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It is shown that a well-defined expression for the total electromagnetic force f em on a point charge source
of the classical electromagnetic field can be extracted from the postulate of total momentum conservation
whenever the classical electromagnetic field theory satisfies a handful of regularity conditions. Among
these is the generic local integrability of the field momentum density over a neighborhood of the point
charge. This disqualifies the textbook Maxwell-Lorentz field equations, while the Maxwell-Bopp-Landé-
Thomas-Podolsky field equations qualify, and presumably so do the Maxwell-Born-Infeld field equations.
Most importantly, when the usual relativistic relation between the velocity and the momentum of a point
charge with bare rest mass mb ≠ 0 is postulated, Newton’s law d

dt p ¼ f with f ¼ f em becomes an integral
equation for the point particle’s acceleration; the infamous third-order time derivative of the position which
plagues the Abraham-Lorentz-Dirac equation of motion does not show up. No infinite bare mass
renormalization is invoked, and no ad hoc averaging of fields over a neighborhood of the point charge. The
approach lays the rigorous microscopic foundations of classical electrodynamics with point charges.

DOI: 10.1103/PhysRevD.100.065012

I. INTRODUCTION

The practical success of the Lorentz formula [1]

f emLorðtÞ ¼ −e
�
Eðt; qðtÞÞ þ 1

c
vðtÞ ×Bðt; qðtÞÞ

�
ð1Þ

for the electromagnetic force exerted by a given, smooth
electric field Eðt; sÞ and magnetic induction field Bðt; sÞ on
a moving test point electron with charge −e, position qðtÞ,
and velocity vðtÞ is well established; here, c is the speed of
light in vacuum. However, this formula is notoriously ill-
defined when the point electron is not idealized as a test
particle but treated properly as a source of the electromag-
netic fields with which it interacts. The Maxwell-Lorentz
equations for these fields, consisting of the two evolution
equations

∂
∂tBðt; sÞ ¼ −c∇ × Eðt; sÞ; ð2Þ

∂
∂tEðt; sÞ ¼ þc∇ ×Bðt; sÞ þ 4πevðtÞδqðtÞðsÞ; ð3Þ

together with the two constraint equations

∇ ·Bðt; sÞ ¼ 0; ð4Þ

∇ · Eðt; sÞ ¼ −4πeδqðtÞðsÞ; ð5Þ

make it plain that Maxwell-Lorentz (ML) fields with a
single point charge source, at qðtÞ, must have some
singularity at s ¼ qðtÞ. In the remainder of this introduc-
tion, we first summarize the current state of affairs in
dealing with this problem, and then we recall the major
deficiencies of this approach that were pointed out by
others already. The rest of this paper is devoted to setting up
a well-defined classical theory of point charge motion.
We will occasionally invoke a manifestly covariant

geometrical four-vector notation, but mostly we will work
with the space and time splitting well suited for the
formulation of a dynamical initial value problem we seek,
even though the Lorentz covariance is then obscured. Note
that the above formulas are valid in any flat foliation of
Minkowski spacetime into Euclidean space points s ∈ R3

at time t ∈ R.

A. The current state of affairs

The field singularity associated with a motion t ↦ qðtÞ
having bounded piecewise continuous acceleration aðtÞ has
been known explicitly for a long time. Since the system of
Maxwell-Lorentz field equations is linear, their general
distributional solution can be written as the sum of the
general Lipschitz continuous source-free electromagnetic
field solution, for which (1) makes perfect sense, plus the
retarded Liénard-Wiechert field [2,3], Bret

LW ≔ Hret
LW &

Eret
LW ≔ Dret

LW, with (cf. [4])*miki@math.rutgers.edu
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Dret
LWðt; sÞ ¼ −e

c2 − jvj2
js − qj2

cnðq; sÞ − v
ðc − nðq; sÞ · vÞ3

����
ret

− e
nðq; sÞ × ½ðcnðq; sÞ − vÞ × a�

js − qjðc − nðq; sÞ · vÞ3
����
ret

ð6Þ

Hret
LWðt; sÞ ¼ nðq; sÞjret ×Dret

LWðt; sÞ; ð7Þ
where nðq; sÞ ¼ s−q

js−qj is a normalized vector from q to s, and

where jret means that ðq; v; aÞ ¼ ðq; v; aÞðtretÞ with tretðt; sÞ
being defined implicitly by cðt − tretÞ ¼ js − qðtretÞj. Here,
a is the acceleration vector of the point charge. The
electromagnetic Liénard-Wiechert fields Bret

LW and Eret
LW

exhibit both a ∝ 1=r2 and a ∝ 1=r singularity, where r
denotes js − qðtÞj; they each have a directional singularity
at the location of the point charge source, too.
In an attempt to give some mathematical meaning to the

manifestly ill-defined symbolic expressions Eðt; qðtÞÞ and
Bðt; qðtÞÞ when Eðt; sÞ and Bðt; sÞ are a sum of a regular
source-free field and the Liénard-Wiechert fields (6) and
(7), Lorentz and his contemporaries averaged the fields
Eðt; sÞ and Bðt; sÞ over a neighborhood of the point charge
at qðtÞ, but this does not lead to unambiguous finite vector
values for Eðt; qðtÞÞ and Bðt; qðtÞÞ, and when the neigh-
borhood is shrunk to the point qðtÞ the infinities are back.
The conclusion at the time (and also more recently in [5])
was that the physical electron cannot be assumed to be a
point, but must have an extended charge distribution and
perhaps some other structure, all of which to determine
became a goal of what Wiechert and Lorentz called electron
theory [6], nowadays referred to as classical electron
theory. It is an interesting dynamical theory in its own
right; for more recent investigations, see the books [7] and
[8], and the papers [5] and [9]. Since we are interested in the
theory of point charge motion, we here do not spend much
time with classical electron theory, except that we note that
some insights gained in its pursuit made their way into the
prevailing classical theory of point electron motion which
was put together by Dirac and Landau and Lifshitz.
In 1938, Dirac [10] invented negative infinite bare mass

renormalization to avoid the infinities which occur when
the averaging surface about qðtÞ is shrunk to qðtÞ.
Following Fermi’s contribution to classical electron theory
[11], Dirac averaged the fields over a sphere of radius r
centered at the electron in its instantaneous rest frame.
Also, he worked with linear combinations of the retarded
and advanced representations of the fields. With mobs
denoting the electron’s observable rest mass, Dirac
assigned an averaging radius-dependent bare mass mbðrÞ
to the point electron, defined by

mobs ¼ lim
r↓0

�
mbðrÞ þ

e2

2c2
1

r

�
; ð8Þ

evidently, mbðrÞ↓ −∞ as r↓0. As is well known, Dirac’s
mass-renormalization computations became the template

for the modern renormalization group approach to quantum
electrodynamics and, more generally, quantum field theory.
However, if electrons are true points without structure, then
Dirac’s construction is logically incomprehensible: if a
point electron has a bare mass, then it cannot depend on the
radius r of a sphere over which one averages the Maxwell-
Lorentz fields.
Postponing such logical concerns until later in his life,

Dirac obtained the Abraham-Lorentz-Dirac equation,
which in the four-vector notation explained in [9] reads

mobs
d2

dτ2
q ¼ −

e
c
FextðqÞ · d

dτ
q

þ 2e2

3c3

�
gþ 1

c2
d
dτ

q ⊗
d
dτ

q
�
·
d3

dτ3
q; ð9Þ

where the term in the first line at rhs (9) is an externally
generated test-particle-type Lorentz Minkowski-force, and
the term in the second line at rhs (9) is von Laue’s radiation-
reaction Minkowski force.
While (9) is free of infinities if FextðqÞ is smooth, the

third proper time derivative in the von Laue Minkowski-
force means that (9) is a third-order ODE for the position of
the particle as a function of (proper) time. The pertinent
initial value problem therefore requires vector initial data
for position, velocity, and acceleration. Yet a classical
initial value problem of point particle motion may only
involve initial data for position and velocity.
Landau and Lifshitz [12] handled this ⃛q problem in the

following perturbative manner. They argued that von
Laue’s ⃛q Minkowski-force term must be a small perturba-
tion of fext whenever test-particle theory works well. In
such situations, one may compute ⃛q perturbatively by
taking the proper time derivative of the test-particle
equation of motion, i.e.,

d3

dτ3
q ≈ −

e
mobsc

d
dτ

�
FextðqÞ · d

dτ
q
�
: ð10Þ

Rhs (10) depends only on q, _q, q̈. If we substitute it for
d3

dτ3 q at rhs (9), Eq. (9) becomes

mobs
d2

dτ2
q ¼ −

e
c
FextðqÞ · d

dτ
q

−
2e3

3mobsc4

�
gþ 1

c2
d
dτ

q ⊗
d
dτ

q
�

·
d
dτ

�
FextðqÞ · d

dτ
q
�
; ð11Þ

an implicit second-order ODE for the position of the
electron, compatible with the available initial data.
Equation (11) is called the Eliezer-Ford-O’Connell equa-
tion in [13]. The equation presented by Landau-Lifshitz
[12] differs from (11) by an additional approximation:
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noting that d
dτ ðFextðqÞ · d

dτqÞ ¼ ð ddτFextðqÞÞ · d
dτqþ FextðqÞ·

d2

dτ2 q, they substitute −e
mbc

FextðqÞ · d
dτ q for d2

dτ2 q in the last
term.
As recently as in [14], the Eliezer-Ford-O’Connell

equation (11), resp. its Landau-Lifshitz approximation,
was still presented as the state of affairs in the classical
theory of point charge motion in flat spacetime. These
equations owe their longevity to their reputation as practi-
cally effective equations of motion for the computation
of (first-order) radiation-reaction-corrected test-particle
dynamics of point charges in smooth external fields.
When point charges are replaced by extended charged
particles the Landau-Lifshitz equation can be derived
rigorously from the Abraham-Lorentz model with nonzero
bare mass, using center-manifold theory [8], and also in a
vanishing-particle limit [5]. Its solutions are expected to
agree reasonably well with empirical electron motion in the
classical regime of weak and slowly varying external fields,
and demands for higher precision can be met with
improved effective equations, obtained either by adding
higher-order classical radiation-reaction correction terms,
or by invoking QED. However, (11) has major short-
comings even as an effective equation of motion for true
point charges!

