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In this work, we present a numerical scheme to study the quasinormal modes of the time-dependent
Vaidya black hole metric in asymptotically anti–de Sitter spacetime. The proposed algorithm is primarily
based on a generalized matrix method for quasinormal modes. The main feature of the present approach is
that the quasinormal frequency, as a function of time, is obtained by a generalized secular equation and
therefore a satisfactory degree of precision is achieved. The implications of the results are discussed.
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I. INTRODUCTION

It is understood that the quasinormal modes are eigenm-
odes of a system subject to internal dissipation or energy
radiation. In terms of the temporal evolution of small
perturbations, the amplitude of the oscillation decays in
time. Owing to the damping characteristic, the frequency of
a quasinormal mode is complex, where its imaginary part
is positive for stable configurations and suppresses the
oscillations. In general relativity, small perturbations of a
black hole, in terms of external matter field or metric
perturbations, generally produce quasinormal modes [1–3].
In this case, damping takes place not by internal friction,
but through radiation of energy toward infinity or into the
black hole. In particular, the recent development of the
holographic principle regarding the anti–de Sitter/con-
formal field theory (AdS=CFT) correspondence [4] has
further promoted extensive studies. As the AdS=CFT
correspondence is an essential tool for exploring the
strongly coupled systems, it can be employed to investigate
the fundamental properties of the system. In principle,
various transport coefficients of the dual system can be
extracted, such as the viscosity, conductivity, and diffusion
constants. Moreover, the first detection of gravitational
waves [5] has driven the relevant studies into a direction
directly associated with precise measurements.
From a mathematical point of view, analyzing quasi-

normal modes involves the solution of non-Hermitian
eigenvalues regarding a system of coupled linear ordinary
differential equations with appropriate boundary

conditions. Aside from a few analytic solutions, in order
to evaluate the quasinormal frequencies, one usually has to
resort to numerical methods [6]. Many numerical tech-
niques have been proposed. Among others are the Wentzel-
Kramers-Brillouin (WKB) method [7–9], the continued
fraction method [10,11], the Poshl-Teller potential approxi-
mation [12], the Horowitz and Hubeny (HH) method for
AdS black holes [13], the matrix method [14,15]. For the
study of the temporal evolution of the small perturbations,
the finite difference method can be employed [16,17].
In general, black holes are dynamic rather than static

objects. Primordial black holes, which possess the size
∼H−1, are intrinsically dynamical. The first observation of
gravitational waves matches the predictions [18–20] for a
gravitational wave emanating from the merger of a pair of
black holes. Also, mass accretion cause the mass of the
astrophysical black hole to evolve in time (in principle there
is also Hawking radiation, but it is negligible for astro-
physical black holes). In this context, the analysis of
quasinormal modes for time-dependent situations is of
particular interest. The Vaidya metric provides an asymp-
totically flat and spherically symmetric solution of the
Einstein equations describing the spacetime outside of a
star, which accretes or radiates pressureless null dust. The
metric has been employed as an essential tool to explore
dynamical processes, such as black-hole evaporation
including Hawking radiation [21–23]. Besides, it has been
used as one of the possibilities [24–26] to investigate the
time-dependent black hole quasinormal modes [27,28].
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Most studies concerning the quasinormal modes have been
carried out by using the finite difference method, where the
boundary of the problem is transformed to infinity, and
therefore free boundary condition has been employed. The
corresponding quasinormal frequencies are subsequently
extracted numerically by using χ2 fitting. Instead, for the
present study, the boundary condition is treated explicitly,
particularly for that at the apparent horizon. Moreover, we
introduce a numerical scheme to obtain the quasinormal
frequencies as well as the corresponding wave function by
solving a matrix equation. As a result, the proposed
approach provides reliable precision which can be easily
generalized to other scenarios of dynamic black holes.
The primary purpose of the present study is to present the

numerical scheme and use it to investigate the quasinormal
modes of time-dependent backgrounds associated with the
Vaidya metric in asymptotically AdS spacetime. The paper
is organized as follows. In the next section, we derive the
master equation for scalar perturbations for the time-
dependent case and compare it to the corresponding static
situation. Then, we discretize the spatial and time coor-
dinates and reformulate the partial differential equation in
terms of a matrix equation. The numerical scheme is
thereby presented. In Sec. III, the numerical results are
obtained and discussed with particular emphasis on the
nonstationary effects. Further discussions on the implica-
tions of the present approach, as well as concluding
remarks, are given in Sec. IV.

