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When the vacuum state of a scalar or electromagnetic field is modified by the presence of a reflecting
boundary, an interacting test particle undergoes velocity fluctuations. Such effect is regarded as a sort of
quantum analog of the classical Brownian motion. Several aspects about this system have been recently
investigated in the literature, for instance, finite temperature effects, curved spacetime framework, near-
boundary regime, late time behavior, and subvacuum phenomena. Here, further steps are given in this
analysis by considering the effect of vacuum fluctuations of a scalar field in the presence of a perfectly
reflecting flat boundary over the motion of a scalar test particle when the background field does not satisfy
the Huygens’ principle. Specifically, the background field is allowed to have mass and the system is studied
in Dþ 1 dimensions. A method of implementing a smooth transition between distinct states of the field is
also developed, rendering regularized analytic expressions describing the velocity fluctuations of the test
particle. This method is applied to study some special behaviors of the system. Possible applications
include fields known to occur in nature as, for instance, the massive Higgs’ field, for which the velocity
fluctuations are here predicted to acquire a characteristic oscillation, thus behaving differently from their
electromagnetic counterparts.
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I. INTRODUCTION

Transition between vacuum states of the background
electromagnetic field induces velocity fluctuations over a
charged test particle that is interacting with this field. This
phenomenon was originally reported [1] for a nonrela-
tivistic particle released initially at rest nearby a perfectly
conducting flat boundary, and since then, it has been
explored in various possible ways. For instance, finite
temperature effects were included [2], and the idea was
applied to study velocity fluctuations in Robertson-Walker
spacetimes, where the varying scale factor is responsible for
driving the vacuum transition [3]. Among the features
unveiled by this effect is the change of the kinetic energy of
the particle during the transition between vacuum states. In
the case of an electric charged particle, when the vacuum
state is modified by the presence of a perfectly reflecting
boundary placed at z ¼ 0, it was shown that in the late time
regime the particle kinetic energy per unit mass is increased

by the amount αð2πz2Þ−1, where α is the fine-structure
constant. The observed divergence at the wall was linked to
the use of idealized boundary conditions. Another diver-
gence, also connected to the idealization of the model, was
reported to occur in a time t ¼ 2z after the particle is
released in the presence of the modified vacuum.
A model including quantum aspects of the particle was

also examined [4] as an attempt to bring more reality to the
system, and it was shown that such procedure is enough to
regularize the late time regime. However, the model was
not completely integrated, and only particular expansions
were obtained. In particular, the behavior at t ¼ 2z could
not be addressed. The use of a smooth switching to study
the late time regime of this system was also examined [5].
A technique of distance fluctuations to study the simplified
1þ 1 dimensional scalar model was successfully imple-
mented [6], and despite its regularization at the wall and at
t ¼ 2z, higher dimensional cases were not considered, and
a new kind of divergence was reported to occur at late
times. Recently a more complete description based on
smooth switching techniques to model the vacuum tran-
sition was reported [7,8]. It was shown that the smooth
character of the transition is enough to regularize all the
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velocity dispersions, without changing the idealized
boundary hypothesis. This idea was further developed to
include a general switching in the case of 3þ 1 scalar field
[9], where new features were unveiled. For instance,
depending on the measurement setup, the particle kinetic
energy can be lessened by a certain amount, a sort of
subvacuum phenomenon, where strictly positive quantities
at the classical level become negative at a quantum
level [10].
It should be stressed that the idea of using switching

mechanisms is close to the one of averaging observables.
Just to establish the connection, a perfectly conducting
boundary, as the one used to study velocity fluctuations,
polarizes the vacuum around it giving rise to fluctuating
Casimir forces that diverge at the boundary. A possible
way of bringing reality to this physically unfeasible model
is by implementing averaged stresses, that regularize the
divergences and enables one to study the fluctuations near
the boundary [11,12]. In fact, actual measurements of
these stresses are only meaningful for time and space
averages. Another instance where this technique was
implemented to bring physical meaning to the observables
was in a recently investigated analog model for light cone
fluctuations due to stress tensor fluctuations [13], where
the geometry of a nonlinear dielectric slab naturally
provided a space averaged quantum observable, thus
regularizing the model.
In this work, we go a step further in the analysis of the

velocity fluctuations of a test particle in the presence of a
perfectly reflecting flat boundary when the background
scalar field is allowed to have a nonvanishing mass. The
physical motivation for studying this system relies on the
fact that only massive scalar fields are known to occur in
nature, e.g., the Higgs’ field. We also let the spacetime
dimension to be arbitrary, thus including previous studies
as particular cases. One important motivation in going
through this generalization is the possibility to examine
frameworks where the background field fails to satisfy the
Huygens’ principle. In such circumstances, the fluctuations
significantly depart from previously known cases. In order
to integrate the velocity dispersions, we present a general
discussion of switching functions in frequency space,
revealing the physical mechanism behind the regularization
process, and how to model particular switchings that agree
with the system symmetry.
The paper is organized as follows. The next section

establishes the basic Langevin equation modeling the
effect. In Sec. III the quantization of the massive scalar
field in Dþ 1 spacetime dimensions is presented, and
Huygens’ principle is defined. In Sec. IV, we study
switching mechanisms in frequency space, unveiling some
general regularization aspects. We present the velocities
fluctuations in Sec. V, and close with final remarks in
Sec. VI. The Appendix contains a detailed calculation of
the late time regime. Units are such that c ¼ ℏ ¼ 1.