B. Critique

To convey a first feeling for the limitations of the Eliezer-
Ford-O’Connell equation (11) and its Landau-Lifshitz
approximation, we recall the well-known fact that the last
term in (11) vanishes for electron motion along a constant
applied electric field, and so does its Landau-Lifshitz
approximation; cf. [15]. Thus, in this textbook situation,
(11) fails to take the energy-momentum loss due to
radiation by the electron into account, i.e., its solution is
identical to the familiar test-particle motion. To radiation-
reaction-correct these [test particle motions] requires a
nonvanishing higher-order term.
A much more serious limitation of the Eliezer-Ford-

O’Connell and Landau-Lifshitz equations was discovered
recently [16], by considering the many-body version. In
this case, each point charge satisfies its own equation (11),
indexed by a subscript k (say) at ek, mk, qk, and at Fext

k ,
where Fext

k is now the Faraday tensor of the Maxwell-
Lorentz field given by a sum of the Liénard-Wiechert
fields (6) and (7) of all the other particles but the kth, plus
the source-free field. Since nobody knows the past histories
of all the particles which enter the Liénard-Wiechert
formulas (6) and (7), one has to stipulate some past
motions. But whatever one stipulates, as shown in [16],
typically a singularity in the Maxwell-Lorentz fields will
propagate along the initial forward light cone of each and
every point charge, so that this system of equations of
motion coupled with the Maxwell-Lorentz field equations
is typically well defined only until a point charge meets the

forward initial light cone of another point charge. This is
much too short a time span to be relevant to, e.g., plasma
physics. This problem cannot be overcome perturbatively
by adding a higher-order radiation-reaction correction term
at rhs (11). Moreover, it is not just the radiation-reaction
term in (11) which causes trouble—the expression of the
Lorentz force of one particle on another is typically not well
defined on the initial forward light cones. Lorentz electro-
dynamics for N > 1 point charges is in serious trouble!
The above discussion leaves no room for reasonable

doubts that ingenious extraction of effective equations of
point charge motion from the mathematically ill defined,
merely symbolic Lorentz electrodynamics of point charges,
is not a winning strategy to arrive at a mathematically well-
defined and physically accurate relativistic theory of point
charge motion in the classical realm. In the remainder of
this paper, we explain how to formulate such a theory in a
manner which preserves the spirit of Lorentz electrody-
namics as much as possible.
To keep matters as simple as possible, we first consider

an electrodynamical system featuring only a single point
charge. The N-body situation will be discussed in Sec. VI.
The motion in a constant applied electric field is revisited in
Sec. VII.

II. BASIC DEFINITION OF THE
ELECTROMAGNETIC FORCE

Mechanically, the point charge is a point particle with a
mechanical momentum

pðtÞ ¼ mb
vðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 1
c2 jvðtÞj2

q ; ð12Þ

with vðtÞ ≔ d
dt qðtÞ its velocity and mb ≠ 0 its bare rest

mass. By Newton’s second law, the rate of change with time
of the particle momentum equals the force acting on it,

d
dt
pðtÞ ¼ f ðtÞ: ð13Þ

The force f depends on the nonkinematical qualities of the
point particle; in this case its electric charge couples the
point particle to the electromagnetic field.
Electrodynamically, the moving point charge is a source/

sink for a classical electromagnetic field with field momen-
tum (vector-)density Πfieldðt; sÞ. Suppose the fields decay
sufficiently rapidly as jsj → ∞ so that Πfieldðt; sÞ is inte-
grable w.r.t. d3s at spatial infinity. Suppose also that the
field singularity caused by the point charge is mild enough
so that Πfieldðt; sÞ is locally integrable over any neighbor-
hood of qðtÞ, so that

pfieldðtÞ ¼
Z
R3

Πfieldðt; sÞd3s ð14Þ
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is a well-defined total field momentum vector. Finally,
suppose that the motion of the charge is sufficiently regular
so that pfieldðtÞ is differentiable with respect to time.
Now, following Poincaré (cf. [17]), we postulate that in

the absence of nonelectromagnetic forces only those
motions are permissible which satisfy the balance law

d
dt
pðtÞ ¼ −

d
dt
pfieldðtÞ; ð15Þ

i.e., any momentum gain by the particle is compensated
through a corresponding momentum loss by the field and
vice versa. It then follows from (15) in concert with (13)
that the electrodynamical force on a point charge source of
the classical electromagnetic field with a single source is to
be defined by

f emðtÞ ≔ −
d
dt

Z
R3

Πfieldðt; sÞd3s: ð16Þ

Remark II.1.—Postulating the balance law (15) is
equivalent to postulating conservation of total momentum,

d
dt
PðtÞ ¼ 0; ð17Þ

for a total momentum defined as the sum of particle and
field momenta, i.e.,

PðtÞ ≔ pðtÞ þ pfieldðtÞ: ð18Þ

We pause for a moment to comment on (16) in the
context of Lorentz electrodynamics with point charges.

A. Connection with Lorentz electrodynamics

If we assume the electromagnetic fields satisfy the
Maxwell-Lorentz field equations with a point charge source
(2) and (3), and (4) and (5), in which case Πfieldðt; sÞ ¼
1

4πcE × B, then rhs (14) is generally ill defined (generally∞
in magnitude), and then rhs (16) has no well-defined
meaning either. However, pretending that rhs (14) was
well defined, and that so was rhs (16), and furthermore
pretending that all the ensuing (advanced) multivariable
calculus and analysis steps were justified, rhs (16) would
turn precisely into the expression of the Lorentz force (1).
For later convenience, we recall those steps:
(a) Pull the time derivative into the integral.
(b) Apply the Leibniz rule to get

∂
∂t ðE ×BÞ ¼

� ∂
∂tE

�
×Bþ E ×

∂
∂tB:

(c) Now use (2) to express the partial time derivative of B
in terms of ∇ × E and (3) to express the partial time
derivatives of E in terms of ∇ ×B and vδq.

(d) Use an advanced vector calculus identity in concert
with (4) and (5) to write the so manipulated rhs (16) as
a volume integral over the sum of the divergence of
Maxwell’s stress tensor, plus the Lorentz force vector
density −eðE þ 1

c v × BÞδq.
(e) Use Gauss’ theorem to conclude that the contribution

from the stress tensor vanishes.
(f) Carry out the volume integral of the force vector

density and thus obtain (1).
Remarkably, not a single one of these six steps is generally
justified within the symbolic system of equations known as
Lorentz electrodynamics with point charges. Nevertheless
this pseudo derivation of (1) from (16) does suggest that by
replacing (1) with (16) one may accomplish what was
intended by Lorentz and his contemporaries.
As a first encouraging observation we register that there

is a large set of field initial data satisfying the constraint
equations (4) and (5) for which the formula (16) of the
electromagnetic force is initiallywell defined—even for the
Maxwell-Lorentz field theory. In the special case of an
electrostatic field of a point charge at rest, the electromag-
netic force (16) is actually well defined for all times and
consistently equals 0, which it should in this case;
cf. Sec. III. D. This already demonstrates the superiority
of the formula (16) over Lorentz’ (1), which is ill defined
even in this simplest nontest charge situation.
Unfortunately, replacing Lorentz’ formula (1) with (16)

does not convert Lorentz electrodynamics with point
charges into a well-defined theory: there is an even larger
set of Maxwell-Lorentz field initial data satisfying the
constraint equations (4) and (5) for which (16) is not well
defined already at the initial time. Also, even with favorable
special Maxwell-Lorentz field initial data the electromag-
netic initial force typically cannot be continued into the
future; i.e., typically, the expression (16) is not well defined
for continuous stretches of time, the static special case
being an exception. Moreover, the initial energy density of
an ML field with a point charge source is never locally
integrable, i.e., for such data the field energy in any finite
volume containing the point charge is infinite even if their
field momentum (14) exists.

III. THE ROLE OF THE ELECTROMAGNETIC
VACUUM LAW

In the following, we will discuss (16) for some electro-
magnetic field theories which (are expected to) yield a
typically differentiable (14). Incidentally, (16) was also the
starting point of Abraham [18] and Lorentz [6] for
computing the electromagnetic force on a charged particle
in their classical theories with extended electron models;
cf. [4]. While Abraham and Lorentz and their peers chose to
replace point electrons by extended structures but otherwise
continued to work with the Maxwell-Lorentz field equa-
tions, we instead continue to work with point electrons but
replace the Maxwell-Lorentz fields with solutions to the
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premetric Maxwell equations [19] which satisfy different
electromagnetic vacuum laws—which furnish locally inte-
grable energy-momentum densities of fields with point
charge sources. (Premetric means, the spacetime metric
plays no role; see [19]. It enters through the vacuum law.)
Since any classical electromagnetic field theory will be
about some distinguished subset of solutions of the pre-
metric Maxwell field equations, the issue is indeed to
identify the physically correct classical electromagnetic
vacuum law! We refrain from trying to make such a
definitive identification but instead consider two well-
known proposals: the nonlinear system proposed by Born
and Infeld [20] (see also [21]), and the linear higher-order
derivative system of Bopp [22,23], Landé and Thomas
[24,25], and Podolsky [26] (see also [27]).

A. The premetric Maxwell field equations

The premetric Maxwell field equations are a four-
dimensional (complex) analog of the familiar three-
dimensional ∇ · B ¼ 0 ⇒ B ¼ ∇ ×A. Explicitly, the
continuity equation

∂
∂t ρðt; sÞ þ ∇ · jðt; sÞ ¼ 0 ð19Þ

for the charge density ρ and the current vector-density j is a
four-dimensional analog of ∇ · B ¼ 0. It implies that ρ and
j can be expressed as linear combination of first-order space
and time derivatives of two complex three-dimensional
fields, Dþ iB and H − iE, viz. 4πρ ¼ ∇ · ðDþ iBÞ and
4πj ¼ c∇ × ðH − iEÞ − ∂

∂t ðDþ iBÞ. The 4π factor occurs
for historical reasons, and the speed c at this point is just a
conversion factor. Sorted into real and imaginary parts
these are precisely the premetric Maxwell equations, which
we write as one pair of homogeneous equations for B
and E,

∂
∂tBðt; sÞ þ c∇ × Eðt; sÞ ¼ 0; ð20Þ

∇ ·Bðt; sÞ ¼ 0; ð21Þ

and one pair of inhomogeneous equations for D and H,

−
∂
∂tDðt; sÞ þ c∇ ×Hðt; sÞ ¼ 4πjðt; sÞ; ð22Þ

∇ ·Dðt; sÞ ¼ 4πρðt; sÞ: ð23Þ

Note that the constraint equations (21) and (23) only
impose on the initial data Bð0; sÞ and Dð0; sÞ which need
to be supplied when viewing (as we will do) (20) and (22)
as initial value problems for B and D, respectively. To see
this for (21), take the divergence of (20); for (23), take the

divergence of (22) and the time derivative of (23), and
recall (19).
The premetric Maxwell equations are familiar from

Maxwell’s theory of electromagnetic fields in material
media, though here they are used for fields sourced by
point charges in an otherwise empty space.

