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Soldering spin-3 opposite helicities in D=2 +1
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Here we present the “soldering” of opposite helicity states of a spin-3 particle, in D = 2 + 1, into one
parity doublet. The starting points may be either the sixth- or fifth-order (in derivatives) spin-3 self-dual
models of opposite helicities. The high number of derivatives avoids the use of auxiliary fields, which has
been so far an obstacle for a successful soldering procedure. The resulting doublet model is a new
Lagrangian with six orders in derivatives and no auxiliary field. It may be regarded as a spin-3 analogue of
the linearized “new massive gravity.” We check its particle content via a gauge invariant and Lorentz
covariant analysis of the analytic structure of the two-point amplitude with the help of spin-3 analogues of
the Barnes and Rivers projection operators. The particle content is alternatively confirmed in a specific
noncovariant gauge by a decomposition in helicity variables. The soldered model is ghost free and contains

two physical states as expected for a parity doublet.
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I. INTRODUCTION

Contrary to what happens in D = 3 4 1 dimensions, in
the lower dimension D = 2 + 1 it is possible to write down
local Lagrangians for elementary spin-s particles with well-
defined helicity +s or —s. Those models are parity breaking
(parity singlets) and may be called generically self-dual
models. Historically, the first examples correspond to the
spin-1 and spin-2 cases, which are known respectively as

the Maxwell-Chern-Simons (SD ) and the linearized
topologically massive gravity (SD3 ) theories; see [1].

The symbol SD;S) stands for a self-dual model of helicity s
and of jth order in derivatives. At each spin value s =
1,3/2,2 there are 2s equivalent self-dual models running
from the first order (j = 1) to the top order j = 2s. One can
go from SD(iS_)l to SD;S) via a Noether gauge embedding
procedure (NGE), starting with j =2 until j = 2s; see
[2-4]. The more derivatives we have, the more local
symmetries and the less auxiliary fields are required to
get rid of spurious degrees of freedom (d.o.f.). This is
important for our purposes.
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In the spin-3 case we have been only partially successful
[5,6]. We have gone from SDf) until SDS) and from SD?)

up to the top model SD?) along the NGE and the master

action approaches. We still have a gap between SDEB)

and SD?).

On the other hand, for the same set of spins
s =1,3/2,2, one can show that opposite helicity models
SD;‘Y) and SDE-_‘Y) with j=2,3,...,2s can be joined
together into a parity invariant (doublet) model with both
helicities +s via a “soldering” procedure; see [7—13] for
references on soldering. In particular, the spin-1 Maxwell-
Proca and the spin-2 Fierz-Pauli models can be obtained via
such a procedure1 just like the spin-3/2 model of [15].
Since those doublet Lagrangians have the same form in
D =3+ 1, one can regard the self-dual models in D =
2 4 1 as building blocks of massive particles in D = 3 + 1.

It turns out that for the next integer spin s = 3 we have
problems. The soldering procedure is more complicate due
to the presence of the auxiliary fields. In particular, we have
not been able to deduce the massive spin-3 Singh-Hagen
[16] model (parity doublet) completely. In [17] only the
pure spin-3 sector of such a model has been obtained. We
have not coped with the soldering of the auxiliary fields,
which are required in order to have a ghost-free doublet

'"The linearized NMG of [14] can also be obtained via
soldering of linearized topologically massive gravity models
of opposite helicities. The fine-tuned curvature square terms
R2 — (3/8)R? are automatically built up, at linearized level, via
soldenng [12,13].

Published by the American Physical Society
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model. Since the two highest order self-dual models SD(3>

[18] and SD [6] only contain one completely symmetric
rank-3 tensor without extra fields, which is the minimal
tensor structure required for spin-3 particles, they are the
best candidates for the soldering procedure. The aim of this
work is to show that both models can be successfully
soldered into a self-consistent doublet spin-3 model very
much like the spin-2 case where a couple of opposite
helicities linearized topologically massive gravities

(SD ) and hnearlzed hlgher derivative topologically

massive gravities (SD4 ) have been both soldered into
the linearized new massive gravity (NMG) of [14]

In Secs IT and III we solder the fifth (SD ) and sixth

(SD ) self-dual models, respectively. In Sec. IV we
check that the sixth-order soldered model is unitary in a
covariant and gauge independent way. In Sec. V we
reaffirm the self-consistency of the doublet model in terms
of helicity variables in a noncovariant gauge.