II. LANGEVIN EQUATION

The system under study consists of a massive real scalar
field ϕðt;xÞ inDþ 1 dimensions, withD a positive integer
number, and a nonrelativistic point-like scalar particle of
charge to mass ratio g. Here, the vector x is written as
(x1;…; xD). In the nonrelativistic regime, the particle
dynamics is governed by the Newtonian force law [9]

dvi
dt

¼ −g
∂ϕ
∂xi ; ð1Þ

where xi ¼ xiðtÞ denotes the particle position, and vi ¼
dxi=dt ¼ _xi its velocity. The subscript index i runs from 1
toD, denoting the ith Cartesian component. This particle is
assumed to be a test particle in the sense the field it creates
is small, and can be neglected from the analysis.
The scalar particle works as a probe for quantum fluc-

tuations of the background field when it is prepared in some
vacuum state, for which hϕðt;xÞi≡ h0jϕðt;xÞj0i ¼ 0.
Hence, Eq. (1) becomes a Langevin-like equation for the
particle position, and its acceleration vanishes on average,
h_vii ¼ 0. Despite this, it will in general fluctuate around
this average, as negative fluctuations, when squared, do not
cancel in the averaging process, and thus h_v2i i ≠ 0. If we
assume the particle displacement to be negligible during the
interaction with the field, its final velocity will be

viðτÞ ¼ −g
∂
∂xi

Z
τ

0

dt0ϕðt0;xÞ; ð2Þ

where τ is hereafter called the measuring time. Thus, a
measurement of the velocity component vi will be distributed
around its average, hvii ¼ 0, with mean square deviation
hðΔviÞ2i ¼ hv2i i due to quantum vacuum fluctuations.
We will assume the field to be in its modified vacuum

state due to the presence of a perfectly reflecting plane
boundary. Recently, this scenario was studied for a mass-
less scalar field in 3þ 1 dimensions [9]. Let us recall some
of its features to set the notation up. If we call d the distance
from the particle to the wall, it was shown that when the
interaction is instantaneously turned on at t ¼ 0s, and
turned off at t ¼ τ > 0, the dispersions hðΔviÞ2i diverge at
the wall and also when τ ¼ 2d, which corresponds to the
time of a signal’s round trip between particle and boundary.
It was shown that adding the smooth character of the
interaction to the model is enough to regularize these
divergences. The physical mechanism behind it is the finite
amount of time, hereafter called the switching time τs > 0,
needed for the particle to be released in its initial position,
and also for completing the measurement afterwards. It is
also noteworthy that the particle is supposed not to disturb
the background field. Therefore, the smooth switching is
equivalent to a time dependent coupling gFðtÞ, where the
switching function FðtÞ is normalized according to
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Z
∞

−∞
dtFðtÞ ¼ τ: ð3Þ

Thus the velocity dispersions become

hðΔviÞ2i ¼
g2

2

� ∂
∂xi

∂
∂x0i

Z
∞

−∞
dtFðtÞ

Z
∞

−∞
dt0Fðt0ÞGð1Þðt;x; t0;x0Þ

�
x0¼x

; ð4Þ

with Gð1Þðt;x; t0;x0Þ ¼ hϕðt;xÞϕðt0;x0Þ þϕðt0;x0Þϕðt;xÞi.
Notice that the sudden switching process corresponds to
set FðtÞ ¼ ΘðtÞΘðτ − tÞ, ΘðtÞ being the unit step function.
The function FðtÞ thus defined is a dynamical quantity that
models how the experiment is done. We will explore some
of its physical properties later on.

III. ASPECTS OF THE QUANTIZED FIELD

This section reviews the canonical quantization of the
massive scalar field in the presence of a perfectly reflecting
planewall inDþ 1 dimensions. Thewall is placed at x1 ¼ 0
in all cases. We call especial attention to the propagation
of signals and nonlocal effects when the field has non-
vanishing mass, and in the massless case when D is an even
number. As we will see, these cases present features con-
trasting significantly from the massless 3-dimensional case.
We start by studying the quantization of the free field.

Generalization to the case where a boundary is present can
easily be implemented by using the method of images. Let
m be the field mass. Its dynamics is given by the free Klein-
Gordon equation ð□þm2Þϕ ¼ 0, where □ ¼ ημν∂μ∂ν,
and ημν is the Minkowski metric in Cartesian coordinates.
The quantized field is written in terms of the creation/
annihilation operators as ϕðt;xÞ ¼ R

dDk½akukðt;xÞ þ
a†ku

�
kðt;xÞ�, where ½ak; a†k0 � ¼ δDðk − k0Þ, and all the other

commutators vanish. The properly normalized eigenfunc-
tions uk are [14]

ukðt;xÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωð2πÞD
p e−iωtþik·x; ð5Þ

where the wave vector k ∈ RD, and ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. The

vacuum state j0i is such that akj0i ¼ 0 for all k. The
propagators for the real scalar field can be written in terms
of the two-point (Wightman) function Gþðt;x; t0;x0Þ,
defined as the vacuum expectation Gþðt;x; t0;x0Þ ¼
hϕðt;xÞϕðt0;x0Þi. It can be shown that, after using a
generalized spherical coordinate transformation, this func-
tion has the following integral representation in terms of
Bessel functions