1. Their general solution for point charge sources

The premetric Maxwell equations are easily solved if
the charge density ρðt; sÞ ¼ −eδqðtÞðsÞ and the current
vector-density jðt; sÞ ¼ −eδqðtÞðsÞvðtÞ, provided that t ↦
qðtÞ is continuously differentiable so that the continuity
equation (19) is automatically satisfied in the sense of
distributions and provided that jvðtÞj < c.
The premetric Maxwell equations in themselves can be

viewed as two independent systems of linear first-order
PDE with constant coefficients, a homogeneous system for
the field pair ðB;EÞ, and an inhomogeneous system for the
field pair ðD;HÞ. Their general distributional solutions are
readily written down, in the inhomogeneous case condi-
tioned on the motions of the point charges being given.
For later convenience, we collect the general solutions here;
it suffices to do this for when there is only a single point
charge.
The homogeneous system is solved by a linear combi-

nation of first-order derivatives of a vector potential field
Aðt; sÞ ∈ R3 and a scalar potential field Aðt; sÞ ∈ R, viz.

Bðt; sÞ ¼ ∇ ×Aðt; sÞ; ð24Þ

Eðt; sÞ ¼ −∇Aðt; sÞ − 1

c
∂
∂tAðt; sÞ: ð25Þ

Of course, this representation is found in every textbook on
classical electrodynamics.
Similarly, we can handle the inhomogeneous equations.

Assuming the map t ↦ qðtÞ to be continuously differ-
entiable, with a bounded Lipschitz continuous derivative
vðtÞ satisfying the speed limit jvj < c, the general solution
to the system (22), (23) then is

Dðt; sÞ ¼ Dret
LWðt; sÞ þ ∇ ×Zðt; sÞ; ð26Þ

Hðt; sÞ ¼ Hret
LWðt; sÞ þ ∇Zðt; sÞ þ 1

c
∂
∂tZðt; sÞ: ð27Þ

Here, Dret
LW and Hret

LW are the Liénard-Wiechert fields (6)
and (7), and the vector potential field Zðt; sÞ ∈ R3 and a
scalar potential field Zðt; sÞ ∈ R generate the general
solution to the associated homogeneous system. Note the
sign difference between the homogeneous ðB;EÞ system
and the homogeneous system associated with the ðD;HÞ
field pair.
We remark that Dþ iB ¼ Dret

LW þ ∇ × ðZ þ iAÞ and
that H − iE ¼ Hret

LW þ ∇ðZ þ iAÞ þ 1
c
∂
∂t ðZ þ iAÞ.
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2. Gauge invariance

As is well known, the rhs of (24), (25) are invariant under
the gauge transformation

Aðt; sÞ ↦ Aðt; sÞ þ ∇ϒðt; sÞ; ð28Þ

Aðt; sÞ ↦ Aðt; sÞ − 1

c
∂
∂tϒðt; sÞ: ð29Þ

Similarly, the rhs of (26), (27) are invariant under the gauge
transformation

Zðt; sÞ ↦ Zðt; sÞ þ ∇℧ðt; sÞ; ð30Þ

Zðt; sÞ ↦ Zðt; sÞ − 1

c
∂
∂t℧ðt; sÞ: ð31Þ

The gauge transformations can be merged in complex
notation: the addition of a four-dimensional pseudo gra-
dient of a complex scalar ℧þ iϒ, i.e., ð− 1

c
∂
∂t ;∇Þð℧þ iϒÞ,

to the complex four-dimensional vector field ðZ þ iA;Z þ
iAÞ does not change Dþ iB and H − iE.

B. Electromagnetic vacuum laws

The Maxwell-Lorentz field theory is concerned exclu-
sively with those solutions of the premetric Maxwell field
equations whose imaginary and real parts (referring to the
fields Dþ iB and H − iE) are related by

Hðt; sÞ ¼ Bðt; sÞ; ð32Þ
Dðt; sÞ ¼ Eðt; sÞ; ð33Þ

which crosslinks the homogeneous with the inhomo-
geneous pair of equations. Equations (32) and (33) are
known as Maxwell’s law of the electromagnetic vacuum
(law of the pure ether in Maxwell’s words). As explained in
the introduction, Maxwell’s law of the electromagnetic
vacuum selects solutions of the premetric Maxwell field
equations which are too singular to allow a well-defined
coupling with the classical (relativistic or not) theory of
point particle motion. But there are more suitable electro-
magnetic vacuum laws which express the real parts of
Dþ iB and H − iE in terms of the imaginary parts.
As shown by Mie [28,29], in a Lorentz covariant

electrodynamics the vacuum law follows from a Lorentz-
scalar Lagrangian (density) L. The notion of Lorentz
invariance makes it obvious that the spacetime metric
enters at this point. In the orthodox version, L depends
only on the Lorentz invariants jEj2 − jBj2 and ðE ·BÞ2, but
Lagrangians which in addition depend on the Lorentz
invariant ð∇ · EÞ2 − j∇ ×B − 1

c
∂
∂tEj2 have also been con-

sidered in the literature (see below). The fieldsD andH are
in either case obtained by functional differentiation from
the action A ¼ R

Ld3sdt, viz. D ¼ δEA and H ¼ −δBA.

If L depends only on the invariants jEj2 − jBj2 and
ðE ·BÞ2, this is equivalent to conventional partial differ-
entiation of the Lagrangian density, viz. D ¼ ∂EL and
H ¼ −∂BL.
We next list the field Lagrangians and the implied

electromagnetic vacuum laws for the ML, the Maxwell-
Born- Infeld (MBI), and the Maxwell-Bopp-Landé-Thomas-
Podolsky (MBLTP) field equations, in historical order.

1. Schwarzschild’s field Lagrangian and Maxwell’s
vacuum law

Schwarzschild’s [30] Lagrangian, given by

4πLS ¼
1

2
ðjEj2 − jBj2Þ ð34Þ

yields Maxwell’s law of the pure ether, (32) and (33),
obeyed by the Maxwell-Lorentz fields. We already
reviewed the Maxwell-Lorentz field equations in the
introduction.
Even though (34) is not an admissible field Lagrangian

for classical electrodynamics with point charges, the
success of the Maxwell-Lorentz field equations in
the realm of weak-field phenomena (i.e., far away from
the hypothetical point charge sources) and the low-
frequency/long wavelength regime (i.e., visible light, infra-
red, radio waves, and such) suggests that every admissible
Lagrangian must reduce to it in the weak-field and low-
frequency/long wavelength regime.

2. The Born-Infeld field Lagrangian and vacuum law

The Born-Infeld field Lagrangian [20], given by

4πLBI ¼ b2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4 − b2ðjEj2 − jBj2Þ − ðE ·BÞ2

q
ð35Þ

yields the Born-Infeld (BI) law of the electromagnetic
vacuum,

H ¼ B − 1
b2 ðB · EÞEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 1
b2 ðjEj2 − jBj2Þ − 1

b4 ðE · BÞ2
q ; ð36Þ

D ¼ E þ 1
b2 ðB · EÞBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 1
b2 ðjEj2 − jBj2Þ − 1

b4 ðE ·BÞ2
q ; ð37Þ

expressing the pair ðD;HÞ in terms of the pair ðB;EÞ. The
parameter b is Born’s field strength constant. In the limit
b → ∞, the BI law converges to Maxwell’s law.
Since mathematically the premetric Maxwell field equa-

tions are quite naturally interpreted as a pair of evolutionary
equations (20) and (22) for the fields B and D, with initial
data which are constrained by (21) and (23), it is desirable
to rather express the field pair ðE;HÞ in terms of the pair
ðB;DÞ. Happily (36), (37) can be converted into
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H ¼ B − 1
b2 D × ðD ×BÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
b2 ðjBj2 þ jDj2Þ þ 1

b4 jB ×Dj2
q ; ð38Þ

E ¼ D − 1
b2 B × ðB ×DÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
b2 ðjBj2 þ jDj2Þ þ 1

b4 jB ×Dj2
q : ð39Þ

Complemented with (38) and (39), the premetric Maxwell
field equations (20) and (22) turn into the MBI evolution
equations for the fields B and D, their initial data being
constrained by (21) and (23).
In the absence of any sources, the initial value problem

for the MBI field equations is globally well posed for
classical initial data with sufficiently small energy [31].
However, it is also known that certain smooth plain-wave
data can lead to a singularity after a finite time; see [32,33].
Speck in his thesis showed that this can be extended to
finite energy data which coincide with such plane wave data
on a sufficiently large bounded domain in space. It is not
known whether such blow up in finite time happens for all
finite-energy data in an open neighborhood of these finite-
energy local plane-wave type data.
For the MBI field equations with fixed point charge

sources, it has been shown [34] that a unique finite energy
electrostatic solution exists which is real analytic except at
the locations of the point charges; this holds for any finite
number N of point charges with arbitrary signs, magni-
tudes, and placements. However, it is not yet known
whether the nonlinear BI law leads to an at least locally
well-posed initial value problem for a physically interesting
class of Maxwell-Born-Infeld fields with point charge
sources.

