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Many current models which “violate Lorentz symmetry” do so via a vector or tensor field which takes on
a vacuum expectation value, thereby spontaneously breaking the underlying Lorentz symmetry of the
Lagrangian. One common way to construct such a model is to posit a smooth potential for this field;
the natural low-energy solution of such a model would then be excepted to have the tensor field near the
minimum of its potential. It is shown in this work that some such models, while appearing well posed at the
level of the Lagrangian, have a Hamiltonian which is singular on the vacuum manifold and are therefore ill
posed. I illustrate this pathology for an antisymmetric rank-2 tensor field and find sufficient conditions
under which this pathology occurs for more general field theories.
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I. INTRODUCTION

The prospect of finding new physics via Lorentz sym-
metry violation has been of significant interest over the past
couple of decades. In many such models, Lorentz sym-
metry is broken spontaneously; one postulates the existence
of a new fundamental field that is not a Lorentz scalar and
assigns dynamics to this field that obey Lorentz symmetry
but lead it to take on a nonzero “vacuum expectation value.”
The existence of this nonzero Lorentz vector or tensor field
then provides a preferred geometric structure in spacetime.
In effect, such a field would provide a “hook” upon

which one can “hang” frame-dependent effects. In the
presence of a Yukawa-like couplings between this new field
and conventional matter fields, the results of experiments
would depend on the relative orientation in spacetime of the
observer’s 4-velocity and the new field, leading to frame-
dependent effects. Such a field is frequently called a
“Lorentz-violating” field, though this is something of a
misnomer; the postulated field would still transform
between frames via the standard Lorentz transformation
laws. The dynamics of such fields in flat spacetime have
been studied in their own right [1–4] and similar models
have also been developed in the context of curved space-
time as possible modifications to general relativity [5–7].

Many (though not all) of the above-cited models share
two features. First, they accomplish the spontaneous break-
ing of Lorentz symmetry by assigning a potential energy
VðΨ���Þ to some Lorentz tensor Ψ���. This potential is
constructed in a “Higgs-like” way, with a set of minima
forming a vacuum manifold in field space. Since the field
Ψ��� is a Lorentz tensor but we want the underlying
equations of motion to obey Lorentz symmetry, we have
to construct the potential out of one or more Lorentz scalars
that are dependent on Ψ���. The vacuum manifold will be
determined by a set of conditions on these Lorentz scalars.
For example, if we wish to construct a model in which a
Lorentz vector field Aa spontaneously breaks Lorentz
symmetry, it is not hard to see that the potential VðAaÞ
must be some function of the 4-vector norm AaAa, and the
vacuum manifold will be the set of all 4-vectors of a
particular norm.
Second, the kinetic terms in the Lagrangians for these

theories must be constructed with care. Assuming that the
underlying Lagrangian is second order and gives rise to
second-order equations of motion, the kinetic terms will
typically involve a contraction of the spacetime derivative
∇aΨb1���bn with itself. However, one cannot usually simply
write down a kinetic term of the form ∇aΨb1���bn∇aΨb1���bn
and call it a day. Since the Minkowski metric is indefinite,
such a kinetic term will lead to terms with the “wrong sign”
of the kinetic energy in the Hamiltonian, which will
generically lead to instabilities in the classical solutions.
Instead, the kinetic term is usually constructed out of more
complicated combinations of the field derivatives, such that
the problematic terms in the kinetic energy do not appear
(via cancellations between various contractions). Again,
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returning to the case of a 4-vector field for illustration, it is
not hard to see that a kinetic term of the form 1

2
∇aAb∇aAb

will include terms of the form 1
2
½ _A2

0 −
_⃗A
2�, which is

indefinite. However, the time derivatives that arise from
“Maxwell” kinetic term − 1

4
FabFab (with Fab ¼ 2∇½aAb�)

are all of the same sign, evading this problem.
The price one pays for this good behavior, however, is

that the time derivatives of some fields do not appear at all
in the Lagrangian. This leads to the model being con-
strained; certain canonical field momenta must vanish
identically, and so one cannot freely specify both the
values of the fields and their time derivatives at some
initial moment t0.
The purpose of this work is to illustrate and explore

a potential incompatibility between these two features.
Specifically, a model which contains a constrained field
with a vacuum manifold, while appearing well posed at the
level of the Lagrangian, may in fact have a Hamiltonian that
becomes singular on the vacuum manifold. This raises
serious doubts about the viability of such a theory; it
predicts that the field, if perturbed slightly from its vacuum
manifold, could not smoothly evolve back to the vacuum
manifold. This conflict does not occur in all Lorentz-
violating field models but instead seems to arise when the
“number of constraints” exceeds the codimension of the
vacuum manifold in field space.
The work is structured as follows. A brief summary of

the techniques of Hamiltonian field theory pertinent to
this result is presented in Sec. II. Section III contains an
illustration of how a singular Hamiltonian can arise in a
Lorentz-violating field theory, by examining the dynamics
of a rank-2 antisymmetric tensor field Bab in a Lagrangian
that is designed to spontaneously break Lorentz symmetry.
Finally, Sec. IV discusses how this pathology could arise in
a general field theory.
Throughout this work, I will use units in which ℏ ¼

c ¼ 1; the metric signature will be ð−þþþÞ. Roman
indices a; b; c;… will be used to denote spacetime tensor
indices; i; j; k;… will be used to denote spatial indices,
where necessary. Greek indices α; β; γ;… will generally
only be used to denote indices in field space. All expres-
sions involving repeated indices (either tensor indices or
field-space indices) can be assumed to obey the Einstein
summation convention, unless explicitly stated otherwise;
in particular, for a significant fraction of Sec. IV B and in
the Appendix, the field-space summations will be written
out explicitly. While I will be working exclusively in the
realm of flat spacetime, I will still use the symbol ∇a
(or ∇i) to denote spacetime (or spatial) derivatives; the
symbol ∂ will be reserved for partial derivatives of
functions of fields (such as the field potential energy or
the Lagrangian density) with respect to their arguments.
The symbol δ will generally denote either variations of
functionals or functional derivatives.

