifies a
once local interaction into a nonlocal interaction that, if
taken seriously, would enable superluminal signaling.
Compagno et al. [12,13] demonstrated this nonlocality
with electromagnetic (EM) fields, highlighting the impor-
tance of the counterrotating terms interfering with rotating
terms in order to maintain causality, which was measured
by means of the support of the renormalized stress-energy
tensor propagation.

Whilst looking at the interaction terms themselves (3),
Clerk & Sipe [14] demonstrated that the RWA’s nonlocality
stems from the RWA interaction Hamiltonian’s nonlocality,
a result that is independent of the field measurment device
used. This nonlocality can then be quantified by the
standard approach in relativistic quantum information
where we consider the actual communication between
two particle detectors under the Unruh-DeWitt interaction
(see, among others, [6,7,15–18]).
In this paper we will extend and explicitly quantify what

was hinted in previous works on the RWA’s nonlocality and
superluminal communication. This will first involve a study
of the expectations of energy density and field fluctuations
hϕ2i, both perturbatively and nonperturbatively, outside of
the interactions light cone extending [12,13] by studying in
detail the decay rate of the nonlocality. We will then revisit
Clerk & Sipe’s calculation on the Hamiltonian’s non-
locality, further highlighting its connection to nonlocalities
of observables. Finally we will explore, from the point of
view of information theory, the communication of two
particle detectors (modeling, e.g., atoms) communicating
under RWA in order to explicitly quantify the presence of
faster-than-light signaling and its rate of decay with the
different scales of the problem. Furthermore, we will
analytically show that even for long times, when the
RWA is supposed to be ultimately valid, there are poly-
nomially suppressed violations of causality as a receiver
increases their distance from the light cone of the emitter,
which means that faster-than-light signaling is therefore
always possible under this approximation even for arbi-
trarily long evolution times. Besides the consideration of
communication protocols, another significant novelty in
this paper is the extensive numerics included to quantify to
what extent the RWA is an acceptable approximation when
relativistic considerations are important.

II. ROTATING WAVE APPROXIMATION

A. Theoretical review

The object of our study are the acausal nonlocalities
introduced into a reasonable relativistic theory as a con-
sequence of the rotating wave approximation. In addition to
determining the exact magnitude of these nonlocalities we
are also interested in if and how the RWA becomes exact in
the long time limit.
Our work will be focused on the scalar field in 3þ 1D,

which in terms of a plane-wave expansion can be written as

ϕ̂ðx; tÞ ¼
Z

d3k

ð2πÞ3=2 ffiffiffiffiffiffi
2ω

p ðe−iωtþik·xâk þ eiωt−ik·xâ†kÞ ð4Þ

and has π̂ as its canonical conjugate momentum, which in
terms of plane-wave modes takes the form
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π̂ðx; tÞ ¼ −i
Z

d3k

ð2πÞ3=2
ffiffiffiffi
ω

2

r
ðe−iωtþik·xâk − eiωt−ik·xâ†kÞ:

ð5Þ

To increase the physicality of the model at the same time
as avoiding spurious divergences, the interaction used will
be a spatially smeared Unruh-DeWitt interaction that, as
has been discussed, captures all the fundamental features of
the light-matter interaction when exchange of angular
momentum between atoms and light is not relevant [2,3]:

ĤFULL
I ¼ λχðtÞðeiΩtσ̂þ þ e−iΩtσ̂−Þ

Z
d3yFðyÞϕ̂ðy; tÞ; ð6Þ

where χðtÞ is a switching function controlling the duration
of the interaction and its adiabaticity or suddenness, λ is the
interaction strength, σ̂� are the detector raising and lower
operators, Ω is the detector’s energy gap and FðyÞ, which
has dimensions of ½L�−3, is the detector’s smearing that can
be associated to the wave functions of the excited and
ground state of the atom being modeled [2,3]. We will
assume that the smearing function is only non-negligible
for a length scale R (the size of the atom). For convenience,
in this paper we will rewrite this smearing function in terms
of a dimensionless smearing as follows

FðyÞ ¼ 1

R3
G

�
y
R

�
; ð7Þ

where the dimensionless function GðζÞ is localized
around jζj ≲ 1.
As shown in (2) the Unruh-DeWitt interaction has

“rotating terms” e�iðω−ΩÞt and “counterrotating terms”
e�iðωþΩÞt. Given that ω > 0 and Ω > 0 then e�iðωþΩÞt

oscillates at least as quickly as e�iΩt, therefore any integral
over time (as required for the unitary time evolution
operator) will bound these counterrotating terms by
χ̃ðΩÞ, the Fourier transform of χðtÞ. On the other hand,
for contributions from modes where ω ≈ Ω, the rotating
terms hardly oscillate. Therefore the “resonant” rotating
terms are roughly

R
dtχðtÞ large, where χðtÞ ≥ 0. Therefore

if χðtÞ is on for long times these rotating terms should easily
dominate over the counterrotating terms. With this pro-
gression of logic the RWAwould be justified and we could
approximately have

ĤRWA
I ¼ λχðtÞ

Z
d3y

1

R3
G

�
y
R

�Z
d3k

ð2πÞ3=2 ffiffiffiffiffiffi
2ω

p

× ðe−iðω−ΩÞtþik·yâkσ̂þ þ eiðω−ΩÞt−ik·yâ†kσ̂
−Þ; ð8Þ

where the approximation is expected to work in the very
long time limit.

B. Hamiltonian nonlocality

In order to see the nonlocality of the RWAHamiltonian it
is useful to express the creation and annihilation operators
in terms of the local operators (4) and (5). Namely,

âk ¼
Z

d3yffiffiffi
2

p ð2πÞ3=2 e
iωt−ik·y

� ffiffiffiffi
ω

p
ϕ̂ðy; tÞ þ iffiffiffiffi

ω
p π̂ðy; tÞ

�
;

ð9Þ

â†k ¼
Z

d3yffiffiffi
2

p ð2πÞ3=2 e
−iωtþik·y

� ffiffiffiffi
ω

p
ϕ̂ðy; tÞ − iffiffiffiffi

ω
p π̂ðy; tÞ

�
:

ð10Þ

Consequently by substitution into (8) we obtain

ĤRWA
I ¼ λχðtÞ

Z
d3y

1

R3
G

�
y
R

�Z
d3z
2

ϕ̂ðz; tÞ
Z

d3k
ð2πÞ3

× ðeiΩteik·ðy−zÞσ̂þ þ e−iΩte−ik·ðy−zÞσ̂−Þ

þ iλχðtÞ
Z

d3y
1

R3
G

�
y
R

�Z
d3z
2

π̂ðz; tÞ
Z

d3k
ð2πÞ3ω

× ðeiΩteik·ðy−zÞσ̂þ − e−iΩte−ik·ðy−zÞσ̂−Þ: ð11Þ

This analysis is analogous to the one performed by Clerk &
Sipe in [14]. We can extend those results further and
determine the exact polynomial decay of the nonlocality.
We can do so considering that (as shown in Appendix A)
we can write

Z
d3keik·ðy−zÞ ¼ ð2πÞ3δðy − zÞ; ð12Þ

Z
d3k

eik·ðy−zÞ

ω
¼ 4π

jy − zj2 ; ð13Þ

which can be appropriately substituted into (11) such that
we are left with

ĤRWA
I ¼ λχðtÞ

2

Z
d3y
R3

G

�
y
R

��
ðeiΩtσ̂þ þ e−iΩtσ̂−Þϕ̂ðy; tÞ

−
2i

ð2πÞ2 ðe
iΩtσ̂þ − e−iΩtσ̂−Þ

Z
d3z

π̂ðz; tÞ
jy − zj2

�
: ð14Þ

By means of backward substitution (14) has shown us that
implementation of the RWA introduces a polynomial
nonlocality into the Hamiltonian; and, rather importantly,
this nonlocality has no indication of improving for long-
time limits.

III. NONLOCALITIES IN FIELD OBSERVABLES

Whilst we have seen how the RWAHamiltonian contains
a 1=r2 nonlocality, we would like to know how exactly this
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nonlocality translates into possible faster-than-light behav-
ior of field observables. For example, we would like to
know if any coincidental cancellations may improve the
decay rate of the nonlocality in any parameter regimes
either for short or long interaction times.

A. Nonperturbative very short time regimes

1. Time evolution

We begin our considerations of field observables in the
very short time regime. In particular we will consider that
our switching function is proportional to a delta distribution
(see, e.g., [19]), i.e., χðtÞ ¼ ηδðtÞ, where η is a timescale
quantifying the intensity of the delta-kick. This switching
can be thought of as the limit of Gaussian switching when
the interaction time is taken to be very short as compared
to all other scales in the problem, but the overall intensity
of the coupling over time is kept constant (see e.g.,
appendix D of [20]). Picking this particular switching will
allows us to use nonperturbative tools. Our expectation is to
measure the magnitude of RWA’s shortcomings when the
interaction time is extremely short, i.e., the opposite of the
RWA’s validity criterion. We are also interested to see how
exactly the interaction Hamiltonian’s nonlocality translates
onto the time evolution operator’s nonlocality.
The RWA interaction Hamiltonian, for the δ-switching

case takes the form

ĤRWA
I ¼ λ̃δðtÞ

Z
d3y

1

R3
G

�
y
R

�Z
d3k

ð2πÞ3=2 ffiffiffiffiffiffi
2ω

p

× ðe−iðω−ΩÞtþik·yâkσ̂þ þ eiðω−ΩÞt−ik·yâ†kσ̂
−Þ; ð15Þ

where we recall R is the characteristic length of our
smearing function and λ̃ ≔ λη is the overall interaction
strength. In order to compress notation we also define

F̃ðkÞ ≔
Z

d3y
1

R3
G

�
y
R

�
eik·y; ð16Þ

α̂ðtÞ ≔ λ̃

Z
d3k

ð2πÞ3=2 ffiffiffiffiffiffi
2ω

p F̃ðkÞe−iωtâk: ð17Þ

This allows us to write the interaction Hamiltonian in a very
compact form

ĤRWA
I ¼ δðtÞðα̂ðtÞσ̂þðtÞ þ α̂†ðtÞσ̂−ðtÞÞ; ð18Þ

where σ̂�ðtÞ ¼ e�iΩtσ̂�. Observe that α̂ðtÞ consists of the
sum of annihilation operators (17), i.e., α̂ðtÞ acts similarly
to an annihilation operator (annihilating the same vacuum
as all of the âk). This allows us to think of (18) as a sort of
Jaynes-Cummings model, albeit where α̂ðtÞ and its adjoint
do not satisfy canonical commutation relationships.