Gþðt;x; t0;x0Þ ¼ 1

2ð2πÞD2 jΔxjD2−1
Z

∞

0

dk
k
ω
e−iωΔtk

D
2
−1

× JD
2
−1ðkjΔxjÞ; ð6Þ

and can be exactly integrated as [15]

Gþðt;x; t0;x0Þ ¼ 1

2π

�
m

2πiσ

�D−1
2

KD−1
2
ðimσÞ: ð7Þ

Here, KνðzÞ is the modified Bessel function of the second
kind, σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔtÞ2 − ðΔxÞ2

p
, and Δt ¼ t − t0 − iϵ, with ϵ a

small positive real number added to ensure convergence. In
what follows, we will use two propagators, the Hadamard
two-point function Gð1Þðt;x; t0;x0Þ ¼ 2Re Gþðt;x; t0;x0Þ
appearing in Eq. (4), and the retarded scalar propagator,
defined as GRðt;x; t0;x0Þ ¼ −2Θðt − t0Þ ImGþðt;x; t0;x0Þ.
Thus the canonical commutation relations imply that
ð□þm2ÞGRðt;x; t0;x0Þ ¼ δðt − t0ÞδDðx − x0Þ, that is, the
retarded propagator is the field intensity at ðt;xÞ produced
by a deltalike unit charge at ðt0;x0Þ. It can be shown that
the support of GRðt;x; t0;x0Þ is contained in the future
emission of ðt0;x0Þ, i.e., the set Jþðt0;x0Þ ¼ fðt;xÞ∶
t > t0 and ðΔtÞ2 ≥ ðΔxÞ2g [16].
As anticipated, the present work extends previous

analysis [9] by considering the effect of field mass and
spacetime dimension on vacuum induced velocity fluctua-
tions of scalar particles. In contrast to previous works,
now the background field is such that its wave equation
does not satisfy the Huygens’ principle, defined as
follows [16]. The wave equation ð□þm2Þϕ ¼ 0 is said
to satisfy this principle if the corresponding retarded
propagator GRðt;x; t0;x0Þ is supported on the future light-
cone Cþðt0;x0Þ ¼ fðt;xÞ∶t > t0 and ðΔtÞ2 ¼ ðΔxÞ2g. In
physical terms, if a wave equation is of Huygens type,
then field disturbances that have a sudden beginning also
have a sudden ending.
Let us analyze the massiveD ¼ 3 case, for which Eq. (7)

reduces to

GRðt;x; t0;x0Þ ¼ Θðt − t0Þ
2π

δðσ2Þ

þ Θðt − t0Þ
2π2σ2

ImfimσK1ðimσÞg; ð8Þ

where the limit ϵ → 0 was taken. As we see, the propagator
is composed by a sum of a term supported on the future
light cone σ2 ¼ 0 plus a “tail” term that does not vanish
inside the light cone, σ2 > 0, if m > 0. Thus an inertial
observer will experience the field produced in an early time
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by a deltalike source as a sudden impulse followed by a
never ceasing retarded signal. The particular form of the
tail term depends on how the field internal degrees of
freedom individually propagate signals. In this case,
their net effect presents nonintuitive interference pat-
terns, as depicted in Fig. 1. It is possible to track the
origin of the non-Huygensian character down by looking
at the individual plane wave solutions given by Eq. (5).
Notice that these waves present dispersion, and their
group velocity is vg ¼ k=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. Thus, the field

possesses modes carrying information at arbitrarily
low velocities, resulting, for instance, in the interference
patterns of Fig. 1.
The case D ¼ 2 is richer, for even the massless case is

non-Huygensian, as it is shown in Fig. 2. In fact, Huygens’
principle does not hold for the d’Alembertian in odd
dimensional flat spacetimes [16]. Therefore, in contrast
to the former case, the non-Huygensian character of D ¼ 2
does not possess a simple interpretation in terms of
plane waves.

As for the D ¼ 1 case, inspection of Eq. (6) or (7)
reveals that the propagator is not defined for the massless
case. In fact, the observed infrared behavior is well
known in quantum field theory. Nevertheless, the
dispersion can be calculated in the 1þ 1 case taking
the field to have a small mass and making it go to zero at
the end of the calculation, as was done in [6]. Thus, this
case fails to satisfy the Huygens’ principle by the same
reason as the 3þ 1 case.
The propagation of field disturbances is an example of

nonlocal effect, and the above discussion indicates how it
is related to the Huygens’ principle. The vacuum induced
velocity dispersions hðΔviÞ2i, defined through Eq. (4),
depend on field averages over an extended period of
time, and thus are also nonlocal effects. We will see in
Sec. V that the dispersions present similar features
coming from the non-Huygensian character of the back-
ground field.
We close this section with the quantized field in

the presence of a reflecting flat wall placed at x1 ¼ 0.
By the method of images, it is straightforward to see that
the Wightman function is amended as

