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Here we present the “soldering” of opposite helicity states of a spin-3 particle, in D ¼ 2þ 1, into one
parity doublet. The starting points may be either the sixth- or fifth-order (in derivatives) spin-3 self-dual
models of opposite helicities. The high number of derivatives avoids the use of auxiliary fields, which has
been so far an obstacle for a successful soldering procedure. The resulting doublet model is a new
Lagrangian with six orders in derivatives and no auxiliary field. It may be regarded as a spin-3 analogue of
the linearized “new massive gravity.” We check its particle content via a gauge invariant and Lorentz
covariant analysis of the analytic structure of the two-point amplitude with the help of spin-3 analogues of
the Barnes and Rivers projection operators. The particle content is alternatively confirmed in a specific
noncovariant gauge by a decomposition in helicity variables. The soldered model is ghost free and contains
two physical states as expected for a parity doublet.
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I. INTRODUCTION

Contrary to what happens in D ¼ 3þ 1 dimensions, in
the lower dimensionD ¼ 2þ 1 it is possible to write down
local Lagrangians for elementary spin-s particles with well-
defined helicityþs or −s. Those models are parity breaking
(parity singlets) and may be called generically self-dual
models. Historically, the first examples correspond to the
spin-1 and spin-2 cases, which are known respectively as

the Maxwell-Chern-Simons (SDð1Þ
2 ) and the linearized

topologically massive gravity (SDð2Þ
3 ) theories; see [1].

The symbol SDðsÞ
j stands for a self-dual model of helicity s

and of jth order in derivatives. At each spin value s ¼
1; 3=2; 2 there are 2s equivalent self-dual models running
from the first order (j ¼ 1) to the top order j ¼ 2s. One can

go from SDðsÞ
j−1 to SDðsÞ

j via a Noether gauge embedding
procedure (NGE), starting with j ¼ 2 until j ¼ 2s; see
[2–4]. The more derivatives we have, the more local
symmetries and the less auxiliary fields are required to
get rid of spurious degrees of freedom (d.o.f.). This is
important for our purposes.

In the spin-3 case we have been only partially successful

[5,6]. We have gone from SDð3Þ
1 until SDð3Þ

4 and from SDð3Þ
5

up to the top model SDð3Þ
6 along the NGE and the master

action approaches. We still have a gap between SDð3Þ
4

and SDð3Þ
5 .

On the other hand, for the same set of spins
s ¼ 1; 3=2; 2, one can show that opposite helicity models

SDðsÞ
j and SDð−sÞ

j with j ¼ 2; 3;…; 2s can be joined
together into a parity invariant (doublet) model with both
helicities �s via a “soldering” procedure; see [7–13] for
references on soldering. In particular, the spin-1 Maxwell-
Proca and the spin-2 Fierz-Pauli models can be obtained via
such a procedure1 just like the spin-3=2 model of [15].
Since those doublet Lagrangians have the same form in
D ¼ 3þ 1, one can regard the self-dual models in D ¼
2þ 1 as building blocks of massive particles inD ¼ 3þ 1.
It turns out that for the next integer spin s ¼ 3 we have

problems. The soldering procedure is more complicate due
to the presence of the auxiliary fields. In particular, we have
not been able to deduce the massive spin-3 Singh-Hagen
[16] model (parity doublet) completely. In [17] only the
pure spin-3 sector of such a model has been obtained. We
have not coped with the soldering of the auxiliary fields,
which are required in order to have a ghost-free doublet
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1The linearized NMG of [14] can also be obtained via
soldering of linearized topologically massive gravity models
of opposite helicities. The fine-tuned curvature square terms
R2
μν − ð3=8ÞR2 are automatically built up, at linearized level, via

soldering [12,13].
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model. Since the two highest order self-dual models SDð3Þ
6

[18] and SDð3Þ
5 [6] only contain one completely symmetric

rank-3 tensor without extra fields, which is the minimal
tensor structure required for spin-3 particles, they are the
best candidates for the soldering procedure. The aim of this
work is to show that both models can be successfully
soldered into a self-consistent doublet spin-3 model very
much like the spin-2 case where a couple of opposite
helicities linearized topologically massive gravities

(SDð�2Þ
3 ) and linearized higher derivative topologically

massive gravities (SDð�2Þ
4 ) have been both soldered into

the linearized new massive gravity (NMG) of [14].

In Secs. II and III we solder the fifth (SDð�3Þ
5 ) and sixth

(SDð�3Þ
6 ) self-dual models, respectively. In Sec. IV we

check that the sixth-order soldered model is unitary in a
covariant and gauge independent way. In Sec. V we
reaffirm the self-consistency of the doublet model in terms
of helicity variables in a noncovariant gauge.