II. HAMILTONIAN FIELD THEORY

In classical mechanics, the construction of a Hamiltonian
from a Lagrangian Lðqα; _qαÞ is a relatively straightforward
process. One performs a Legendre transform on the
Lagrangian, by defining the conjugate momenta pα ¼∂L=∂ _qα; inverting these relationships to write the velocities
_qα in terms of the coordinates qα and the momenta pα;
and finally writing the Hamiltonian as Hðqα; pαÞ ¼
pα _qα − Lðqα; _qαÞ, now viewing _qα as a function of qα
and pα. One can then find the evolution of the coordinates
and momenta via Hamilton’s equations, or via the Poisson
bracket,

df
dt

¼ ff;Hg ð1Þ

where for any quantities f and g we have

ff; gg≡X
α

∂f
∂qα

∂g
∂pα

−
∂g
∂qα

∂f
∂pα

: ð2Þ

In field theory for some set of fields ψα, one would like
to follow the same procedure, starting from a Lagrange
density Lðψα; _ψα;∇iψαÞ. However, an important difference
can arise when one attempts to perform the Legendre
transform. It can happen that, due to the structure of the
kinetic terms, the field velocities cannot all be written in
terms of the field momenta. In general, this implies that one
or more of the equations of motion for the field are actually
constraint equations, not evolution equations.
One can, however, still attempt to construct a

Hamiltonian that generates the time evolution of the system
[in the sense of (1)] via a construction due to Dirac and
Bergmann [8]. A brief description of the method can also
be found in a paper by Isenberg and Nester [9], and the
notation used here will largely follow the notation in that
work. The construction proceeds as follows:

(i) Define the field momenta via the natural generali-
zation:

πα ¼
∂L
∂ _ψα

: ð3Þ

One can then attempt to invert these relationships to
find _ψα as a function of πα, ψα, and their derivatives.
However, it may occur that certain equations (or
combinations of equations) in (3) do not contain any
velocities. These equations must be thought of as
constraining the initial data and can be written in
the form

ΦIðψα; ∇⃗ψα; παÞ ¼ 0 ð4Þ

for I ¼ 1; 2;…;M. The functions ΦI are known as
the primary constraints.
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(ii) Construct the base Hamiltonian density via a
Legendre transform on the Lagrange density:

H0 ≡ πα _ψ
α − L: ð5Þ

It can be shown that all of the velocities _ψα will
vanish in this process. However, the evolution
generated by this base Hamiltonian H0¼

R
d3xH0

will not, in general, preserve the constraints (4). To
obtain a Hamiltonian which preserves the con-
straints, one must “augment” the base Hamiltonian
density by adding the constraints to it, each
multiplied by an as-yet-undetermined Lagrange
multiplier uI:

HA ≡H0 þ uIΦI: ð6Þ

This latter quantity is the augmented Hamiltonian
density.

(iii) If the constraints are to be preserved by the aug-
mented Hamiltonian HA ¼ R

d3xHA, it must be the
case that fΦI; HAg ¼ 0 for each constraint. If this
Poisson bracket does not vanish identically, this will
yield a secondary constraint ΨI ¼ 0, which the
initial data must also obey. Similarly, this secondary
constraint must also be conserved, so we demand
fΨI; HAg ¼ 0 as well; this will then generate further
secondary constraints, which must in turn be pre-
served, and so forth. The requirement that all of the
constraints so generated be preserved may determine
some or all of the hitherto undetermined Lagrange
multipliers, in which case we can replace them in
the augmented Hamiltonian with an expression
written solely in terms of the fields and the mo-
menta. It is also conceivable that we may find
an inconsistent model (i.e., one of the constraint
equations cannot be preserved under the time evo-
lution generated by HA).

When the dust settles, one is left with a Hamiltonian HA
which generates the time evolution of the fields. We can use
this Hamiltonian to count (in a simplified way) the number
of degrees of freedom (d.o.f.) of the system; specifically,

Ndof ¼
1

2

��
number of

fields

�
þ
�
number of

momenta

�

−
�
number of

constraints

�
−
�
number of undetermined

Lagrange multipliers

��
:

ð7Þ

The undetermined Lagrange multipliers that remain after
this process are associated with gauge d.o.f. and so are
unphysical. In the present work, however, the models under
consideration will have all of their Lagrange multipliers

determined, and (since the number of fields and momenta
will be the same) we will have

Ndof ¼
�
no: of

fields

�
−
1

2

�
no: of

constraints

�
: ð8Þ

III. ANTISYMMETRIC RANK-2 TENSOR

A. Action

To illustrate the problems which can arise in a model
containing both constraints and a vacuum manifold, we
consider the case of a rank-2 antisymmetric tensor field
Bab ¼ B½ab�. In four-dimensional spacetime, there are two
possible invariants that can be constructed from this field,
which we will denote as X and Y,

X ¼ BabBab Y ¼ BabBab; ð9Þ

where

Bab ≡ 1

2
ϵabcdBcd: ð10Þ

(Note that BabBab ¼ −X.) We consider an action of the
form

S ¼
Z

d4x

�
−

1

12
FabcFabc − VðX; YÞ

�
; ð11Þ

where

Fabc ≡ 3∂ ½aBbc�: ð12Þ

The Euler-Lagrange equations derived from this action will
then be

1

2
∂cFcab − VXBab − VYBab ¼ 0; ð13Þ

where VX ≡ ∂V=∂X and VY ≡ ∂V=∂Y.
Since we will be attempting to construct a Hamiltonian

for this model, we will need to perform a 3þ 1 decom-
position. Given a choice of time coordinate t ¼ x0 on our
spacetime, we can decompose the field Bab into spatial
vectors P⃗ and Q⃗, corresponding to its “electric” and
“magnetic” parts respectively,

Pi ¼ B0i Qi ¼ 1

2
ϵijkBjk; ð14Þ

where ϵijk is the volume element on a constant-t hyper-
surface in spacetime. In terms of these, the kinetic term in
the Lagrangians above can be rewritten as
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−
1