Gþðt;x; t0;x0Þ ¼ Gþ
0 ðt;x; t0;x0Þ

−
1

2π

�
m

2πiσþ

�D−1
2

KD−1
2
ðimσþÞ; ð9Þ

where σþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔtÞ2 − ðΔ̂xÞ2

q
, and Δ̂x is the vector

obtained from Δx by exchanging x01 → −x01. In the
above equation Gþ

0 ðt;x; t0;x0Þ is the Minkowskian two-
point function defined in Eq. (7). By linearity, all other
propagators are readily obtained in terms of the modified
Wightman function. In particular, the Hadamard two-

point function is Gð1Þðt;x; t0;x0Þ ¼ Gð1Þ
0 ðt;x; t0;x0Þ þ

Gð1Þ
Renðt;x; t0;x0Þ, with

Gð1Þ
Renðt;x; t0;x0Þ ¼ −

1

π
Re

��
m

2πiσþ

�D−1
2

KD−1
2
ðimσþÞ

�
;

ð10Þ

where the subscript Ren stands for renormalized. In
calculating the dispersions hðΔviÞ2i, we should keep only
the renormalized propagator given by Eq. (10), as the
Minkowski vacuum do not cause velocity fluctuations on
test particles [17].

IV. SMOOTH SWITCHING IN
FREQUENCY SPACE

If the renormalized propagator given by Eq. (10) is
written in its integral representation, as it was done with the
Wightman function in Eq. (6), and inserted in Eq. (4), we
will obtain that

0 2 4 6 8

−0.06

−0.04

−0.02

0.00

0.02

0.04

FIG. 1. Some representative plots for the propagator tail as
function of σ. Here, D ¼ 3.

0 2 4 6 8

−0.1

0.0

0.1

0.2

0.3

FIG. 2. Some representative plots for the propagator tail as
function of σ when D ¼ 2. In this case the plot corresponding to
the massless field works as an envelope providing a maximum for
the oscillation amplitude.
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hðΔviÞ2i ¼
g2

2

� ∂
∂xi

∂
∂x0i

−1
ð2πÞD2 jΔ̂xjD2−1

Z
∞

0

dk
k
ω
jF̂ðωÞj2kD

2
−1JD

2
−1ðkjΔ̂xjÞ

�
x0¼x

; ð11Þ

where we have defined the Fourier transform of FðtÞ [18],

F̂ðωÞ ¼
Z

∞

−∞
dte−iωtFðtÞ: ð12Þ

The normalization condition expressed by Eq. (3) is simply
the constraint F̂ð0Þ ¼ τ. Thus, the question of whether or
not a given absolute integrable profile F̂ðωÞ satisfying
F̂ð0Þ ¼ τ corresponds to a physically admissible switching
naturally arises. For instance, a necessary condition is
F̂ðωÞ ¼ F̂�ð−ωÞ for FðtÞ to be real. This question can be
partially answered once we establish what is meant by an
admissible switching. By its very construction, we should
assume that such FðtÞ do not alter the “sign” of the
interaction, and is limited in magnitude by the maximum
possible value, 1. Thus, a switching is admissible if
0 ≤ FðtÞ ≤ 1. In this case, FðtÞ=τ can be mathematically
viewed as a probability density function, and the Bochner
theorem [19] states that FðtÞ is a probability density
function if, and only if, its Fourier transform F̂ðωÞ is
continuous, normalized as F̂ð0Þ ¼ τ, and for every positive
integer number n, the positivity condition

Xn
i;j¼1

F̂ðωi − ωjÞξiξ�j ≥ 0 ð13Þ

holds for arbitrary real numbers ωi and complex num-
bers ξi. In practice, though, Eq. (13) is not enlightening.
Nevertheless, it can be used to guide one’s search for a
switching in frequency space. In fact, for n ¼ 1, 2 this
condition simply means that F̂ð0Þ ≥ 0 and jF̂ðωÞj ≤ F̂ð0Þ.
Moreover, given a Fourier transform such that the corre-
sponding function FðtÞ is a probability distribution, one
must ensure that FðtÞ is bounded by 1 in order to be an
admissible switching. We will use these remarks to moti-
vate the use of a particular FðtÞ later on.
A convenient choice of the switching function is

Fð1Þ
n;τðtÞ ¼ cn=½1þ ð2t=τÞ2n�, with cn ¼ ð2n=πÞ sinðπ=2nÞ

[7]. Let us quote some of its properties. As n → ∞, it is

clear that Fð1Þ
n;τðtÞ recovers the sudden switching mecha-

nism. Thus, for a finite n, it models a smooth extension
of the former. The switching time τs is fixed by the
measurement duration τ and the parameter n, and for large
n it is approximately given by τs ¼ ðτ=2nÞ lnð2þ ffiffiffi

3
p Þ.