II. SOLDERING FIFTH-ORDER
SPIN-3 SELF-DUAL MODELS

Along this work the spin-3 field is described in terms
of totally symmetric rank-3 tensors hμνα. There are some
“geometrical” objects that we have named the Einstein and
Schouten tensors, which are respectively given by

Gμνα ¼ Rμνα −
1

2
ηðμνRαÞ; Sμνα ¼ Rμνα −

1

8
ηðμνRαÞ;

ð1Þ

where we have used the spin-3 Ricci tensor and its vector
contraction first introduced in [19], namely,

Rμνα ¼ □hμνα − ∂β∂ðμhναÞβ þ ∂ðμ∂νhαÞ; ð2Þ

Rα ¼ ημνRμνα ¼ 2□hα − 2∂β∂λhβλα þ ∂α∂βhβ: ð3Þ

We use the mostly plus metric ð−;þ;þÞ and unnormalized
symmetrization: ðαβγÞ ¼ αβγ þ βγαþ γαβ. It is useful
to define the antisymmetric operator Eμν ¼ ϵμνα∂α, where

ðEhÞμνα ≡ ð2=3ÞEβ
ðμhβναÞ. Given another totally symmetric

tensor fμνα, the operatorsGμνα and Sμνα are Hermitian in the
sense that under the space-time integral,

Gμνα½SðhÞ�fμνα ¼ SμναðhÞGμναðfÞ
¼ SμναðfÞGμναðhÞ
¼ hμναGμνα½SðfÞ�: ð4Þ

The fifth-order self-dual model obtained in [6]
describes a singlet of helicity þ3 or −3 depending on

the sign in front of the highest order term.2 In this sense, let
us consider

Sð5Þþ3½f� ¼
Z

d3x

�
−

1

2m2þ
SμναðfÞGμναðfÞ

þ 1

4m3þ
SμναðfÞGμναðEfÞ

�
; ð5Þ

Sð5Þ−3 ½g� ¼
Z

d3x

�
−

1

2m2
−
SμναðgÞGμναðgÞ

−
1

4m3
−
SμναðgÞGμναðEgÞ

�
; ð6Þ

where (5) represents a helicity þ3 with mass mþ and (6) a
helicity −3 with mass m−. One can verify that they are
both invariant under “traceless reparametrizations” and
“Weyl-transverse” gauge transformations respectively
given by

δξ̃fμνα ¼ ∂ðμξ̃ναÞ; ð7Þ

δψT fμνα ¼ ηðμνψT
αÞ; ð8Þ

where ημνξ̃μν ¼ 0 and ∂αψT
α ¼ 0. It is also possible to check

that they are invariant under the independent global shifts,

δfμνα ¼ ωμνα; δgμνα ¼ κωμνα; ð9Þ

where ωμνα and κ are constants. By imposing that such
transformations are arbitrary space-time functions and
proportional to each other, one can show through the
soldering procedure that the fields fμνα and gμνα can be
tied into a gauge invariant combination. We keep the
constant κ arbitrary so far, and then take the variations

δSð5Þþ3½f� ¼
Z

d3xJðþÞ
μναðfÞGμναðωÞ; ð10Þ

δSð5Þ−3 ½g� ¼
Z

d3xJð−ÞμναðgÞGμναðκωÞ; ð11Þ

where JðþÞ
μνα and Jð−Þμνα are what we call the Noether currents

defined as3

JðþÞ
μνα ¼ −

1

m2þ
SμναðfÞ þ

1

2m3þ
SμναðEfÞ; ð12Þ

2Actually the parity of the model is sensitive to the change of
mþ → −m−.3Some comments about how to determine the Noether currents
in the soldering approach are given in [13] at the end of Sec. II.
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Jð−Þμνα ¼ −
1

m2
−
SμναðgÞ −

1

2m3
−
SμναðEgÞ: ð13Þ

By simply adding (10) and (11) we have

δðSð5Þþ3½f� þ Sð5Þ−3 ½g�Þ ¼
Z

d3xðJðþÞ
μνα þ κJð−ÞμναÞδHμνα; ð14Þ

where we have introduced an auxiliary field Hμνα such that
its variation is given by δHμνα ¼ GμναðωÞ. By rewriting the
right-hand side of (14) with an integration by parts, we have

δ

�
Sð5Þþ3½f� þ Sð5Þ−3 ½g� −

Z
d3xðJðþÞ

μνα þ κJð−ÞμναÞHμνα

�

¼ −
Z

d3xHμναδðJðþÞ
μνα þ κJð−ÞμναÞ: ð15Þ

By explicitly calculating the currents variation one can see
that they might be written as

δ½JðþÞ
μνα þ κJð−Þμνα� ¼ −

�
1

m2þ
þ κ2

m2
−

��
δHμνα −

1

4
ηðμνδHαÞ

�

þ 1

2

�
1

m3þ
−

κ2

m3
−

�
SμναðEωÞ: ð16Þ

Then aiming to avoid any dynamics to the auxiliary field
Hμνα one can choose the arbitrary constant to be κ2 ¼
m3

−=m3þ, which automatically gets rid of the last term
of (16). After some rearrangements we can rewrite (15) as
δSS ¼ 0, where

Ss ¼ Sð5Þþ3½f� þ Sð5Þ−3 ½g� −
Z

d3x

�
b
2
HμναHμνα

−
3b
8
HαHα þHμναJμνα

�
; ð17Þ

where we have defined Jμνα ¼ JþμναðfÞ þ κJ−μναðgÞ and
b ¼ ðmþ þm−Þ=m3

−. Eliminating the auxiliary field
Hμνα through its algebraic equations of motion, we finally
have