II. QUASINORMAL FREQUENCY FOR THE
VAIDYA BLACK HOLE

In terms of the Eddington coordinates, the metric of
Vaidya AdS spacetime reads [29–33]

ds2 ¼ −fðv; rÞdv2 þ 2cdrdvþ r2ðdθ2 þ sin2θdφ2Þ; ð1Þ

with

fðv; rÞ ¼ 1 −
2MðvÞ

r
−
Λ
3
r2; ð2Þ

whereΛ < 0, and without any loss of generality, we choose
Λ ¼ −3 in the following calculations. On the other hand,
c ¼ �1. To be specific, c ¼ 1 corresponds to the case of
ingoing flow and MðvÞ is a monotonically increasing
function of the advanced time, while c ¼ −1 corresponds
to the case of outgoing flow and MðvÞ is a monotonically
decreasing function of the retarded time. The master
equation for small perturbations of a massive scalar field
is governed by the Klein-Gordon equation which reads

ð□þm2
μÞΨ ¼ 0; ð3Þ

or,

1ffiffiffiffiffiffi−gp ∂μðgμν
ffiffiffiffiffiffi
−g

p ∂νΨÞ −m2
μΨ ¼ 0: ð4Þ

One proceeds by using the method of separation of
variables which assumes

Ψ ¼ Φðr; vÞ
r

Yðθ;φÞ; ð5Þ

where the radial part of the wave function Φ is assumed
to be time dependent. The angular part of the wave function
Yðθ;φÞ ¼ ΘðθÞ exp ½imφ� are simply the spherical harmon-
ics satisfying

sinθ
d
dθ

�
sinθ

dΘðθÞ
dθ

�
þlðlþ1Þsin2θΘðθÞ−m2ΘðθÞ¼0;

ð6Þ

where l and m are the azimuthal and magnetic quantum
numbers respectively. By substituting Eq. (5) as well as the
metric, Φ is found to satisfy the equation

−
�
m2

μ þ
lþ l2 þ rf0

r2

�
Φþ f0Φ0 þ 2c _Φ0 þ fΦ00 ¼ 0: ð7Þ

where “ 0” indicates partial derivative with respect to r
and “·” indicates partial derivative with respect to v.
To investigate the boundary condition, let us consider
the case c ¼ 1. One notices that the above equation can
be rewritten as

fðfΦ0Þ0 þ 2f _Φ0 ¼ 1

r2
fΦðlþ l2 þm2

μr2 þ rf0Þ: ð8Þ

The right-hand side (r.h.s.) of the above equation vanishes
as one approaches either the apparent horizon or infinity. In
other words, near the horizon and infinity, the master
equation reads

fðfΦ0Þ0 þ 2f _Φ0 ¼ 0: ð9Þ

The general solution of the above equation is C1Φ1þ
C2Φ2, where C1, C2 are two constants, Φ1 ¼ e−iωðvÞv and
Φ2 satisfies fΦ0

2 þ 2 _Φ2 ¼ 0. At the horizon, only the
ingoing waves are physically permitted, and therefore only
Φ1 is relevant. At infinity, on the other hand, the wave
function approaches zero for asymptotically AdS space-
time. Accordingly, it is reasonable to assume that the
solution of Eq. (7) possesses the form

Φðr; vÞ ¼ e−iωðvÞvRðr; vÞ: ð10Þ

where the quasinormal frequency ω ¼ ωðvÞ is expected to
be time dependent.
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The equation of Rðr; vÞ can be obtained straightfor-
wardly from Eq. (7), which reads