Therefore, for a fixed large n, τs grows linearly with τ, and
there will be no residual effects in the late time regime
τ → ∞. Despite this loss of information in the late time

regime, the switching Fð1Þ
n;τðtÞ is well suitable to study the

dispersions for a finite τ, and the integral in Eq. (11) can be

performed using the Fourier transform of Fð1Þ
n;τðtÞ, which in

turn is found from the results in [7] to be

F̂ð1Þ
n;τðωÞ ¼ iτπcn

2n

X2n−1
q¼n

ψn;qe−iωτψn;q=2; ð14Þ

with ψn;p ¼ exp½iðπ=2nÞð1þ 2pÞ�.
In order to gain control of the late time regime, a

switching with controllable τs must be implemented. For
instance, the choice

Fð2Þ
τs;τðtÞ ¼

1

π

�
arctan

�
t
τs

�
þ arctan

�
τ − t
τs

��
ð15Þ

was successfully used to analyze the dispersions in the
massless 3þ 1 scalar case for all τ [9], and more recently
it was implemented to study the near-boundary regime
for the electromagnetic case [8]. Nevertheless, dispersions
modeled by this switching have the drawback of depen-
ding on complex arguments, which are not of easy
manipulation. Moreover, when m ≠ 0 the integral in
Eq. (11) does not seem to have a simple analytic closed
expression with the choice of the switching defined by
Eq. (15). In fact, even for the sudden switching mechanism

Fð0Þ
τ ðtÞ ¼ ΘðtÞΘðτ − tÞ, the massive case is not simple.
Despite this, it is possible to construct a suitable switch-

ing mechanism with controllable τs for which the late time
regime of Eq. (11) can be explicitly found. In order to

do that, we start from the Fourier transform of Fð0Þ
τ ðtÞ,

F̂ð0Þ
τ ðωÞ ¼ ð1=iωÞð1 − e−iωτÞ. Thus, we will look for a

switching function given as the inverse Fourier transform of

F̂ðωÞ ¼ 1

iω
ð1 − e−iωτÞDðωÞ: ð16Þ

The normalization F̂ð0Þ ¼ τ requires that Dð0Þ ¼ 1, and D
should be bounded as jωj → ∞ to ensure convergence. For
instance, if DðωÞ ¼ e−τsjωj, the corresponding switching is
the one defined by Eq. (15). This procedure reveals how the
smooth switching regularizes the usual divergences pre-
sented by this sort of system. It acts as a filter for high
frequency modes. The decaying factor D must be chosen
according to the remarks presented in the beginning of the
section. For example, if we set DðωÞ ¼ Θð1=τs − jωjÞ, the
function FðtÞ obtained is smooth and tends to Fð0Þ

τ as
τs → 0. Nevertheless, the hypotheses of Bochner’s theorem
are not verified, as D is not continuous, and thus FðtÞ < 0
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for some values of t. In what follows, we work with the
function defined by DðωÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2τsjωj
p

e−τsjωj, and thus

Fð3Þ
τs;τðtÞ ¼

1

2π

Z
∞

−∞
dω

eiωt

iω
ð1 − e−iωτÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2τsjωj

p
e−τsjωj:

ð17Þ

Illustrative profiles modeled by Fð3Þ
τs;τðtÞ for some chosen

values of τs are depicted in Fig. 3. The plots were done
using a closed form for Eq. (17) in terms of special func-

tions, from which we verify the condition 0 ≤ Fð3Þ
τs;τðtÞ ≤ 1.

The full expression, though, is not very clarifying, and thus
will be omitted here, as only its Fourier representation F̂ðωÞ
[Eq. (16)] is needed in calculating the dispersions.

V. VELOCITY DISPERSIONS

We are now able to present the various dispersions
contemplated by Eq. (11). Let us start with a closed

expression obtained with the smooth switching Fð1Þ
n;τ .

Let hðΔvx1Þ2i≐ hðΔv⊥Þ2ið1ÞD , and hðΔvxiÞ2i≐ hðΔvjjÞ2ið1ÞD ,
i > 1. The superscript (1) indicates the measurement done

according to Fð1Þ
n;τ . Thus, by combining Eqs. (11) and (14),

and using Eq. (7), it follows

hðΔvjjÞ2ið1ÞD ¼ −
g2

xD−1

�ðτ=xÞπcn
2n

�
2 Xn−1
p;q¼0

ψn;pψ
�
n;q

×
�

mx
4πγp;q

�Dþ1
2

KDþ1
2
ð2mxγp;qÞ; ð18Þ

hðΔv⊥Þ2ið1ÞD ¼ 8πx2hðΔvjjÞ2ið1ÞDþ2 − hðΔvjjÞ2ið1ÞD ; ð19Þ

where now γp;q ¼ ½1 − ðτ=4xÞ2ðψn;p − ψ�
n;qÞ2�12, and x ¼ x1

is the particle distance to the wall. The generalization of
Eqs. (18) and (19) is twofold, as the background field is

allowed to have any mass m and the dimension D can take
any positive integer values. For instance, the results in
Ref. [9] can be recovered by settingD ¼ 3 and takem → 0.
Bellow we analyze some of the properties of the results
presented in Eqs. (18) and (19).
The massless D ¼ 1 case using the sudden switching, in

which only the velocity component perpendicular to the
wall is present, was studied in Ref. [6]. The expected
divergences at x ¼ 0 and at τ ¼ 2x were reported, and a
mechanism of distance fluctuation was implemented in
order to bring more reality to the system. It was shown
that this fluctuation is enough to regularize the diver-
gences. Despite this, higher dimensional systems were not
addressed, and it is not clear if a fluctuating distance
also regularizes them. Moreover, another kind of diver-
gence appears in this system, as the dispersion grows
indefinitely as τ goes to infinity. Form > 0, by noticing that
Re γp;q → ∞ as τ → ∞, and using the asymptotic form of