12
FabcFabc ¼ 1

2
½ð _Q⃗ − ∇⃗ × P⃗Þ2 − ð∇⃗ · Q⃗Þ2�; ð15Þ

while the invariants X and Y become

X ¼ −2P⃗2 þ 2Q⃗2; Y ¼ −4P⃗ · Q⃗: ð16Þ

For the sake of concreteness in what follows, we will
want to have an explicit form for the potential V. To support
Lorentz violation, the tensor Bab must have a nonzero
expectation value which can couple to other matter fields.
We therefore want to construct a potential such that there
exist solutions to (13) where Bab is nonzero but constant.
A potential V which is linear in the invariants X and Y will
lead only to solutions where Bab ¼ 0, and we must there-
fore construct a potential which is quadratic in the
invariants (and hence quartic in the fields),

VðBabÞ ¼
1

2
κ1X2 þ κ2XY þ 1

2
κ3Y2 þ λ1X þ λ2Y; ð17Þ

where the κi and λi coefficients determine the “shape” of
the potential.
Equation (13) will then be satisfied for a constant tensor

field if and only if VX ¼ VY ¼ 0, or1

�
κ1 κ2

κ2 κ3

��
X

Y

�
þ
�
λ1

λ2

�
¼ 0: ð18Þ

Assuming that κ1κ3 − κ22 ≠ 0, the solutions to (18) will be
those where X and Y both have a particular value
determined by the κi and λi coefficients. This solution
space is the vacuum manifold of our model; it will be a
four-dimensional manifold in the six-dimensional field
space.2 More generally, the dimension of the vacuum
manifold will be 4 plus the dimension of the solution
space of (18). For example, for the antisymmetric tensor
models discussed in Refs. [10,11], the invariant Y is
undetermined, and thus the vacuum manifold is five
dimensional.

B. Constructing the Hamiltonian

From the kinetic term in (15), we can find the conjugate
momenta for the fields P⃗ and Q⃗, the former of which can be
seen to vanish:

Π⃗P ¼ δL

δ _P⃗
¼ 0; Π⃗Q ¼ δL

δ
_Q⃗
¼ _Q⃗ − ∇⃗ × P⃗: ð19Þ

Thus, we have three primary constraints, corresponding to
the three components of Φ⃗≡ Π⃗P ¼ 0. The augmented
Hamiltonian will therefore require three Lagrange multi-
pliers, which we will assemble into a vector u⃗; this allows
us to write the augmented Hamiltonian compactly as

HA ¼ Π⃗Q · _Q⃗ − Lþ u⃗ · Π⃗P

¼ 1

2
Π⃗2

Q þ Π⃗Q · ð∇⃗ × P⃗Þ þ 1

2
ð∇⃗ · Q⃗Þ2

þ VðX; YÞ þ u⃗ · Π⃗P: ð20Þ

We must now see whether the primary constraints Φ⃗ ¼ 0
are closed under the time evolution of the system, thereby
obtaining secondary constraints and/or values for the
Lagrange multipliers u⃗. The preservation of the primary

constraints leads to a set of secondary constraints Ψ⃗:

0 ¼ _Φ⃗ ¼ fΠ⃗P;HAg

¼ ∇⃗ × Π⃗Q −
∂V
∂P⃗≡ Ψ⃗: ð21Þ

However, preservation of the secondary constraints leads to
an equation involving the unknown Lagrange multipliers u⃗:

0 ¼ _Ψi ¼
�
ð∇⃗ × Π⃗QÞi −

∂V
∂Pi

;HA

�

¼ −
�
∇⃗ ×

�∂V
∂Q⃗

��
i

−
∂2V

∂Pi∂Pj
uj

−
∂2V

∂Pi∂Qj
½Π⃗Q þ ∇⃗ × P⃗�j: ð22Þ

If we define a vector v⃗ as

vi ≡
�
∇⃗ ×

�∂V
∂Q⃗

��
i

þ ∂2V
∂Pi∂Qj

½Π⃗Q þ ∇⃗ × P⃗�j ð23Þ

and a matrix Mij as

Mij ¼
∂2V

∂Pi∂Pj
; ð24Þ

then Eq. (22) reduces to the equation

Mijuj þ vi ¼ 0: ð25Þ

This equation will determine some or all of the components
of u⃗; the number of components so determined is equal to
the rank of the matrix M.
What remains is to find an expression forMij. Using the

chain rule, it is not hard to show that

1The “if” part of this statement is obvious. To see the “only if”
part, suppose that Bab≠0 and αBabþβBab¼0 for some α;β∈R.
Contracting this equation with ϵabcd yields αBab − βBab ¼ 0,
and these two equations together imply that α ¼ β ¼ 0.

2It can be shown that this manifold is homeomorphic to TS2,
the tangent bundle on the sphere.
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Mij ¼ −4VXδij þ 16κ1PiPj þ 32κ2PðiQjÞ þ 16κ3QiQj;

ð26Þ

where VX ¼ ∂V=∂X ¼ κ1X þ κ2Y þ λ1. To solve (25), we
need to invert Mij. By taking an ansatz of the form

ðM−1Þjk ¼ Aδjk þ BPjPk þ 2CPðjQkÞ þDQjQk ð27aÞ

and requiring that MijðM−1Þjk ¼ δik, we find that the
inverse exists for a generic point in field space, with

A ¼ −
1

4VX
ð27bÞ

B ¼ 1

VXQ
½−κ1VX þ 4Q⃗2ðκ1κ3 − κ22Þ� ð27cÞ

C ¼ 1

VXQ
½−κ2VX − 4ðP⃗ · Q⃗Þðκ1κ3 − κ22Þ� ð27dÞ

D ¼ 1

VXQ
½−κ3VX þ 4P⃗2ðκ1κ3 − κ22Þ�; ð27eÞ

where

Q≡ V2
X − 4VXðκ1P⃗2 þ 2κ2P⃗ · Q⃗þ κ3Q⃗

2Þ
þ 16ðκ1κ3 − κ22Þ½P⃗2Q⃗2 − ðP⃗ · Q⃗Þ2�: ð27fÞ

At a generic point in field space, this is well defined, and
so we can invert (25) to determine the three Lagrange
multipliers u⃗ in terms of the other fields. The overall
Hamiltonian density for the system would then be