II. SOLDERING FIFTH-ORDER
SPIN-3 SELF-DUAL MODELS

Along this work the spin-3 field is described in terms
of totally symmetric rank-3 tensors h,,,. There are some
“geometrical” objects that we have named the Einstein and
Schouten tensors, which are respectively given by

1 1

_n(ﬂyRa)’ S/ﬂ/a = Rﬂya - _n(uyRa) >

G;wa = Rﬂva - ) 3

(1)

where we have used the spin-3 Ricci tensor and its vector
contraction first introduced in [19], namely,

Re = Uhypy — aﬁa(ﬂhmm + 0,0, hy), (2)

Ry = 1R,y = 20h, = 2000 hg, + 0,0 hs.  (3)
We use the mostly plus metric (—, +, +) and unnormalized
symmetrization: (afly) = afly + fya + yap. It is useful
to define the antisymmetric operator E,, = €,,,0% where
(Eh)
tensor f,,, the operators G, and S, are Hermitian in the
sense that under the space-time integral,

=(2/ 3)E€ﬂhﬂm). Given another totally symmetric

Hva

;41/0![ ( )]f;w(x: /wa( )Gﬂva(f)
= Sy (/)6 (h)
= hyu " [S(f)]. (4)

The fifth-order self-dual model obtained in [6]
describes a singlet of helicity 43 or —3 depending on

the sign in front of the highest order term.” In this sense, let
us consider

1
S%) [f} = /d3x {_mgﬂya(f)ﬁﬂya(f)

1
+ o Swal ) )
S(_53)[9] - /d3x|:_ﬁ ﬂud( )Guva( )

- ey S0 (E9)| ©

where (5) represents a helicity 4-3 with mass m, and (6) a
helicity —3 with mass m_. One can verify that they are
both invariant under “traceless reparametrizations” and

“Weyl-transverse” gauge transformations respectively
given by
5§~f/wa = a(ﬂsya)’ (7)
51//Tf;wa = ’7(;41/1//5)7 (8)

where r]”‘fw = 0and 0%yl = 0. Itis also possible to check
that they are invariant under the independent global shifts,

5f wa — Ouuas 59;41/(1 = KWyyq, (9)

where ®,,, and « are constants. By imposing that such
transformations are arbitrary space-time functions and
proportional to each other, one can show through the
soldering procedure that the fields f,,, and g, can be
tied into a gauge invariant combination. We keep the
constant x arbitrary so far, and then take the variations

32 = [ @wiines@s (o)
3590 = [ @up@e ). (1)

where J ,(M), and J ,(,,,g, are what we call the Noether currents
defined as’

7 _

pra — —

1
_Spwr(f) + mgyua(Ef)’ (12)

Actually the parity of the model is sensitive to the change of
m +3 — —m_.

Some comments about how to determine the Noether currents
in the soldering approach are given in [13] at the end of Sec. II.
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1 1
—28/41/(1(9) 3 Syva(Eg)' (13)

(=)
J = — -
pea m- 2m?.

By simply adding (10) and (11) we have
5]+ 5%lg) = / Pr(I) + kIG)H (14)

where we have introduced an auxiliary field H,,, such that

its variation is given by SH** = G"**(w). By rewriting the
right-hand side of (14) with an integration by parts, we have

3| S0+ 5300 - [ atofid+ iy
- / BxH™ (I + kI 50). (15)

By explicitly calculating the currents variation one can see
that they might be written as

2
) 4 g 1 x 1
5-]11/05 Jiwa) = = —5 +—= oH va ~ 4 I/5H(l
[Jiwa + &J wal <mi+m3)[ Tzl )
/1 ¥
+ 5 <m—i - m_i> Sﬂm(Ea)). (16)

Then aiming to avoid any dynamics to the auxiliary field
H,,, one can choose the arbitrary constant to be K> =
m? /m3, which automatically gets rid of the last term
of (16). After some rearrangements we can rewrite (15) as