Ss¼Sð5Þþ3½f�þSð5Þ−3 ½g�þ
1

2b

Z
d3x½JμναJμνα−3JμJμ�: ð18Þ

Then, substituting back (12) and (13) in (18) and also
defining the invariant combination,

hμνα ¼ κfμνα − gμνα; ð19Þ

we have the so-called soldered action given by

Ss½h� ¼
1

c

Z
d3x

�
1

8
SμναðEhÞGμναðEhÞ

−
ðmþ −m−Þ

4
SμναðhÞGμναðEhÞ

−
mþm−

2
SμναðhÞGμναðhÞ

�
; ð20Þ

where we have defined c ¼ m3
−ðmþ þm−Þ. We notice

that this is a sixth-order model with a fifth-order inter-
ference term proportional to the difference of masses
mþ −m−. It is invariant under the gauge transformations
(7) and (8) for the field hμνα. Withmþ ¼ m− we have been
able to show that in fact this model describes a doublet
of helicities þ3 and −3 with no need of auxiliary fields;
differently from the model (also of sixth order in
derivatives) we have obtained from the Singh-Hagen
theory, through different approaches, namely, the master
action [20] and the Noether gauge embedment [21].
As we see in the next section such a result resembles
the ones for the spin-2 theories.

III. SOLDERING SIXTH ORDER SPIN-3
SELF-DUAL MODELS

In [6] the authors show that there is a master action
interpolating between the fifth-order self-dual model (5) [or
(6)] and a sixth-order self-dual model suggested by [18].
One can also verify such equivalence by means of the
Noether-gauge-embedment approach [21].
Let us consider the spin-3 sixth-order self-dual models

with different masses mþ and m− respectively given by

Sð6Þþ3½f� ¼
Z

d3x

�
−

1

4m3þ
SμναðfÞGμναðEfÞ

þ 1

8m4þ
SμναðEfÞGμναðEfÞ

�
; ð21Þ

Sð6Þ−3 ½g� ¼
Z

d3x

�
1

4m3
−
SμναðgÞGμναðEgÞ

þ 1

8m4
−
SμναðEgÞGμναðEgÞ

�
: ð22Þ

Notice that now the helicities þ3 and −3 are determined
according to the sign in front of the lowest order term.
Another difference concerns the gauge symmetries of the
sixth-order model. Here, (21) and (22) are invariant under a
larger set of gauge symmetries in the sense that the former
traceless parameter may now be arbitrary ξ̃να → ξνα in (7)
as well as the transverse vector, which can be now
completed with its longitudinal part ψT

α → ψα in (8). We
begin the soldering procedure by taking the variation of
both actions and imposing that the variations of the fields
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hμνα and fμνα are proportional to each other, exactly as we
have done before in (10); then

δSð6Þþ3½f� ¼
Z

d3xJ̃ðþÞ
μναGμναðEωÞ; ð23Þ

δSð6Þ−3 ½g� ¼
Z

d3xJ̃ð−ÞμναGμναðκEωÞ; ð24Þ

where in order to define the Noether currents we have
factorized three derivatives through the differential operator
GμναðEωÞ, such that we have

J̃ðþÞ
μνα ¼ 1

2mþ
JðþÞ
μναðfÞ; J̃ð−Þμνα ¼ 1

2m−
Jð−ÞμναðgÞ: ð25Þ

So the Noether currents are exactly the same ones we had
before, except for a global factor 1=2m�. After quite the
same procedure one can demonstrate that we have the
soldered action given by

Ss¼Sð6Þþ3½f�þSð6Þ−3 ½g�−
1

2a

Z
d3x½J̃μναJ̃μνα−3J̃μJ̃μ�; ð26Þ

where we have defined as before J̃μνα ¼ J̃ðþÞ
μναðgÞþ

κJ̃ð−ÞμναðgÞ, used κ ¼ m3
−=m3þ, and defined a≡ ðmþ þm−Þ=

4mþm−. Replacing the currents (25) in (26) and defining
the invariant combination hμνα ¼ κfμνα − gμνα we obtain
exactly the same doublet model we have found in (20).
Similarities with the spin-2 case are evident at this

point. In [13] it was demonstrated that the linearized new
massive gravity model can be obtained through the
generalized soldering of either the third- (2s − 1) or
fourth- (2s) order self-dual models. This has indicated
to us that such a model is the highest self-consistent
description of a parity doublet of helicities þ2 and −2.
Analogously, we have seen here that the sixth-order
doublet model (20) is obtained by the generalized
soldering of the fifth- or sixth-order self-dual models.
Thus, we expect (20) to be the highest spin-3 doublet

model. Another reason to believe that the top order in
derivatives is 2s again is the fact that in the master action
approach, in order to derive a dual (jþ 1)th-order model
from a lower jth-order model it is necessary that the
highest derivative term has no particle content, like a
topological theory. However, the sixth-order term of (20)
contains a massless particle in its spectrum, as we see in
formulas (69) and (70) at m → 0. This is exactly the same
situation as the fourth-order K-term of the NMG model.
Finally, we have worked here with self-dual and doublet

models of spin-3 particles, which dispense the presence
of auxiliary fields and this is in fact a good reason why
we could successfully handle the soldering approach.
However, we know that another massive spin-3 doublet
model of sixth order in derivatives does exist [20]. It
contains an auxiliary scalar field besides the totally
symmetric rank-3 tensor hμνα. Its sixth-order term is
different from the sixth-order term of (20). Usually the
mass term must break the local symmetries of the kinetic
(higher order) term in order to produce the so-called
Fierz-Pauli constraints. This is the case of our soldered
action Ss where the symmetry under full reparametrizations
δhμνα ¼ ∂ðμξναÞ is broken down to traceless reparametriza-
tions by the fourth-order mass term. This is not the case of
the model of [20] where both fourth- and sixth-order terms
are invariant only under traceless reparametrizations.
We think that this might be the reason why that model
requires the scalar auxiliary field. Thanks to the absence of
auxiliary fields we have been able to check here unitarity
and particle content using the spin-projection operators
displayed in [22].