HA ¼ 1

2
Π⃗2

Q þ Π⃗Q · ð∇⃗ × P⃗Þ þ 1

2
ð∇⃗ · Q⃗Þ2 þ VðX; YÞ

− ðΠPÞiðM−1Þijvj: ð28Þ

Further, if this inverse is well defined, we can count the
number of d.o.f. of the theory. We have six fields (P⃗ and Q⃗),
three primary constraints Π⃗P ¼ 0, and three secondary
constraints given in (21). Thus, the number of d.o.f. for a
general point in field space is

Ndof ¼ 6 −
1

2
ð3þ 3þ 0Þ ¼ 3: ð29Þ

It is evident, however, that the inverse matrix (27) is not
well defined when either Q or VX vanishes. This presents
a dilemma. If we start with an initial-data configuration
satisfying the constraints and for which Q and VX are
nonvanishing, then the Hamiltonian (28) becomes singular
if the fields ever evolve to a point where VX or Q vanishes.
Alternately, one could construct a Hamiltonian under the
assumption that VX and/orQ vanish. In this case, the matrix

Mij would not be of full rank. This would leave one or
more components of u⃗ undetermined in (25); it would
also require that certain components of v⃗ (those not in the
range of Mij) vanish automatically, leading to additional
constraints. The iterative constraint-generation procedure
described in Sec. II would therefore have to continue;
assuming that it did not lead to an inconsistency, the
resulting theory would necessarily have fewer d.o.f. than
the theory constructed for a generic point in field space.
This “loss” of a d.o.f. at certain points in field space

was noted in Ref. [12] in the context of a vector field
model with an unorthodox kinetic term. It has also been
noted in certain vector field models in curved spacetime
[9,13]. While these features of those other models are
troubling, one could perhaps argue that the singularities
of those models occur at nongeneric points in field
space that in some sense are well separated from
“typical” field configurations. In that sense, those
models might still be viable.
What makes the singularity in the present case especially

vexing, however, is that we cannot make such an argument.
The Hamiltonian is singular when VX ¼ 0, and by defi-
nition VX ¼ 0 holds for all points in the vacuum manifold.
The above arguments imply that the evolution between
field configurations “on” the vacuum manifold and field
configurations “off” the vacuum manifold is rather ill
posed, since Hamilton’s equation for P⃗ is

dPi

dt
¼ δHA

δΠPi
¼ −ðM−1Þijvj: ð30Þ

This casts serious doubt on the viability of such a field
theory as a candidate for dynamical Lorentz symmetry
violation. The field configurations with v⃗ ≠ 0 are generic in
field space, both on and off the vacuum manifold. Most
small perturbations away from the vacuum manifold would
therefore have v⃗ ≠ 0 as they evolve “back towards” the
vacuum manifold. But since M−1 becomes singular as
the fields approach the vacuum manifold, we are forced to
conclude that dP⃗=dt will diverge as the fields evolve back
towards the vacuum manifold.
This statement may seem to be at odds with the work of

Altschul et al. [4]. In that work, the authors linearized the
equations of motion (13) about a constant background
tensor for which VX ¼ VY ¼ 0. The authors allowed for the
presence of “massive modes,” field configurations for
which V ≠ 0. However, their results showed that at linear
order the field invariants X and Y (and thus the value of V
itself) are constant in time. In their terminology, the massive
modes are “nonpropagating.” Altschul et al. also raised the
question of whether these modes might become “propa-
gating modes” at higher orders in perturbation theory. My
present work answers this question in the affirmative; in
fact, it is the evolution of the field from V ≠ 0 to V ¼ 0 that
leads to the pathology I have found.
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In constructing linearized versions of a nonlinear field
theory, it is often implicitly assumed that the solutions to
the linearized equations have a one-to-one correspon-
dence with “small solutions” of the full nonlinear equa-
tions of motion. A theory for which this correspondence
can be drawn is said to be linearization stable [14].
However, not all models have this property; in many
models, one can find solutions to the linearized equations
that do not correspond to small solutions of the full
nonlinear equations. Showing whether a given set of
nonlinear differential equations is linearization stable is
a complex question, and a full discussion would be
beyond the scope of this paper. However, the fact that
solutions with V ≠ 0 remain small in the linearized theory
[4], but can diverge in the nonlinear theory, would suggest
that the antisymmetric tensor evolution equations (13) are
not in fact linearization stable.
More recently, Hernaski has also examined the conse-

quences of spontaneous Lorentz symmetry violation in the
context of an antisymmetric rank-2 tensor [15]. That work
used general symmetry considerations to find the most
general form of an effective Lagrangian for the Nambu-
Goldstone modes arising from this sort of spontaneous
Lorentz symmetry breaking. While this construction does
not involve the problematic massive modes of the model,
the fact that the “low-energy limit” of an action (11) is so ill
posed means that it is unclear if Hernaski’s effective
Lagrangian could actually correspond to the low-energy
limit of a model involving a fundamental tensor field
breaking Lorentz symmetry. However, in the construction,
Hernaski remained agnostic about the mechanism by which
this vacuum expectation value arose, and other mechanisms
could possibly still give rise to such an effective Lagrangian
(see Sec. V).

IV. GENERAL FIELD THEORIES

A. Invariants and constraints

Confronted with this problem, two natural questions
arise: why does this pathology occur, and does it affect
other tensor field models? A similar pathology was noted in
Ref. [12] for the “V-field,” a model consisting of a vector
field Aa governed by the action

S ¼
Z

d4x½∇aAb∇bAa − VðAaÞ�; ð31Þ

where VðAaÞ ¼ κðAaAa − bÞ2. This Lagrangian can be
integrated by parts to cast it in the alternate form

S ¼
Z

d4x½ð∇aAaÞ2 − VðAaÞ�: ð32Þ

In this form, it is evident that the model has three
constraints, since the velocities of the spatial components

_A⃗ do not appear. However, the 3 × 3 matrix Mij from that
work [defined analogously to (24) here] is