0Sg = 0, where

5 5 b uva
5, =507+ 53la) - [ [2 HyyH"
3b
- ?H(IH(Z + Hﬂlza‘]ﬂba:| ’ (17)

where we have defined J,,, = J,,(f) + kJ,4(g9) and
b= (my+m_)/m3. Eliminating the auxiliary field
H,,, through its algebraic equations of motion, we finally
have

1
S, =SB +551d+ 5, / &x[J ol =310, (18)

Then, substituting back (12) and (13) in (18) and also
defining the invariant combination,

hm/a = Kf;wa ~ s (19)

we have the so-called soldered action given by

S, i :% / & Esﬂm(m)@wm

_ (my —m_)
4
mym_
-

Sywa(h)G"“*(Eh)

S,mm)@wh)], (20)

where we have defined ¢ = m?(m, +m_). We notice
that this is a sixth-order model with a fifth-order inter-
ference term proportional to the difference of masses
m, —m_. It is invariant under the gauge transformations
(7) and (8) for the field A,,,. With m, = m_ we have been
able to show that in fact this model describes a doublet
of helicities +3 and —3 with no need of auxiliary fields;
differently from the model (also of sixth order in
derivatives) we have obtained from the Singh-Hagen
theory, through different approaches, namely, the master
action [20] and the Noether gauge embedment [21].
As we see in the next section such a result resembles
the ones for the spin-2 theories.

III. SOLDERING SIXTH ORDER SPIN-3
SELF-DUAL MODELS

In [6] the authors show that there is a master action
interpolating between the fifth-order self-dual model (5) [or
(6)] and a sixth-order self-dual model suggested by [18].
One can also verify such equivalence by means of the
Noether-gauge-embedment approach [21].

Let us consider the spin-3 sixth-order self-dual models
with different masses m, and m_ respectively given by

1
SO = [ x|~ oy Sal 1 (E)

+i ,wa(Ef)@M(Ef)} @1)
6= [ @ [ S ua(9)G"(Eg)
gt SwalEOED)|. (22

Notice that now the helicities +3 and —3 are determined
according to the sign in front of the lowest order term.
Another difference concerns the gauge symmetries of the
sixth-order model. Here, (21) and (22) are invariant under a
larger set of gauge symmetries in the sense that the former
traceless parameter may now be arbitrary &,, — &, in (7)
as well as the transverse vector, which can be now
completed with its longitudinal part w — y, in (8). We
begin the soldering procedure by taking the variation of
both actions and imposing that the variations of the fields
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h,q and f,,, are proportional to each other, exactly as we
have done before in (10); then

350 = [ exdiileeEn), @)
(6) — 3. 7(=) Y%t
85351g) = | dxJwaG"*(kEw), (24)

where in order to define the Noether currents we have
factorized three derivatives through the differential operator
G"*(Ew), such that we have

j(+)

pva

I e Lo
= J va 5 J va — a . 25
m, (f) wa =5 I (9). (25)

So the Noether currents are exactly the same ones we had
before, except for a global factor 1/2m, . After quite the
same procedure one can demonstrate that we have the
soldered action given by

1 oo .
S, =S5%111+5°) 9] -5 / B[] T =31,00,  (26)

where we have defined as before fﬂm = ing(g)+

xJ'u(g), used k = m3 /m3, and defined a = (m, +m_)/
4m,m_. Replacing the currents (25) in (26) and defining
the invariant combination %,,, = Kf 4 — Gue We Obtain

exactly the same doublet model we have found in (20).
Similarities with the spin-2 case are evident at this
point. In [13] it was demonstrated that the linearized new
massive gravity model can be obtained through the
generalized soldering of either the third- (2s —1) or
fourth- (2s) order self-dual models. This has indicated
to us that such a model is the highest self-consistent
description of a parity doublet of helicities +2 and —2.
Analogously, we have seen here that the sixth-order
doublet model (20) is obtained by the generalized
soldering of the fifth- or sixth-order self-dual models.
Thus, we expect (20) to be the highest spin-3 doublet
|

model. Another reason to believe that the top order in
derivatives is 2s again is the fact that in the master action
approach, in order to derive a dual (j + 1)th-order model
from a lower jth-order model it is necessary that the
highest derivative term has no particle content, like a
topological theory. However, the sixth-order term of (20)
contains a massless particle in its spectrum, as we see in
formulas (69) and (70) at m — 0. This is exactly the same
situation as the fourth-order K-term of the NMG model.