3. Bopp’s field Lagrangian and vacuum law

In the 1940s, Bopp, Landé, Thomas, and Podolsky
argued that a more accessible linear vacuum law is
available if one is willing to admit higher-order derivative
electromagnetic field equations. Bopp [22] obtained the
equations from a Lagrangian given by

4πLBLTP ¼ 1

2
ðjEj2 − jBj2Þ

þ 1

2

1

ϰ2

�
ð∇ · EÞ2 − j∇ ×B −

1

c
∂
∂tEj

2

�
; ð40Þ

which yields the Bopp-Landé-Thomas-Podolsky (BLTP)
electromagnetic vacuum law

Hðt; sÞ ¼ ð1þ ϰ−2□ÞBðt; sÞ; ð41Þ

Dðt; sÞ ¼ ð1þ ϰ−2□ÞEðt; sÞ; ð42Þ

here, □≡ c−2∂2
t − Δ is the classical wave operator. The

parameter ϰ is Bopp’s reciprocal length [22]; see [35] for

empirical constraints on ϰ. The singular limit ϰ → ∞ of the
BLTP law yields Maxwell’s law.
The premetric Maxwell field equations (20) and (22) and

(21) and (23), when supplemented by the BLTP law of the
vacuum (41) and (42), become the MBLTP field equations.
Different from the Maxwell-Lorentz and Maxwell-Born-
Infeld field equations, they are higher-order derivative field
equations, requiring initial data not only forB andD, but in
addition also for E and ∂tE≕ _E.
We pause for another moment and comment on the

asymmetrical role played by the pair of equations (41) and
(42), despite their symmetric appearance. When judged in
their own right, (42) is a second-order evolution equation
for the electric field E, given D, and (41) is a second-order
evolution equation forB, givenH. However, since (41) and
(42) are coupled with the premetric Maxwell evolution
equations (20) and (22) for the fields B andD [constrained
by (21) and (23)], appearances are misleading in the case of
(41). A well-defined initial value problem for the fields is
obtained only if (20) and (22) and (42) are treated as
genuine evolution equations for the fields B, D, and E,
while (41) is not treated as an evolution equation for
B—against all appearances.
Indeed, given the field initial data Eð0; sÞ, also

∇ × Eð0; sÞ is fixed initially, so (20) yields _Bð0; sÞ. And
given the field initial data _Eð0; sÞ, also ∇ × _Eð0; sÞ is fixed
initially, so the time derivative of (20) yields B̈ð0; sÞ. And
with the initial data Bð0; sÞ given, also ΔBð0; sÞ is fixed,
and then rhs (41) is completely determined initially. Thus,
(41) definesH initially in terms of B and its second partial
derivatives; note that this also implies that ∇ ·H ¼ 0. And
then, with H so defined initially, and the particle’s initial
position and velocity given, (22) now yields _Dð0; sÞ. Last,
with the initial field data ðE; _EÞð0; sÞ, and Dð0; sÞ given,
Ëð0; sÞ is initially determined by (42).
This scheme now propagates in time, i.e., (41) remains

the defining equation for H in terms of B and its second
partial derivatives, while (20), (22), and (42) are genuine
evolution equations for B, D, and E. In [36], it is shown
that MBLTP field initial data ðB;D;E; _EÞð0; sÞ launch a
unique global distributional solution of the MBLTP field
equations, conditioned on the motions being given.
There is a small variation on this theme, which takes

advantage of the convenience of having the general dis-
tributional solution of the premetric Maxwell field equa-
tions for the pair ðD;HÞ available with (26) and (27). Thus,
prescribing the motion t ↦ qðtÞ for t ≤ 0 conveniently,
though twice continuously differentiable with subluminal
velocity vðtÞ, and choosing smooth and spatially rapidly
decaying fields Zð0; sÞ, Zð0; sÞ, and ð ∂∂tZÞð0; sÞ, such that
∇ ·H ¼ 0, equations (26) and (27) fix Dð0; sÞ and
Hð0; sÞ. Prescribing also ðE; _EÞð0; sÞ fixes ∇ × Eð0; sÞ
and ∇ × _Eð0; sÞ initially, so (20) and its time derivative
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yield ð ∂∂tBÞð0; sÞ and ð ∂2∂t2 BÞð0; sÞ. Thus, (41), while still
not an evolution equation for B, is now an elliptic vector
Helmholtz equation for Bð0; sÞ, which has a unique
solution that vanishes at spatial infinity, thus determining
the initial Bð0; sÞ completely.
We next collect the pertinent formulas for the field

momentum vector densities, then show that there are field
initial data, satisfying the Maxwell constraint equations, for
which (16) is initially well defined. Last, we address the
electrodynamical admissibility of the vacuum laws.

C. The electromagnetic field energy-momentum density

A Lorentz invariant field Lagrangian also determines the
field energy-momentum density. For the Maxwell-
Lorentz field theory, the field energy density εML and field
momentum vector-density ΠML are of course well known
and given by

4πεML ¼ 1

2
ðjBj2 þ jDj2Þ; ð43Þ

4πcΠML ¼ D ×B: ð44Þ

Recall that D ¼ E in Maxwell-Lorentz field theory.
For the Maxwell-Born-Infeld (MBI) field theory, the

field energy density εMBI and field momentum vector-
density ΠMBI are given by

4πεMBI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4 þ b2ðjBj2 þ jDj2Þ þ jB ×Dj2

q
− b2; ð45Þ

4πcΠMBI ¼ D ×B: ð46Þ

For the MBLTP field theory, the field energy density
εMBLTP and field momentum vector-density ΠMBLTP are
given by

4πεMBLTP ¼ B ·Hþ E ·D −
1

2
ðjBj2 þ jEj2Þ

−
1

2ϰ2

�
ð∇ · EÞ2 þ j∇ ×B −

1

c
∂
∂tEj

2

�
; ð47Þ

4πcΠMBLTP ¼ D ×Bþ E ×H − E × B

−
1

ϰ2
ð∇ · EÞ

�
∇ × B −

1

c
∂
∂tE

�
: ð48Þ

D. Field data yielding an electromagnetic force initially

Consider first the ML and MBI field theories. Both
operate with the same formula for the field momentum
density, (44) respectively (46). Initial data for the fields B
and D compatible with the constraint equations (21) and
(23) for which (14) is initially well defined are easily
obtained as follows.
Set Dð0; sÞ ¼ e∇ 1

js−sð0Þj − ∇Zð0; sÞ − ð1c ∂
∂tZÞð0; sÞ and

Bð0; sÞ ¼ ∇ ×Að0; sÞ, with Zð0; sÞ and ð1c ∂
∂tZÞð0; sÞ and

Að0; sÞ smooth and rapidly decaying at spatial infinity
together with their derivatives. Then ðD ×BÞð0; sÞ is
integrable over R3, i.e., pfieldð0Þ exists.
As to the derivative of pfieldðtÞ at t ¼ 0, consider first the

ML field theoy. With the above choice of initial data, also
∇ ×Dð0; sÞ is smooth and so is ∇ × Bð0; sÞ. Given in
addition the assumed decay at spatial∞, steps (a)–(c) from
Sec. II. A are now justified to manipulate (16) and yield

f emð0Þ¼
Z
R3

�
B×∇×BþD×∇×Dþ4π

1

c
j×B

�
ð0;sÞd3s;

ð49Þ

which is well defined. Note though that ðρDÞð0; sÞ is not
well defined, so that one cannot apply steps (d) and (e) of
Sec. II. A and arrive at the Lorentz formula for f emð0Þ.
Consider next the MBI field theory. If we formally carry

out steps (a), (b), and the analog of (c) of Sec. II. A, we get

f emð0Þ¼
Z
R3

�
B×∇×HþD×∇×Eþ4π

1

c
j×B

�
ð0;sÞd3s;

ð50Þ

which may or may not be well defined, depending on
Bð0; sÞ. Clearly the j × B term is the same as in the ML
setup, pairing a δ distribution with a smooth test function.
The D × ∇ × E term is also well defined, and integrable,
because the BI law (39) guarantees (i) that jEj is uniformly
bounded whenever jBj is, and (ii) that for our initial data
Eð0; sÞ is differentiable everywhere except at s ¼ qð0Þ,
having uniformly bounded partial derivatives which
(iii) decay not slower than 1

r2 at spatial infinity. However,
unlessBð0; sÞ vanishes at s ¼ qð0Þ, (38) yields thatHð0; sÞ
has a 1

r2 singularity at s ¼ qð0Þ, and it is easy to check that
its curl will then generally blow up like 1

r3, which is too
strongly. If Bð0; sÞ vanishes like js − qð0Þj or faster at
s ¼ qð0Þ, then the B × ∇ ×H term is well defined and
integrable. Note that (1) is still not well defined even with
such idealized initial data because Eð0; sÞ is not well
definable at s ¼ qð0Þ.
Since typically the ðB × ∇ ×HÞð0; sÞ term is not abso-

lutely integrable over a neighborhood of s ¼ qð0Þ, one
typically is not allowed to carry out the manipulations by
means of which one arrives at (50). Nevertheless, since (46)
has at most 1=r2 singularities, (16) may still be well defined
for MBI fields with a regularly moving point charge. This is
yet to be sorted out, though.
Last, as to the MBLTP field theory, it is not necessary to

separately discuss the possibility of an initially well-
defined force because below we will report that we actually
were able to obtain a generically well-defined force which
persists into the future.
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E. Electrodynamic admissibility of the vacuum laws

The examples discussed in the previous subsection
demonstrate that the definition (16) can yield a well-defined
expression for the electromagnetic force on a point charge
source of certain classical electromagnetic fields, whereas
the Lorentz formula (1) fails to be well defined. This is
encouraging but does not suffice to accomplish our goal,
which is to show that a generically well-defined, in fact
well-posed and physically interesting classical electrody-
namics with point charges is possible. Our next step thus is
to inquire into field evolutions for which (16) remains well
defined over time.

1. TheML vacuum law is electrodynamically inadmissible

For the sake of completeness, we note that the electro-
static special case leads to a consistent proper solution of
Lorentz electrodynamics in which the Maxwell-Lorentz
field equations are coupled with (16) instead of (1). Indeed,
assuming that qðtÞ ¼ qð0Þ and vðtÞ ¼ 0 for all time, field
initial data Dð0; sÞ ¼ e∇ 1

js−sð0Þj and Bð0; sÞ ¼ 0 propagate

in time unchanged, viz. Dðt; sÞ ¼ Dð0; sÞ and Bðt; sÞ ¼ 0
for all time. But then ðD ×BÞðt; sÞ ¼ 0 for all time, and so
by (16) also f emðtÞ ¼ 0 for all time, consistent with vðtÞ¼0
and qðtÞ ¼ qð0Þ for all time.
Unfortunately, this very special situation does not have

an open dynamical neighborhood in Lorentz electrody-
namics even when (1) is replaced by (16). Suppose we
perturb the static field data Dð0; sÞ ¼ e∇ 1

js−sð0Þj and

Bð0; sÞ ¼ 0 by replacing the vanishing magnetic initial
induction by a smooth and compactly supported Bð0; sÞ ¼
∇ ×Að0; sÞ such that Bð0; sÞ × ∇ × Bð0; sÞ is integrable
overR3. Even leaving the particle initial data as before, by (49)
the point chargewill now feel a nonzero initial force and begin
to move. But then by theMaxwell-Lorentz field equations the
magnetic induction will not evolve into a smooth Bðt; sÞ; a 1

r2

singularity is formed after an arbitrarily short time span after
the initial instant, soD ×B is only integrable at t ¼ 0, and the
force (16) does not remain well defined. This disqualifies the
Maxwell-Lorentz field equations.

2. The BI vacuum law may be
electrodynamically admissible

Everything we wrote about the electrostatic special case
in Lorentz electrodynamics, with (1) replaced by (16),
carries over to Born-Infeld electrodynamics. However, this
time there may be an open neighborhood of initial data for
which the ensuingMBI field evolution with a large open set
of assumed motions of their point source leads to a well
defined (16) as time goes on. To be sure, no such result has
been proven rigorously yet, but the author is optimistic that
the BI law is admissible, i.e., that an open set of solutions to
the MBI field equations with point charge sources has
integrable field momentum densities, and that the total field

momentum is differentiable in time—for not too long time
intervals.