−
�
m2

μ þ
lþ l2 þ rf0

r2

�
R

þ ð−2iω − 2iv _ωþ f0ÞR0 þ 2 _R0 þ fR00 ¼ 0: ð11Þ

The corresponding boundary conditions are [34]

R ∼

8>><
>>:

0 r → ∞

C1 r → rh

; ð12Þ

where C1 is time independent.
It is not difficult to show that Eq. (11) falls back to that of

scalar perturbation in static Schwarzschild AdS black hole
spacetimes, namely,

−
�
m2

μ þ
lþ l2 þ rf0

r2

�
Rþ ð−2iωþ f0ÞR0 þ fR00 ¼ 0;

ð13Þ

by eliminating all the terms involving time derivative.
Equation (13) and its solution will be addressed below
while we discuss the numerical results in the following
section.
Before presenting the numerical scheme to solve the

master equation, we comment further about its boundary
conditions. First of all, we note that, after canceling the
factor e−iωðvÞv, the resulting boundary condition for Rðr; vÞ
does not depend on v, which turns out to be quite useful to
facilitate the present algorithm. For a dynamical black hole
metric, the apparent and event horizons usually do not
coincide. The apparent horizon is defined as the outer
component of the intersection of the trapped region and a
spacelike surface [35]. At a given instant, it is a surface that
plays the role of the boundary separating the light rays that
are directed outwards and moving outwards, and those
headed outward but moving inward. The choice of the
boundary condition for quasinormal modes is dictated by
the condition that only ingoing waves are physically
permitted, associated with the fact that classical horizons
do not emit radiation [4,36]. In other words, out of two
local solutions near the boundary, which typically represent
the incoming as well as outgoing waves, one only chooses
the incoming waves. This choice leads to a profound
consequence for the master equation. To be more specific,
the particular choice of the boundary condition implies that
the corresponding boundary value problem is non-
Hermitian, and subsequently, the associated eigenfrequen-
cies become complex [4]. In the case of the Vaidya black
hole metric, following Refs. [37,38], the location of the
apparent horizon can be determined by

1 −
2MðvÞ
rh

þ r2h ¼ 0: ð14Þ

Equation (14) implies that the apparent horizon is moving
outward if the black holemass increases in time.On the other
hand, the event horizon rEH is defined by the boundary of the
region of spacetime from which no causal signal can escape
to future null infinityIþ. As shown for particular parameters
in the Vaidya metric [25], the apparent horizon mostly
resides inside the event horizon. Moreover, owing to the
physical characteristic of the event horizon, for the case of a
dynamic black hole metric, a matter flow directed outwards
may actually traverse the event horizon. On the contrary, the
apparent horizon serves as a one-way membrane which
prohibits even the outgoing light rays from traveling across
it. Concerning the context of quasinormal modes, where the
matter flow is represented by the probability flow of the
wave function, it is reasonable to introduce the boundary
condition of the master equation, Eq. (11), at the apparent
horizon instead of the event horizon. Therefore, one requires
that the wave function must be ingoing at the apparent
horizon rh as shown above in Eq. (12).
In order to solve Eq. (11) with the boundary condition

Eq. (12) defined at the apparent horizon Eq. (14), we resort
to a generalized version of the matrix method proposed
recently [14,15,34,39]. The time (v) derivative only involves
the first order and is handled by the forward-difference
formula. The matrix method is employed to deal with spatial
derivatives. First, we transform the space coordinate r into
x ¼ rh=r and rewrite the master equation in terms of x. Since
the resultant domain of the wave function, 0 < x < 1, is
finite, we discretize the wave function into N þ 1 grids.
According to the spirit of the matrix method, now any spatial
derivative of the wave function has been transformed into a
linear combination of the function values on the grids.
Therefore, by substituting these expressions into the master
equation Eq. (7) for each grid, at a given instant, the function
values on grids and their temporal derivatives are related by
an ðN þ 1Þ × ðN þ 1Þ matrix equation. In other words, if
the wave function Rðr; vÞ is known at a given instant v ¼ vi,
one has N þ 1 equations which can be solved to obtain the
wave function on the N þ 1 grids for the instant viþ1, once
the finite forward-difference discussed above is implemented
for the first order time derivative.
However, if one carefully counts the number of variables