Taking advantage of the δ-switching we can evaluate the
time evolution operator,

Û ¼ T exp
�
−i

Z
dtĤRWA

I ðtÞ
�

¼ exp ½−iðα̂σ̂þ þ α̂†σ̂−Þ�;

ð19Þ

where α̂ and σ̂� are evaluated at t ¼ 0. As shown in
Appendix B the exponential above can be expanded and
simplified when acting on the vacuum state:

Ûjφij0i ¼
�
Π̂g ⊗ 1̂þ Π̂e ⊗ 1̂ cosK

− i
σ̂− ⊗ α̂†ð0Þ

K
sinK

�
jφij0i; ð20Þ

where jφi is the initial detector state and

K21̂ ≔ ½α̂ð0Þ; α̂†ð0Þ� ¼ λ̃2
Z

d3k
ð2πÞ32ω jF̃ðkÞj21̂; ð21Þ

i.e., K ≥ 0. Π̂g;e are the projection operators onto the
detector ground and excited state respectively.
Note that in the RWA, (20) yields 0 and 1 field

excitations, conditional on the initial state of the detector.
This is particularly interesting when comparing with the
nonapproximated full interaction Hamiltonian, which has
the form

ĤFULL
I ¼ λ̃δðtÞσ̂xðtÞ

Z
d3y

1

R3
G

�
y
R

�Z
d3k

ð2πÞ3=2 ffiffiffiffiffiffi
2ω

p

× ðe−iωtþik·yâk þ eiωt−ik·yâ†kÞ ð22Þ

¼ δðtÞσ̂xðtÞðα̂ðtÞ þ α̂†ðtÞÞ; ð23Þ

where σ̂xðtÞ¼eiΩtσ̂þþe−iΩtσ̂−. This particular Hamiltonian
allows for terms of the form α̂†σ̂þ, i.e., emission of a field
excitation via a detector excitation. The corresponding time
evolution operator then becomes

Û ¼ T exp

�
−i

Z
ĤIdt

�

¼ jþihþj ⊗ exp ð−iðα̂þ α̂†ÞÞ
þ j−ih−j ⊗ exp ðiðα̂þ α̂†ÞÞ; ð24Þ

where jþi and j−i are the � eigenstates of σ̂x and α̂; α̂† are
evaluated at t ¼ 0. In contrast to the (20), the full interaction
time evolution operator generates phase-space displace-
ments conditioned to the state of the detector, which applied
to the vacuum state generates superpositions of coherent
states and therefore states with multiple field excitations.
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This is in stark contrast with the RWA where only single-
photon excitations are produced.
However, note that if λ̃ is very small then the coherent

state displacements in (24) approximate zero and one
excitation states, but as the coupling increases the approxi-
mation becomes exponentially worse. In fact the final states
produced by these two Hamiltonians, jψRWAi and jψFulli
have the following overlap:

hψRWAjψFulli ¼ hφjΠ̂gjφie−K2=2

þ hφjΠ̂ejφie−K2=2ðcosK þ K sinKÞ
ð25Þ

which, regardless of the detector’s initial state, goes to zero
exponentially fast on λ̃.

2. Faster-than-light effects in
physical observables

In this subsection we will focus on the energy deposited
in the field and in the amplitude of the field. In particular we
will evaluate the expectation of the stress-energy density
and the square of the field amplitude. The expectation
values we are interested in finding correspond to the
operators

∶T̂μνðx; tÞ∶ ¼
Z

d3kd3k0

ð2πÞ3
ffiffiffiffiffiffiffiffiffiffiffi
4ωω0p

�
kμk0ν −

ημν
2

kγk0γ
�
½e−iðω−ω0Þtþiðk−k0Þ·xâ†k0 âk þ eiðω−ω0Þt−iðk−k0Þ·xâ†kâk0

−e−iðωþω0Þtþiðkþk0Þ·xâk0 âk − eiðω−ω0Þt−iðk−k0Þ·xâ†k0 â
†
k�; ð26Þ

∶ϕ2ðx; tÞ∶ ¼
Z

d3kd3k0

ð2πÞ3
ffiffiffiffiffiffiffiffiffiffiffi
4ωω0p ½e−iðω−ω0Þtþiðk−k0Þ·xâ†k0 âk þ eiðω−ω0Þt−iðk−k0Þ·xâ†kâk0

þe−iðωþω0Þtþiðkþk0Þ·xâk0 âk þ eiðω−ω0Þt−iðk−k0Þ·xâ†k0 â
†
k�; ð27Þ

where kγ ¼ ðω;−kÞ is a 4-vector. When considering a normalized initial detector state jφi ¼ agjgi þ aejei tensored with an
initial vacuum field state, i.e., jφi ⊗ j0i, the final (RWA evolved) state is described by (20). This in turn leads to

h∶T̂μνðx; tÞ∶iRWA ¼ λ̃2
jaej2sin2K

K2

Z
d3kd3k0

ð2πÞ64ωω0

�
kμk0ν −

ημν
2

kγk0γ
�

× ½e−iðω−ω0Þtþiðk−k0Þ·xF̃ðk0ÞF̃�ðkÞ þ eiðω−ω0Þt−iðk−k0Þ·xF̃ðkÞF̃�ðk0Þ�; ð28Þ

h∶ϕ2ðx; tÞ∶iRWA ¼ λ̃2jaej2
sin2K
K2

1

2ð2πÞ6
����
Z

d3k
ω

eiωt−ik·xF̃ðkÞ
����2: ð29Þ

These expressions are nonzero only if ae ≠ 0, that is the detector must be excited in order to deposit energy in the field. In
contrast the final state following the nonapproximated interaction Hamiltonian leads to

h∶T̂μνðx; tÞ∶iFull ¼ λ̃2
Z

d3kd3k0

ð2πÞ64ωω0

�
kμk0ν −

ημν
2

kγk0γ
�

× ðeiωt−ik·xF̃ðkÞ þ e−iωtþik·xF̃�ðkÞÞðeiω0t−ik0·xF̃ðk0Þ þ e−iω
0tþik0·xF̃�ðk0ÞÞ; ð30Þ

h∶ϕ̂2ðx; tÞ∶iFull ¼ −
λ̃2

4ð2πÞ6
�Z

d3k
ω

ðeiωt−ik·xF̃ðkÞ − e−iωtþik·xF̃�ðkÞÞ
�
2

: ð31Þ

Note that these results are independent of the detector
energy gap Ω (as we would expect from a delta switch-
ing). Let us highlight again a relevant qualitative differ-
ence between the RWA case and the full model: in the
case of the full Hamiltonian, the results are also inde-
pendent of the initial detector state unlike in the RWA.
Indeed, inspection of (28) and (29) vs (30) and (31)
respectively demonstrates two important points. First, the

RWA expectation values are dependent on the detector
being excited. The RWA does not permit spontaneous
excitation of a detector via a field excitation emission.
Second, the RWA expectation values take the form

φiφ
†
j þ φ†

iφj, whilst the full model expectations take

the form ðφi þ φ†
jÞðφ†

i þ φjÞ, which is a direct reflection
of the differences in the Hamiltonians (18) and (23).
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3. Numerical results

Using the results above we consider the situation of a
spherically symmetric detector smearing

GðζÞ ¼
�
1 if jζj < 1

0 otherwise:
ð32Þ

i.e., a “hard sphere” extending to radius R. We will use the
lengthscale R as a reference scale to adimensionalize all
the dimensionful parameters in our setup. We will study
numerically the expectation values of the renormalized
energy density, and ∶ϕ̂2∶ at t ¼ 0þ, i.e., immediately
following the δ-coupling interaction. Note that (for the
purpose of the RWA to yield a nontrivial result) the detector
is assumed to be initially excited.
In Fig. 1 the renormalized energy density, for the full

interaction model, is plotted as a function of distance from
the detector’s distribution center at time t ¼ 0þ, i.e., just

after the δ-coupling interaction has taken place. As
expected from a local relativistic theory there is no acausal
propagation or perturbations of energy beyond the support
of the detector distribution (and their support remains
always strictly inside the lightcone of the detector).
In contrast in Figs. 2 and 3 the renormalized energy

density and normal ordered ϕ2 distributions are plotted
respectively, for the RWA model, at time t ¼ 0þ. Par-
ticularly noteworthy are the nonzero values for jxj > R,
demonstrating acausal behavior in physically measurable
quantities. Moreover, these acausal tails decay only poly-
nomially, severely limiting the situations when the RWA
can be treated as local in this regime.

B. Perturbative evolution and long time regime

The previous section demonstrated that for extremely
short interaction times the RWA’s Hamiltonian nonlocality
is reflected in the nonlocality of physically measurable field
quantities. However, one may perhaps expect the RWA to
work well when considering long interaction times. Wewill
see that this is not quite the case, and what the effects of the
RWA on the causality of the model are in the long time
regime.
In this case we consider an extended switching function

and hence the RWA Hamiltonian we use is

ĤRWA
I ðtÞ ¼ λχðtÞ

Z
d3y

1

R3
G
�
y
R

�Z
d3k

ð2πÞ3=2 ffiffiffiffiffiffi
2ω

p

× ðe−iðω−ΩÞtþik·yâkσ̂þ þ eiðω−ΩÞt−ik·yâ†kσ̂
−Þ

¼ χðtÞðα̂ðtÞσ̂þðtÞ þ α̂†ðtÞσ̂−ðtÞÞ; ð33Þ

where we take χðtÞ ¼ Θðtþ T=2Þ − Θðt − T=2Þ, i.e., an
interaction of duration T switched on at t ¼ −T=2. Here α̂
and its conjugate are defined by:

2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

FIG. 1. Energy density distribution immediately following
δ-coupling interaction with no approximations. Here GðζÞ ¼
Θð1 − ζÞ, i.e., a hard sphere. Note that the interaction has no
nonlocal field consequences.

2 4 6 8 10

0.2

0.4

0.6

0.8

FIG. 2. Energy density distribution immediately following δ-
coupling interaction under the RWA. Here GðζÞ ¼ Θð1 − ζÞ, i.e.,
spherically symmetric with a sudden cutoff. The spike at jxj ¼ R
is a consequence of the FðxÞ discontinuity. Note the polynomially
decaying tail for jxj > R.
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FIG. 3. ∶ϕ̂2∶ distribution immediately following δ-coupling
interaction under the RWA. Here GðζÞ ¼ Θð1 − ζÞ, i.e., spheri-
cally symmetric with a sudden cutoff. Note the polynomially
decaying tail for jxj > R.
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F̃ðkÞ ≔
Z

d3y
1

R3
G

�
y
R

�
eik·y; ð34Þ

α̂ðtÞ ≔ λ

Z
d3k

ð2πÞ3=2 ffiffiffiffiffiffi
2ω

p F̃ðkÞe−iωtâk: ð35Þ

Under these conditions the corresponding time evolution
operator becomes, up to second order in the Dyson
expansion,

ÛRWAðtÞ

¼ 1̂ − i
Z

∞

−∞
dt1 χðt1Þðα̂ðt1Þσ̂þðtÞ þ α̂†ðt1Þσ̂−ðtÞÞ

−
Z

∞

−∞
dt1

Z
t1

−∞
dt2 χðt1Þχðt2Þðα̂ðt1Þα̂†ðt2ÞΠ̂eeiΩðt1−t2Þ

þ α̂†ðt1Þα̂ðt2ÞΠ̂ge−iΩðt1−t2ÞÞ þOðλ3Þ: ð36Þ
Here Π̂g;e are the detector projection operators onto the
ground and excited state respectively.
In contrast, the full model has a Hamiltonian

ĤIðtÞ ¼ χðtÞσ̂xðtÞðα̂ðtÞ þ α̂†ðtÞÞ; ð37Þ

and the second order Dyson expansion of the time
evolution operator yields

ÛFULL ¼ 1̂ − i
Z

∞

−∞
dt1 χðt1Þσ̂xðt1Þðα̂ðt1Þ þ α̂†ðt1ÞÞ

−
Z

∞

−∞
dt1

Z
t1

−∞
dt2 χðt1Þχðt2Þσ̂xðt1Þσ̂xðt2Þðα̂ðt1Þ

þ α̂†ðt1ÞÞðα̂ðt2Þ þ α̂†ðt2ÞÞ þOðλ3Þ: ð38Þ
If in the long time regime, it were satisfied that

kÛRWA − ÛFULLk → 0, then the rotating wave approxima-
tion would be guaranteed to work. Let us analyze this
perturbatively (2nd order) and particularize for the initial
state jψi ¼ jφij0i:

ðÛRWA − ÛFULLÞjφij0i

¼
�
iλ
Z

d3k

ð2πÞ3=2 ffiffiffiffiffiffi
2ω

p F̃�ðkÞâ†kσ̂þ
Z

∞

−∞
dt1χðt1ÞeiðωþΩÞt1

þ λ2
Z

d3kd3k0

ð2πÞ3
ffiffiffiffiffiffiffiffiffiffiffi
4ωω0p F̃�ðkÞF̃�ðk0Þâ†kâ†k0

×
Z

∞

−∞
dt1

Z
t1

−∞
dt2 χðt1Þ

× χðt2ÞðΠ̂eeiðωþΩÞt1þiðω0−ΩÞt2 þ Π̂geiðω−ΩÞt1eiðω
0þΩÞt2Þ

þ
Z

∞

−∞
dt1

Z
t1

−∞
dt2 ½α̂ðt1Þ; α̂†ðt2Þ�Π̂ge−iΩðt1−t2Þ

�
jφij0i

ð39Þ

should converge to zero for long times (Π̂g;e are the usual
ground and excited state detector projection operators). We
will see that this is not the case.
For the first term in (39) the time integral in the T → ∞

limit will become a Dirac delta of a positive argument
δðωþ ΩÞ, which after integration over k yields zero.
Therefore, the difference in predictions (39) vanishes to
order OðλÞ as T → ∞; as dictated by the RWA.
However, the quadratic features a double integral over a

semi-infinite domain, which will not yield a delta-like
contribution of an always positive argument. Instead its
contribution is governed by the expression (D4) in
Appendix D. This ensures a persistent nonzero difference
between the RWA and the exact prediction, of order Oðλ2Þ,
even when T → ∞. Notice that this implies that as the
coupling strength approaches nonperturbative regimes, the
RWA validity becomes more and more questionable.
We show below how this difference between the two

models manifests in the field’s observables’ expectation
values, with a focus on causality.
As in Sec. III A, we consider an initial state given by

ðagjgi þ aejeiÞ ⊗ j0i then, as shown in Appendix C, the
second order expectation values are

h∶T̂μνðx; tÞ∶iRWA ¼ λ2

4ð2πÞ6 jaej
2½J1μ;eðJ1ν;eÞ� þ ðJ1μ;eÞ�J1ν;e − ημνðJ1γ;eÞ�J1γe � þOðλ3Þ; ð40Þ

h∶ϕ̂2ðx; tÞ∶iRWA ¼ λ2

2ð2πÞ6 jaej
2jM1

ej2 þOðλ3Þ; ð41Þ

and

h∶T̂μνðx; tÞ∶iFull ¼
λ2

4ð2πÞ6
X

i∈fe;gg
jaij2

h
J1μ;iðJ1ν;iÞ� þ ðJ1μ;iÞ�J1ν;i −

ημν
2

ðJ1γ;iðJ1γi Þ� þ ðJ1γ;iÞ�J1γi Þ

þ J2μν;i þ ðJ2μν;iÞ� −
ημν
2

ðJ2γγ;i þ ðJ2γγ;iÞ�Þ
i
þOðλ3Þ; ð42Þ

h∶ϕ̂2ðx; tÞ∶iFull ¼
λ2

4ð2πÞ6
X

i∈fe;gg
jaij2ð2jM1

i j2 −M2
i − ðM2

i Þ�Þ þOðλ3Þ; ð43Þ
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where

J1μ;eðx; tÞ ≔
Z

d3k
ω

kμF̃ðkÞeiωt−ik·x
Z

∞

−∞
dt1 χðt1Þe−iðω−ΩÞt1 ; ð44Þ

J2μν;eðx; tÞ ≔
Z

d3kd3k0

ωω0 kμk0νF̃ðkÞF̃ðk0Þeiωt−ik·xeiω0t−ik0·x

×
Z

∞

−∞
dt1

Z
t1

−∞
dt2 χðt1Þχðt2Þðe−iðωþΩÞt1−iðω0−ΩÞt2 þ e−iðω−ΩÞt2−iðω0þΩÞt1Þ; ð45Þ

M1
eðx; tÞ ≔

Z
d3k
ω

F̃ðkÞeiωt−ik·x
Z

∞

−∞
dt1 χðt1Þe−iðω−ΩÞt1 ; ð46Þ

M2
eðx; tÞ ¼

Z
d3kd3k0

ωω0 F̃ðkÞF̃ðk0Þeiωt−ik·xeiω0t−ik0·x ð47Þ

×
Z

∞

−∞
dt1

Z
t1

−∞
dt2 χðt1Þχðt2Þðe−iðωþΩÞt1−iðω0−ΩÞt2 þ e−iðω−ΩÞt2−iðω0þΩÞt1Þ; ð48Þ

with J1μ;g, J2μν;g,M1
g andM2

g differing from those above by a
swap Ω → −Ω and F̃ðkÞ defined in Eq. (16). In the
equations above the repeated Greek subindex and super-
index pairs follow Einstein’s summation convention.

1. Numerical evaluations

As with the δ-coupling case we consider the situation of
a spherically symmetric detector spatial distribution (32),
i.e., a hard sphere with radius R. We also use sudden
switching, i.e.,

χðtÞ ¼ ΘðtÞΘðT − tÞ; ð49Þ
which means that the interaction starts at t ¼ 0 and we
evaluate as if the interaction stops at time t ¼ T, hence T
represents the duration of the interaction. Here, instead of

the energy density and ϕ̂2 distributions at t ¼ 0þ, we
consider the distributions at t ¼ T ¼ 150R. This lies
within the RWA criterion TΩ ≫ 1 as we take Ω ¼ 4R−1,
such that TΩ ¼ 600. Note that the detector is initially
assumed to be excited.
In Figs. 4 and 5 the normal ordered energy density and

ϕ2 distributions are plotted respectively for the full model
at t ¼ T ¼ 150R. The field observable expectations
should be zero outside of the lightcone of the detector.
Hence, from the support of the switching and smearing
functions chosen, the field expectations should vanish for
jxj > 151R. This is the case for the full model prediction,
as can be seen in the aforementioned figures.
In Figs. 6 and 7 the normal ordered energy density and

ϕ2 distributions are plotted respectively for the RWAmodel

151 152 153 154 155

5. 10 8

1. 10 7

1.5 10 7

FIG. 4. Energy density distribution from a second order
perturbative interaction where χðtÞ ¼ ΘðtÞΘðT − tÞ with no
approximations and T ¼ 150R. Here GðζÞ ¼ Θð1 − ζÞ, i.e.,
spherically symmetric with a sudden cutoff. Note that the
interaction has no nonlocal field consequences, i.e., no effect
beyond jxj > 151R. The vertical line at jxj ¼ 151R indicates the
locality limit.

151 152 153 154 155

5. 10 10

1. 10 9

1.5 10 9

FIG. 5. ∶ϕ̂2∶ density distribution from a second order pertur-
bative interaction where χðtÞ ¼ ΘðtÞΘðT − tÞ with no approx-
imations and T ¼ 150R. Here GðζÞ ¼ Θð1 − ζÞ, i.e., spherically
symmetric with a sudden cutoff. Note that the interaction has no
nonlocal field consequences, i.e., no effect beyond jxj > 151R
(to numerical precision). The vertical line at jxj ¼ 151R indicates
the locality limit.
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at t ¼ T ¼ 150R. In this case the violations of causality in
physically measurable quantities is apparent, especially so
in Fig. 7, with an obvious polynomial tail extending well
beyond jxj ¼ 151R.
The results presented above satisfied the RWA criterion

TΩ ¼ 600 ≫ 1, and yet causality violations have not been
lessened. This could be perhaps more surprising than the δ-
coupling case, as it is usually stated that “the RWA corrects
itself over long times.” However, due to second order
effects coming from the nested integration in time appear-
ing in terms such as (45), as discussed in the previous
section and in Appendix D, this is not the case. It is worth
noting that Figs. 4 and 6 appear very similar over large
scales, especially when far from the leading edge of the
causal sphere. It is also equally important to note that
Figs. 5 and 7 are wildly different. This can be attributed to
the longer range effects of the qubit and the leading edge of
the causal sphere on ϕ2. However, theoretically for

sufficiently long times the two figures should begin to con-
verge when far from the qubit and light cone surface.
Nevertheless, they will always be different near the light-
cone no matter how long the interaction time. Particularly,
the faster-than-light tails that the RWAwrongfully predicts
will not disappear for large T (See more details in
Appendix D).

IV. COMMUNICATION IN THE RWA:
FASTER-THAN-LIGHT SIGNALING

From the perspective of a relativistic quantum informa-
tion theorist the nonlocalities in the field state make little
impression if they do not translate into causality violations
during exchanges of information. For example, does the
RWA allow for superluminal signaling between 2 detectors
that communicate via “exchanging field quanta”? This
section answers this question by considering two detectors
coupling to the field at different times, communicating with
each other through that interaction. We will see the
emergence and behavior of superluminal signaling when
the RWA is assumed.
The leading order communication between two particle

detectors has been formalized in [7]. We will follow a
similar scheme here comparing the RWA with the full
model in a much more detailed way.
In the case of two detectors the RWA Hamiltonian is

naturally extended to

ĤRWA
I ðtÞ ¼ λAχAðtÞ

Z
d3y

1

R3
A

GA

�
y
RA

�Z
d3k

ð2πÞ3=2 ffiffiffiffiffiffi
2ω

p

× ðe−iðω−ΩAÞtþik·yâkσ̂
þ
A þ eiðω−ΩAÞt−ik·yâ†kσ̂

−
A Þ

þ λBχBðtÞ
Z

d3y
1

R3
B

GB

�
y
RB

�Z
d3k

ð2πÞ3=2 ffiffiffiffiffiffi
2ω

p

× ðe−iðω−ΩBÞtþik·yâkσ̂
þ
B þ eiðω−ΩBÞt−ik·yâ†kσ̂

−
B Þ;
ð50Þ

where λA;B; χA;B; GA;B are the interaction strength, switching
function and spatial smearing functions of the two detectors
respectively; and σ̂�A;B are the usual ladder operators acting
on detectors A and B respectively with their associated
energy gaps ΩA;B respectively. Similarly for the full
Hamiltonian:

ĤFULL
I ¼ λAχAðtÞ

R3
A

σ̂A;xðtÞ
Z

d3yGA

�
y
RA

�Z
d3k

ð2πÞ3=2 ffiffiffiffiffiffi
2ω

p

× ðe−iωtþik·yâk þ eiωt−ik·yâ†kÞ

þ λBχBðtÞ
R3

B

σ̂B;xðtÞ
Z

d3yGB

�
y
RB

�Z
d3k

ð2πÞ3=2 ffiffiffiffiffiffi
2ω

p

× ðe−iωtþik·yâk þ eiωt−ik·yâ†kÞ; ð51Þ
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FIG. 6. Energy density distribution from a second order
perturbative interaction where χðtÞ ¼ ΘðtÞΘðT − tÞ under the
RWA and T ¼ 150R. Here GðζÞ ¼ Θð1 − ζÞ, i.e., spherically
symmetric with a sudden cutoff. Note the polynomial decaying
tail for jxj > 151R. The vertical line at jxj ¼ 151R indicates the
locality limit.
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FIG. 7. ∶ϕ̂2∶ density distribution from a second order pertur-
bative interaction where χðtÞ ¼ ΘðtÞΘðT − tÞ under the RWA
and T ¼ 150R. Here GðζÞ ¼ Θð1 − ζÞ, i.e., spherically sym-
metric with a sudden cutoff. Note the polynomial decaying tail
for jxj > 151. The vertical line at jxj ¼ 151R indicates the
locality limit.
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where we recall that

σ̂κ;xðtÞ ≔ eiΩκtσ̂þκ þ e−iΩκ tσ̂−κ ; ð52Þ
acting on the subspace of states of detector κ. In order to
compress notation we can encompass the Hamiltonians of
both cases with the following expression:

Ĥ ¼ χAðtÞðσ̂þA ðtÞψ̂A þ σ̂−A ðtÞψ̂†
AÞ

þ χBðtÞðσ̂þB ðtÞψ̂B þ σ̂−B ðtÞψ̂†
BÞ; ð53Þ

where

F̃κðkÞ ≔ λκ

Z
d3y

1

R3
κ
Gκ

�
y
Rκ

�
eik·y; ð54Þ

α̂κðtÞ ≔
Z

d3k

ð2πÞ3=2 ffiffiffiffiffiffi
2ω

p F̃κðkÞe−iωtâk; ð55Þ

ψ̂ κðtÞ ≔
�
α̂κ if RWA;

α̂κ þ α̂†κ otherwise:
ð56Þ

With this notation we only need to perform one formal
second order Dyson expansion of the time evolution
operator in order to investigate the possibilities of
superluminal signaling. The corresponding second order
Dyson expansion of the time evolution operator takes
the form

ÛðtÞ ¼ 1̂ − i
Z

∞

−∞
dt1 ðχAðt1Þðσ̂þA ðt1Þψ̂Aðt1Þ þ σ̂−A ðt1Þψ̂†

Aðt1ÞÞ þ χBðt1Þðσ̂þB ðt1Þψ̂Bðt1Þ þ σ̂−B ðt1Þψ̂†
Bðt1ÞÞÞ

−
Z

∞

−∞
dt1

Z
t1

−∞
dt2 ðχAðt1Þðσ̂þA ðt1Þψ̂Aðt1Þ þ σ̂−A ðt1Þψ̂†

Aðt1ÞÞ þ χBðt1Þðσ̂þB ðt1Þψ̂Bðt1Þ þ σ̂−B ðt1Þψ̂†
Bðt1ÞÞÞ

× ðχAðt2Þðσ̂þA ðt2Þψ̂Aðt2Þ þ σ̂−A ðt2Þψ̂†
Aðt2ÞÞ þ χBðt2Þðσ̂þB ðt2Þψ̂Bðt2Þ þ σ̂−B ðt2Þψ̂†

Bðt2ÞÞÞ þOðλ3Þ: ð57Þ

As usual we assume the initial field state is the vacuum and we consider the initial state to be a completely uncorrelated
state i.e., ρ̂ ¼ ρ̂A ⊗ ρ̂B ⊗ j0ih0j. For brevity we will also define ρ̂0 ¼ ρ̂A ⊗ ρ̂B. Additionally, since we are investigating the
causality of the signaling, we set up the detectors’ switching and smearing functions to be compactly supported and their
domains to be spacelike separated. With the extra assumption that the supports of the switching functions are
nonoverlapping in the frame ðt; xÞ, we can denest the time integrals in the same fashion as in [7], and we can assume
WLOG that χB switches on and off before χA switches on in that frame. This plays a large role in simplifying the time
ordered integral above.
Following the application of the time evolution operator we trace out the field and detector 2 and focus our attention on

the reduced density matrix terms that involve communication, i.e., the λAλB dependent terms. This leads us to

ρ̂1ðtÞ ¼ TrBðρ̂0Þ þOðλ2AÞ þOðλ2BÞ þ
Z

∞

−∞
dt1

Z
∞

−∞
dt2fχAðt1ÞχBðt2Þ

× TrBðσ̂þA ðt1Þρ̂0σ̂þB ðt2Þh½ψ̂Bðt2Þ; ψ̂Aðt1Þ�i þ σ̂þA ðt1Þρ̂0σ̂−B ðt2Þh½ψ̂†
Bðt2Þ; ψ̂Aðt1Þ�i

þ σ̂−A ðt1Þρ̂0σ̂þB ðt2Þh½ψ̂Bðt2Þ; ψ̂†
Aðt1Þ�i þ σ̂−A ðt1Þρ̂0σ̂−B ðt2Þh½ψ̂†

Bðt2Þ; ψ̂†
Aðt1Þ�iÞ

þ TrBðσ̂þB ðt2Þρ̂0σ̂þA ðt1Þh½ψ̂Aðt1Þ; ψ̂Bðt2Þ�i þ σ̂þB ðt2Þρ̂0σ̂−A ðt1Þh½ψ̂†
Aðt1Þ; ψ̂Bðt2Þ�i

þ σ̂−B ðt2Þρ̂0σ̂þA ðt1Þh½ψ̂Aðt1Þ; ψ̂†
Bðt2Þ�i þ σ̂−B ðt2Þρ̂0σ̂−A ðt1Þh½ψ̂†

Aðt1Þ; ψ̂†
Bðt2Þ�iÞ þOðλ3i Þ; ð58Þ

where the expectation values are taken over the field vacuum.
At this point we can examine the differences between the RWA and the full model by referring to our definitions in (56).

In the RWA, only expectation values of the form hψψ†i will be nonzero, meaning that only 1 of the 2 terms in the
commutators above would actually contribute. In these cases we have

h½ψ̂ κðt1Þ; ψ̂†
ξðt2Þ�i ¼RWAhψ̂ κðt1Þψ̂†

ξðt2Þi ¼ λκλξ

Z
d3y1d3y2
R3
κR3

ξ

Gκ

�
y1
Rκ

�
Gξ

�
y2
Rξ

�

×
Z

d3k
ð2πÞ32ω e−iωðt1−t2Þeik·ðy1−y2Þ; ð59Þ

where the indices κ and ξ take values in fA;Bg.
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In contrast, for the full model none of the expectations of
the commutators are zero. Since the ψ̂ κ are self-adjoint in
the full model [see (56)], then all the commutators are of the
form:

h½ψ̂ κðt1Þ; ψ̂ ξðt2Þ�i ¼Fullλκλξ
Z

d3y1d3y2
R3
κR3

ξ

Gκ

�
y1
Rκ

�
Gξ

�
y2
Rξ

�

×
Z

d3k
ð2πÞ32ω ðe−iωðt1−t2Þ − eiωðt1−t2ÞÞ

× eik·ðy1−y2Þ: ð60Þ

The difference between (59) and (60) is the fact that the
sole exponential e−iωΔt in the RWA case is replaced by the
difference e−iωΔt − eiωΔt. To understand the implications of
this difference, let us evaluate the following integral:

Z
d3k

ð2πÞ32ω e∓iωΔteik·x ¼
Z

dωdzω
2ð2πÞ2 e

∓iωΔteiωjxjz ð61Þ

¼
Z

dω
ð2πÞ2 e

∓iωΔt sinðωjxjÞ
d

ð62Þ

¼
Z

dω
ð2πÞ22ijxj ðe

∓iωðΔt∓jxjÞ − e∓iωðΔt�jxjÞÞ ð63Þ

¼ 1

8π2jxj
�

P:V:
jxj þ t

þ P:V:
jxj − t

�

� i
8πjxj ðδðjxj þ ΔtÞ − δðjxj − ΔtÞÞ; ð64Þ

where P.V. indicates principal value integral when read
under an integral sign.
As can be seen these integrals yield nonlocal polyno-

mially decaying terms that are present in the RWA case and
enable superluminal communication. However, in the non-
approximated model, we have the difference between such
terms, i.e., e−iωΔt − eiωΔt. In this case, the polynomial tails
cancel out and only delta functions on the light cone
remain, as is expected from a nonapproximated (and
therefore causal) interaction theory [7].

A. Quantifying signaling through channel capacity

In this subsection we illustrate with plots for particular
cases the effect of the causality-violating tails in signaling
for the RWA model. For simplicity we use spherically
symmetric detector distributions, the same as in (32), with
detector A centered around x ¼ 0 and detector B centered
around x ¼ d. The switching functions were chosen to have
compact, nonoverlapping supports:

χAðt1Þ ¼
�
1 if 13 < t1Ω1 < 23

0 otherwise;
ð65Þ

χBðt2Þ ¼
�
1 if 0 < t2Ω2 < 10

0 otherwise;
ð66Þ

where ΩA ¼ ΩB ¼ R−1. Also RA ¼ RB ¼ R and the precise
numerical values for the support are chosen to maximize
visibility in the plots.
In Fig. 8 we plot, for the case of the RWA, the magnitude

CAB ¼
Z

∞

−∞
dt1

Z
∞

−∞
dt2 χAðt1ÞχBðt2Þ

× h½ψ̂Aðt1Þ; ψ̂†
Bðt2Þ�ieiΩðt1−t2Þ; ð67Þ

which is the coefficient of σ̂þB ρ̂0σ̂−A . This is a good estimator
for a lower bound on the channel capacity between
detectors A and B. As discussed in [7], when this quantity
is nonzero there is communication between the operator of
detector A and the operator of detector B (i.e., a local
measurement on detector B can reveal information about
the state of detector A through a simple protocol).
As we expect from [7] the communication between 2

detectors arises from the commutators of the ψ̂ κ operators,
as seen in (58). We see in Fig. 8 how the nonlocality in
these commutators induce a nonvanishing signaling esti-
mator CAB outside the causal contact between A and B
(jdj > 25R), demonstrating communication beyond the
lightcone in the approximated model. The results from
Sec. II B coincide exactly with Fig. 8 in describing
superluminal communication at jdj > 25Rwith polynomial
decay.
Conversely in Fig. 9 we plot (67) for a nonapproximated

model. These results are indeed consistent with causality.
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0.06

0.08

FIG. 8. Integrated RWA detector response function. Here we
used FAðxÞ ¼ ΘðRA − jxjÞ and FBðxÞ ¼ ΘðRB − jx − djÞ. In
addition the detector interaction times where χBðt2Þ ¼ 1 for
t2ΩB ∈ ð0; 10Þ and zero otherwise; and χAðt1Þ ¼ 1 for t1ΩA ∈
ð13; 23Þ and zero otherwise. Given that both detectors have a
radius of R the lightcone should only reach jdj ¼ 25R. The
polynomial decay beyond this is a consequence of the RWA. The
vertical line at jdj ¼ R indicates the superior limit of the strong
Huygen’s principle and the vertical line at jdj ¼ 25R indicates the
causal limit. Here RA ¼ RB ¼ R and ΩA ¼ ΩB ¼ R−1.
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In fact a close look at jdj < R verifies the strong Huygens’s
principle [16,21,22] at work.

V. DISCUSSION: THE PERSISTENT VIOLATION
OF CAUSALITY IN THE RWA

From the results and plots above we have seen that the
Hamiltonian nonlocality introduced by the RWA translates
into physically measurable noncausal effects such as non-
causal field expectation values and superluminal commu-
nication between two particle detectors. Remarkably this is
true regardless of how long the interaction lasts.
For very short interactions, we have seen that for the

δ-coupling, when considering spherically symmetric
smearings of compact support of the form (32) and under
the assumption jxj ≫ R the expressions (28) and (29) yield

h∶T̂00ðx; 0Þ∶iRWA ∼
4λ2sin2ðR2Þ
9π2R4jxj6 ; ð68Þ

h∶ϕ̂2ðx; 0Þ∶iRWA ∼
2λ2sin2ðR2Þ
9π2R4jxj4 : ð69Þ

This behavior is perhaps unsurprising given ĤRWA
I has a

1=r2 nonlocality, combined with the quadratic nature of ϕ̂2

should result in a 1=r4 nonlocality. As for the stress-energy
tensor, it is composed of ∂μϕ̂∂νϕ̂, i.e., the two derivative
operators act of the canonical commutation relations to
produce a 1=r6 nonlocality.
Remarkably, even for long timescales, when considering

perturbative evolution under the assumption jxj ≫ t, R
(events far ahead of the lightcone) and when considering

spherically symmetric smearings of compact support of
the form (32), the expectation values (40) and (41)
asymptote to

h∶T̂00ðx; tÞ∶iRWA ∼
16λ2sin2ðtΩ

2
Þ

9π2jxj6Ω2
; ð70Þ

h∶ϕ̂2ðx; tÞ∶iRWA ∼
8λ2sin2ðtΩ

2
Þ

9π2Ω2jxj4 : ð71Þ

Hence, perhaps not expected under the usual “RWAworks
for long times” belief, the asymptotic behavior of the
expectation values is the same for long interaction times as
it is for very short interaction times. The satisfaction of the
RWA’s criterion does not improve the causality violation in
any way.
By applying the same asymptotic analysis and assump-

tions [jdj ≫ t; RA; RB, and smearings of the form (32)] to
the case of 2 detector communication (59), we find that

hψ̂Aðt1Þψ̂†
Bðt2Þi ∼

1

jdj2 ; ð72Þ

where jdj is the interdetector spatial distance in the
detector’s comoving frame. This should not be a surprise,
given that the communication capacity is given by the
commutator of the respective field operators and (14) tells
us that this commutation relations will decay as 1=r2.
Whilst the presence of a polynomially decaying non-

locality should be a deal breaker for the RWA models we
expect the behavior of “resonant-rotating” terms to be more
significant when considering situations well within the bulk
of the light cone, and where relativistic considerations are
not too important for the physics described. By considering
fixed spatial points away from surface of the “light sphere,”
i.e., far from any causal considerations the RWA will
pointwise converge to the full model, as shown in the
Appendix D. One such example of this would be to
consider cavity setups where the interaction timescales
are larger than the light crossing time of the cavity itself.
However, as the realm of relativistic quantum information
and ultrafast optical experiments expands [23], the useful-
ness of the RWA diminishes and will become unsuitable for
modeling experimental situations.