3. The BLTP vacuum law is
electrodynamically admissible

In [36], we establish the electrodynamic admissibility of
the BLTP law, which here we summarize for the simplified
case of fields with a single point charge source. We begin
with a definition.
Definition III.1.— Electrodynamically admissible initial

data are of the following form: ðB;D;E; _EÞð0; sÞ ¼P
1
j¼0ðBj;Dj;Ej; _EjÞð0; sÞ. Here, ðB0;D0;E0; _E0Þð0; sÞ

is the t ¼ 0 evaluation of a C0;1 finite-energy source-free
MBLTP solution which is globally bounded by ðB0;D0;
E0; _E0Þ, having global Lipschitz constants LB0

and LE0
.

Moreover, ðB1;D1;E1; _E1Þð0; sÞ is the comoving electro-
magnetic field at t ¼ 0 of a fictitious point charge whose
world line coincides with the tangent world line of the
actual point charge at t ¼ 0.
Remark III.2.—Replacing the comoving electromagnetic

field, of a fictitious point charge whose world line coincides
with the tangent world line of the actual point charge at
t ¼ 0, by the retarded Liénard-Wiechert-type fields of a
fictitious point charge whose subluminal C1;1 world line
merely is tangent to the world line of the actual point charge
at t ¼ 0, does not result in more general initial data, then,
because the difference of two such fields at time t ¼ 0 is
regular enough and satisfies the source-free MBLTP field
equations at t ¼ 0.
The proof in [36] of the electrodynamical admissibility

of the BLTP law of the electromagnetic vacuum consists in
showing that the electrodynamically admissible initial data
stipulated above launch field evolutions for which the force
(16) is well defined for an open set of physically acceptable
motions. This proof is greatly facilitated by the fact that
the electromagnetic force in the BLTP vacuum can be
computed explicitly; the details are given in [36]. For the
convenience of the reader, the result of this computation is
summarized next; it has also been announced in a
conference proceedings; see [37].

IV. THE ELECTROMAGNETIC FORCE
IN THE BLTP VACUUM

By the linearity of the MBLTP field equations, the
solution launched by the above stated type of initial data
decomposes into the pertinent sum of a vacuum field plus a
Liénard-Wiechert(-type) field. The vacuum field need not
be represented explicitly for it suffices to know that it has
the required regularity. The field solutions D1ðt; sÞ and
H1ðt; sÞ for t > 0 are for a.e. js − qðtÞj > 0 given by the
Liénard-Wiechert fields (6) and (7),

D1ðt; sÞ ¼ Dret
LWðt; sÞ; ð51Þ
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H1ðt; sÞ ¼ Hret
LWðt; sÞ: ð52Þ

The MBLTP field solutions B1ðt; sÞ and E1ðt; sÞ for t ≥ 0 are given by (cf. [36])

E1ðt; sÞ ¼ −eϰ2
1

2

nðq; sÞ − v=c
1 − nðq; sÞ · v=c

����
ret
þ eϰ2

Z
tretðt;sÞ

−∞

J2ðϰ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ðt − t0Þ2 − js − qðt0Þj2

p
Þ

c2ðt − t0Þ2 − js − qðt0Þj2 cðs − qðt0Þ − vðt0Þðt − t0ÞÞdt0; ð53Þ

B1ðt; sÞ ¼ −eϰ2
1

2

v × nðq; sÞ=c
1 − nðq; sÞ · v=c

����
ret
þ eϰ2

Z
tretðt;sÞ

−∞

J2ðϰ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ðt − t0Þ2 − js − qðt0Þj2

p
Þ

c2ðt − t0Þ2 − js − qðt0Þj2 vðt0Þ × ðs − qðt0ÞÞdt0; ð54Þ

note that the time integrations from −∞ to 0 here do not
involve some unknown past motion but only the auxiliary
straight-line motion which encodes the Lorentz-boosted
electrostatic MBLTP field of the point charge, to which
expressions (53) and (54) reduce at t ¼ 0.
With the help of these solution formulas, the electro-

magnetic force of the MBLTP field on its point charge
source can be computed as follows. Since each electro-
magnetic field component is the sum of a vacuum field and
a sourced field, the bilinearΠMBLTP decomposes into a sum
of three types of terms, the vacuum-vacuum terms, the
source-source terms, and the mixed vacuum-source terms.
The vacuum-vacuum contribution to rhs (16) vanishes
because the total momentum of a vacuum field is con-
served; the vacuum-source contribution to rhs (16) yields
the force on the point source due to the vacuum field; last,
the source-source contribution to rhs (16) is a self-field
force in BLTP electrodynamics. Thus, (16) is given by

f emðtÞ ¼ f vacuum½q; v�ðtÞ þ f source½q; v; a�ðtÞ; ð55Þ

where

f vacuum½q;v�ðtÞ¼−e½E0ðt;qðtÞÞþvðtÞ×B0ðt;qðtÞÞ� ð56Þ

is the Lorentz force (1) evaluated with a vacuum field (i.e., a
test particle contribution to the total force), and

f source½q;v;a�ðtÞ

¼−
d
dt

Z
Bctðq0Þ

ðΠMBLTP
source ðt;sÞ−ΠMBLTP

source ð0;s−q0−v0tÞÞd3s;

ð57Þ

with ΠMBLTP
source given by (48) with ðB1;D1;E1;H1Þ in place

of ðB;D;E;HÞ.
Remark IV.1.—We re-emphasize that there is no such

thing as the self-field force in electrodynamics; only the total
force, i.e., the sum at rhs (55), has an absolute meaning (in
the chosen Lorentz frame). In particular, our self-field force
does generally not agree with the expression studied in [38]
and [39], which depends on the complete actual past motion
of the point particle and cannot be used to study its initial
value problem in which only the particle’s initial position
and velocity are prescribed (given the initial fields).
The self-field force can be evaluated using retarded

spherical coordinates ðr; ϑ;φÞ to carry out the d3s integra-
tions over the ball Bctðq0Þ, after which one can differentiate
w.r.t. t. This yields

f source½q; v; a�ðtÞ ¼ e2

4π

�
−Z½2�

ξ ðt; tÞ þ Z½2�
ξ°
ðt; tÞ −

X
0≤k≤1

c2−kð2 − kÞ
Z

t

0

½Z½k�
ξ ðt; trÞ − Z½k�

ξ°
ðt; trÞ�ðt − trÞ1−kdtr

−
X
0≤k≤2

c2−k
Z

t

0

� ∂
∂tZ

½k�
ξ ðt; trÞ − ∂

∂tZ
½k�
ξ°
ðt; trÞ

�
ðt − trÞ2−kdtr

�
; ð58Þ

where ξðtÞ≡ ðq; v; aÞðtÞ and ξ°ðtÞ≡ ðq0 þ v0t; v0; 0Þ, where Z½2�
ξ ðt; tÞ ≔ limtr→tZ

½k�
ξ ðt; trÞ, and where

Z½k�
ξ ðt; trÞ ¼

Z
2π

0

Z
π

0

�
1 −

1

c
jvðtrÞj cosϑ

�
π½k�
ξ ðt; qðtrÞ þ cðt − trÞnÞ sinϑdϑdφ; ð59Þ

with n ¼ ðsinϑ cosφ; sinϑ sinφ; cos ϑÞ a normal vector to the retarded sphere of radius r ¼ cðt − trÞ. Also, setting

Kξðt0; t; sÞ ≔
J1ðϰ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ðt − t0Þ2 − js − qðt0Þj2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2ðt − t0Þ2 − js − qðt0Þj2
p ; ð60Þ
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Kξðt0; t; sÞ ≔
J2ðϰ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ðt − t0Þ2 − js − qðt0Þj2

p
Þ

c2ðt − t0Þ2 − js − qðt0Þj2 ðs − qðt0Þ − vðt0Þðt − t0ÞÞ; ð61Þ

the π½k�
ξ ðt; sÞ with k ∈ f0; 1; 2g reads, for s ≠ q,

π½0�
ξ ðt; sÞ ¼ −ϰ4

1

4

�ðnðq; sÞ − 1
c vÞ × ð1c v × nðq; sÞÞ

ð1 − 1
c v · nðq; sÞÞ2

�
ret

þ ϰ4
1

2

�
nðq; sÞ − 1

c v

1 − 1
c v · nðq; sÞ

�
ret

×
Z

tretξ ðt;sÞ

−∞
vðt0Þ ×Kξðt0; t; sÞdt0

− ϰ4
1

2

� 1
c v × nðq; sÞ

1 − 1
c v · nðq; sÞ

�
ret

×
Z

tretξ ðt;sÞ

−∞
cKξðt0; t; sÞdt0 − ϰ4

Z
tretξ ðt;sÞ

−∞
cKξðt0; t; sÞdt0 ×

Z
tretξ ðt;sÞ

−∞
vðt0Þ ×Kξðt0; t; sÞdt0

− ϰ4c
Z

tretξ ðt;sÞ

−∞
Kξðt0; t; sÞdt0

Z
tretξ ðt;sÞ

−∞
Kξðt0; t; sÞvðt0Þdt0; ð62Þ

π½1�
ξ ðt; sÞ ¼ −ϰ2

�
nðq; sÞ ðnðq; sÞ × ½ðnðq; sÞ − 1

c vÞ × a�Þ · 1c v
c2ð1 − 1

c v · nðq; sÞÞ4
þ nðq; sÞ × ðnðq; sÞ − 1

c vÞ × a

2c2ð1 − 1
c v · nðq; sÞÞ3

�
ret

− ϰ2
�
nðq; sÞ × ðnðq; sÞ − 1

c vÞ × a

c2ð1 − 1
c v · nðq; sÞÞ3

�
ret

×
Z

tretξ ðt;sÞ

−∞
vðt0Þ ×Kξðt0; t; sÞdt0

þ ϰ2
�
nðq; sÞ ×

�
nðq; sÞ × ðnðq; sÞ − 1

c vÞ × a

c2ð1 − 1
c v · nðq; sÞÞ3

��
ret

×
Z

tretξ ðt;sÞ

−∞
cKξðt0; t; sÞdt0

− ϰ3
�

1

1 − 1
c v · nðq; sÞ

�
ret

Z
tretξ ðt;sÞ

−∞
Kξðt0; t; sÞ½vðtretξ ðt; sÞÞÞ þ vðt0Þ�dt0; ð63Þ

π½2�
ξ ðt; sÞ ¼ −ϰ2

�
1

ð1 − 1
c v · nðq; sÞÞ2

1

c
v −

�
1 −

1

c2
jvj2

� ðnðq; sÞ − 1
c vÞ × ð1c v × nðq; sÞÞ

ð1 − 1
c v · nðq; sÞÞ4

�
ret

þ ϰ2
��

1 −
1

c2
jvj2

�
nðq; sÞ × nðq; sÞ − 1

c v

ð1 − 1
c v · nðq; sÞÞ3

�
ret

×
Z

tretξ ðt;sÞ

−∞
cKξðt0; t; sÞdt0

− ϰ2
��

1 −
1

c2
jvj2

�
nðq; sÞ − 1

c v

ð1 − 1
c v · nðq; sÞÞ3

�
ret

×
Z

tretξ ðt;sÞ

−∞
vðt0Þ ×Kξðt0; t; sÞdt0; ð64Þ

and jret means that qðt̃Þ, vðt̃Þ, aðt̃Þ are evaluated at
t̃ ¼ tretξ ðt; sÞ. Note that rhs (58) vanishes at t ¼ 0.
Several of the spherical angular integrations can be