IV. UNITARITY OF THE DOUBLET MODEL

Next we show that the particle content of the sixth-order
model we have obtained in (20) consists of a doublet of
massive spin þ3 and −3 particles in three dimensions. For
the sake of simplicity we now choose mþ ¼ m− ¼ m and
then rewrite the Lagrangian in terms of spin-projection
operators and transition operators as follows:

L ¼ 1

2m4

�
1

8
SμναðEhÞGμναðEhÞ −m2

2
SμναðhÞGμναðhÞ

�

¼ hμνα
2

�
□

3

2m4
Pð3Þ
11 −

□
2

2m2

�
Pð3Þ
11 þ 3

8
Pð0Þ
11 þ 1

16
Pð0Þ
22 þ

ffiffiffi
6

p

16
ðPð0Þ

12 þ Pð0Þ
21 Þ

��μνα

βλσ

hβλσ: ð27Þ

We have used the same orthonormal basis of [22], which
is the rank-three analogue of the Barnes and Rivers
projection operators for rank-two tensors [23,24], in the
sense that they are constructed from the same building
blocks operators θμν and ωμν; for more details see our
Appendix. They obey the following algebra:

PðsÞ
ij P

ðrÞ
kl ¼ δsrδjkP

ðsÞ
il : ð28Þ

In our notation, the superscript (s) of PðsÞ
ij denotes the spin

subspace. If i ¼ j we have a projection operator while i ≠ j
stands for a transition operator. The subscripts are used in
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order to count the number of projectors of a given spin
subspace, for example in the subspace of spin 0 we have two

projection operators Pð0Þ
11 and Pð0Þ

22 ; see (A5) and (A6). In
addition, the set of projectors is complete in the sense that

X
i;s

PðsÞ
ii ¼ 1; ð29Þ

where 1 stands for the symmetric rank-3 identity operator
given in (A8).
Once the doublet model is invariant under traceless

reparametrizations and Weyl-transverse transformations

given respectively by (7) and (8), we need gauge fixing
terms in order to obtain the propagators. In order to fix the
traceless reparametrizations, we suggest a de-Donder-like
traceless tensor as gauge condition, i.e.,

Lð1Þ
GF ¼ 1

2λ1

�
∂μhμνα −

1

5
½∂ðνhαÞ þ ηναð∂ · hÞ�

�
2

; ð30Þ

where λ1 is a gauge fixing parameter and ∂ · h ¼ ∂μhμ. We
have constructed this term in such a way that it is invariant
under Weyl-transverse transformations (8). It can be
rewritten as

Lð1Þ
GF ¼ 1

2λ1
hμνα

�
□

�
−
1

3
Pð2Þ
11 −

8

75
Pð1Þ
11 −

32

75
Pð1Þ
22 þ 16

75
ðPð1Þ

12 þ Pð1Þ
21 Þ

��
μνα

βλσ

hβλσ

þ 1

2λ1
hμνα

�
□

�
−

9

25
Pð0Þ
11 −

6

25
Pð0Þ
22 þ 3

ffiffiffi
6

p

25
ðPð0Þ

12 þ Pð0Þ
21 Þ

��μνα

βλσ

hβλσ: ð31Þ

Since the model is still gauge invariant under Weyl-
transverse transformations, we add a second gauge fixing
term given by

Lð2Þ
GF ¼ 1

2m6λ2
fαfα; ð32Þ

with

fα ¼ □f̃α − ∂αð∂ · f̃Þ; f̃α ¼ ∂μ∂νhμνα −□hα; ð33Þ

which by its turn is invariant under traceless reparametri-
zations (7). It can be written as

Lð2Þ
GF ¼ 1

2m6λ2
hμνα

�
□

4

�
4

3
Pð1Þ
11 −

1

3
Pð1Þ
22

��
μνα

βλσ

hβλσ: ð34Þ

Then considering the two gauge fixing terms, one can
rewrite the Lagrangian (27) in a bilinear form,

Lþ Lð1Þ
GF þ Lð2Þ

GF ¼ hμναG
μνα
βλσh

βλσ; ð35Þ

where the operator Gμνα
βλσ can be rewritten, omitting the

indices for sake of simplicity, as

G ¼ □
2ð□ −m2Þ
2m4

Pð3Þ
11 −

□

3λ1
Pð2Þ
11 þ 4□

75m6

�
25λ1□

3 − 2λ2m6

λ1λ2

�
Pð1Þ
11 −

□

75m6

�
25λ1□

3 þ 32λ2m6

λ1λ2

�
Pð1Þ
22 þ 16□

75λ1
½Pð1Þ

12 þ Pð1Þ
21 �

−
3□

m2

�
2□

32
þ 3m2

25λ1

�
Pð0Þ
11 −

□

m2

�
□

32
þ 6m2

25λ1

�
Pð0Þ
22 −

ffiffiffi
6

p
□

m2

�
□

32
−
3m2

25λ1

�
½Pð0Þ

12 þ Pð0Þ
21 �: ð36Þ

Once we know the identity operator for symmetric rank three-fields we can find the propagator,