and the number equations at hand, there is a subtlety. The
boundary conditions at the horizon and infinity eliminate
two variables since according to Eq. (12) the function
values at those two grids are time independent. Regarding
the two corresponding equations, the one at infinity is
actually redundant and therefore is discarded. As a result,
one possesses N equations from the discretized master
equation and N − 1 variables associated with all the grid
points except two on the boundary. In other words, we have
one additional equation. The latter can be conveniently
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utilized to determine the quasinormal frequency ωiþ1 at the
instant viþ1, which completes our scheme. We also note
that the resulting equation for ωiþ1 is merely an algebraic
equation and can be solved easily by a numerical method.

III. NUMERICAL RESULTS

Now we proceed to implement the numerical scheme
presented at the end of the last section to the metric Eq. (2),
where we consider the following mass function in terms of
the apparent horizon rh as a function of time, as shown by
the dashed blue curve in Fig. 1

MðvÞ ¼ rhðvÞ3 þ rhðvÞ
2

; ð15Þ

with

rhðvÞ¼ rAðvÞ≡r1þðr2−r1Þ
1

2
½erfðCðv−v1ÞÞþ1�; ð16Þ

where erf is the error function, numerically, we adopt
v1 ¼ 0.9 and C ¼ 3. Here rh evolves smoothly from r1 to
r2 for the interval −∞ ≤ v < þ∞. Equation (16) implies
that the black hole mass remains a constant for an infinitely
long period and therefore it is essentially “static” for v < 0
with an appropriately chosen v1. As a result, the solution of
the quasinormal problem of a static black hole metric with

M1 ¼ r3
1
þr1
2

is utilized as the initial condition for the present
dynamic case. To be specific, Eq. (13) is solved by
employing the matrix method in its original form
[14,15,39], and its solution, ω and RðrÞ, is fed to the
proposed scheme for solving Eq. (11). From the instant
v ¼ 0 onward, we employ the matrix method to interpolate
the spatial derivatives and forward-difference formula for

the time evolution. For simplicity, the calculations are
carried out for the perturbations of a massless scalar field.
But before discussing the properties of the quasinormal

modes of dynamical blackholes, it ismeaningful to show that
the results regarding the physical system are manifestly
convergent. In other words, the obtained numerical results
should not be sensitive to small deviations of the chosenmass
function. This is achieved by carrying out the calculations
also by two slightly different parametrizations, whose forms
have been adopted in some previous studies [24,25,28].
Moreover, although thematrix method has shown to be up to
par in various studies of quasinormal modes of static black
holes, one should alsowarrant the precision of the numerical
scheme for the case of dynamical black holes. We relegate
these studies to the Appendix of the paper.
The numerical results are shown in Figs. 2 and 3. In

Fig. 2, we present the calculated real and imaginary parts of
the quasinormal frequencies, for different initially static
black holes as well as angular quantum numbers. Overall, it
is found that the quasinormal frequencies of the Vaidya
black hole tend to approach those of the corresponding
static black holes. To be specific, as v → ∞, for instance,
the obtained quasinormal frequencies approach those of

Schwarzschild AdS black holes withM2 ¼ r3
2
þr2
2

. However,
the process takes a more extended period than the duration
when the black hole mass evolves from M1 to M2, which
numerically terminates at a rather early instant, v ∼ v2 ¼
3=2. In other words, the temporal evolution of the quasi-
normal frequency exhibit an “inertial effect,” namely, the
variation of the quasinormal frequency is delayed in com-
parison to that of the black hole mass. This feature has also
been observed previously elsewhere [24,25].
Also, for a given initial value of the apparent horizon, the