carried out explicitly in terms of well-known functions;
see [36]. Here we are content with the remark that for C1;1

motions t ↦ qðtÞ [which for t ≤ 0 coincide with the
auxiliary straight line motion t ↦ qð0Þ þ vð0Þt employed
to define the field initial data and should not be confused
with any actual motion for t < 0�, one can easily show that
all the terms in f source½q; v; a�ðtÞ are well defined. Since (56)
is also well defined for the regular vacuum field, the
electrodynamical admissibility of the BLTP vacuum law
follows.

V. BLTP ELECTRODYNAMICS HAS
NO ⃛q-PROBLEM

Having established that the BLTP law is electrodynami-
cally admissible, in the sense that the solutions of the

MBLTP field equations for prescribed C1;1 motions
t ↦ qðtÞ yield a field momentum vector density which
is integrable over space, and its integral differentiable in
time, we now explain that the so obtained electromagnetic
force (55), with f vacuum½q; v�ðtÞ given by (56) and
f source½q; v; a�ðtÞ by (58)ff, when substituted at rhs (13),
yields a well-posed initial value problem for point charge
motion, and thus a well-posed classical BLTP electrody-
namics with a point charge. It is understood here that the
relativistic velocity-momentum relation (12) is assumed,
with mb ≠ 0. This well-posedness result is a special case of
a result proved in [36] for an arbitrary finite number of
point charges. We here explain the main idea of the proof
for fields having a single point charge source.
A key feature of the total electrodynamical force in a

BLTP vacuum, f vacuum½q; v� þ f source½q; v; a�, as indicated
by our notation, is the dependence on only q, v, a; a third-
(and higher-)order time derivative of qðtÞ does not show
up. Therefore, already purely formally, our initial value
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problem for the point charge motion is of second order, as
desired.
Next, inserting (12) at lhs (13) and carrying out the

differentiation we obtain a familiar expression which can be
rewritten as a regular matrix acting on the vector a, the
matrix depending only on p (andmb), not on q and not on a.
Applying the inverse of this matrix at both sides of (13)
(with the force in a BLTP vacuum in place), our equation of
motion becomes

a ¼ W½p� · ðf vacuum½q; v� þ f source½q; v; a�Þ; ð65Þ
where the velocity v is expressed in terms of the momentum
p by inverting (12), i.e.,

v ¼ 1

mb

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jpj2

m2
bc

2

q ; mb ≠ 0; ð66Þ

and where

W½p� ≔ 1

mb

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jpj2

m2
bc

2

q �
1 −

p ⊗ p
m2

bc
2 þ jpj2

�
: ð67Þ

Together with the usual definitions aðtÞ ≔ d
dt vðtÞ and

vðtÞ ≔ d
dt qðtÞ, this is a complicated, nonlinear, and implicit

second-order differential-integral equation of motion for
the position of the point charge.
We approach the problem stepwise. Temporarily ignor-

ing the relationships aðtÞ ¼ d
dt vðtÞ and vðtÞ ¼ d

dt qðtÞ, and
instead treating the maps t ↦ qðtÞ and t ↦ pðtÞ and t ↦
aðtÞ as a priori unrelated for t > 0 (of course, for t ≤ 0 the
maps are determined by the stipulated auxiliary motion),
we note that then the acceleration t ↦ aðtÞ enters the BLTP
self-force term f source½q; v; a� only in a linear fashion.
Therefore, when treating t ↦ qðtÞ and t ↦ vðtÞ as given,
(65) becomes a linear integral equation for the acceleration
t ↦ aðtÞ. Better yet, inspection shows that it is a linear
Volterra integral equation for which we prove the following
key result; see [36].
PROPOSITION V.1. Given C0;1 maps t ↦ qðtÞ and

t ↦ pðtÞ, with Lip ðqÞ ¼ v, Lip ðvÞ ¼ a, and
jvðtÞj ≤ v < c, which for t ≤ 0 coincide with the stipulated
unaccelerated auxiliary motion, the Volterra equation as a
fixed point map has a unique C0 solution t ↦ aðtÞ ¼
α½qð·Þ; pð·Þ�ðtÞ. Moreover, the solution depends Lipschitz
continuously on the maps t ↦ qðtÞ and t ↦ pðtÞ.
The careful proof in [36] fills many pages.
Essentially as a corollary of the above proposition we

obtain the well-posedness result for the joint initial value
problem of the MBLTP field and its point charge source.
Indeed, now substituting α½qð·Þ; pð·Þ�ðtÞ for aðtÞ in
f source½q; v; a�, Newton’s equation of motion, supplemented
with the relativistic velocity-momentum relation (66) and
the definition vðtÞ ¼ d

dt qðtÞ of the velocity, can be formally
integrated to become a fixed point map for a curve in the

phase space of the point charge, viz. for some T > 0 and
t ∈ ½0; TÞ,

qðtÞ ¼ qð0Þ þ
Z

t

0

1

mb

pðt0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jpðt0Þj2

m2
bc

2

r dt0; ð68Þ

pðtÞ ¼ pð0Þ þ
Z

t

0

f vacuum½q; v�ðt0Þdt0

þ
Z

t

0

f source½q; v;α½qð·Þ; pð·Þ��ðt0Þdt0; ð69Þ

where v at rhs (69) is given in terms of p through (66). The
following theorem is a special case of the N-body result
proved in [36].
THEOREM V.2. Given qð0Þ and pð0Þ and the stipu-

lated MBLTP field initial data, there is a T > 0 such that the
fixed point problem (68) and (69) has a uniqueC1;1 solution
t ↦ ðq; pÞðtÞ for t ∈ ð0; TÞ extending continuously to
½0; TÞ. Moreover, if in a finite time the particle does not
reach the speed of light or infinite acceleration, then
T ¼ ∞. In any event, total energy-momentum conservation
holds.
Remark V.3.—When f vacuum½q; v� is replaced by an

external, smooth, and short-ranged force field, the dynam-
ics is global, i.e., T ¼ ∞. This was shown in [40].
Remark V.4.—For the BLTP electrodynamics, it is easy

to generalize the single-particle formulation to the N-body
formulation. By the linearity of the MBLTP field equations,
we can associate each particle with its own Liénard-
Wiechert(-type) MBLTP field, and thus a self-field force,
same expressions as before except that the index 1 is
replaced by j, say, also to be attached to position, velocity,
momentum, and acceleration vectors, and to the charge and
mass parameters. The total MBLTP field is the sum of a
vacuum field of the kind considered above plus all the
Liénard-Wiechert(-type) fields. The total force now gets an
extra contribution in form of the Lorentz force (1) on
particle j exerted by the Liénard-Wiechert-type fields of all
the particles but j. This requires extra regularity estimates
for all En and Bn, n ∈ f1;…; Ng, which are established in
[36]. In addition to the avoidance of the possible finite-time
blow-up scenarios for the single particle dynamics, global
well posedness now also requires that in finite time no two
particles reach the same location. While this can conceiv-
ably happen, it is not known whether it will happen
generically or not.
Remark V.5.—Above we noted already that our self-field

force rhs (58) vanishes at the initial instant t ¼ 0. Thus, in a
BLTP vacuum, the inertia of the particle is initially entirely
due to its bare mass.
To summarize, the work of [36] on BLTP electrody-

namics demonstrates that it is feasible to set up a classical
electrodynamics with point charge sources as a well-posed
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joint initial value problem for the fields and the particles,
which is of second order in the particle positions. No
Landau-Lifshitz type approximation has been invoked
because the infamous ⃛q problem does not show up; no
negative infinite bare mass renormalization [10], no addi-
tional comparison axioms [41] (cf. also [42]), and no
separating off of singularities [43] are invoked.
Whether BLTP electrodynamics is already a physically

acceptable classical theory is a different question. Parti-
cularly embarrassing is the fact that the triumph of avoiding
unphysical third- (and higher-)order time derivatives of the
point charge’s position qðtÞ in its force law is paid for by a
high prize, namely by introducing (presumably) unphysical
higher-order time derivatives in the electromagnetic field
equations. As a consequence, four MBLTP fields, namely
B, D, E, _E, require initial data. However, according to
phenomenological electromagnetism, once the fields
Bð0; sÞ and Dð0; sÞ are determined/prescribed initially
[constrained by (21) and (23)],1 one does not have any
freedom left to also choose E0ð0; sÞ and _E0ð0; sÞ, yet the
MBLTP field equations do require such a choice.
(Incidentally, neither the founding fathers of the BLTP
theory, nor Feynman [44], nor recent authors [38,39], seem
to have been worried about these loose ends of this field
theory.) Be that as it may, it is generally agreed upon, and
mathematically realized in the structures of the Maxwell-
Lorentz field equations and of the Maxwell-Born-Infeld
field equations, that once the fields Bð0; sÞ and Dð0; sÞ are
prescribed, the initial field data are fixed. Therefore, to
implement this rule also into the MBLTP field theory, one
needs a prescription which expresses the data Eð0; sÞ and
_Eð0; sÞ in terms of Bð0; sÞ and Dð0; sÞ.
In [36], we show that this can be accomplished by

postulating that the fields E0ð0; sÞ and _E0ð0; sÞ maximize
the field energy functional initially, given B0ð0; sÞ,
D0ð0; sÞ, and given the Liénard-Wiechert(-type) fields
associated with the data qð0Þ, vð0Þ. Thus, the initial field
energy is made as little negative as possible. One can make
this constraint Lorentz invariant by stipulating, e.g., that the
field energy maximization refers to the Lorentz frame in
which the total particle momentum vanishes. In the Lorentz
frame in which the initial value problem is formulated, the
relevant constraint is obtained through a Lorentz boost.