G−1 ¼ 2m4

□2ð□ −m2ÞP
ð3Þ
11 −

3λ1
□

Pð2Þ
11 þ 3m6

20□4

�ð25λ1□3 þ 32λ2m6Þλ2
5λ1□

3 þ 6λ2m6

�
Pð1Þ
11

−
3m6

5□4

�ð25λ1□3 − 2λ2m6Þλ2
5λ1□

3 þ 6λ2m6

�
Pð1Þ
22 þ 12m12

5□4

� ðλ2Þ2
5λ1□

3 þ 6λ2m6

�
½Pð1Þ

12 þ Pð1Þ
21 �

−
�
25λ1□þ 192m2

81□2

�
Pð0Þ
11 − 6

�
25λ1□þ 48m2

81□2

�
Pð0Þ
22 þ

ffiffiffi
6

p �
25λ1□ − 96m2

81□2

�
½Pð0Þ

12 þ Pð0Þ
21 �: ð37Þ
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Now in order to analyze the spectrum of the model we
consider the coupling of hμνα to the totally symmetric
source term Tμνα,

S ¼
Z

d3xd3xðLþ hμναTμναÞ; ð38Þ

In order to keep the invariance under (7) and (8) the source
must satisfy the following restrictions:

δξ̃S ¼ 0 ⇒ ∂μTμνα −
1

3
ηνα∂μTμ ¼ 0; ð39Þ

δψT S ¼ 0 ⇒ Tμ ¼ ∂μΩ; ð40Þ

where Ω is an arbitrary scalar function. Now, we are ready
to take the Fourier transform of the previous result in order
to analyze the propagator in the momentum space saturated
by totally symmetric sources obeying the constraints (39)
and (40). Then we look at the imaginary part of the residue
of the two point amplitude in momentum space A2ðkÞ
given by

A2ðkÞ ¼ −
i
2
T�
μναðkÞG−1ðkÞμναβλσT

βλσðkÞ ð41Þ

¼ i
k2 þm2

�
T�
μναTμνα −

7

9
k2Ω2

�
−

i
k2

½T�
μναTμνα�

þ i
m2

k4
½T�

μναTμνα þ k2Ω2� þ 7i
9
Ω2: ð42Þ

It does not depend on the gauge parameters λ1 and λ2. We
have physical particles if Im½ResðA2ðkÞÞjpole� > 0.
Let us start by the massive pole analysis, which allows us

to choose the convenient rest frame where kμ ¼ ðm; 0; 0Þ.
From (39) and (40) we have in momentum space

mT0να þ i
3
m2ηναΩ ¼ 0: ð43Þ

Therefore,

T0να ¼ 0 ν ≠ α ð44Þ

T000 ¼ i
3
mΩ ð45Þ

T0jj ¼ −
i
3
mΩ ðj ¼ 1; 2Þ: ð46Þ

Taking this information back in (42) we have

Im½ResðA2ðkÞÞjk2¼−m2 � ¼ lim
k2→−m2

ðk2 þm2ÞA2ðkÞ

¼ jTijkj2 > 0 ði; j; k ¼ 1; 2Þ:
ð47Þ

Hence, a physical massive spin-3 particle is propagating
in the spectrum. However we still have a double massless
pole in the spin-3 sector of G−1 that deserves special care.
In order to analyze it we choose the frame kμ ¼
ð−k0; ϵ;−k0Þ, which implies k2 ¼ ϵ2. At the end we take
the limit ϵ → 0. From the constraints (39) and (40) we can
eliminate seven of the ten independent components of the
totally symmetric source, in such a way that we can
conveniently choose as independent variables Ω, T122,
and T022. Exactly as in the analysis carried out in [25]
other choices may require specific properties of some of the
components of Tμνα at ϵ → 0 in order to guarantee that all
Tμνα behave smoothly at such a limit. Explicitly we have

T000 ¼ iΩ
2ϵðϵ=k0Þ½5 − 3ðϵ=k0Þ2�

3½1 − ðϵ=k0Þ2�2
þ T022

þ 2ðϵ=k0Þ½1þ ðϵ=k0Þ2�
½1 − ðϵ=k0Þ2�2

T122; ð48Þ

T001 ¼ iΩ
2ϵ½3 − ðϵ=k0Þ4�
3½1 − ðϵ=k0Þ2�2

þ ½1þ ðϵ=k0Þ2�2
½1 − ðϵ=k0Þ2�2

T122; ð49Þ

T002 ¼ iΩ
ϵðϵ=k0Þ½−3þ ðϵ=k0Þ2�

3½1 − ðϵ=k0Þ2�
− T022

−
ðϵ=k0Þ½1þ ðϵ=k0Þ2�

½1 − ðϵ=k0Þ2�
T122; ð50Þ

T011 ¼ iΩ
k0½3þ 4ðϵ=k0Þ2 − 3ðϵ=k0Þ4�

3½1 − ðϵ=k0Þ2�2

þ 2ðe=k0Þ½1þ ðϵ=k0Þ2�
½1 − ðϵ=k0Þ2�2

T122; ð51Þ

T012 ¼ iΩ
ϵ½−3þ ðϵ=k0Þ2�
3½1 − ðϵ=k0Þ2�

−
½1þ ðϵ=k0Þ2�
½1 − ðϵ=k0Þ2�

T122; ð52Þ

T111 ¼ iΩ
ϵ½9 − 6ðϵ=k0Þ2 þ ðϵ=k0Þ4�

3½1 − ðϵ=k0Þ2�2
þ 4ðϵ=k0Þ2
½1 − ðϵ=k0Þ2�2

T122;