Finally, we have worked here with self-dual and doublet
models of spin-3 particles, which dispense the presence
of auxiliary fields and this is in fact a good reason why
we could successfully handle the soldering approach.
However, we know that another massive spin-3 doublet
model of sixth order in derivatives does exist [20]. It
contains an auxiliary scalar field besides the totally
symmetric rank-3 tensor h,,,. Its sixth-order term is
different from the sixth-order term of (20). Usually the
mass term must break the local symmetries of the kinetic
(higher order) term in order to produce the so-called
Fierz-Pauli constraints. This is the case of our soldered
action §; where the symmetry under full reparametrizations
Ohyq = 0(,6,q) is broken down to traceless reparametriza-
tions by the fourth-order mass term. This is not the case of
the model of [20] where both fourth- and sixth-order terms
are invariant only under traceless reparametrizations.
We think that this might be the reason why that model
requires the scalar auxiliary field. Thanks to the absence of
auxiliary fields we have been able to check here unitarity
and particle content using the spin-projection operators
displayed in [22].

IV. UNITARITY OF THE DOUBLET MODEL

Next we show that the particle content of the sixth-order
model we have obtained in (20) consists of a doublet of
massive spin +3 and —3 particles in three dimensions. For
the sake of simplicity we now choose m, = m_ = m and
then rewrite the Lagrangian in terms of spin-projection
operators and transition operators as follows:

1 1 va m2 va
L= ﬂ §§uua(Eh)Gﬂ (Eh) - 7§yva(h)GM (h)
hwa [T ) O [0, 3,0, 1 o0, YO 0, o] ™m0
= ”2 {w 53 [Pn +§P11 +1_6P22 +1—6(P1z + Py, )] }/}Mhm . (27)
We have used the same orthonormal basis of [22], which P,(']s') Pl({? =55 Pz(';)' (28)

is the rank-three analogue of the Barnes and Rivers
projection operators for rank-two tensors [23,24], in the
sense that they are constructed from the same building
blocks operators 6,, and @,,; for more details see our

Appendix. They obey the following algebra:

In our notation, the superscript (s) of PS> denotes the spin

subspace. If i = j we have a projection operator while i # j
stands for a transition operator. The subscripts are used in
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order to count the number of projectors of a given spin
subspace, for example in the subspace of spin 0 we have two
projection operators P(l(;) and ng); see (A5) and (A6). In
addition, the set of projectors is complete in the sense that

SR -1,

where 1 stands for the symmetric rank-3 identity operator

given in (AS).
Once the doublet model is invariant under traceless
reparametrizations and Weyl-transverse transformations
|

(29)

given respectively by (7) and (8), we need gauge fixing
terms in order to obtain the propagators. In order to fix the
traceless reparametrizations, we suggest a de-Donder-like
traceless tensor as gauge condition, i.e.,

1

1 2
‘CSI)T =57 {aﬂhﬂba - g [6(yha) + nva(a : h)]} ’ (30)

where 4, is a gauge fixing parameter and 0 - h = 0,h*. We
have constructed this term in such a way that it is invariant
under Weyl-transverse transformations (8). It can be
rewritten as

€l = g e D3P0 75 P 35 P 4 D]
o O[22 - © iy 38 +P)H/hﬂ o
[
ansvrs aformatons. w100 3 seeond suuge Tng 00 =3y e 5P =3P e 30

term given by

LE) = ———fuf™, (32)

2m6/1
with
a(l(a : f)’

which by its turn is invariant under traceless reparametri-
zations (7). It can be written as

f{l = Df(l - f~a = 8/481/]/1’”(1 - Dhm (33)

Then considering the two gauge fixing terms, one can
rewrite the Lagrangian (27) in a bilinear form,

L+ £GF + EGF = hyuwaGlgh’, (35)

where the operator GJ;; can be rewritten, omitting the
indices for sake of simplicity, as