Mij ¼
∂2V

∂Ai∂Aj
¼ 4κ½δijðAaAa − bÞ þ 2AiAj�: ð33Þ

This can be seen to have a rank of 1 if AaAa ¼ b and 3
otherwise. Since M has full rank off the vacuum manifold
but has a nontrivial null space on the vacuum manifold, the
inverse for M becomes singular on the vacuum manifold,
leading to the same pathology we found in the antisym-
metric tensor case.
In the other two models discussed in Ref. [12], however,

the number of constraints is smaller. For a general kinetic
term of the form

LK ¼ c1ð∇aAbÞð∇aAbÞ þ c3ð∇aAbÞð∇bAaÞ ð34Þ

and the same potential VðAaÞ, there is one primary
constraint if c1 ¼ −c3 (this is the familiar Maxwell kinetic
term) and no primary constraints if c1 ≠ −c3 and c1 ≠ 0.
The pathology therefore seems to depend on the number

of primary constraints in the model. Specifically, both the
V-field model and the antisymmetric tensor model have the
property that on the vacuummanifold the rank of the matrix
M is less than the number of primary constraints. In both
cases, the matrix M is constructed by taking the second
derivatives of the potential V with respect to the “con-
strained fields”: P⃗ for the antisymmetric tensor and A⃗ for
the V-field. It is the failure of this matrix to be full rank on
the vacuum manifold that leads to a singular Hamiltonian.
It is not hard to show that the rank of any matrix

constructed in such a way is bounded above by the number
of invariants used to construct the potential V. Suppose we
have a potential VðX1; X2;…; XNÞ, where the quantities XA
are in turn functions of some subset of the field variables
ψα ¼ fψ1;ψ2;…;ψng, with n > N. The analogous n × n
matrix will then be

Mαβ ¼
∂2V

∂ψα∂ψβ
: ð35Þ

If we imagine diagonalizing this matrix, we can see that the
null space of this matrix corresponds to the “directions” in
field space in which the potential is flat. More explicitly, we
can use the chain rule to rewrite Mαβ as

Mαβ ¼
∂2V

∂XA∂XB

∂XA

∂ψα

∂XB

∂ψβ
þ ∂V
∂XA

∂2XA

∂ψα∂ψβ
; ð36Þ

where a summation over A and B is understood. In the
vacuum manifold, the second term in (36) will vanish
(since the vacuum manifold, by definition, extremizes V
with respect to of all its arguments.) The first term,
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meanwhile, will have a rank of at most N, the number of
invariants used to construct V. This implies that in the
vacuum manifold the rank of Mαβ will be less than n, the
dimension of the space it is defined on.3

Effectively, this means that if the potential has “too many
flat directions” we risk the rank of this matrix being
too small on the vacuum manifold.4 But for a given tensor
field, there are only a limited number of independent
Lorentz invariants that can be constructed from it, and this
number of invariants places an upper bound on the number
of “nonflat” directions that V can have. It is therefore
possible that a given tensor field may not have enough
invariants to reduce the nullity (and increase the rank) of
Mαβ sufficiently.
This illustrates why the matrix M is not of full rank in

either the antisymmetric tensor model or the V-field model.
In both cases, we are constructing the matrix M by taking
the derivatives of V with respect to three constrained fields:
the “electric vector” P⃗ for the antisymmetric tensor or the
spatial components of Aa for the V-field. But there are only
two invariants that can be constructed out of an antisym-
metric tensor Bab and only one that can be constructed out
of a vector field Aa, and so the rank of M decreases when
we are on the vacuum manifold.

B. Constraint structure

Given the above features of the antisymmetric tensor and
V-field models, one might conjecture that any model which
has “more constraints than invariants” would exhibit a
similar pathology. However, the picture is not so simple.
In particular, the structure of the constraints was critical to
the argument; the problematic conditions followed from the
preservation of the secondary constraints, and the preserva-
tion of the primary constraints did not determine any of the
Lagrange multipliers uα in any way. In this section, I will
therefore proceed through the constraint algebra for a more
general field theory to see which features of these models led
to this pathology and whether this simple picture of the
pathology arising from more constraints than invariants
might hold under more general circumstances.
Suppose we consider a field theory in terms of some set

of fields ψα (α ¼ 1;…; n) for which the dynamics are given
by a Lagrangian that is quadratic in these fields’ derivatives,
both spatial and temporal. Suppose, further, that the
“kinetic terms” LK of the Lagrangian depend only on
these derivatives, so we have

LK¼
1

2

X
α;β≤n

½Pαβ _ψα _ψβþ2Qαiβ _ψα∇iψβþRiαjβ∇iψα∇jψβ�:

ð37Þ

The quantities Pαβ, Qαiβ, and Riαjβ are assumed to be
numerical coefficients, independent of the fields and of
spacetime coordinates. Here and in what follows, we will
need to explicitly write out the summations over field indices;
repeated indices should not be assumed to be summed if the
summation is not stated explicitly. However, the summations
over the spatial indices i and j will remain implicit.
Via various field and coefficient redefinitions, it can be

shown (see Appendix) that a set of kinetic terms of this
form can always be rewritten in the form

LK¼
1

2

X
α;β≤m

Pαβ

�
_ψαþ

X
γ≤n

Sαiγ∇iψγ

��
_ψβþ

X
δ≤n

Sβiδ∇iψδ

�

þ
X
α;β>m

Qαiβ _ψα∇iψβþ
1

2

X
α;β≤n

Riαjβ∇iψα∇jψβ; ð38Þ

where Pαβ is a nondegenerate diagonal matrix and
m ≤ n. The advantage of this form is that it is particularly
simple to identify the primary constraints. For α ≤ m,
we have

πα ≡ ∂LK

∂ _ψα
¼ Pαα

�
_ψα þ

X
δ≤n

Sαiδ∇iψδ

�
; ð39Þ

which can be easily inverted to find the velocities in terms
of the momenta and derivatives. For α > m, meanwhile,
we have

πα ¼
X
β>m

Qαiβ∇iψβ; ð40Þ

which can easily be seen to be a constraint equation:

Φα ≡ πα −
X
β>m

Qαiβ∇iψβ ¼ 0: ð41Þ

The number of primary constraints in this model is there-
fore n −m.
Let us now suppose that the full Lagrangian density of

the model is of the form

L ¼ LK − VðψαÞ ð42Þ

withLK of the form given in (38) and VðψαÞ a potential that
does not depend on any field derivatives. Then, the base
Hamiltonian density of this model will be

3In both of the explicit models under consideration, the second
term in (36) is of rank n when VX ≠ 0; in fact, it works out to be
proportional to δαβ. This may not occur in a more general case.