the Bessel functionsKνðzÞ ≈ e−z
ffiffiffiffiffiffiffiffiffiffi
π=2z

p
for large z [15], we

see that the dispersions in Eq. (19) are exponentially
suppressed in the late time regime, in sharp distinction
with the sudden switched massless case. If m ¼ 0, then

the late time regime of Eq. (19) is hðΔv⊥Þ2ið1Þ1 ¼
ðg2πc2n=2n2Þ

P
p;qψn;pψ

�
n;p=ðψn;p − ψ�

n;qÞ2, a finite con-
stant value. However, we saw in the previous section that

the switching mechanism Fð1Þ
n;τ is not well suited for

studying the late time behavior, as the switching time
becomes infinite. We will return to this matter later, when

we present the dispersions calculated via Fð3Þ
τs;τðtÞ.

The dispersions described by Eq. (19) by setting D ¼ 1
are depicted in Fig. 4 for some illustrative values of mx.
We see that the divergence at τ ¼ 2x is regularized, thus
recovering the result in [6] for the massless casemx ¼ 0 via
a completely different technique. From the dotted curve, for

0 2 4 6 8
−0.6

−0.4

−0.2

0.0

0.2

0.4

FIG. 4. Velocity dispersions hðΔv⊥Þ2ið1Þ1 as function of τ=x for
some representative values ofmx, where we set n ¼ 20. The solid
curve recovers the regularization obtained in [6]. As mx grows,
the dashed and dotted curves show that the dispersions start to
oscillate, a fingerprint of the non-Huygensian character of the
background field coming from its mass.

−0.5 0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

FIG. 3. Smooth switching behavior of Fð3Þ
τs;τðtÞ. The sudden

limit Fð0Þ
τ ðtÞ is recovered when τs → 0, as suggested by the plots,

and verified from the definition of Fð3Þ
τs;τðtÞ.
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which mx ¼ 5, we see that the dispersion oscillates with a
decreasing magnitude in a similar manner to the oscilla-
tions found in Sec. III.
When D ¼ 2, the background field does not satisfy the

Huygens’ principle even if the field mass vanishes, as
anticipated. Thus, in this system the dispersions should
present a behavior different from the 3þ 1 and 1þ 1
massless cases. In fact, the solid curves in Figs. 5(a) and
5(b) show that both dispersions evolve as τ increases, and
stabilize quickly just after τ ¼ 2x, the parallel component
approaching a negative constant, and the perpendicular one
approaching zero. This should be compared with the solid
curve in Fig. 4, and with the results for the massless 3þ 1
case [9], where the dispersions do not present this sudden
saturation. Another intriguing effect is the vanishing of the
perpendicular velocity dispersion [solid curve in Fig. 5(b)],
when we compare with the electric charge, and the scalar
charge in 3þ 1 dimensions, where there is always a
residual effect in the late time regime. As mx increases,
the same characteristic oscillatory behavior takes place in
both directions, as expected.

Before passing to the analysis of the late time regime, we
quote a couple of properties revealed by Eqs. (18) and (19)
for D ¼ 3. The limit m → 0 reproduces the results pre-
sented in Ref. [9], where the usual divergences at x ¼ 0 and
τ ¼ 2x are regularized. As mx increases, a transition to
the oscillatory behavior occurs, and the dispersions have
the same form as the ones in Fig. 5.
As discussed in Sec. IV, in order to gain control of the

late time regime, a suitable switching function must be
implemented. A closed analytic expression can be obtained
by using Fð3Þ

τs;τðtÞ. From the definition given in Sec. IV, and
the result from Appendix, the dispersions in the late time
regime for any dimensionD, massm, and switching time τs
are given by

hðΔvjjÞ2ið3ÞD ¼ −
g2

πxD−1

�
mx

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðτs=xÞ2

p
�D−1

2

× KD−1
2

h
2mx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðτs=xÞ2

q i
; ð20Þ

hðΔv⊥Þ2ið3ÞD ¼ 8πx2hðΔvjjÞ2ið3ÞDþ2 − hðΔvjjÞ2ið3ÞD : ð21Þ

These equations have a plethora of possible applications,
ranging from the determination of the energy exchanged
due to the switching process to the infrared regularization in
the 1þ 1 case. Here, we explore some of them, related to
already cited phenomena. Setting D ¼ 3 in Eqs. (20) and
(21), and taking the limit m → 0,

hðΔvjjÞ2ið3Þ3 ¼m→0 −
g2

8π2
1

x2 þ τ2s
; ð22Þ

hðΔv⊥Þ2ið3Þ3 ¼m→0 −
g2

8π2
x2 − τ2s

ðx2 þ τ2sÞ2
: ð23Þ

In the sudden switching limit, τs ¼ 0, hðΔv⊥Þ2ið3Þ3 ¼
hðΔvkÞ2ið3Þ3 ¼ −g2=8π2x2, which is the reported residual
effect in the 3þ 1 massless case [9]. Equations (22) and
(23) are physically equivalent to the ones obtained from

the switching function Fð2Þ
τs;τðtÞ in Ref. [9], but have the

advantage of being of easier manipulation.
Let us return to the one dimensional system, and set