VI. CONCLUSIONS

We have studied in detail the causality violations of the
rotating wave approximation (RWA). Over the course of
this manuscript we have followed up on the results of
Compagno et al. [12,13] in demonstrating the nonlocal
physical effects of a RWA detector acting on a vacuum
field, greatly extending their results and including an
asymptotic study of detector response in several different
regimes. We have also extended the results of Clerk & Sipe

5 10 15 20 25 30

0.5

1.0

1.5

FIG. 9. Integrated no approx detector response function. Here
we used FAðxÞ ¼ ΘðRA − jxjÞ and FBðxÞ ¼ ΘðRB − jx − djÞ. In
addition the detector interaction times where χBðt2Þ ¼ 1 for
t2ΩB ∈ ð0; 10Þ and zero otherwise; and χAðt1Þ ¼ 1 for t1ΩA ∈
ð13; 23Þ and zero otherwise. Given that both detectors have a
radius of R the lightcone should only reach jdj ¼ 25R. Note how
when considering the full model then causality is maintained. The
vertical line at jdj ¼ R indicates the superior limit of the strong
Huygen’s principle and the vertical line at jdj ¼ 25R indicates the
causal limit. Here RA ¼ RB ¼ R and ΩA ¼ ΩB ¼ R−1.
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[14] by finding the exact asymptotic behavior of the RWA
interaction Hamiltonian’s nonlocality. Our work found that
the light-matter interaction assumes a 1=r2 nonlocality
when subject to the RWA, a nonlocality that extends to the
unitary time evolution operator by means of 1=r4 and 1=r6

nonlocalities for ϕ̂2ðxÞ and T̂00ðxÞ field expectation values.
This polynomial decay is independent of time, demonstrat-
ing that waiting for long times does not fix the causality
violations of the RWA when looking at field observables.
Additionally, we have also studied the fundamental

relativistic quantum information scenario consisting of 2
detectors communicating through their coupling with a
quantum field. In this situation the RWA predicts super-
luminal signaling, introducing a potentially severe 1=r2

nonlocality, which becomes particularly important in vac-
uum field experiments, such as entanglement harvesting
[2,24–26]. Again, no matter how long we wait, there are
always polynomial tails that allow for faster-than-light
signaling in the RWA.
The RWA may provide a certain simplification to the

mathematical description of the physics as discussed at

the end of Appendix C; however, the nonlocalities intro-
duced by RWA make it incompatible with any setup with
relativistic considerations are relevant (such is the case in
relativistic quantum information). Furthermore, these con-
siderations are becoming more relevant with the improve-
ment of fast switching light-matter interaction experimental
technologies [23].
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APPENDIX A: RWA HAMILTONIAN
NONLOCALITY INTEGRALS

In Sec. II B we made use of Eqs. (12) and (13) to
demonstrate that the RWA Hamiltonian has nonlocal inter-
action terms. Equation (12) is standard whilst Eq. (13)
requires a couple of careful considerations. For brevity
let r ≔ y − z,

Z
d3k

eik·r

ω
¼

Z
∞

0

dω
Z

2π

0

dϕ
Z

1

−1
dzω2

eiωrz

ω
¼ 2π

Z
dωω

eiωr − e−iωr

iωr
¼ 2π

ir

Z
dωðeiωr − e−iωrÞ: ðA1Þ

At this point we introduce a soft UV cutoff as a regular-
izator to facilitate the ω integral. This cutoff takes the form
of e−εω, where following ω integration we will take ε → 0.

2π

ir

Z
dω ðeiωr − e−iωrÞ ¼ lim

ε→0

2π

ir

Z
dω ðeωðir−εÞ − eωð−ir−εÞÞ

ðA2Þ

¼ lim
ε→0

2π

ir

�
−

1

ir − ε
þ 1

−ir − ε

�
ðA3Þ

¼ lim
ε→0

2π

ir

�
−

2ir
−r2 − ε2

�
¼ 4π

r2
: ðA4Þ

This leaves us with Eq. (13),

Z
d3k

eik·ðy−zÞ

ω
¼ 4π

jy − zj2 : ðA5Þ

APPENDIX B: RWA δ-SWITCHING UNITARY
TIME EVOLUTION OPERATOR

In Sec. III A we stated that the time evolution operator
generated by the RWA Hamiltonian under a δ-switching,
after considering that it will be acting on the vacuum (i.e.,
the time evolution operator restricted to that particular state
of the field), is given by Eq. (20). Its derivation follows:

Û ¼ T exp

�
−i

Z
ĤIdt

�
ðB1Þ

¼ exp ð−iðα̂σ̂þ þ α̂†σ̂−ÞÞ ðB2Þ

¼
X∞
n¼0

ð−iÞ2n
ð2nÞ! ðσ̂

þα̂þ σ̂−α̂†Þ2n þ
X∞
n¼0

ð−iÞ2nþ1

ð2nþ 1Þ! ðσ̂
þα̂þ σ̂−α̂†Þ2nþ1 ðB3Þ

¼
X∞
n¼0

ð−1Þn
ð2nÞ! ðΠ̂eðα̂α̂†Þn þ Π̂gðα̂†α̂ÞnÞ − i

X∞
n¼0

ð−1Þn
ð2nþ 1Þ! ðσ̂

þðα̂α̂†Þnα̂þ σ̂−α̂†ðα̂α̂†ÞnÞ ðB4Þ
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¼
X∞
n¼0

ð−1Þn
ð2nÞ! ðΠ̂eðα̂†α̂þ K21̂Þn þ Π̂gðα̂†α̂ÞnÞ − i

X∞
n¼0

ð−1Þn
ð2nþ 1Þ! ðσ̂

þðα̂†α̂þ K21̂Þnα̂þ σ̂−α̂†ðα̂†α̂þ K21̂ÞnÞ: ðB5Þ

Here Π̂g ≔ jgihgj, Π̂e ≔ jeihej refer to projection operators on the detector Hilbert space. Note that all the field operators α̂
are evaluated at t ¼ 0. Further note that

K21̂ ≔ ½α̂ð0Þ; α̂†ð0Þ� ¼ λ̃2
Z

d3k
ð2πÞ32ω jF̃ðkÞj21̂; ðB6Þ

Acting with (B5) on the vacuum we can cancel all terms that annihilate it and therefore

Ûj0i ¼
�
Π̂g þ

X∞
n¼0

ð−1Þn
ð2nÞ! Π̂eK2n − i

X∞
n¼0

ð−1Þn
ð2nþ 1Þ! σ̂

−α̂†K2n

�
j0i ¼

�
Π̂g þ Π̂e cosK − i

σ̂−α̂†ð0Þ
K

sinK

�
j0i; ðB7Þ

where in the final step the time dependence of α̂ is explicitly shown for clarity.

APPENDIX C: FIELD EXPECTATIONS UNDER PERTURBATIVE EXPANSIONS

Here we present a derivation of the expectation values hT̂μνi and hϕ̂2i when using second order perturbation theory both
for the full model and under the RWA.

1. Full model expectations

Without the RWA approximation the interaction Hamiltonian is

ĤIðtÞ ¼ λχðtÞσ̂xðtÞ
Z

d3y
1

R3
G

�
y
R

�Z
d3k

ð2πÞ3=2 ffiffiffiffiffiffi
2ω

p ðe−iωtþik·yâk þ eiωt−ik·yâ†kÞ; ðC1Þ

where, in order to simplify, we can define

F̃ðkÞ ≔
Z

d3y
1

R3
G

�
y
R

�
eik·y; ðC2Þ

α̂ðtÞ ≔ λ

Z
d3k

ð2πÞ3=2 ffiffiffiffiffiffi
2ω

p F̃ðkÞe−iωtâk; ðC3Þ

then

ĤIðtÞ ¼ χðtÞσ̂xðtÞðα̂þ α̂†Þ: ðC4Þ

The corresponding second order time evolution operator becomes

Û ¼ 1̂ − i
Z

∞

−∞
dt1 χðt1Þσ̂xðt1Þðα̂ðt1Þ þ α̂†ðt1ÞÞ

−
Z

∞

−∞
dt1

Z
t1

−∞
dt2 χðt1Þχðt2Þσ̂xðt1Þσ̂xðt2Þðα̂ðt1Þ þ α̂†ðt1ÞÞðα̂ðt2Þ þ α̂†ðt2ÞÞ þOðλ3Þ; ðC5Þ

where the interaction time is encoded in the shape and support of χðtÞ.
Taking into account that

½α̂ðt1Þ; α̂†ðt2Þ� ¼ λ2
Z

d3k
ð2πÞ32ω jF̃ðkÞj2e−iωðt1−t2Þ; ðC6Þ

Û acting on the vacuum can be simplified to
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Ûj0i ¼
�
1̂ − i

Z
∞

−∞
dt1 χðt1Þσ̂xðt1Þα̂†ðt1Þ −

Z
∞

−∞
dt1

Z
t1

−∞
dt2 χðt1Þχðt2ÞðΠ̂eeiΩðt1−t2Þ þ Πge−iΩðt1−t2ÞÞ

×

�
α̂†ðt1Þα̂†ðt2Þ þ λ2

Z
d3k

ð2πÞ32ω e−iωðt1−t2ÞjF̃ðkÞj2
��

j0i: ðC7Þ

This yields components with 0, 1 and 2 excitations. By taking the expectation values and using that