ð53Þ

T112 ¼ iΩ
k0½−3þ ðϵ=k0Þ2�
3½1 − ðϵ=k0Þ2�

−
2ðϵ=k0Þ

½1 − ðϵ=k0Þ2�
T122; ð54Þ

T222 ¼ −iΩ
ϵðϵ=k0Þ

3
− T022 þ ðϵ=k0ÞT122: ð55Þ
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Collecting all the previous results we can write

T�
μναTμνα ¼ −jT000j2 þ 3jT001j2 þ 3jT002j2 − 3jT011j2

− 6jT012j2 − 3jT022j2 þ jT111j2 þ 3jT112j2
þ 3jT122j2 þ jT222j2 ð56Þ

¼ −
ðk0Þ2ðϵ=k0Þ2½4ðϵ=k0Þ4 − 9ðϵ=k0Þ2 þ 9�

9½1 − ðϵ=k0Þ2�
Ω2

þ 4

3

ϵðϵ=k0Þ3½ðϵ=k0Þ2 − 2�
½1 − ðϵ=k0Þ2�2

fiΩT�022 − iΩ�T022g

−
4

3

k0ðϵ=k0Þ5½ðϵ=k0Þ2 − 2�
½1 − ðϵ=k0Þ2�2

fiΩT�122 − iΩ�T122g

−
4ðϵ=k0Þ5

½1 − ðϵ=k0Þ2�2
fT022T�122 þ T�022T122g

þ 4ðϵ=k0Þ4½1þ ðϵ=k0Þ2�
½1 − ðϵ=k0Þ2�2

jT122j2; ð57Þ

which reduces to the simple expression

T�
μναTμνα ≈ −ϵ2Ω2 þOðϵ3Þ: ð58Þ

Then we have

Im½ResðA2ðkÞÞjk2¼0�
¼ lim

ϵ→0
ϵ2A2ðkÞ

¼ lim
ϵ→0

�
ϵ2Ω2 −Oðϵ3Þ þm2

ϵ2
½Oðϵ3Þ�

�
¼ 0: ð59Þ

We finally verify that the massless pole is nonpropagating.
After all, we conclude that the higher derivative massive
spin-3 doublet model is free of ghosts and carries only one
massive spin þ3 particle (parity doublet) in D ¼ 2þ 1
dimensions.

V. PARTICLE CONTENT VIA
HELICITY VARIABLES

Since the particle content analysis of the last section is
rather technical, we present here an alternative analysis
based on the less technical, though not explicitly covariant,
approach of [26]; see also [18,27] and more recently [6].
They make use of helicity variables and convenient gauge
conditions fixed at action level. Our starting point is the
soldered action (20), which at mþ ¼ m− ¼ m becomes

Ss½h� ¼
1

4m4

Z
d3xLs ¼

1

4m4

Z
d3x½Lð6Þ −m2Lð4Þ�: ð60Þ

The sixth- and fourth-order Lagrangians are given by

Lð6Þ ¼
1

4
SμναðhÞGμναðE2hÞ

¼ hμνσ□3

�
θμαθνβ −

3

4
θμνθαβ

�
θσλhαβλ; ð61Þ

Lð4Þ ¼ SμναðhÞGμναðhÞ; ð62Þ

The reader can check that both (61) and (62) are invariant
under traceless reparametrizations and transverse Weyl
transformations; see (7) and (8). In total we have seven
independent gauge parameters among ξ̃να and ψT

μ , which
allow us to fix seven gauge conditions. Initially we fix the
same five gauge conditions used in [6] since they are rather
convenient, namely,

∂jhjkμ ¼ 0; j; k ¼ 1; 2; μ ¼ 0; 1; 2: ð63Þ

According to [28] we can safely fix gauge conditions
at action level if they are complete. In our case this means
that the five gauge conditions (63) must completely fix
(without ambiguity) five out of the seven independent
gauge parameters ðξ̃να;ψT

μ Þ. As shown in [6], the conditions
(63) do satisfy such a criterium. We can further fix the two
remaining gauge d.o.f. However, we need to be careful in
order to preserve the completeness property of all seven
gauge conditions simultaneously. If we apply the gauge
transformations (7) and (8) to (63) and look for residual
symmetries that leave it invariant, we completely determine
the five parameters ξ̃να as functions of the two independent
Weyl parameters contained in ψT

μ . Then, we can select
combinations of the fields hμνα and its derivatives, which
are pure gauge under such residual symmetries. Such
combinations can be used as complete gauge conditions.
Following that route we end up with the two remaining
conditions

∂̂j∂̂k∂̂lhjkl ¼ 0; ∇2h000 − 6∂̂j∂̂khjk0 ¼ 0; ð64Þ

where ∂̂j ¼ ϵjk∂k satisfies ∂̂i∂̂j ¼ ∇2δij − ∂i∂j and ∂̂i∂̂i ¼
∂j∂j ¼ ∇2. The general solution,4 see [6], to (63) and (64)
can be written in terms of three fields. Following the
notation of [6] we write

hjkl ¼ 0; hjk0 ¼ ∂̂j∂̂kϕ; ð65Þ

h00j ¼ ∂̂jγ þ ∂jΓ; h000 ¼ 6∇2ϕ: ð66Þ

4In [6] we have only fixed (63) but we could have fixed (64)
too, which would have saved some steps in the proof of absence
of particle content of Lð4Þ.