D ¼ 1 in Eq. (21) to obtain

hðΔv⊥Þ2ið3Þ1 ¼ g2

π

�
K0

h
2mx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðτs=xÞ2

q i

−
2mxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðτs=xÞ2
p K1

h
2mx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðτs=xÞ2

q i�
:

ð24Þ

In the sudden switching regime, hðΔv⊥Þ2ið3Þ1 ¼ ðg2=πÞ×
½K0ð2mxÞ − 2mxK1ð2mxÞ�, and thus the field mass acts as

(b)

(a)

FIG. 5. Velocity dispersions modeled with the switching
mechanism Fð1Þ

n;τ for D ¼ 2. Here, n ¼ 20. As D ¼ 2, the velocity
has dispersions parallel to the wall (a), and perpendicular to the
wall (b). Again, if mx > 0, the oscillatory behavior is recovered.
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an infrared regulator for the reported divergence appearing
in the late time regime of the massless case. As depicted in
Fig. 6, the dispersion positively diverges as mx → 0. For
higher values of mx, it vanishes at mx ≈ 0.298, becomes
negative, and then goes to zero asmx goes to infinity. These
results show that the late time regime for the 1þ 1
dimensional case is highly dependent upon the mass of
the scalar field.
We close this section with some remarks concerning the

applicability of our formulas. Equations (18)–(21) can be
combined to describe velocity dispersions due to modified
vacuum fluctuations in any dimension, for any field mass.
However, care must be taken depending on which regime
we are working. For instance, as discussed in the previous
section, the switching mechanism Fð1Þ

n;τ is such that the

switching time τs is a linear function of the measuring time
τ. Thus, for small τ, the system approaches the sudden
switched one, and the near-boundary behavior cannot be
studied. Despite this, the near-boundary behavior can be

studied via the switching Fð3Þ
τs;τ in the late time regime.

Moreover, another feature coming from the use of switch-
ing functions is related to numerical simulations. For

instance, the switching Fð3Þ
τs;τ is such that the integral kernel

in Eq. (11) decays exponentially, and thus the integral
converges rapidly. In this way, the near-boundary regime
can be considered for intermediate times via numerical
integration. Figure 7 shows an example of how the late time
regime is approached, and how the dispersions in the 1þ 1
case calculated with both switchings starts to deviate from
each other at intermediate times.

VI. FINAL REMARKS

In the previous sections we studied how a particular
transition between scalar field vacuum states causes veloc-
ity fluctuations on a test particle interacting with this field.
The transition experienced by the particle between the
empty space and the space with a perfectly reflecting plane
boundary was modeled by an analytic function acting as a
sort of smooth switching mechanism. This method, with
various applications explored in the literature, is based on
the fact that the switching functions describing smooth
transitions regularize reported divergences by providing a
certain scale for cutting-off nonphysical high frequency
field modes, depending on the experimental arrangement in
which the measurement is done. Here, we have explored
further aspects of such systems by including scalar fields
that can be found in nature, e.g., the massive Higgs field.
The presence of a massive field gives rise to characteristic
oscillations in the dispersions of the velocity of a test
particle. The main features of our work can be synthesized
as follows. We studied how vacuum transitions induce
velocity fluctuations of scalar particles. The quantization of
the massive scalar field in Minkowski spacetime was
revisited, stressing how nonlocal effects are unusual if
the background field does not satisfies the Huygens’
principle, and in particular, how velocity fluctuations were
expected to be different for such background fields. In
order to obtain analytic closed expressions for the dis-
persions, a systematic definition of realistic switching
functions was presented by working in frequency space.
This analysis revealed the mechanism behind the regulari-
zation process, which was applied to obtain the velocity
dispersions in arbitrary dimensions, and for any field mass.
We showed, in particular, how they recover previous
results, and solve open problems, as for instance the
divergence at late times in the massless D ¼ 1 case, which
comes from the infrared sector of the theory.
It is noteworthy that in an actual experimentation of this

effect, a real boundary would be present instead of the

0 1 2 3 4
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–0.05

0.00

0.05

0.10

0.15

0.20

FIG. 6. Late time behavior of the velocity dispersion in 1þ 1

modeled with the switching mechanism Fð3Þ
τs;τ as a function of mx.

As mx → 0, we recover the expected late time divergence of this
model. For finite mx, the theory is regularized, showing that the
divergence comes from the infrared sector of the theory.

0 5 10 15 20 25 30
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−0.2

−0.1

0.0

FIG. 7. Comparison of both switching process Fð3Þ
τs;τ and F

ð1Þ
n;τ for

D ¼ 1 and mx ¼ 1. Here, n ¼ 10 and τs=x ¼ 0.1. For small τ=x,
both process are indistinguishable, as shown by the dashed and
dotted curves. As the late time regime is approached, the

dispersion modeled by Fð3Þ
τs;τ oscillates about its late time regime

value, given by the dot-dashed curve.
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idealized one, and we do not expect to find any divergent
outcome, as such boundary have to be transparent for very
high frequency modes. In this way, renormalization with
respect to Minkowski [Eq. (10)] removes all the undesir-
able high frequency modes, rendering completely finite
results for a sudden switched experiment. Nevertheless, a
finite switching time is always present in such measure-
ments, and can be important even if realistic boundaries are
implemented. In fact, if the boundary natural frequency
cutoff is higher than the one provided by experimentation,
then we would obtain results similar to the ones presented
in the previous sections for the idealized boundary. This
shows that more than simply providing a way of finding
finite results, the use of switching mechanisms is required
by experimentation, and must be included in the calculation
even for realistic boundaries.
We close this work mentioning another important aspect