VI. THE ELECTROMAGNETIC FORCE:
N POINT CHARGES

In the case of BLTP electrodynamics, it is straightfor-
ward to generalize the formula for the electromagnetic
force on a point charge from when there is only a single
charge to when in total N point charges are present. This is

possible because the linear premetric Maxwell equations
are then complemented with the linear BLTP vacuum law
as closure relation. When nonlinear vacuum laws are used,
for instance, the Born-Infeld law, all these linear algebra-
based conclusions are not available. In the following, we
first give a general distributional definition of the electro-
magnetic force on a point charge source when N point
charges are present. Then we extract from this definition the
N-body analog of the earlier given basic definition (16) of
the electromagnetic force when only a single charge is
present.

A. Distributional definition of the
electromagnetic force

In the electromagnetic field-theory part of electrody-
namics, one already implements the fact that the system of
N moving charged point particles is associated with a
distribution-valued four-vector field on spacetime, namely
ðcρ; jÞðt; sÞ, the inhomogeneity term in the linear premetric
Maxwell field equations. It is only natural to also write the
mechanical quantities associated with the point particles as
distribution-valued fields on spacetime and thereby treat
particles and fields on an equal footing.
The momentum vector density,

Πchargeðt; sÞ ¼
X
n

pnðtÞδqnðtÞðsÞ; ð70Þ

and the symmetric stress tensor field,

Tchargeðt; sÞ ¼
X
n

1

mn

pnðtÞ ⊗ pnðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jpnðtÞj2

m2
nc2

q δqnðtÞðsÞ; ð71Þ

jointly satisfy the local law of particle momentum balance

∂
∂tΠ

chargeðt; sÞ þ∇ · Tchargeðt; sÞ ¼
X
n

f emn ðtÞδqnðtÞðsÞ: ð72Þ

Here, f emn ðtÞ is precisely the force term in (13), now
understood for the nth particle.
Similarly, for admissible vacuum laws, the electromag-

netic field momentum vector-density Πfield and the sym-
metric stress tensor of the fields2 Tfield jointly satisfy the
local law of field momentum balance

∂
∂tΠ

fieldðt; sÞ þ∇ · Tfieldðt; sÞ ¼
X
n

ΦnðtÞδqnðtÞðsÞ: ð73Þ

The source (sink) terms, ΦnðtÞ, for the electromagnetic
field momentum density and field stress are defined by

1In the physics literature on classical Lorentz electrodynamics,
one usually finds Bð0; sÞ and Eð0; sÞ prescribed, but recall that
D ¼ E (and B ¼ H) in Lorentz electrodynamics.

2To avoid awkward minus signs elsewhere, we define Tfield

with the opposite sign compared to the convention introduced by
Maxwell in what nowadays is called the Maxwell stress tensor.
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(73). For admissible vacuum laws (73) is indeed well
defined in the sense of distributions for fields with point
charge sources at the qnðtÞ which move with subluminal
velocities vnðtÞ. The vector ΦnðtÞ is the electromagnetic
field momentum gained (lost) per unit of time at location
qnðtÞ of the source (sink). Therefore,ΦnðtÞ has the physical
dimension of a force.
Now we postulate that the total momentum vector

density of the interacting system of electromagnetic field
and its charged particle sources is given by the sum of the
respective field and particle expressions defined earlier,

Πðt; sÞ ≔ Πfieldðt; sÞ þΠchargeðt; sÞ ð74Þ

is the total momentum vector density. Similarly, the
symmetric total stress tensor is postulated to be the sum

Tðt; sÞ ≔ Tfieldðt; sÞ þ Tchargeðt; sÞ: ð75Þ

Our postulates (74) and (75) in concert with the two
balance laws (72) and (73) imply the local balance law
for the total momentum vector density,

∂
∂tΠðt; sÞ þ ∇ · Tðt; sÞ ¼

X
n

ðΦnðtÞ þ f emn ðtÞÞδqnðtÞðsÞ:

ð76Þ

Now postulating that the total momentum density and
the stresses jointly satisfy the local conservation law for the
total momentum vector density,

∂
∂tΠðt; sÞ þ∇ · Tðt; sÞ ¼ 0; ð77Þ

then by comparing (77) with (76), and invoking relativistic
locality (spacelike separated events do not affect each
other), one deduces the identities

∀ n& ∀ t ≥ 0ða:e:Þ∶ f emn ðtÞ≡ −ΦnðtÞ: ð78Þ

This is the general distributional definition of the electro-
magnetic force on a point charge source of the classical
electromagnetic field when N point charges are present. It
may be seen as a zero-gravity implementation of what
Einstein-Infeld-Hoffmann surmised [45].
In the next subsection, we will extract the N-body analog

of (16), the electromagnetic force when only a single
charge is present.
We close this subsection by recalling that the energy

density of the charged particle distribution

εchargeðt; sÞ ¼
X
n

mnc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jPnðtÞj2

m2
nc2

s
δQnðtÞðsÞ ð79Þ

and its momentum vector density (70) jointly satisfy the
local law of particle energy balance

∂
∂tε

chargeðt;sÞþc2∇ ·Πchargeðt;sÞ¼
X
n

f emn ðtÞ ·vnðtÞδqnðtÞðsÞ:

ð80Þ

Similarly, the field energy density εfieldðt; sÞ and the field
momentum density Πfieldðt; sÞ jointly satisfy the local law
of field energy balance

∂
∂t ε

fieldðt; sÞ þ c2∇ ·Πfieldðt; sÞ ¼
X
n

ΦnðtÞ · vnðtÞδqnðtÞðsÞ:

ð81Þ

When the total energy density is postulated to be additive,
i.e.,

εðt; sÞ ≔ εfieldðt; sÞ þ εchargeðt; sÞ; ð82Þ

then the postulated local law of total momentum conser-
vation (77) now entails the local conservation law for the
total energy,

∂
∂t εðt; sÞ þ c2∇ ·Πðt; sÞ ¼ 0: ð83Þ

Similarly, one can obtain the local conservation law for
total angular momentum.

B. Integral formula for the electromagnetic force

The distributional definition (78) of the electromagnetic
force, with Φn defined by (73), gives rise to the following
N-body analog of the one-body formula (16). Let Vj denote
the Voronoi cell of the jth point charge at the initial time
and ∂Vj its boundary. Let T > 0 denote the instant of time
until which all N point charges remain in their initial
Voronoi cells. Then integrating (73) over Vj yields for
t ∈ ð0; TÞ and ∀ j ∈ f1;…; Ng,

f emj ðtÞ ¼ −
d
dt

Z
Vj

Πfieldðt; sÞd3s −
Z
∂Vj

ðTfield · νjÞðt; sÞd2s;

ð84Þ

and the initial force is defined as its limit when t↓0. If
N ¼ 1, so that j ¼ 1, we have V1 ¼ R3, the surface integral
vanishes, and in this case (84) reduces to (16).
If T < ∞, then to go beyond T one can reset the clock to

a new initial time, say T − ϵ, and replace the initial Voronoi
cells with those at time t ¼ T − ϵ, and repeat.
As shown explicitly for BLTP electrodynamics, so also

for BI electrodynamics one should be able to show that
with fixed initial data the rhs (84) depends on the vector
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functions t0 ↦ qnðt0Þ, t0 ↦ vnðt0Þ, and t0 ↦ anðt0Þ for
t0 ∈ ð0; tÞ, with limt0↓0qnðt0Þ ¼ qnð0Þ and limt0↓0vnðt0Þ ¼
vnð0Þ given particle initial data, i.e., no higher-order time
derivative of the position beyond the second one should
show up. Then with t0 ↦ qnðt0Þ and t0 ↦ vnðt0Þ considered
given, the system of relativistic Newton equations of
motion (13) with (84) at its right-hand side becomes a
system of generally nonlinear integral equations for the
maps t0 ↦ anðt0Þ as functionals of the qnð:Þ and vnð:Þ [or
pnð:Þ]. Whenever this system has a unique solution which
depends Lipschitz continuously on the qnð:Þ and vnð:Þ [or
pnð:Þ], the electrodynamical initial value problem is locally
(in time) well posed.

VII. MOTION ALONG A CONSTANT
ELECTRIC FIELD

The problem of determining the classical dynamics of a
single point charge which moves along a static, spatially
homogeneous electric field (approximately achieved by
the field between the plates of a charged capacitor) has
already been mentioned in the introductory section, where
we recalled that the Eliezer-Ford-O’Connell equation of
motion, and also its Landau-Lifshitz approximation, fails
to account for the radiation-reaction on the motion and
merely reproduce the test particle motion. We now
demonstrate that the initial-value problem for BLTP
electrodynamics formulated in this paper does take the
radiation reaction on the motion into account.
For simplicity, we restrict the discussion to the case

where the particle is initially at rest and surrounded by its
own electrostatic field and by the electrostatic field of the
capacitor. Note that this completely fixes the initial data for
the field and for the particle. No past hypothesis, about how
these initial data were established, is needed.
The textbook idealization of a single point charge placed

in a truly uniform capacitor field is obtained as a limiting
case from our setup, as follows. Consider a system of
2N þ 1 charges, with j ¼ 1 for the point electron whose
dynamics we are interested in, and N positive and N
negative singly charged particles distributed uniformly over
the, respectively, charged two capacitor plates. We take the
formal N → ∞ limit in which the capacitor plates become
infinitely charged, but also infinitely extended and sepa-
rated, leaving a homogeneous, static vacuum field Ehom

behind in which the point charge 1 is situated. While the
total electrical field energy diverges in this limit, the field
momentum is initially zero and remains well defined later
on; also, the particle momentum vanishes initially for our
data. The electromagnetic force on particle 1 is derived
from total momentum balance—note that the total momen-
tum of the single-particle-plus-field system is not by itself
conserved because this is only a subsystem of a formally
infinitely-many-particles-plus-field system. Even though
all the other charges have been moved to spatial infinity,

they still exert an influence on the remaining point charge 1

through their field Ehom. The balance equation for the
momentum of the single-particle-plus-field subsystem thus
reads

d
dt
ðp1ðtÞ þ pfieldðtÞÞ ¼ −eEhom; ð85Þ

which yields the total electromagnetic force on particle 1,

f em1 ðtÞ ¼ −
d
dt

Z
Bctðq0Þ

ΠMBLTPðt; sÞd3s − eEhom; ð86Þ

for t ≥ 0. Technically, we obtain (86) from (84) for j ¼ 1.
The point charge’s Voronoi cell V1 → R3 in the limit
N → ∞, and (84) for j ¼ 1 gives (86). We remark that the
Ehom term in (86) comes from the boundary integral in (84);
it is easy to see that Ehom does not contribute to
d
dt