difference in temporal evolution between different angular
quantum numbers increases significantly as the mass of the
initially static black hole decreases. Another nontrivial and
interesting feature observed in our calculations is that the real
part of the quasinormal frequency does not evolve mono-
tonically before it eventually catches up and approaches the
corresponding value of the static black hole. As shown in the
left plot of Fig. 2, instead of immediately following up the
value of the corresponding static black hole metric, the real
part of the quasinormal frequency decreases first and then
increases. This nonmonotonical behavior is found to be less
prominent as the initially static black hole becomes more
massive.
In Fig. 3,we show the real and imaginary radial parts of the

wave functions, evaluated by our numerical scheme. It is
observed that thewave functions thus obtained indeed satisfy
the boundary condition discussed in Eq. (12). As the wave
function is associatedwith the amplitude of the oscillation, its
calculations might turn out to be substantial for future
observations. By employing a more precise numerical
scheme proposed in the present study, the above results
show once more that the quasinormal modes are, to a first

FIG. 1. The three different time-dependent functions for rh
studied in the present work. The calculations have been carried
out by taking r1 ¼ 1 and r2 ¼ 1.1. The specific forms of the
functions, rA, rB, and rC, shown in dashed blue, solid red, and
dash-dotted black curves, are defined in Eq. (16), Eq. (A1), and
(A2), respectively.
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approximation, those of a snapshot of the black hole at the
instantwhen they are computed, corrected by a delay [24,25].

IV. DISCUSSIONS AND CONCLUDING
REMARKS

In this work, we calculated the quasinormal frequencies
of a dynamical black hole background described by

Vaidya metric in asymptotically AdS spacetime. In our
calculations, we adopt the apparent horizon to apply the
boundary condition. For a given instant, it is a one-way
membrane that only ingoing wave is allowed, and there-
fore a natural choice for the master equation in question.
The obtained results are reasonable and agree well with
the appropriate physical limit of the corresponding static
metric.

FIG. 2. The real and imaginary parts of the quasinormal frequencies as a function of the Eddington coordinate v, where ωi is the
quasinormal modes frequency associated with the initially static black hole. The calculations have been carried out for different initial
radii r0 as well as angular quantum numbers l. The results are presented in terms of the ratios of the quasinormal frequencies to those of
static black holes, while the values of the quasinormal frequencies of the corresponding static black holes ωi are indicated in the legend.
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The introduced scheme is based on a generalized algo-
rithm of the matrix method for the quasinormal modes. As a
result, the proposed approach inherits various advantages of
the method. The resultant quasinormal frequencies are not
extracted from the numerical temporal evolution of the
perturbations, and therefore, one can achieve a satisfying
precision, for both the real and imaginary parts of the
frequencies. Moreover, besides the quasinormal frequen-
cies, the proposed method can be utilized to evaluate the
wave function. Apart from the numerical algorithm itself, in
order to generalize the proposed scheme to other dynamical
metrics, a vital step of the approach relies on the evaluation
of the apparent horizon. In the specific case ofVaidyametric,
the analytic form of the latter is already known. In a more
general context, for example, for the class of metric
described by the line element presented in Eq. (1), the
present method can readily be applied, once the apparent
horizon coincides with the infinite redshift surface, deter-
mined by gvv ¼ −fðv; rÞ ¼ 0.
As the proposed scheme involves the apparent horizon

where the boundary condition is exerted, one might be
wondering whether the calculated quasinormal frequencies
are dependent on the specific choice of coordinate systems.
This seems to be a valid question, as the apparent horizon is
defined as the outer component of the intersection of the
trapped region and a spacelike surface [35], it depends on
the specific coordinate system. However, if the quasinormal
frequencies depend on an arbitrary choice of coordinates, it
might potentially undermine the physical content of qua-
sinormal modes for dynamical black hole metrics. In order
to address this issue, let us first fall back to a simpler
scenario, the quasinormal modes of a static black hole.
Even for the case, it can be shown that one may also choose
a “non-static” coordinate system, which subsequently
modifies the apparent horizon. Subsequently, both the
master equation and its boundary condition are altered.
Obviously, the quasinormal modes of static black hole is a
well-defined physical problem, particularly owing to its
connection with the results [40–43] independently obtained
via AdS=CFT correspondence [4]. Therefore, in this case,