presented by the previous analysis, that concerns subvac-
uum phenomena. It should have been noticed that the
velocity dispersions depicted in Figs. 4–7 become negative
in some range of its parameters. This is a truly quantum
feature, as at classical level no “negative dispersions” can
be found. Care must be taken, though, when interpreting
such effects. In our case, these negative velocity dispersions
simply mean that the effect of the boundary is to reduce by
a certain amount the value of the dispersions coming from a
more general model (considering for instance backreac-
tion [17]).
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APPENDIX: AN EXPRESSION FOR THE LATE
TIME BEHAVIOR IN THE MASSIVE CASE
(MODIFIED RIEMANN-LEBESGUE LEMMA)

Let f be in the space of absolute integrable functions in
ð0;∞Þ, L1. Then

lim
τ→∞

Z
∞

0

dk
keiτ

ffiffiffiffiffiffiffiffiffiffi
k2þm2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p fðkÞ ¼ 0; ðA1Þ

where m ≥ 0 is a parameter. The case m ¼ 0 is a particular
case of the Riemann-Lebesgue lemma [20]. As we have
seen, the general expression for the dispersions can be
obtained by

hðΔviÞ2i ¼ g2
� ∂
∂xi

∂
∂x0i Aðx;x

0; τÞ
�
x0¼x

; ðA2Þ

where

Aðx;x0; τÞ ¼ −
1

ð2πÞD2 jΔ̂xjD2−1
Z

∞

0

dk
k
ω
½1 − cos ðωτÞ�

×
jDðωÞj2

ω2
k
D
2
−1JD

2
−1ðkjΔ̂xjÞ; ðA3Þ

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. Notice that if jDðωÞj2 is at least bounded

as k → ∞, then Eq. (A1) gives us the late time limit

Aðx;x0;∞Þ ¼ −
1

ð2πÞD2 jΔ̂xjD2−1
Z

∞

0

dk
k
ω3

× jDðωÞj2kD
2
−1JD

2
−1ðkjΔ̂xjÞ: ðA4Þ

A suitable choice for jDðωÞj2 (as discussed in Sec. IV) is

jDðωÞj2 ¼ ð1þ 2τsωÞe−2τsω: ðA5Þ
A closed form for Aðx;x0;∞Þ can then be obtained by
using the results in [15]

Aðx;x0;∞Þ ¼ −
2m

D−3
2

ð2πÞDþ1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4τ2s þ jΔ̂xj2

q D−3
2

× KD−3
2

	
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4τ2s þ jΔ̂xj2

q 

: ðA6Þ

In order to prove Eq. (A1), we may proceed as follows.
Suppose first that fðkÞ ¼ χðk; a; bÞ≡ θðk − aÞθðb − kÞ,
0 ≤ a < b < ∞. This kind of function is called character-
istic function. Then

Z
∞

0

dk
keiτ

ffiffiffiffiffiffiffiffiffiffi
k2þm2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p fðkÞ ¼
Z

b

a
dk

keiτ
ffiffiffiffiffiffiffiffiffiffi
k2þm2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p

¼ eiτ
ffiffiffiffiffiffiffiffiffiffi
b2þm2

p
− eiτ

ffiffiffiffiffiffiffiffiffiffi
a2þm2

p

iτ
; ðA7Þ

and thus the result holds. By linearity, it also holds for any
finite combination of characteristic functions

gðkÞ ¼
XN
n¼0

gnχðk;an; bnÞ ðA8Þ

with 0 ≤ an < bn < ∞ for all n, gn being constant complex
numbers. Now let f ∈ L1 be arbitrary. We will use the fact
that the set of functions like those given by Eq. (A8) is
dense in L1 [20]. This means that given ϵ > 0, there exists a
function of the form gðkÞ for some N such thatZ

dkjfðkÞ − gðkÞj < ϵ

2
; ðA9Þ

and we will take τ sufficiently large to ensure
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����
Z

dk
keiτ

ffiffiffiffiffiffiffiffiffiffi
k2þm2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p gðkÞ
���� < ϵ

2
: ðA10Þ

Finally, we can write

Z
dk

keiτ
ffiffiffiffiffiffiffiffiffiffi
k2þm2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p fðkÞ ¼
Z

dk
keiτ

ffiffiffiffiffiffiffiffiffiffi
k2þm2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p ½fðkÞ − gðkÞ�

þ
Z

dk
keiτ

ffiffiffiffiffiffiffiffiffiffi
k2þm2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p gðkÞ ðA11Þ

and by noticing that k <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
,

����
Z

dk
keiτ

ffiffiffiffiffiffiffiffiffiffi
k2þm2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p fðkÞ
���� ≤

Z
dkjfðkÞ − gðkÞj

þ
����
Z

dk
keiτ

ffiffiffiffiffiffiffiffiffiffi
k2þm2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p gðkÞ
����

<
ϵ

2
þ ϵ

2
¼ ϵ: ðA12Þ
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