DQ(D - mz) (3) O () 4 2511 |:|3 - 2].277’16 (1) O 25),”:'3 + 32/121’}16 (1) 161 (1) (1)
G=—_-—"F"P — 57— - P P P
2m* 3 75mb [ PN ] I 75m6 { My } 2+ 754 Piz + P
SD 20 3m? o oy 6m? (0) Ve [d  3m? (0) (0)
— Py - |=F+==|Py ——— |=—=—| P P5/]. 36
{32 25/11} 2132 254 2 m? |32 25M4 P12 + P (36)
Once we know the identity operator for symmetric rank three-fields we can find the propagator,
Gl — 2m* pd _ 34 po) 3m® [(2510° 4 324,m°)1, (1)
S R@-md) O M 2004 | 5AP 4 64,m° i
3m® [(254, —24,m%)A, (1) 12m'"? (2,)? (1) (1)
- P P P
5004 [ 50, + 64,m° 2 5 50, + 64,m° [Piz + Py
25,04 192m2] (o 25,04 48m>] (o 25,0 -96m*] . (o 0
- |: 81|:|2 :|P§1)_6 81|:|2 sz)—l—\/g 81|:|2 [P§2)+Pé1)]' (37)
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Now in order to analyze the spectrum of the model we
consider the coupling of A, to the totally symmetric
source term 7H“,

5= / Brdx(L + Iy TH); (38)

In order to keep the invariance under (7) and (8) the source
must satisfy the following restrictions:

1
58 = 0= 0,1 — 29, T =0, (39)

5,8 =0= T = &Q, (40)

where Q is an arbitrary scalar function. Now, we are ready
to take the Fourier transform of the previous result in order
to analyze the propagator in the momentum space saturated
by totally symmetric sources obeying the constraints (39)
and (40). Then we look at the imaginary part of the residue
of the two point amplitude in momentum space A, (k)
given by

i Vo B
Aalk) = =2 Tra(K)G (KT (k) (41)
i 5 o 7 202 I * Hvor
= [T g~ p T
m? 7i
+ iF [T;mT’“’“ + kZQZ] + 592. (42)

It does not depend on the gauge parameters A; and 1,. We
have physical particles if Im[Res(A;(k))]po1] > O

Let us start by the massive pole analysis, which allows us
to choose the convenient rest frame where k, = (m,0,0).
From (39) and (40) we have in momentum space

mTo 4 %mZWDaQ —0. (43)
Therefore,
T =0 v+#a (44)
o0~ Lt (45)
TO/f:—émQ (j=12). (46)

Taking this information back in (42) we have

Im[Res(A; (k))[;o—2] = 1lim (K + m?) Ay (k)

k*——m
:|T’Jk|2>0 (l,],k: 1,2)
(47)

Hence, a physical massive spin-3 particle is propagating
in the spectrum. However we still have a double massless
pole in the spin-3 sector of G~! that deserves special care.
In order to analyze it we choose the frame k, =
(=ko, €, —ky), which implies k> = €. At the end we take
the limit € — 0. From the constraints (39) and (40) we can
eliminate seven of the ten independent components of the
totally symmetric source, in such a way that we can
conveniently choose as independent variables Q, T'%2,
and 7922, Exactly as in the analysis carried out in [25]
other choices may require specific properties of some of the
components of 7, at € — 0 in order to guarantee that all
T,,, behave smoothly at such a limit. Explicitly we have

2e(e/ky)[S —3(e/ko)?
CLARE TR IR

2(e/ko)[1 + (e/ko)’]

(1= (€/k0)2]2

1+ (e/ko)*]?
g™

9% = iQ

2, (48)

2¢[3 — (e/ko)"]
3[1 = (e/ko)*

T = iQ

7002 _ ige(e/ko)[—3 + (e/ko)’] 7022

3[1 = (e/ko)?]
_(e/ko)[1 + (e/k0)] 12a
(ko] | G0)
1n_ k0[3 + 4(€/k0)2 - 3<€/k0)4]
e (P e
2(e/ko)[1+ (e/ko)?] . 12
-k - O
012 _ 6[_3 + <€/k0)2] _ [1 + (€/k0)2] 122
[T M TRy R
1 _ €[9 = 6(e/ko)* + (e/ko)*] 4(e/ko)®  im
B = O T ek = (e/ko P
(53)
112 i kO[_3 + (e/ko)z} _ 2(€/k0) 122
e RSP R TR vy s L