½âk; α̂†ðt1Þ� ¼ λ
eiωt1F̃�ðkÞ
ð2πÞ3=2 ffiffiffiffiffiffi

2ω
p ; ðC8Þ

we can write

h∶T̂μνðx; tÞ∶iFull
¼ λ2

Z
d3kd3k0

ð2πÞ64ωω0

�
kμk0ν −

ημν
2

kγk0γ
�

×

�
e−iðω−ω0Þtþiðk−k0Þ·x

Z
∞

−∞
dt1

Z
∞

−∞
dt01 χðt1Þχðt01ÞðΠ̂eeiΩðt1−t

0
1
Þ þ Π̂ge−iΩðt1−t

0
1
ÞÞF̃ðk0ÞF̃�ðkÞe−iω0t1þiωt0

1

þ eiðω−ω0Þt−iðk−k0Þ·x
Z

∞

−∞
dt1

Z
∞

−∞
dt01 χðt1Þχðt01ÞðΠ̂eeiΩðt1−t

0
1
Þ þ Π̂ge−iΩðt1−t

0
1
ÞÞF̃�ðk0ÞF̃ðkÞe−iωt1þiω0t0

1

þ e−iðωþω0Þtþiðkþk0Þ·x
Z

∞

−∞
dt1

Z
t1

−∞
dt2 χðt1Þχðt2ÞðΠ̂eeiΩðt1−t2Þ þ Π̂ge−iΩðt1−t2ÞÞF̃�ðk0ÞF̃�ðkÞðeiωt1þiω0t2 þ eiω

0t1þiωt2Þ

þ eiðωþω0Þt−iðkþk0Þ·x
Z

∞

−∞
dt1

Z
t1

−∞
dt2 χðt1Þχðt2ÞðΠ̂ee−iΩðt1−t2Þ þ Π̂geiΩðt1−t2ÞÞF̃ðk0ÞF̃ðkÞðe−iωt1−iω0t2 þ e−iω

0t1−iωt2Þ
�
; ðC9Þ

h∶ϕ̂2ðx; tÞ∶iFull
¼ λ2

Z
d3kd3k0

ð2πÞ64ωω0

�
e−iðω−ω0Þtþiðk−k0Þ·x

Z
∞

−∞
dt1

Z
∞

−∞
dt01 χðt1Þχðt01ÞðΠ̂eeiΩðt1−t

0
1
Þ þ Π̂ge−iΩðt1−t

0
1
ÞÞF̃ðk0ÞF̃�ðkÞe−iω0t1þiωt0

1

þ eiðω−ω0Þt−iðk−k0Þ·x
Z

∞

−∞
dt1

Z
∞

−∞
dt01 χðt1Þχðt01ÞðΠ̂eeiΩðt1−t

0
1
Þ þ Π̂ge−iΩðt1−t

0
1
ÞÞF̃�ðk0ÞF̃ðkÞe−iωt1þiω0t0

1

− e−iðωþω0Þtþiðkþk0Þ·x
Z

∞

−∞
dt1

Z
t1

−∞
dt2 χðt1Þχðt2ÞðΠ̂eeiΩðt1−t2Þ þ Π̂ge−iΩðt1−t2ÞÞF̃�ðk0ÞF̃�ðkÞðeiωt1þiω0t2 þ eiω

0t1þiωt2Þ

− eiðωþω0Þt−iðkþk0Þ·x
Z

∞

−∞
dt1

Z
t1

−∞
dt2 χðt1Þχðt2ÞðΠ̂ee−iΩðt1−t2Þ þ Π̂geiΩðt1−t2ÞÞF̃ðk0ÞF̃ðkÞðe−iωt1−iω0t2 þ e−iω

0t1−iωt2Þ
�
: ðC10Þ

In the equations above the contributions to the expectations from 1 excitation states are those of the form F̃F̃�, where as the
remainder, i.e., F̃ F̃ and F̃�F̃�, are contributions from the superposition of 0 and 2 excitation states. Here we assumed that t
is larger than the maximum t in the support of χðtÞ, i.e., they represent the evolution of the stress-energy density after the
detector’s interaction.
In order to simplify this rather long expression and further compare with the RWA, we define the following:

J1μ;eðx; tÞ ≔
Z

d3k
ω

kμF̃ðkÞeiωt−ik·x
Z

∞

−∞
dt1 χðt1Þe−iðω−ΩÞt1 ; ðC11Þ

J2μν;eðx; tÞ ≔
Z

d3kd3k0

ωω0 kμk0νF̃ðkÞF̃ðk0Þeiωt−ik·xeiω0t−ik0·x

×
Z

∞

−∞
dt1

Z
t1

−∞
dt2 χðt1Þχðt2Þðe−iðωþΩÞt1−iðω0−ΩÞt2 þ e−iðω−ΩÞt2−iðω0þΩÞt1Þ; ðC12Þ
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M1
eðx; tÞ ≔

Z
d3k
ω

F̃ðkÞeiωt−ik·x
Z

∞

−∞
dt1 χðt1Þe−iðω−ΩÞt1 ; ðC13Þ

M2
eðx; tÞ ¼

Z
d3kd3k0

ωω0 F̃ðkÞF̃ðk0Þeiωt−ik·xeiω0t−ik0·x

×
Z

∞

−∞
dt1

Z
t1

−∞
dt2 χðt1Þχðt2Þðe−iðωþΩÞt1−iðω0−ΩÞt2 þ e−iðω−ΩÞt2−iðω0þΩÞt1Þ; ðC14Þ

with J1μ;g; J2μν;g;M1
g and M2

g differing from those above by a swap Ω → −Ω. This way

h∶T̂μνðx; tÞ∶iFull ¼
λ2

4ð2πÞ6
X

i∈fe;gg
Π̂i

�
J1μ;iJ

1�
ν;i þ J1�μ;iJ

1
ν;i −

ημν
2

ðJ1γ;iJ1γ�i þ J1�γ;iJ
1γ
i Þ þ J2μν;i þ J2�μν;i −

ημν
2

ðJ2γγ;i þ J2γ�γ;i Þ
�
þOðλ3Þ;

ðC15Þ

h∶ϕ̂2ðx; tÞ∶iFull ¼
λ2

4ð2πÞ6
X

i∈fe;gg
Π̂ið2jM1

i j2 −M2
i −M2�

i Þ þOðλ3Þ: ðC16Þ

The projection operators meant that if we consider an initial state given by j0i ⊗ ðagjgi þ aejeiÞ then the equations
above simplify to

h∶T̂μνðx; tÞ∶iFull ¼
λ2

4ð2πÞ6
X

i∈fe;gg
jaij2

�
J1μ;iJ

1�
ν;i þ J1�μ;iJ

1
ν;i −

ημν
2

ðJ1γ;iJ1γ�i þ J1�γ;iJ
1γ
i Þ þ J2μν;i þ J2�μν;i −

ημν
2

ðJ2γγ;i þ J2γ�γ;i Þ
�

þOðλ3Þ; ðC17Þ

h∶ϕ̂2ðx; tÞ∶iFull ¼
λ2

4ð2πÞ6
X

i∈fe;gg
jaij2ð2jM1

i j2 −M2
i −M2�

i Þ þOðλ3Þ: ðC18Þ

2. RWA expectations

The RWA interaction Hamiltonian is [see (8)]

ĤIðtÞ ¼ λχðtÞ
Z

d3y
1

R3
G

�
y
R

�Z
d3k

ð2πÞ3=2 ffiffiffiffiffiffi
2ω

p ðe−iðω−ΩÞtþik·yâkσ̂þ þ eiðω−ΩÞt−ik·yâ†kσ̂
−Þ; ðC19Þ

where, in order to simplify, we can define

F̃ðkÞ ≔
Z

d3y
1

R3
G

�
y
R

�
eik·y; ðC20Þ

α̂ðtÞ ≔ λ

Z
d3k

ð2πÞ3=2 ffiffiffiffiffiffi
2ω

p F̃ðkÞe−iðω−ΩÞtâk; ðC21Þ

then

ĤIðtÞ ¼ χðtÞðα̂ðtÞσ̂þ þ α̂†ðtÞσ̂−Þ: ðC22Þ

The corresponding second order time evolution operator becomes

Û ¼ 1̂ − i
Z

∞

−∞
dt1 χðt1Þðα̂ðt1Þσ̂þ þ α̂†ðt1Þσ̂−Þ

−
Z

∞

−∞
dt1

Z
t1

−∞
dt2 χðt1Þχðt2Þðα̂ðt1Þσ̂þ þ α̂†ðt1Þσ̂−Þðα̂ðt2Þσ̂þ þ α̂†ðt2Þσ̂−Þ þOðλ3Þ ðC23Þ
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¼ 1̂ − i
Z

∞

−∞
dt1 χðt1Þðα̂ðt1Þσ̂þ þ α̂†ðt1Þσ̂−Þ −

Z
∞

−∞
dt1

Z
t1

−∞
dt2 χðt1Þχðt2Þðα̂ðt1Þα̂†ðt2ÞΠ̂e þ α̂†ðt1Þα̂ðt2ÞΠ̂gÞ þOðλ3Þ;

ðC24Þ

where Π̂g;e are the projection operators onto the ground and excited states of the detector respectively. Note the interaction
duration is encoded in the shape and support of χðtÞ.
For compactness we define

ξ̂ ≔ −i
Z

∞

−∞
dt1 χðt1Þα̂†ðt1Þ: ðC25Þ

Using that

½α̂ðt1Þ; α̂†ðt2Þ� ¼ λ2
Z

d3k
ð2πÞ32ω jF̃ðkÞj2e−iðω−ΩÞt1eiðω−ΩÞt2 ; ðC26Þ

the time evolution operator acting on the vacuum state simplifies to

Ûj0i ¼
�
1̂þ ξ̂σ̂− −

Z
∞

−∞
dt1

Z
t1

−∞
dt2 χðt1Þχðt2ÞΠ̂e

Z
d3k

ð2πÞ32ω jFðkÞj2e−iðω−ΩÞt1eiðω−ΩÞt2
�
j0i: ðC27Þ

For computational purposes we only need to focus on the ξ̂ term, given it is the only one with a field excitation. Since we
only have 0 and 1 field excitations, and using that

½âk; ξ̂� ¼ −iλ
Z

∞

−∞
dt1eiðω−ΩÞt1χðt1Þ

F̃�ðkÞ
ð2πÞ3=2 ffiffiffiffiffiffi

2ω
p ; ðC28Þ

the stress energy tensor and ϕ̂2 expectations reduce to

h∶T̂μνðx; tÞ∶iRWA ¼ Π̂e

Z
d3kd3k0

ð2πÞ3
ffiffiffiffiffiffiffiffiffiffiffi
4ωω0p

�
kμk0ν −

ημν
2

kγk0γ
�

× ðe−iðω−ω0Þtþiðk−k0Þ·x½ξ̂†; â†k0 �½âk; ξ̂� þ eiðω−ω0Þt−iðk−k0Þ·x½ξ̂†; â†k�½âk0 ; ξ̂�Þ þOðλ3Þ; ðC29Þ

h∶ϕ̂2ðx; tÞ∶iRWA ¼ Π̂e

Z
d3kd3k0

ð2πÞ3
ffiffiffiffiffiffiffiffiffiffiffi
4ωω0p ðe−iðω−ω0Þtþiðk−k0Þ·x½ξ̂†; â†k0 �½âk; ξ̂� þ eiðω−ω0Þt−iðk−k0Þ·x½ξ̂†; â†k�½âk0 ; ξ̂�Þ þOðλ3Þ: ðC30Þ

Here we assumed that t is larger than the maximum t in the support of χðtÞ, i.e., post interaction. Also note that these results
require the initial state of the detector to have some excited state component. If the initial state is the ground state then the
expectation of the stress-energy density and the field amplitude squared (normal ordered) are exactly zero. In order to
simplify (C29) and (C30) we use (C11) and (C13), where the expectation values then become

h∶T̂μνðx; tÞ∶iRWA ¼ λ2

4ð2πÞ6 Π̂e½J1μ;eJ1�ν;e þ J1�μ;eJ1ν;e − ημνJ1�γ;eJ
1γ
e � þOðλ3Þ; ðC31Þ

h∶ϕ̂2ðx; tÞ∶iRWA ¼ λ2

2ð2πÞ6 Π̂ejM1
ej2 þOðλ3Þ: ðC32Þ

The projection operators meant that if we consider an initial state given by j0i ⊗ ðagjgi þ aejeiÞ then the equations
above simplify to

h∶T̂μνðx; tÞ∶iRWA ¼ λ2

4ð2πÞ6 jaej
2½J1μ;eJ1�ν;e þ J1�μ;eJ1ν;e − ημνJ1�γ;eJ

1γ
e � þOðλ3Þ; ðC33Þ
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h∶ϕ̂2ðx; tÞ∶iRWA ¼ λ2

2ð2πÞ6 jaej
2jM1

ej2 þOðλ3Þ: ðC34Þ

3. Why RWA?

As shown above the implementation of the RWA avoids
the need to calculate J2μν;e when determining the stress-
energy expectations. The great advantage to this is that a 2D
semi-infinite integral can be avoided, i.e., 0 < ω < ∞ and
0 < ω0 < ∞. Unlike the J1μ;e terms that can be separated,
the terms J2μν;e [as shown in (D4)] contain a denominator
that cannot be separated.