SOLDERING SPIN-3 OPPOSITE HELICITIES IN D ¼ 2þ 1 PHYS. REV. D 100, 065011 (2019)

065011-7



Back in the soldered theory (20) we can write, after
integrations by parts, the soldered Lagrangian Ls ¼ Lð6Þ −
m2Lð4Þ as follows,

Ls ¼
81

4
ϕ̄∇8ðm2 −∇2Þϕ̄þ 27

4
ϕ̄∇8 _̄Γ −

9

16
_̄Γ∇6 _̄Γ

þ 9

16
m2Γ̄∇6Γ̄ −

9

4
γ̄∇6ð□ −m2Þγ̄; ð67Þ

where we have used the same field redefinitions of [6], i.e.,

ϕ̄ ¼ ϕ −
ϕ̈

6∇2
−

_Γ
6∇2

; Γ̄ ¼ Γþ _ϕ: ð68Þ

Although (68) contains time derivatives, the Jacobian is
trivial (J ¼ 1) and the canonical structure of the theory is
preserved. We can freely invert ðϕ;ΓÞ in terms of ðϕ̄; Γ̄Þ.
After another round of canonically trivial redefinitions we
can finally write the soldered theory in a diagonal form,

Ls ¼ Γ̃ð□ −m2ÞΓ̃þ γ̃ð□ −m2Þγ̃ þ ϕ̃∇8ðm2 −∇2Þϕ̃;
ð69Þ

where

Γ̃ ¼ 3m
4

�
−∇6

m2 −∇2

�
1=2

Γ̄; γ̃ ¼ 3

2
ð−∇2Þ3=2γ;

ϕ̃ ¼ ϕ̄þ
_̄Γ

6ðm2 −∇2Þ : ð70Þ

Since the eigenvalues of −∇2 are definite positive, we can
go back to our original fields ðϕ; γ;ΓÞ without problems.
The last term in (69) shows that ϕ̃ is nonpropagating.

Thus, we end up with only two propagating physical d.o.f.
ðΓ̃; γ̃Þ with the same mass, corresponding to the þ3 and −3
helicity states, which confirms the spectrum obtained in the
last section via the analytic structure of the propagator. The
approach used here can be implemented in the more general
case with mþ ≠ m−.
As a last remark we notice that the soldered

Lagrangian acquires a quite simple form in terms of
spin-3 Ricci-like [19] curvatures,

Ls ¼ Rμναð□ −m2ÞRμνα −
15

16
Rμð□ −m2ÞRμ þ ð∂μRμÞ2

16
:

ð71Þ

The relative factor −15=16 guarantees that the first two
terms proportional to the Klein-Gordon operator are invari-
ant under transverse Weyl transformations δhμνρ ¼ ηðμνψT

ρÞ
under which the last term of (71) is automatically invariant.
The last term is, however, necessary to make the sixth-order
terms (mass independent ones) invariant under full Weyl

transformations where ψT
μ → ψμ. It is usually necessary in

massive spinning particles that the mass term breaks local
symmetries of the highest derivative term in order to
produce the Fierz-Pauli conditions required to achieve
the correct number of d.o.f. like in Maxwell-Proca theory.
The mass terms in (71) break exactly one d.o.f. of
symmetry just like the Einstein-Hilbert term breaks the
scalar Weyl symmetry (δhμν ¼ ημνϕ) of the fourth-order
K-term of the new massive gravity [14].

VI. CONCLUSION

In D ¼ 2þ 1 we can solder opposite helicities theories
(self-dual models) into local field theories describing usual
massive spinning particles. Thus, we can regard the self-
dual models (parity singlets) as the basic building blocks of
massive spinning particles (parity doublets). The soldering
procedure has been successfully applied for particles of
spin s ¼ 1; 3=2; 2. However, when we try to extend this
idea to spin-3 particles, due to the auxiliary fields, we have
only partial success. Here we have surmounted this
problem by making use of higher order self-dual models
described solely in terms of totally symmetric rank-3 tensor
hμνρ, which is the minimal tensor structure required for spin
3. This is the first successful soldering beyond s ¼ 2
and the soldered theory (60) is the first spin-3 parity
doublet with the minimal tensor structure. The price we
have paid is to end up with six derivatives in the model;
see (71) and (2) and (3).
Although we have higher derivatives we have shown in

Sec. IV that the model is unitary via a careful examination
of the analytic structure of two point amplitude. The proof
is Lorentz covariant and gauge independent. In Sec. V, by
means of helicity variables, we have reaffirmed the results
of Sec. IV in a less technical way in a noncovariant gauge.
We have shown that the theory contains only two physical
massive modes in the spectrum.
It is important to mention that a successful soldering

of spin-3 particles is quite unexpected from the point of
view of a possible spin-3 geometry; see comment [29].
Though we still do not know what the natural (if any)
higher spin analogue is of the spin-2 Einstein tensor,
Schouten tensor, etc., it seems reasonable to define in
D ¼ 2þ 1, see [18,30], a spin-s Einstein tensor of sth
order in derivatives: Gμ1μ2���μs ¼ Eν1