T2 — —iQLeé Yl o2 4 (g2, (55)
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Collecting all the previous results we can write

T;DaTyva — _|T000|2 + 3|T001|2 + 3|T002|2 _ 3|T011|2
_ 6‘T012|2 _ 3|T022‘2 + |T111|2 4 3‘T112|2

+ 3|T122|2 + |T222|2 (56)

__ (ko)*(e/ko)*[A(e/ko)* = 9(e/ko)* + 9] o2
91 - (e/ko)’]

4e(e/ko)*[(e/ko)* = 2]

3 (1= (e/ko)’P
_Ako(e/ko) [(e/ko)* = 2]

3 (1= (e/ko)P?

5
_ 7 i(ze//klgz)z]z (10274122 4 pro27122)
4(€/k0)4[1 + (G/ko)z] |T122
[1 = (e/ko)*]?

{iQT*OZZ — Q¥ TOZZ}

{iQT*122 — Q¥ T122}

2, (57)

which reduces to the simple expression
ThaTH = —€2Q% + O(63). (58)
Then we have

Im[Res (A (k)| 2]
= li_{%SzAz(k)

2
= li_{%{GZQQ -0(€e) + % [0(63)]} =0. (59)
We finally verify that the massless pole is nonpropagating.
After all, we conclude that the higher derivative massive
spin-3 doublet model is free of ghosts and carries only one
massive spin +3 particle (parity doublet) in D =2+ 1
dimensions.

V. PARTICLE CONTENT VIA
HELICITY VARIABLES

Since the particle content analysis of the last section is
rather technical, we present here an alternative analysis
based on the less technical, though not explicitly covariant,
approach of [26]; see also [18,27] and more recently [6].
They make use of helicity variables and convenient gauge
conditions fixed at action level. Our starting point is the
soldered action (20), which at m, = m_ = m becomes

1 1
STh=— [ &xL, = —:
s[7] . / Xy =g

The sixth- and fourth-order Lagrangians are given by

d3x[£(6) - m2£(4)] (60)

1

L(s) = 7 Sualh)6"(E*h)

3
= h”wD3 (9““0” ~ 9””9“ﬂ> 6"’1haﬂ1, (61)

£(4) = Sﬂt/tl(h)Gﬂm(h)? (62)

The reader can check that both (61) and (62) are invariant
under traceless reparametrizations and transverse Weyl
transformations; see (7) and (8). In total we have seven
independent gauge parameters among &, and l//;, which
allow us to fix seven gauge conditions. Initially we fix the
same five gauge conditions used in [6] since they are rather
convenient, namely,

0;h

=0,j, k=1,2;4=0,1,2. (63)

Tk
According to [28] we can safely fix gauge conditions
at action level if they are complete. In our case this means
that the five gauge conditions (63) must completely fix
(without ambiguity) five out of the seven independent
gauge parameters (,,. w}). As shown in [6], the conditions
(63) do satisfy such a criterium. We can further fix the two
remaining gauge d.o.f. However, we need to be careful in
order to preserve the completeness property of all seven
gauge conditions simultaneously. If we apply the gauge
transformations (7) and (8) to (63) and look for residual
symmetries that leave it invariant, we completely determine
the five parameters &,,, as functions of the two independent
Weyl parameters contained in /. Then, we can select
combinations of the fields 4, and its derivatives, which
are pure gauge under such residual symmetries. Such
combinations can be used as complete gauge conditions.
Following that route we end up with the two remaining
conditions

8j8k3,hjkl = 0, V2h000 - 68j8khjk0 = 0, (64)
where (‘% = €0y satisfies 3,@1- = V25,; — 0,0, and 0,0, =
0,0, = V2. The general solution,* see [6], to (63) and (64)
can be written in terms of three fields. Following the
notation of [6] we write

hjw = 0; hjro = aiék(ﬁ’ (65)

hooj = Oy + O hogy = 6V (66)

*In [6] we have only fixed (63) but we could have fixed (64)
too, which would have saved some steps in the proof of absence
of particle content of L.
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Back in the soldered theory (20) we can write, after
integrations by parts, the soldered Lagrangian £; = L) —
m*L 4 as follows,