4Note that if we consider all of the fields ψα, rather than just a
subset, the nullity of Mαβ is precisely the dimension of the
vacuum manifold in field space, and the rank of Mαβ is its
codimension in field space.
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H0 ¼
1

2

X
α;β≤m

P−1
αβ παπβ −

X
α≤m

X
β≤n

παSαiβ∇iψβ

−
1

2

X
α;β≤n

Riαjβ∇iψα∇jψβ þ VðψαÞ: ð43Þ

The augmented Hamiltonian density can then be obtained
by adding a set of Lagrange multiplier terms,

HLM ¼
X
α>m

uα

�
πα −

X
β>m

Qαiβ∇iψβ

�
; ð44Þ

to (43).
The first requirement we will need to impose to

reproduce the pathology found in the previous section is
to require that the coefficients Qαiβ in (38) vanish for
α; β > m. To see this, note that the time evolution of a
primary constraint Φα will be given by

_Φα ¼ fΦα; H0g þ fΦα; HLMg; ð45Þ

where H0 ≡ R
d3xH0 and HLM ≡ R

d3xHLM. The latter
Poisson bracket can be evaluated to be

fΦα; HLMg ¼ −
X
β>m

Qαiβ∇iuβ: ð46Þ

As noted above, the pathology in the previous section arises
from the preservation of the secondary constraints, not the
primary constraints. If the Lagrange multipliers enter at this
stage, then the preservation of the primary constraints will
at least partially determine them, and the chain of logic will
diverge at this stage. Thus, for a model to follow the same
logical chain, we must have these terms vanishing for all α,
and so we must have Qαiβ ¼ 0. In the language of Dirac,
this means that the primary constraints are all first class,
since they all mutually commute with each other. Both
the antisymmetric tensor model and the V-field model have
this property.
Making this assumption, the secondary constraints

Ψα ≡ fΦα; H0g can be calculated to be

Ψα ¼ −
∂V
∂ψα

−
X
β≤n

ðSαiβ∇iπβ þRiαjβ∇i∇jψβÞ: ð47Þ

These secondary constraints will in turn need to be
preserved, i.e., _Ψα ¼ fΨα; HAg ¼ 0. In the pathological
cases described above, the Lagrange multipliers entered
into the analogous equation. To see where they enter here,
we can calculate the Poisson bracket fΦα; HAg; we obtain

_Ψα ¼ vα −
X
β>m

� ∂2V
∂ψα∂ψβ

uβ þRiαjβ∇i∇juβ

�
; ð48Þ

where vα represents all terms that do not depend on the
Lagrange multipliers uα.
The first term in the parentheses in (48) is the one that

caused the pathology in the cases of the antisymmetric
tensor and the V-field; the rank of the matrix

∂2V
∂ψα∂ψβ

¼ Mαβ ð49Þ

was different on the vacuum manifold than on a general
point in field space. However, we can see from the above
that in a more general model the derivative terms in (48) can
also help to determine the Lagrange multipliers; the number
of Lagrange multipliers that are determined by requiring
that (48) vanishes is not necessarily just the rank of Mαβ.
For a model to have the vacuum manifold pathology
described in the previous sections, it is sufficient for these
derivative terms to vanish; in other words, Riαjβ ¼ 0 for
α; β > m.5

In summary, any Lagrangian of which the kinetic terms
are of the form (38) (or can be put into this form) will suffer
from the vacuum manifold pathology described above if
the coefficients Qαiβ ¼ 0 and Riαjβ ¼ 0 when both
α and β are greater than m and when the potential V
is constructed from fewer than n −m-field quantities
depending on the fields ψα (with α > m). Both the
antisymmetric tensor model and the V-field model satisfy
these criteria. The kinetic term (15) is of the form (38); a
term corresponding to the Riαjβ term does exist in the

kinetic terms [specifically, the term ð∇⃗ · Q⃗Þ2], but it only
involves the “unconstrained” fields Q⃗ and not the con-
strained fields P⃗. Similarly, the kinetic term for the V-field
Lagrangian (32), when decomposed into its time and space
components, is

LK ¼ ð _A0 − ∇⃗ · A⃗Þ2; ð50Þ

which does not contain any terms corresponding to the
second or third summations in (38) at all.
The above-listed conditions appear to be sufficient for

this pathology, but they may not be necessary. It is entirely
possible that a model for which some of the primary
constraints were second class, or for which the constrained
fields appeared with spatial derivatives, could still have a
Hamiltonian which became singular on the vacuum mani-
fold. However, in either case, the Lagrange multipliers
could not be solved for algebraically, and so the analysis
of the Hamiltonian would not be nearly as straightforward.
It is also unclear whether any physically well-motivated
models with these features exist.

5Note that we can take Riαjβ to be symmetric under the
exchange of i and j, sinceRiαjβ∇iψα∇jψβ ¼ Riαjβ∇jψα∇iψβ up
to total derivatives.
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V. DISCUSSION

We have shown that a model which spontaneously
breaks Lorentz symmetry may, unless constructed with
care, have pathological evolution that is not immediately
evident at the level of the Lagrangian. It is important to note
that this technique is qualitatively different from much of
the previous literature. Many investigations into the viabil-
ity of such models have focused on their phenomenology,
investigating the stability of the new fields (e.g., Ref. [16])
or investigating their interactions with matter (e.g.,
Ref. [17]). A framework applicable to some such models
in a gravitational context was also put forward in Ref. [18].
Such phenomenological studies usually lead to a set of
constraints on the parameters of the model. However, in
general, these phenomenological constraints, no matter
how stringent, will leave behind a small region of viable
parameter space and cannot rule out a “fine-tuned” version
of a model. The methods of the present work, in contrast,
have the potential to completely rule out a model; the
pathological behavior of the antisymmetric tensor model in
Sec. III exists regardless of the values of the parameters
fκ1; κ2; κ3; λ1; λ2g of the model.
This result has serious implications for the construction