APPENDIX D: RWA IN LARGE TIME LIMIT

In the discussion of the main text (Sec. V) the field
expectations are Laurent expanded in the limit jxj ≫ t, R,
showing that the RWA continues to violate causality in the
long time limit. Here we demonstrate why this occurs.

1. Persistence of RWA causality violations

Consider Eq. (C14), with

χðtÞ ¼ Θðtþ TÞ − Θðt − TÞ: ðD1Þ
Again, a handwavy argument can be put together along

the lines of that as T → ∞ then the t1 integral will resemble
δðωþ ΩÞ, and the t2 integral will resemble δðω − ΩÞ given
the Fourier transform definition of the Dirac δ. This in turn
would mean that in the long time limit the contribution
from that integral would be zero once one integrates over k
since the argument of the delta is always strictly positive,
and hence one can just throw away the contribution from
those counterrotating terms. In the same fashion the
emergent δðω −ΩÞ would allow one to keep only one
frequency in the field (the so-called single mode approxi-
mation) for the integrals involving de-excitation probabil-
ities [e.g., (C11) and (C13)] in the same long time limit.

This may be true if we keep the position at which
we evaluate the observables fixed and we take the limit
of large T. However this will not be true if we take the
limit of long times and long spatial separation simulta-
neously as to evaluate field observables near the light-
cone of the detector. In this particular situation it is
important to consider the terms outside the integrals, i.e.,
eiωt−ik·xeiω

0t−ik0·x, which are evaluated at t ¼ T and since as
T → ∞ these terms will begin to oscillate wildly such as to
unravel the integral definition of the Dirac delta introducing
polynomial decays in ω, eliminating the foundations on
which the RWA (and the single mode approximation) and
SMA are based. That is to say, the long time limit of the
integrals of J2μν;e do not converge uniformly to zero when
considering the external exponentials.
Mathematically, consider the following expression (cen-

tral to J2μν;e and M2
e)

eiωT−ik·xeiω
0T−ik0·x

Z
∞

−∞
dt1

Z
t1

−∞
dt2 χðt1Þχðt2Þ

× ðe−iðωþΩÞt1−iðω0−ΩÞt2 þ e−iðω−ΩÞt2−iðω0þΩÞt1Þ: ðD2Þ

First note that when evaluating the expectations of T̂00 or
ϕ̂2 that we can swap ω ↔ ω0 in the second term of (D2)
without affecting the result of (C17) and (C18) (although
not for the off diagonal stress energy terms). We perform
this swap to simplify the equations in this derivation, i.e.,
the expression becomes

I ≔ 2eiωT−ik·xeiω
0T−ik0·x

Z
∞

−∞
dt1

Z
t1

−∞
dt2 χðt1Þχðt2Þ

× e−iðωþΩÞt1−iðω0−ΩÞt2 : ðD3Þ

When we perform the integrals in question we obtain

I ¼ eiωT−ik·xeiω
0T−ik0·x 4i

Ω − ω0

�
eiðω0−ΩÞT sin½ðωþΩÞT�

ωþΩ
−
sin½ðωþ ω0ÞT�

ωþ ω0

�
: ðD4Þ

Here we note that the sinc functions in the brackets usually
pointwise converge to delta functions (as T → ∞) and since
ω;ω0;Ω > 0 then these will naturally be zero, making
J2μν;e → 0 and therefore seemingly demonstrating that the
RWA predictions tend to the full model predictions in the
infinite time limit. However, we must consider the ex-
ponentials outside the brackets. Since we are looking at the
violations of causality near the surface of the light cone and
the interaction lasts from −T to T, we must set jxj ≈ 2T,

which is the leading edge of the detectors perturbation on
the field.
Therefore, when we consider the integrals in momentum

space in Eqs. (C11) and (C13), the oscillatory terms outside
of the t1, t2 integrals, near the lightcone, go as e2iωT −
e−2iωT (this difference between two exponentials emerges
from eik·x after integrating the angular variables in momen-
tum space). Therefore the terms of (D4) near the lightcone,
approximately oscillate as:
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I ¼ eiωT−ik·x|fflfflfflffl{zfflfflfflffl}
e−iωT−e3iωT

eiω
0T−ik0·x

zfflfflfflfflffl}|fflfflfflfflffl{e−iω
0T−e3iω0T

4i
Ω − ω0

0
B@eiðω0−ΩÞT sin½ðωþ ΩÞT�

ωþ Ω|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
eiðωþω0ÞT−e−iðω−ω0þ2ΩÞT

−
sin½ðωþ ω0ÞT�

ωþ ω0|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
eiðωþω0ÞT−e−iðωþω0ÞT

1
CA: ðD5Þ

A quick inspection reveals that within I there will be terms
that oscillate slowly (or not at all), i.e., if jxj ¼ 2T þ ϵ,
terms of the form eiωϵ will appear that oscillate slowly with
respect to the significant sections of the smearing Fourier
transforms [i.e., F̃ðkÞ] and other terms within the k; k0
integrals. This of course means that even if T → ∞ the
polynomial decay remains. With more rigorous working it
can be shown that the nonlocality introduced by the RWA
Hamiltonian persists, polynomially decaying from the
surface of the light cone/sphere, similar to the plots shown
in the manuscript. This of course should not be surprising
considering the explicit nonlocality of the interaction
Hamiltonian.
Note, however, that if jxj ≪ 2T then the arguments

above no longer hold and we can take the pointwise limit of

Dirac δ, i.e., for jxj ≪ 2T: RWA → UdW, as described in
the next section.

2. RWA convergence to the full model

The derivation above showed that the second order
counterrotating terms do not vanish for long times near the
light cone.One can ask underwhat conditions there are points
where the second order counterrotating terms do vanish.
Consider the counterrotating contributions to the expect-

ation of ϕ̂2 (C18) which are given by the real part of (C14).
Consider a simple switching of duration T:

χðtÞ ¼ Θðtþ TÞ − Θðt − TÞ; ðD6Þ
and a spherically symmetric detector smearing. Then

M2
e ¼

2ð2πÞ2
jxj2

Z
dω dω0 FðωÞFðω0Þ

�
1

ðω0 −ΩÞ
�
eiðωþω0Þjxj − eiðωþω0Þð2TþjxjÞ

ðωþ ω0Þ −
e2iðω0−ΩÞTþiðωþω0Þjxj − eiðωþω0Þð2TþjxjÞ

ðωþΩÞ
�

−
1

ðω0 −ΩÞ
�
eiðω−ω0Þjxj − e2iðωþω0ÞTþiðω−ω0Þjxj

ðωþ ω0Þ −
e2iðω0−ΩÞTþiðω−ω0Þjxj − e2iðωþω0ÞTþiðω−ω0Þjxj

ðωþΩÞ
�

−
1

ðω0 −ΩÞ
�
e−iðω−ω0Þjxj − e2iðωþω0ÞT−iðω−ω0Þjxj

ðωþ ω0Þ −
e2iðω0−ΩÞT−iðω−ω0Þjxj − e2iðωþω0ÞT−iðω−ω0Þjxj

ðωþ ΩÞ
�

þ 1

ðω0 −ΩÞ
�
e−iðωþω0Þjxj − eiðωþω0Þð2T−jxjÞ

ðωþ ω0Þ −
e2iðω0−ΩÞT−iðωþω0Þjxj − eiðωþω0Þð2T−jxjÞ

ðωþΩÞ
�


: ðD7Þ

This can be decomposed in the following way:

M2
e ¼ M2

e;residualðT; xÞ þM2
e;uniformðT; xÞ; ðD8Þ

where

M2
e;residual ¼

2ð2πÞ2
jxj2

Z
dωdω0 F̃ðωÞF̃ðω0Þ

�
eiðωþω0Þjxj − eiðω−ω0Þjxj − e−iðω−ω0Þjxj þ e−iðωþω0Þjxj − eiðωþω0Þð2T−jxjÞ

ðω0 −ΩÞðωþ ω0Þ

þ eiðωþω0Þð2T−jxjÞ

ðω0 −ΩÞðωþ ΩÞ


; ðD9Þ

M2
e;uniform ¼ 2ð2πÞ2

jxj2
Z

dωdω0 F̃ðωÞF̃ðω0Þ
�
−eiðωþω0Þð2TþjxjÞ þ eiωð2TþjxjÞþiω0ð2T−jxjÞ þ eiωð2T−jxjÞþiω0ð2TþjxjÞ

ðω0 −ΩÞðωþ ω0Þ

−
e−2iΩTþiωjxjþiω0ð2TþjxjÞ − eiðωþω0Þð2TþjxjÞ − e−2iΩTþiωjxjþiω0ð2T−jxjÞ þ eiωð2TþjxjÞþiω0ð2T−jxjÞ

ðω0 −ΩÞðωþ ΩÞ

−
e−2iΩT−iωjxjþiω0ð2T−jxjÞ − e−2iΩT−iωjxjþiω0ð2TþjxjÞ þ eiωð2T−jxjÞþiω0ð2TþjxjÞ

ðω0 −ΩÞðωþΩÞ


: ðD10Þ
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The complex exponentials in M2
e;uniform always become

highly oscillatory in the limit of very long interaction T →
∞ (irrespective of the choice of x). This means that the
handwavy argument that the contribution of the counter-
rotating terms goes to zero in such a limit is correct for
these terms:

lim
T→∞

M2
e;uniform ¼ 0: ðD11Þ

However, for the term M2
e;Residual there are values of x for

which some of the complex exponentials in the integral
become slowly oscillatory and provide finite contributions
even in the limit of very long interaction times T → ∞. In
particular, when x ≈ 2T (around the boundary of the
lightcone of the detector’s interaction) some of the complex
exponentials in the integral become slowly oscillatory and
will not cancel in the long T limit.
As a conclusion, we see that as we evaluate the field

observables deeper into the lightcone of the detector’s
interaction (long interaction times but evaluating in the
timelike are far from the detector’s interaction lightcone
front) the rotating wave approximation becomes more
accurate. When we look at values closer to detector’s
lightcone boundary the approximation fails no matter how
long the interaction time is.

APPENDIX E: RWA SIGNALING—2 DETECTOR
PERTURBATIVE EXPANSION

Here we go step by step over the 2 detector perturbative
expansion, resulting in the reduced density matrix for 1 of
the 2 detectors with the field completely traced out.