L, = %$V8(m2 —V2)g + 24—7(21V81L“ - %fwf

+ 19—6m2FV6f - %;‘/Vﬁ(D —m2), (67)

where we have used the same field redefinitions of [6], i.e.,

b T
¢ = 6V2 6V2°

I=r+¢. (68)
Although (68) contains time derivatives, the Jacobian is
trivial (/ = 1) and the canonical structure of the theory is
preserved. We can freely invert (¢,T") in terms of (¢, T).
After another round of canonically trivial redefinitions we
can finally write the soldered theory in a diagonal form,

Ly =T(0=m)l +7(0 = m?)j + $Vi(m* = V?)§,

(69)
where
. 3m [ =VO& \1/2_ .3
I'=—- (7,"2 - vz) L 7=3V)"y
- - r
= —_—. 7

Since the eigenvalues of —V? are definite positive, we can
go back to our original fields (¢, y,T") without problems.

The last term in (69) shows that ¢ is nonpropagating.
Thus, we end up with only two propagating physical d.o.f.
(T, 7) with the same mass, corresponding to the +3 and —3
helicity states, which confirms the spectrum obtained in the
last section via the analytic structure of the propagator. The
approach used here can be implemented in the more general
case with m, # m_.

As a last remark we notice that the soldered
Lagrangian acquires a quite simple form in terms of
spin-3 Ricci-like [19] curvatures,

15 0,RH)?

L= Ruva(m — mz)RMW - 7RM(D — mz)R” + M
16 16

(71)

The relative factor —15/16 guarantees that the first two
terms proportional to the Klein-Gordon operator are invari-
ant under transverse Weyl transformations 64, = n(ﬂ,,y/;
under which the last term of (71) is automatically invariant.
The last term is, however, necessary to make the sixth-order
terms (mass independent ones) invariant under full Weyl

transformations where y/ — . It is usually necessary in
massive spinning particles that the mass term breaks local
symmetries of the highest derivative term in order to
produce the Fierz-Pauli conditions required to achieve
the correct number of d.o.f. like in Maxwell-Proca theory.
The mass terms in (71) break exactly one d.o.f. of
symmetry just like the Einstein-Hilbert term breaks the
scalar Weyl symmetry (6h,, = n,,¢) of the fourth-order
K-term of the new massive gravity [14].

VI. CONCLUSION

In D =2 -+ 1 we can solder opposite helicities theories
(self-dual models) into local field theories describing usual
massive spinning particles. Thus, we can regard the self-
dual models (parity singlets) as the basic building blocks of
massive spinning particles (parity doublets). The soldering
procedure has been successfully applied for particles of
spin s = 1,3/2,2. However, when we try to extend this
idea to spin-3 particles, due to the auxiliary fields, we have
only partial success. Here we have surmounted this
problem by making use of higher order self-dual models
described solely in terms of totally symmetric rank-3 tensor
hy,,,, which is the minimal tensor structure required for spin
3. This is the first successful soldering beyond s =2
and the soldered theory (60) is the first spin-3 parity
doublet with the minimal tensor structure. The price we
have paid is to end up with six derivatives in the model;
see (71) and (2) and (3).

Although we have higher derivatives we have shown in
Sec. IV that the model is unitary via a careful examination
of the analytic structure of two point amplitude. The proof
is Lorentz covariant and gauge independent. In Sec. V, by
means of helicity variables, we have reaffirmed the results
of Sec. IV in a less technical way in a noncovariant gauge.
We have shown that the theory contains only two physical
massive modes in the spectrum.

It is important to mention that a successful soldering
of spin-3 particles is quite unexpected from the point of
view of a possible spin-3 geometry; see comment [29].
Though we still do not know what the natural (if any)
higher spin analogue is of the spin-2 Einstein tensor,
Schouten tensor, etc., it seems reasonable to define in
D =241, see [18,30], a spin-s Einstein tensor of sth
order in derivatives: G, .., = E;\ ---E;ih where
E? = e"?0,. Accordingly, for spin 3 we would have a
third-order Einstein tensor that differs from the second-
order one given in (1), which on its turn follows from
the spin-3 geometry suggested in [19]. In the spin-2 case
both definitions coincide, which makes the spin-3 case
rather interesting.