of such models. If we wish to build a model with a Lorentz-
violating field, how can we reliably evade these patholo-
gies? Assuming that the model under consideration can be
written in the form (38), withQαiβ ¼ 0 andRiαjβ ¼ 0when
α; β > m, then the only way to avoid the pathology is to
ensure that the rank of the matrix Mαβ is sufficiently high.
This may not always be possible. For example, for the case
of an antisymmetric 2-tensor Bab, there are only two
independent Lorentz invariants that can be constructed
from it, namely X and Y as defined in (9). Since the kinetic
term used in (11) gives rise to three constraints, it is simply
not possible to write down a potential for Bab that does not
give rise to pathological evolution. One could possibly
change the kinetic term so that the model had no more than
two primary constraints; however, this could very well give
rise to instabilities, as discussed in the Introduction.
For tensor fields of higher rank or different symmetry

type, a similar set of considerations would have to come
into play. As an example, Kostelecký and Potting’s linear
cardinal gravity model [2] involves a symmetric rank-2
tensor field Cab in a flat background with a potential
VðCabÞ and the standard kinetic terms for a massless spin-2
field:

LK ¼ −
1

4
½∇cCab∇cCab −∇aC∇aC

þ 2∇aC∇bCab − 2∇bCab∇cCa
c�: ð51Þ

Performing a 3þ 1 decomposition, we find that the time
derivatives of C00 and C0i do not appear in this Lagrangian,
and thus this model will have four primary constraints.

Moreover, there are no cross-couplings between the deriv-
atives (either spatial or temporal) ofC00 andC0i; this means
that the appropriate Qαiβ and Riαjβ coefficients vanish in
order for the general result of Sec. IV B to hold.
Given these features of linear cardinal gravity, one might

be concerned that it runs the risk of suffering from the same
vacuum-manifold pathology as the antisymmetric rank-2
tensor field. However, there is one important distinction:
while there are only two independent invariants one can
construct from an antisymmetric tensor field (X and Y),
there are four independent invariants that can be con-
structed from a symmetric rank-2 tensor field:

X1 ¼ Ca
a ð52aÞ

X2 ¼ Ca
bCb

a ð52bÞ

X3 ¼ Ca
bCb

cCc
a ð52cÞ

X4 ¼ Ca
bCb

cCc
dCd

a: ð52dÞ

Thus, there appear to be “just enough” invariants for a
cardinal gravity model to avoid the vacuum-manifold
pathology discussed in this work, so long as the potential
has nontrivial dependencies on all four of these invariants.
It must be emphasized, however, that having no more
constraints than invariants is a necessary, not sufficient,
condition to obtain a nonsingular Hamiltonian that can be
extended throughout all of field space; it is possible that
other, more subtle pathologies occur in such a model.
In the face of these difficulties, it is important to note

that there are other methods by which models can include
“naturally nonzero” fields. One could, for example, postu-
late that Bab is not a fundamental field but is instead a
function of some other fundamental field which gains a
vacuum expectation value. For example, a recent work by
Assunção et al. [19] introduced a model in which Bab is a
spinor condensate. It is not immediately clear whether the
present results could be generalized to such models.
Another method to avoid these difficulties would be to

simply constrain the field to be nonzero via the use of a
Lagrange multiplier λ,

S ¼
Z

d4x

�
−

1

12
FabcFabc − λðX − bÞ

�
; ð53Þ

where X is defined as in (9) and b ≠ 0 is a constant. The
equation of motion for λ is then simply X ¼ b, and thus the
tensor field Bab would be nonzero “in vacuum.”6

6It is worth noting here that Hernaski’s effective low-energy
Lagrangian [15] could equally well arise from a “fundamental”
Lagrangian of this type, rather than from a Lagrangian involving
a potential for the fundamental field Bab.
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This method introduces a new field to the model as well
as a new primary constraint; more importantly, it also
changes the algebra of the primary constraints in important
ways [12]. If we perform Dirac-Bergmann analysis on this
Lagrangian, the augmented Hamiltonian density can be
shown to be

HA ¼ 1

2
Π⃗2

Q þ Π⃗Q · ð∇⃗ × P⃗Þ þ 1

2
ð∇⃗ · Q⃗Þ2 þ λðX − bÞ

þ u⃗ · Π⃗P þ uλϖ: ð54Þ
Here, ϖ is the conjugate momentum to λ; it is identically
zero, and so the equation ϖ ¼ 0 is enforced by a fourth
Lagrange multiplier uλ (in addition to the three Lagrange
multipliers u⃗ enforcing the constraint Π⃗P ¼ 0.) If the
primary constraints are to be preserved, their Poisson
brackets with the augmented Hamiltonian HA must vanish.
The secondary constraints are found to be

Ψ⃗≡ 4λP⃗ − ∇⃗ × Π⃗Q ð55Þ
and

Ψ≡ −ðX − bÞ: ð56Þ
These secondary constraints must in turn be preserved
under time evolution; after some algebra, it can be shown
that

_Ψ⃗ ¼ 4½uλP⃗þ λu⃗þ ∇⃗ × ðλQ⃗Þ� ð57Þ
and

_Ψ ¼ 4½P⃗ · u⃗ − 4Q⃗ · ðΠ⃗Q þ ∇⃗ × P⃗Þ�: ð58Þ
These equations uniquely determine the Lagrange multi-
pliers u⃗ and uλ, so long as P⃗ ≠ 0 and λ ≠ 0:

uλ ¼ −
1

P2
½P⃗ · ∇⃗ × ðλQ⃗Þ þ λQ⃗ · ðΠ⃗Q þ ∇⃗ × P⃗Þ� ð59Þ

u⃗ ¼ −
1

λ
½uλP⃗þ ∇⃗ × ðλQ⃗Þ�: ð60Þ

For generic points in the vacuummanifold, the Hamiltonian
is nonsingular, and the vacuum manifold pathology does
not arise. In some sense, this is not a surprise; the pathology
in the potential model arises when the field evolves onto or
off of the vacuum manifold, but the field is “stuck” on the
vacuum manifold in the Lagrange-multiplier model.7