F̃ðkÞ ≔
Z

d3y
1

R3
G

�
y
R

�
eik·y: ðE1Þ

The Unruh-DeWitt interaction Hamiltonian has the form

Ĥ ¼ λχðtÞ
Z

d3xGðxÞσ̂xðtÞ
Z

d3k

ð2πÞ3=2 ffiffiffiffiffiffi
2ω

p

× ðe−iωtþik·xâk þ eiωt−ik·xâ†kÞ: ðE2Þ

In order to proceed we define the following, if Unruh-
DeWitt coupling:

ψ̂ i ¼ λi

Z
d3k

ð2πÞ3=2 ffiffiffiffiffiffi
2ω

p ðF̃iðkÞe−iωtâk þ F̃�
i ðkÞeiωtâ†kÞ;

ðE3Þ

if RWA coupling:

ψ̂ i ¼ λi

Z
d3k

ð2πÞ3=2 ffiffiffiffiffiffi
2ω

p F̃iðkÞe−iωtâk; ðE4Þ

c.f. (56).
This way the interaction Hamiltonian becomes

Ĥ ¼ χAðtÞðσ̂þA ðtÞψ̂A þ σ̂−A ðtÞψ̂†
AÞ

þ χBðtÞðσ̂þB ðtÞψ̂B þ σ̂−B ðtÞψ̂†
BÞ: ðE5Þ

The time evolution operator then looks like

ÛðtÞ ¼ 1̂ − i
Z

∞

−∞
dt1ðχAðt1Þðσ̂þA ðt1Þψ̂Aðt1Þ þ σ̂−A ðt1Þψ̂†

Aðt1ÞÞ þ χBðt1Þðσ̂þB ðt1Þψ̂Bðt1Þ þ σ̂−B ðt1Þψ̂†
Bðt1ÞÞÞ

−
Z

∞

−∞
dt1

Z
t1

−∞
dt2ðχAðt1Þðσ̂þA ðt1Þψ̂Aðt1Þ þ σ̂−A ðt1Þψ̂†

Aðt1ÞÞ þ χBðt1Þðσ̂þB ðt1Þψ̂Bðt1Þ þ σ̂−B ðt1Þψ̂†
Bðt1ÞÞÞ

× ðχAðt2Þðσ̂þA ðt2Þψ̂Aðt2Þ þ σ̂−A ðt2Þψ̂†
Aðt2ÞÞ þ χBðt2Þðσ̂þB ðt2Þψ̂Bðt2Þ þ σ̂−B ðt2Þψ̂†

Bðt2ÞÞÞ þOðλ3Þ: ðE6Þ

By assuming the initial field state is the vacuum and the initial detector states is ρ̂0, the reduced detector density matrix
becomes

ρ̂qðtÞ ¼ ρ̂0 þ
Z

∞

−∞
dt1

Z
∞

−∞
dt2fχAðt1ÞχAðt2Þðσ̂þA ρ̂0σ̂þA eiΩAðt1þt2Þhψ̂Aðt2Þψ̂Aðt1Þi þ σ̂þA ρ̂0σ̂−AeiΩAðt1−t2Þhψ̂†

Aðt2Þψ̂Aðt1Þi

þ σ̂−A ρ̂0σ̂
þ
A e−iΩAðt1−t2Þhψ̂Aðt2Þψ̂†

Aðt1Þi þ σ̂−A ρ̂0σ̂
−
Ae−iΩAðt1þt2Þhψ̂†

Aðt2Þψ̂†
Aðt1ÞiÞ

þ χAðt1ÞχBðt2Þðσ̂þA ρ̂0σ̂þB eiðΩBt2þΩAt1Þhψ̂Bðt2Þψ̂Aðt1Þi þ σ̂þA ρ̂0σ̂−Be−iðΩBt2−ΩAt1Þhψ̂†
Bðt2Þψ̂Aðt1Þi

þ σ̂−A ρ̂0σ̂
þ
B eiðΩBt2−ΩAt1Þhψ̂Bðt2Þψ̂†

Aðt1Þi þ σ̂−A ρ̂0σ̂
−
Be−iðΩBt2þΩAt1Þhψ̂†

Bðt2Þψ̂†
Aðt1ÞiÞ

þ χBðt1ÞχAðt2Þðσ̂þB ρ̂0σ̂þA eiðΩAt2þΩBt1Þhψ̂Aðt2Þψ̂Bðt1Þi þ σ̂þB ρ̂0σ̂−Ae−iðΩAt2−ΩBt1Þhψ̂†
Aðt2Þψ̂Bðt1Þi

þ σ̂−B ρ̂0σ̂
þ
A eiðΩAt2−ΩBt1Þhψ̂Aðt2Þψ̂†

Bðt1Þi þ σ̂−B ρ̂0σ̂
−
Ae−iðΩAt2þΩBt1Þhψ̂†

Aðt2Þψ̂†
Bðt1ÞiÞ

þ χBðt1ÞχBðt2Þðσ̂þB ρ̂0σ̂þB eiΩBðt1þt2Þhψ̂Bðt2Þψ̂Bðt1Þi þ σ̂þB ρ̂0σ̂−BeiΩBðt1−t2Þhψ̂†
Bðt2Þψ̂Bðt1Þi
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þ σ̂−B ρ̂0σ̂
þ
B e−iΩBðt1−t2Þhψ̂Bðt2Þψ̂†

Bðt1Þi þ σ̂−B ρ̂0σ̂
−
Be−iΩBðt1þt2Þhψ̂†

Bðt2Þψ̂†
Bðt1ÞiÞg

−
Z

∞

−∞
dt1

Z
t1

−∞
dt2fχAðt1ÞχAðt2ÞðΠ̂1

eρ̂0eiΩAðt1−t2Þhψ̂Aðt1Þψ̂†
Aðt2Þi þ Π̂1

gρ̂0e−iΩAðt1−t2Þhψ̂†
Aðt1Þψ̂Aðt2Þi

þ ρ̂0Π̂1
ee−iΩAðt1−t2Þhψ̂Aðt2Þψ̂†

Aðt1Þi þ ρ̂0Π̂1
geiΩAðt1−t2Þhψ̂†

Aðt2ÞψAðt1ÞiÞ
þ χBðt1ÞχAðt2Þðσ̂þB σ̂þA ρ̂0eiðΩAt2þΩBt1Þhψ̂Bðt1Þψ̂Aðt2Þi þ σ̂−B σ̂

þ
A ρ̂0eiðΩAt2−ΩBt1Þhψ̂†

Bðt1Þψ̂Aðt2Þi
þ σ̂þB σ̂−A ρ̂0e−iðΩAt2−ΩBt1Þhψ̂Bðt1Þψ̂†

Aðt2Þi þ σ̂−B σ̂
−
A ρ̂0e−iðΩAt2þΩBt1Þhψ̂†

Bðt1Þψ̂†
Aðt2Þi þ ρ̂0σ̂

−
A σ̂

−
B e−iðΩAt2þΩBt1Þhψ̂†

Aðt2Þψ̂†
Bðt1Þi

þ ρ̂0σ̂
−
A σ̂

þ
B e−iðΩAt2−ΩBt1Þhψ̂†

Aðt2Þψ̂Bðt1Þi þ ρ̂0σ̂
þ
A σ̂

−
BeiðΩAt2−ΩBt1Þhψ̂Aðt2Þψ̂†

Bðt1Þi þ ρ̂0σ̂
þ
A σ̂

þ
B eiðΩAt2þΩBt1Þhψ̂Aðt2Þψ̂Bðt1ÞiÞ

þ χAðt1ÞχBðt2Þðσ̂þA σ̂þB ρ̂0eiðΩAt1þΩBt2Þhψ̂Aðt1Þψ̂Bðt2Þi þ σ̂−A σ̂
þ
B ρ̂0e−iðΩAt1−ΩBt2Þhψ̂†

Aðt1Þψ̂Bðt2Þi
þ σ̂þA σ̂−B ρ̂0eiðΩAt1−ΩBt2Þhψ̂Aðt1Þψ̂†

Bðt2Þi þ σ̂−A σ̂
−
B ρ̂0e−iðΩAt1þΩBt2Þhψ̂†

Aðt1Þψ̂†
Bðt2Þi þ ρ̂0σ̂

−
B σ̂

−
Ae−iðΩAt1þΩBt2Þhψ̂†

Bðt2Þψ̂†
Aðt1Þi

þ ρ̂0σ̂
−
B σ̂

þ
A eiðΩAt1−ΩBt2Þhψ̂†

Bðt2Þψ̂Aðt1Þi þ ρ̂0σ̂
þ
B σ̂

−
Ae−iðΩAt1−ΩBt2Þhψ̂Bðt2Þψ̂†

Aðt1Þi þ ρ̂0σ̂
þ
B σ̂

þ
A eiðΩAt1þΩBt2Þhψ̂Bðt2Þψ̂Aðt1ÞiÞ

þ χBðt1ÞχBðt2ÞðΠ̂2
eρ̂0eiΩBðt1−t2Þhψ̂Bðt1Þψ̂†

Bðt2Þi þ Π̂2
gρ̂0e−iΩBðt1−t2Þhψ̂†

Bðt1Þψ̂Bðt2Þi þ ρ̂0Π̂2
ee−iΩBðt1−t2Þhψ̂Bðt2Þψ̂†

Bðt1Þi
þ ρ̂0Π̂2

geiΩBðt1−t2Þhψ̂†
Bðt2ÞψBðt1ÞiÞg þOðλ3i Þ ðE7Þ

Now in order to gauge the nonlocal effects we consider the following scenario, χB occurs before χA and in our frame of
reference their supports do not overlap, same as in [7]. This allows us to eliminate the terms χBðt1ÞχAðt2Þ from the ordered
integral and allows us to compare terms from the integrals that proportional to λAλB, note that our choice of switching means
that the time-ordering becomes trivial for λAλB terms. Furthermore we trace out the second detector and inspect the first
detector’s density matrix,

ρ̂AðtÞ ¼ ρ̂0A þOðλ2AÞ þOðλ2BÞ þ
Z

∞

−∞
dt1

Z
∞

−∞
dt2fχAðt1ÞχBðt2ÞTrBðσ̂þA ρ̂0σ̂þB h½ψ̂Bðt2Þ; ψ̂Aðt1Þ�i þ σ̂þA ρ̂0σ̂−B h½ψ̂†

Bðt2Þ; ψ̂Aðt1Þ�i

þ σ̂−A ρ̂0σ̂
þ
B h½ψ̂Bðt2Þ; ψ̂†

Aðt1Þ�i þ σ̂−A ρ̂0σ̂
−
B h½ψ̂†

Bðt2Þ; ψ̂†
Aðt1Þ�iÞ

þ TrBðσ̂þB ρ̂0σ̂þA h½ψ̂Aðt1Þ; ψ̂Bðt2Þ�i þ σ̂þB ρ̂0σ̂−A h½ψ̂†
Aðt1Þ; ψ̂Bðt2Þ�i þ σ̂−B ρ̂0σ̂

þ
A h½ψ̂Aðt1Þ; ψ̂†

Bðt2Þ�i
þ σ̂−B ρ̂0σ̂

−
A h½ψ̂†

Aðt1Þ; ψ̂†
Bðt2Þ�iÞ þOðλ3i Þ: ðE8Þ

In this last step we have used the cyclic property of the partial trace to arrange terms nicely. All that remains is to evaluate
the commutators, all of which can be accomplished easily, as shown in (59) and (60).
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[22] S. Czapor and R. G. McLenaghan, Acta Phys. Pol. B 1, 55

(2008).

[23] P. Forn-Díaz, J. J. García-Ripoll, B. Peropadre, J.-L.
Orgiazzi, M. A. Yurtalan, R. Belyansky, C. M. Wilson,
and A. Lupascu, Nat. Phys. 13, 39 (2017).

[24] A. Valentini, Phys. Lett. A 153, 321 (1991).
[25] B. Reznik, A. Retzker, and J. Silman, Phys. Rev. A 71,

042104 (2005).
[26] A. Pozas-Kerstjens and E. Martín-Martínez, Phys. Rev. D

92, 064042 (2015).

NICHOLAS FUNAI and EDUARDO MARTÍN-MARTÍNEZ PHYS. REV. D 100, 065021 (2019)

065021-22

https://doi.org/10.1088/1751-8121/aae78a
https://doi.org/10.1103/PhysRevD.78.045006
https://doi.org/10.1103/PhysRevD.95.105009
https://doi.org/10.1038/nphys3905
https://doi.org/10.1016/0375-9601(91)90952-5
https://doi.org/10.1103/PhysRevA.71.042104
https://doi.org/10.1103/PhysRevA.71.042104
https://doi.org/10.1103/PhysRevD.92.064042
https://doi.org/10.1103/PhysRevD.92.064042