one would naturally attribute such apparent “arbitrariness”
regarding the AH solely to the freedom in the choice of the
coordinate system. As a matter of fact, since the black hole
is a physical object, it should not rely on the coordinate
system describing it. Similarly, the evolution of small
perturbations, namely, the quasinormal modes as a physical
process, shall not depend on the choice of coordinates.
Moreover, as it is well-known, quasinormal frequencies are
irrelevant to the specific form of the initial perturbations. In
practice, rather than focusing on the vicinity of the black
hole horizon, one may consider the spacetime region far
away from the black hole horizon. To be more specific, one
may investigate the obtained solution of the master equa-
tion by comparing to the asymptotical form at infinity. As
long as the asymptotical properties of spacetime in vacuum
are appropriately considered, small perturbations at infinity
are well-defined, irrelevant to any specific apparent hori-
zon. Though the specific numerical value still depends on
the coordinates agreed upon between different observers,
but it is just a matter of convention, which only concerns
the asymptotical properties of the vacuum. This is because
for two observers sitting at infinity who have adopted two
distinct coordinate systems, their respective rates of the
“standard clocks” are simply related due to the asymptoti-
cally static nature of the spacetime. By carrying out this
procedure, the quasinormal frequencies can be extracted
and compared, in the sense that two different observers
shall agree with one another. It is clear that the above
argument does not rely on whether the black hole metric is
static, and therefore, it can be readily applied to the case of
dynamical black holes. Not surprisingly, for dynamical
black holes, the frequency at infinity is in general different
from that near the horizon obtained for a given coordinate
system [34]. We plan to apply the proposed method further
to other black hole spacetimes in future investigations.
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APPENDIX

In this section, we first show that the results regarding the
physical system are manifestly convergent. In other words,
the obtained numerical results should not be sensitive to
small deviations of the chosen mass function. This is
achieved by carrying out the calculations also by two
slightly different parameterizations, whose forms have
been adopted in some previous studies [24,25,28]. These
functions are also presented in Fig. 1 in solid red and dash-
dotted black curves.

rBðvÞ ¼

8>>>>>><
>>>>>>:

r1 v< vB1

r1þ r2−r1
2

�
1− cos

�
v−v1
v2−v1

π

��
vB1 ≤ v< vB2

r2 vB2 ≤ v

;

ðA1Þ

where vB1 ¼ 7
20
, vB2 ¼ vB1 þ π

3
, and

rCðvÞ ¼

8>>>>>><
>>>>>>:

r1 v< vC1

r1þ v−v1
v2−v1

ðr2− r1Þ vC1 ≤ v< vC2

r2 vC2 ≤ v

; ðA2Þ

FIG. 4. A comparison between different time-dependent functions rA, rB, and rC, shown on the top, middle, and bottom rows. The real
and imaginary parts of the quasinormal frequencies are presented as functions of the Eddington coordinate v, where ωi is the
quasinormal modes frequency associated with the initially static black hole. The calculations have been carried out for different angular
quantum numbers l, shown in dashed blue, solid red, and dash-dotted black curves respectively.
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where vC1 ¼ 1
2
, vC2 ¼ vC1 þ 1. The resultant quasinormal

frequencies are presented in Fig. 4. In particular, we note
that even the function rCðvÞ is a linear function in v, which
implies that its first order derivatives are not continuous at
vC1 and vC2 . The calculated quasinormal frequencies are
found to be almost identical despite the small differences
between parameterizations. This, in part, is because the
scheme employed in the present study does not explicitly
require the derivative to be continuous. This partly dem-
onstrates that the proposed scheme is indeed reasonably
convergent and stable.

Also, we investigate the precision of the present
scheme by carrying out calculations using different sizes
of the timestep as well as spatial grid size. The results
are shown in Table I. By using smaller timestep values, it
is shown that the numerical results are manifestly
convergent. In particular, the effect of a decrease of
two orders of magnitude is found to be insignificant.
Therefore, the precision of the numerical scheme is
admissible for the study of quasinormal modes of
dynamical black holes.
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