Starting with a third-order spin-3 Einstein tensor the
authors of [18] suggest a fifth-order analogue of the spin-2
NMG of [14]. It turns out that such a model contains two
d.o.f. one of which is a ghost. Since the NMG theory can be

VyUge
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obtained from the soldering of two linearized topologically
massive gravities with opposite helicities, [12] this makes
the spin-3 soldered version of NMG unlikely as mentioned
in [29]. According to our results, one might also consider
the soldered Lagrangian (71) a spin-3 analogue of the NMG
model, since it is of order 2s and stems from the soldering
of the opposite helicity self-dual models of order 2s or
2s — 1. Moreover, the local symmetry of the sixth- (2s)
order terms of (71) differs from the symmetries of the
fourth- (2s — 2) order terms (mass terms) by exactly 1 d.o.f.
just like the case of the NMG model. Moreover, when
written in terms of spin projection operators, the sixth-order
term of Sy only belongs to the spin-3 subspace just like the
NMG fourth-order term lies completely in the spin-2 sector.

The difference between the third- and second-order
spin-3 FEinstein tensors is related to the choice of full
reparametrizations 6h,,, = 9,/ or traceless reparamet-
rizations 6h,,, = 8(”/§Dp), respectively, as the spin-3 ana-
logue of the linearized general coordinate invariance
oh,, = d,A, + 0,A,. The simplicity of our soldered
action (71) when written in terms of the Ricci-like
curvature (2) invariant under traceless reparametrizations
seems to favor the second choice but we have no definite
conclusion about it.

Our results raise some interesting points to be inves-
tigated in the future. It is known [31] that the fourth-order
NMG model can be obtained from an unconventional
dimensional reduction of the second-order linearized
Einstein-Hilbert massless theory; we are currently inves-
tigating the possibility of deriving the soldered model (71)
from the massless Fronsdal [32] spin-3 model. This is
somehow awkward since dimensional reduction of mass-
less theories with restricted (traceless) symmetries usually
leads to more fields than we originally have; however, both
(71) and the spin-3 Fronsdal theories only depend on the
totally symmetric rank-3 field. Another interesting point is
the possible generalization to the spin-4 case where our
results could be related with the sixth-order ghost free
doublet model obtained in [29]. Finally, we mention the
possibility of investigating possible cubic vertices to be
added to the soldered action in order to preserve its local
symmetries and derive a self consistent self-interacting
spin-3 model.
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APPENDIX: PROJECTION AND TRANSITION
OPERATORS

Taking the spin-1 and spin-0 projection operators
0., = Ny — ®,, and o,, = 9,0,/0], one can construct in
D dimensions, the spin-3 projection operators, as follows:

3)\uy, v P 1)\py,
(Pgl))lr;/}/; = 95’;9/39;; - (P§1>)'Zﬁ;€’ (A1)
2)\pvp % 0)\pvp
(Pt = 30t — (P))r, (A2)
DN )
P = owo, 0, A3
( 11 )aﬂy (D 4 1) (ap 7) ( )
(P(l))ﬂl//’ — 39(/40)1/0)/’) (A4)
22 Japy (a7 py)?
0)\py, 3 v
<ﬂ”%:wD_ 01, ). (A5)
0)\py, v,.p
(Pt = oo, (A6)

We emphasize that here, differently from Sec. II, the
parenthesis means normalized symmetrization; taking for
example the first term in (A1) we have

gy )_1 v )P v v 4 o U
0Ly, = 6 (OL00L + 00,0, + 0406, + 02050,
+ 04040, + 0:0,0;). (A7)

The totally symmetric identity operator is represented by 1
and is given by

vp _ o1y op)
15 = 857 (a8)
Finally, the transition operators Pl(-‘;) are given by
P(l) Hvp 3 0 6(/’ w) A9
( 12 )a/}y - W (ap Y)CU; s ( )
Py = 3 plugy) A10
(P )aﬂy = m (yPap)> ( )
(Pt = Oaf).  (AN)
wrAD-1) )
(PO = — > g ef).  (A12)
@ 3AD-1) 4
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