It must be said that some authors (myself included) find
the use of Lagrange multipliers to be somewhat inelegant.
This prejudice arises from classical particle mechanics,
where a constrained model can often be viewed as a limit:
one imagines a model where a potential energy is mini-
mized on the constraint surface and then takes the limit of
this model as the potential becomes infinitely strong. From
this perspective, Lagrange multipliers are just an ad hoc
approximation to a more fundamental theory. However, the
situation is a lot more nuanced than that in classical field
theory, particularly in the presence of models with primary
constraints [12]. The present work shows that the use of
Lagrange multipliers and/or composite fields may be
unavoidable if one wants to model Lorentz symmetry
violation with a tensor field, particularly one of higher
rank, and that Lagrange-multiplier models may not be
relatable to a “more fundamental” potential model at all.
Finally, one must remember that all of this analysis has

been performed at the classical level. Ideally, one would
want to take quantum effects into account as well. In the
case of a set of scalar fields with a spontaneously broken
internal symmetry, it is possible to take a fundamental
quantum Lagrangian and calculate an effective potential for
the expectation value of the field. The expectation value of
the field will then obey a version of the classical equation of
motion, with V replaced by the effective potential, and so
there is a well-defined parallel between classical models
and quantum models of these fields. However, it is still an
open question whether an effective potential formulation
exists in the case of spontaneously broken Lorentz sym-
metry, and so it is unclear whether or not a similar
correspondence between the classical and quantum pictures
can be drawn.8 It may be that the pathologies found in the
present work are an indication that such a correspondence
does not actually exist for some fields undergoing sponta-
neously Lorentz symmetry breaking; more research on this
subject is needed.
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APPENDIX: CANONICAL FORM OF FIELD
THEORY LAGRANGIAN

Consider a Lagrangian for which the kinetic term is of
the form (37) (reproduced here):

7The above derivation also gives us the number of d.o.f. of the
model (53). We have seven fields in the original Hamiltonian (the
components of Bab and the Lagrange multiplier λ), four primary
constraints (Π⃗P ¼ 0 and ϖ ¼ 0), and four secondary constraints
(Ψ⃗ ¼ 0 and Ψ ¼ 0.) There are therefore 7 − 1

2
ð8Þ ¼ 3 d.o.f. for

this model. Note that, as discussed at length in Ref. [12], adding a
Lagrange multiplier does not eliminate a d.o.f. from this model. 8I thank B. Altschul for this observation.
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LK ¼1

2

X
α;β≤n

½Pαβ _ψα _ψβþ2Qαiβ _ψα∇iψβþRiαjβ∇iψα∇jψβ�:

In Sec. IV B, it was stated that a set of kinetic terms of this
form can always be put into the form (38). This Appendix
describes how this may be accomplished.
From the form of (37), it is fairly evident that we can take

Pαβ to be symmetric under the exchange of α and β. Less
evident, but equally important, is that Qαiβ can also be
taken to be symmetric under this exchange. The antisym-
metric part of this array (when contracted with _ψα∇iψβ)
can be expressed in terms of total derivatives:

ðQαiβ −QβiαÞ _ψα∇iψβ

¼ Qαiβð _ψα∇iψβ − _ψβ∇iψαÞ

¼ ∇iðQαiβ _ψαψβÞ −
∂
∂t ðQαiβð∇iψαÞψβÞ: ðA1Þ

With this in mind, the procedure for putting the kinetic
terms in the form (38) is as follows:

(i) Since Pαβ can be taken to be real and symmetric, we
can redefine the fields ψα (via an invertible linear
transformation) so that the matrix Pαβ becomes
diagonal. Moreover, we can reorder these fields so
that Pαα ≠ 0 for all α ≤ m, and Pαα ¼ 0 for α > m.
The kinetic terms of the Lagrangian then become

LK ¼ 1

2

X
α;β≤m

Pαβ _ψα _ψβ þ
X
α;β≤n

Qαiβ _ψα∇iψβ

þ 1

2

X
α;β≤n

Riαjβ∇iψα∇jψβ; ðA2Þ

where the arraysQαiβ andRiαjβ have been redefined
after the field transformation.

(ii) By splitting the second sum in (A2) into three parts,
integrating by parts, and applying the symmetry of
Qαiβ, we can show that

X
α;β≤n

Qαiβ _ψα∇iψβ

¼
X
α≤m

X
β≤n

Qαiβ _ψα∇iψβ þ
X
α≤m

X
β>m

Qαiβ _ψα∇iψβ

þ
X

m<α;β≤n
Qαiβ _ψα∇iψβ

¼
X
α≤m

X
β≤n

Q̃αiβ _ψα∇iψβ þ
X

m<α;β≤n
Qαiβ _ψα∇iψβ;

ðA3Þ

where

Q̃αiβ ¼
�

Qαiβ α ≤ m; β ≤ m

2Qαiβ α ≤ m; β > m
: ðA4Þ

(iii) Since Pαβ is a diagonal, nondegenerate matrix for
α; β ≤ m, it has an inverse. By then defining

Sαiβ ≡
X
γ≤m

P−1
αγ Q̃γiβ; ðA5Þ

we can then show that the first two summations in
(A2) are equal to

1

2

X
α;β≤m

Pαβ _ψα _ψβ þ
X
α;β≤n

Qαiβ _ψα∇iψβ ¼
1

2

X
α;β≤m

Pαβ

�
_ψα þ

X
γ≤n

Sαiγ∇iψγ

��
_ψβ þ

X
δ≤n

Sβiδ∇iψδ

�

þ
X
α;β>m

Qαiβ _ψα∇iψβ −
1

2

X
α;β≤m

X
δ;γ≤n

PαβSαiγSβiδ∇iψγ∇jψδ: ðA6Þ

Effectively, what we have done here is simply “completed the square” of the first two summations in (A2).
(iv) The last sum in (A6) can then be absorbed into the last term in (A2), yielding a set of kinetic terms of the desired

form:

LK ¼ 1

2

X
α;β≤m

Pαβ

�
_ψαþ

X
γ≤n

Sαiγ∇iψγ

��
_ψβ þ

X
δ≤n

Sβiδ∇iψδ

�
þ

X
α;β>m

Qαiβ _ψα∇iψβ þ
1

2

X
α;β≤n

Riαjβ∇iψα∇jψβ: ðA7Þ
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