μ1 � � �Eνs
μshν1���νs , where

Eμν ¼ ϵμνρ∂ρ. Accordingly, for spin 3 we would have a
third-order Einstein tensor that differs from the second-
order one given in (1), which on its turn follows from
the spin-3 geometry suggested in [19]. In the spin-2 case
both definitions coincide, which makes the spin-3 case
rather interesting.
Starting with a third-order spin-3 Einstein tensor the

authors of [18] suggest a fifth-order analogue of the spin-2
NMG of [14]. It turns out that such a model contains two
d.o.f. one of which is a ghost. Since the NMG theory can be
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obtained from the soldering of two linearized topologically
massive gravities with opposite helicities, [12] this makes
the spin-3 soldered version of NMG unlikely as mentioned
in [29]. According to our results, one might also consider
the soldered Lagrangian (71) a spin-3 analogue of the NMG
model, since it is of order 2s and stems from the soldering
of the opposite helicity self-dual models of order 2s or
2s − 1. Moreover, the local symmetry of the sixth- (2s)
order terms of (71) differs from the symmetries of the
fourth- (2s − 2) order terms (mass terms) by exactly 1 d.o.f.
just like the case of the NMG model. Moreover, when
written in terms of spin projection operators, the sixth-order
term of SS only belongs to the spin-3 subspace just like the
NMG fourth-order term lies completely in the spin-2 sector.
The difference between the third- and second-order

spin-3 Einstein tensors is related to the choice of full
reparametrizations δhμνρ ¼ ∂ðμΛνρÞ or traceless reparamet-
rizations δhμνρ ¼ ∂ðμΛ̃νρÞ, respectively, as the spin-3 ana-
logue of the linearized general coordinate invariance
δhμν ¼ ∂μΛν þ ∂νΛμ. The simplicity of our soldered
action (71) when written in terms of the Ricci-like
curvature (2) invariant under traceless reparametrizations
seems to favor the second choice but we have no definite
conclusion about it.
Our results raise some interesting points to be inves-

tigated in the future. It is known [31] that the fourth-order
NMG model can be obtained from an unconventional
dimensional reduction of the second-order linearized
Einstein-Hilbert massless theory; we are currently inves-
tigating the possibility of deriving the soldered model (71)
from the massless Fronsdal [32] spin-3 model. This is
somehow awkward since dimensional reduction of mass-
less theories with restricted (traceless) symmetries usually
leads to more fields than we originally have; however, both
(71) and the spin-3 Fronsdal theories only depend on the
totally symmetric rank-3 field. Another interesting point is
the possible generalization to the spin-4 case where our
results could be related with the sixth-order ghost free
doublet model obtained in [29]. Finally, we mention the
possibility of investigating possible cubic vertices to be
added to the soldered action in order to preserve its local
symmetries and derive a self consistent self-interacting
spin-3 model.
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APPENDIX: PROJECTION AND TRANSITION
OPERATORS

Taking the spin-1 and spin-0 projection operators
θμν ¼ ημν − ωμν and ωμν ¼ ∂μ∂ν=□, one can construct in
D dimensions, the spin-3 projection operators, as follows:

ðPð3Þ
11 Þμνραβγ ¼ θðμðαθ

ν
βθ

ρÞ
γÞ − ðPð1Þ

11 Þμνραβγ; ðA1Þ

ðPð2Þ
11 Þμνραβγ ¼ 3θðμðαθ

ν
βω

ρÞ
γÞ − ðPð0Þ

11 Þμνραβγ; ðA2Þ

ðPð1Þ
11 Þμνραβγ ¼

3

ðDþ 1Þ θ
ðμνθðαβθ

ρÞ
γÞ ; ðA3Þ

ðPð1Þ
22 Þμνραβγ ¼ 3θðμðαω

ν
βω

ρÞ
γÞ ; ðA4Þ

ðPð0Þ
11 Þμνραβγ ¼

3

ðD − 1Þ θ
ðμνθðαβω

ρÞ
γÞ ; ðA5Þ

ðPð0Þ
22 Þμνραβγ ¼ ωαβω

μνωρ
γ : ðA6Þ

We emphasize that here, differently from Sec. II, the
parenthesis means normalized symmetrization; taking for
example the first term in (A1) we have

θðμðαθ
ν
βθ

ρÞ
γÞ ¼

1

6
ðθμαθνβθργ þ θραθνβθ

μ
γ þ θναθ

μ
βθ

ρ
γ þ θραθ

μ
βθ

ν
γ

þ θναθ
ρ
βθ

μ
γ þ θμαθ

ρ
βθ

ν
γÞ: ðA7Þ

The totally symmetric identity operator is represented by 1
and is given by

1μνραβγ ¼ δðμðαδ
ν
βδ

ρÞ
γÞ : ðA8Þ

Finally, the transition operators PðsÞ
ij are given by

ðPð1Þ
12 Þμνραβγ ¼

3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðDþ 1Þp θðαβθ
ðρ
γÞω

μνÞ; ðA9Þ

ðPð1Þ
21 Þμνραβγ ¼

3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðDþ 1Þp θðμνθρÞðγωαβÞ; ðA10Þ

ðPð0Þ
12 Þμνραβγ ¼

3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðD − 1Þp θðαβωðμνωρÞ

γÞ ; ðA11Þ

ðPð0Þ
21 Þμνραβγ ¼

3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðD − 1Þp θðμνωðαβω

ρÞ
γÞ : ðA12Þ
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