R
R3 ΠMBLTPðt; sÞd3s. Moreover, in (86), we have replaced

the domain of integration R3 by the ball Bctðq0Þ because
ΠMBLTPðt; sÞ≡ 0 outside of this ball. The self-field force
− d

dt

R
Bctðq0ÞΠ

MBLTPðt; sÞd3s is in this example identical with

rhs (57), for ΠMBLTPð0; sÞ≡ 0.
To evaluate − d

dt

R
Bctðq0Þ Π

MBLTPðt; sÞd3s, we invoke equa-
tions (58)ff with Z½2�

ξ°
ðt; trÞ≡ 0. Due to the highly symmet-

rical setup, these expressions simplify drastically, although
one still cannot carry out each and every integration in
terms of elementary functions—but this is not necessary for
our purposes here.
We now consider first the early time regime. Since, as

noted above, the self-field force rhs (58) vanishes at the
initial instant t ¼ 0, the initial force is identical to the force
−eEhom on a charged test particle. Since the self-field force
varies continuously with t ≥ 0, it will remain small for a
certain amount of time (which we are not going to
determine here). During this early dynamical phase, the
motion of the particle is therefore well approximated by the
test particle dynamics, with the inertia of the particle given
by its bare mass.
We now show that although the radiation-reaction force

vanishes initially, it typically does not remain zero, unlike
the Eliezer-Ford-O’Connell radiation-reaction force and its
Landau-Lifshitz approximation. By typically, we mean that
for almost all ϰ parameter values the radiation-reaction
force does not vanish (we do not rule out that there might be
special, isolated values of ϰ for which this might happen).
For this purpose, assume to the contrary that the radiation-
reaction force rhs (58) would vanish for an open interval of
ϰ values. Since rhs (58)ff reveals that the radiation-reaction
force is an analytic function of ϰ, it follows that it then has
to vanish for all ϰ. This in turn means that each and every
Maclaurin coefficient of its power series expansion in ϰ has
to vanish. But the lowest-order term, which is ∝ ϰ2 and can
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be evaluated exactly in closed form (see below), does not
vanish, hence the radiation-reaction force cannot typically
vanish.
To compute the Oðϰ2Þ contribution, divide the expres-

sions for π½k�
ξ by ϰ2 and take the limit ϰ → 0. The only two

terms that survive in the limit are those in the first line of rhs
(63) and rhs (64), respectively. Carrying out the pertinent
integrations in (59), and noting that the result only depends
on tr, not on t, so that the last line at rhs (58) vanishes at
Oðϰ2Þ, we obtain

f em1 ðtÞ ¼ −
1

2
e2ϰ2

vðtÞ
jvðtÞj

�
2

c
jvðtÞj −

c2

jvðtÞj2 ln
1þ 1

c jvðtÞj
1 − 1

c jvðtÞj
�

−
1

2
e2ϰ2

Z
t

0

aðtrÞ 1

jvðtrÞj2
�
6 − 1

c jvðtrÞj − 3
jvðtrÞj2
c2

1 − jvðtrÞj2
c2

−
�
3

c
jvðtrÞj −

1

2

�
ln
1þ 1

c jvðtrÞj
1 − 1

c jvðtrÞj
�
cdtr þOðϰ3Þ ð87Þ

¼ −
1

2
e2ϰ2

vðtÞ
jvðtÞj

�
1 −

c
jvðtÞj

�
1þ

�
1 −

c
jvðtÞj

�
1

2
ln
1þ 1

c jvðtÞj
1 − 1

c jvðtÞj
��

þOðϰ3Þ: ð88Þ

The term in the first line at rhs (87) is the contribution from
the first line at rhs (63), and the term in the second line at
rhs (87) is the contribution from the first line at rhs (64).
Since for straight-line motion vðtÞ and aðtÞ are parallel, and
aðtÞ ¼ _vðtÞ, one can carry out the time integration in the
second line at rhs (87) in terms of elementary functions of v,
and a few algebraic manipulations then give (88). To
Oðϰ2Þ, this is the exact expression for our BLTP radia-
tion-reaction force in this problem where the particle starts
from rest. It vanishes only as jvj↓0 and as jvj↑c, and
otherwise points against v. This demonstrates that the BLTP
electrodynamical initial value problem accounts for the
radiation reaction on the motion of a point charge along a
uniform electric field.
In the vicinity of the initial time when jvðtÞj

c ≪ 1, we can
expand and obtain to leading order in jvj=c,

f em1 ðtÞ ¼ −
1

6

e2ϰ2

c
vðtÞ

�
1þO

�jvðtÞj2
c2

��
þOðϰ3Þ: ð89Þ

Note that (89) is a radiation-friction force of the familiar
Newtonian-friction type (i.e., proportional to −v).
In Fig. 1, we show v in units of c as a function of t in

units of mbc=e2ϰ2 both for the test particle motion and for
the BLTP motion with radiation-friction force given by
(88). The applied electric field strength is 0.1 in units of
eϰ2, which is a strong field for this problem. The radiation-
friction effect is clearly visible.
We note that for very weak applied field strength the

radiation reaction is captured by the Newtonian-friction
approximation (89), and the point charge’s velocity will
saturate at v∞ ¼ − 6c

eϰ2 E
hom; see Fig. 2 for an applied field

strength of 0.01 in units of eϰ2.
The sharp borderline between the weak field and strong

field regimes determines a critical field strength≈ 0.0519 for
this problem. For field strengths just slightly above the critical

value, the velocity temporarily reaches a quasiplateau,
before it makes the final transition to approach the speed
of light; see Fig. 3 for an applied field strength of 0.052 in
units of eϰ2.
Although the ∝ ϰ2 term (88) is not an accurate formula

for the radiation-reaction force in the physically interesting
regime of very large ϰ values, it is entirely adequate for
demonstrating that the radiation reaction does not vanish
identically in the BLTP version of this standard textbook-
type problem. Moreover, we have treated the dynamics
properly as a physical initial value problem with the same
data as in the test particle formulation, unlike the treatment
in [38] where “the whole path traversed by the particle up to
the present time contributes to [the self-force]” (quoted
from [38]).

FIG. 1. The velocity of a point charge, starting from rest in a
strong, constant applied electrostatic field Ehom, as per test
particle theory (dashed curve), and as per BLTP electrodynamics
with Oðϰ2Þ friction only (continuous curve).
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VIII. SUMMARY AND OUTLOOK

In this paper, we have shown that a well-defined
electromagnetic force on a point charge source of the
classical electromagnetic field can be extracted from
momentum balance among charges and field, whenever
the electromagnetic vacuum law which supplies the closure
relation for the premetric Maxwell field equations leads to a
finite field momentum vector which is differentiable with
respect to time.
For the BLTP law of the vacuum we even reported

that we were able to prove, in collaboration with

S. Tahvildar-Zadeh, that the BLTP electromagnetic force
as defined in (16) furnishes a well-posed joint initial value
problem for fields and point particles which is of second
order in the particle positions; see [36] for the details. To
the best of our knowledge, BLTP electrodynamics is the
first classical electrodynamical theory of point charges and
their electromagnetic fields which has been shown to be
dynamically well posed, free of infinite self-energies, etc.
and ill-defined Lorentz self-forces, and free of the ⃛q
problem. Incidentally, neither Bopp, Landé-Thomas, nor
Podolsky considered the definition of the force given in this
paper, but tried (in vain) to implement the ill-defined
Lorentz force formula into their theory.
We have illustrated the well-posed BLTP electrodynam-

ical initial value problem by revisiting the standard text-
book problem of a point charge released from rest in a
constant applied electrostatic field. Our discussion con-
firms that the test-particle approximation is valid in the
initial dynamical phase, with radiation-reaction corrections
first in form of a linear Newtonian-friction-type term (at
least in the small ϰ regime), and eventually in a nonlinear
manner.
A most interesting finding, valid for arbitrary ϰ, is that in

the initial phase of the dynamics the particle inertia is
determined entirely by its bare rest mass, not by the mass of
the (electromagnetically) dressed particle. The latter is
generally thought to control the inertia in scattering
scenarios. The predominance of scattering experiments,
in particular in high energy physics, has led to the general
belief that only the dressed particle mass is observable in
experiments, not the bare mass. Our findings by contrast
suggest that the bare mass may be observable by cleverly
setting up an initial value problem in the laboratory.
True, BLTP electrodynamics may not be the most

realistic classical theory, but it surely is a proof of concept,
signaling that analogous results should be feasible also for
putatively more realistic models, in particular the BI
electrodynamics. We remark that a well-defined joint initial
value problem for the MBI fields and their point charge
sources was formulated with the help of a Hamilton-Jacobi-
type theory in [46], but it is not clear whether that theory is
well posed, nor is it clear that its dynamics is independent
of the invoked foliation of spacetime it needs for its
formulation. Since the setup given in the present paper
is truly Lorentz covariant and foliation independent, it
should shed light on the formulation given in [46] by
comparing the two. Incidentally, neither Born and Infeld,
nor Schrödinger, nor Dirac, proposed the electromagnetic
force given in this paper but instead tried to implement the
ill-defined Lorentz force formula into the Born-Infeld
electrodynamics; cf. [47].
Inside the family of well-posed classical models, one

may hope to find the classical limit of the elusive,
mathematically well-defined, and physically viable,
special-relativistic quantum theory of electromagnetism.

FIG. 2. The velocity of a point charge, starting from rest in a
very weak, constant applied electrostatic field Ehom, as per test
particle theory (dashed curve) and as per BLTP electrodynamics
with Oðϰ2Þ friction only (continuous curve).

FIG. 3. The velocity of a point charge, starting from rest in a
constant applied electrostatic field Ehom of slightly larger-
than-critical field strength, as per test particle theory (dashed
curve) and as per BLTP electrodynamics withOðϰ2Þ friction only
(continuous curve).
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Having obtained a rigorous control over the classical
electromagnetic radiation-reaction problem, an important
next goal in the realm of classical physics is to get a
rigorous hand on the gravitational radiation-reaction prob-
lem. As a first step, armed with the insights gained from the
special-relativistic theory of motion formulated in this
paper, we have embarked on an assessment of the
Einstein-Infeld-Hoffmann [45] legacy; cf. [37].
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[24] A. Landé, Finite self-energies in radiation theory. I, Phys.
Rev. 60, 121 (1941).
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