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We discuss dual formulations of vortex strings (magnetic flux tubes) in the four-dimensional N ¼ 1

supersymmetric Abelian Higgs model with the Fayet-Iliopoulos term in the superspace formalism. The
Lagrangian of the model is dualized into a Lagrangian of the BF type described by a chiral spinor gauge
superfield including a 2-form gauge field. The dual Lagrangian is further dualized into a Lagrangian given
by a chiral spinor superfield including a massive 2-form field. In both of the dual formulations, we obtain a
superfield into which the vortex strings and their superpartners are embedded. We show the dual
Lagrangians in terms of a superspace and a component formalism. In these dual Lagrangians, we explicitly
show that the vortex strings of the original model are described by a string current electrically coupled with
the 2-form gauge field or the massive 2-form field.
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I. INTRODUCTION

Understanding phases of gauge theories is one of the
important issues in quantum field theories. In the gauge
theories, there is the so-called Higgs phase in which a
gauge field becomes massive. One of the simplest renor-
malizable theories describing the Higgs phase may be the
Abelian Higgs model, in which a Uð1Þ gauge field is
coupled with a complex scalar field charged under the
Uð1Þ symmetry. In the Higgs phase of the Abelian Higgs
model, theUð1Þ gauge field eats a phase part of the complex
scalar field and becomes massive. Furthermore, there can
exist extended objects of spatial dimension 1 as solutions of
the equation of motion (EOM) in the Higgs phase. The
extended objects are called Abrikosov-Nielsen-Olesen
(ANO) vortex strings [1,2]. The ANO vortex strings are
magnetic flux tubes which have topological charges, and
they can be regarded as topological solitons. Such vortex
strings arise in many contexts such as type-II superconduc-
tors [1] in condensedmatter physics aswell as cosmic strings
[3–5] in cosmology (see, e.g., Refs. [6,7] as a review).
While the ANO vortex strings are introduced as solutions

to the EOM, they can be seen as charged objects associated
with gauge fields by using dual transformations. For the

Abelian Higgs model, there are at least two dual formu-
lations. One is to dualize the phase of the scalar field to
a 2-form gauge field [8–11]. In this dual formulation, the
original 1-form gauge field and the dualized 2-form gauge
field are massive by the topological coupling (the so-called
BF coupling) between them [12,13]. In this dual formu-
lation, the ANO vortex strings are described by a conserved
string current which is electrically coupled with the 2-form
gauge field [14,15]. Another is to dualize the massive
1-form field to a massive 2-form field [16]. The 1-form
gauge field becomes massive after eating the phase of the
complex scalar field. The dual 2-form field can be regarded
as a 2-form gauge field eating the 1-form gauge field by a
Stückelberg coupling. In this dual formulation, too, the
ANO vortex strings are dualized to a string current electri-
cally coupled with the massive 2-form field [17,18]. The
dual transformation was applied to a finite-temperature
phase transition of the Abelian Higgs model [19].
In the Abelian Higgs model, the positions of the ANO

vortex strings are characterized by zero points of the
complex scalar field, and the dual string current is described
by the singularities due to a multivalued part of the phase of
the complex scalar field around the zero points (see, e.g.,
Ref. [20]). The dual formulation with ANO vortex strings
can be obtained by splitting the complex scalar field into
the regular part and the singular part. The phase in the regular
part of the complex scalar field can be dualized into the
2-form gauge field. On the other hand, the phase of the
singular part, which is the multivalued function, is dualized
to the string current.
There are some virtues of the dual transformations. One

virtue of the dual formulations is that the topological charge
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of the ANO vortex strings can be simply understood as the
conserved charge associated with the gauge symmetry for
the 2-form field [21]. Another virtue is that the ANO vortex
strings become fundamental degrees of freedom in contrast
to the original theory.
In the literature, there are some generalizations of the

duality of ANO vortex strings in the Abelian Higgs model.
One is the case of global strings in the Goldstone model,
that is, a Uð1Þ Higgs model without a gauge interaction.
In this case, a Nambu-Goldstone boson associated with the
spontaneously broken global Uð1Þ symmetry is dualized to
a massless 2-form field, and global strings are electrically
coupled to the 2-form field [15,22]. These strings are axion
strings in cosmology and superfluid vortices in superfluids
in condensed matter physics. Another generalization is the
case of non-Abelian gauge theories. An SUð2Þ gauge
theory coupled with one complex (two real) adjoint
Higgs fields is known to admit Z2 strings [2]. A non-
Abelian duality in this case was obtained in Ref. [23], in
which the dual Lagrangian is described by a non-Abelian
2-form field [23,24] coupled with Z2 strings. Another case
is an SUð3Þ gauge theory coupled with three by three
complex Higgs fields in the fundamental representation,
relevant for QCD at high density and low temperature.
This theory admits a non-Abelian vortex (color flux tubes)
[25–27], accompanied with non-Abelian CP2 moduli [28],
and a non-Abelian duality of non-Abelian vortices in this
theory was obtained in Refs. [27,29].
In general, there are attractive and repulsive forces

among the ANO vortex strings intermediated by Higgs
and gauge fields, respectively. For type-II (I) superconduc-
tors, the gauge field is lighter (heavier) than the Higgs field;
thereby, repulsion (attraction) is dominant. The multiple
vortex strings become stable if the two forces are balanced
at the critical coupling between type-I and type-II super-
conductors. Such a state is called a Bogomol’nyi-Prasad-
Sommerfield (BPS) state [30,31]. In the BPS state, the total
mass of the ANO vortex strings is proportional to the total
topological charge (see, e.g., Ref. [32]).
Supersymmetry (SUSY) gives us nonperturbative

aspects of BPS states [33]. The BPS states preserve half
of the SUSY charges if the theories are embedded into
SUSY theories. Since the BPS states are protected by
SUSY, the BPS states are stable against quantum correc-
tions [34]. The SUSY Abelian Higgs model [35] can be
constructed by using a vector gauge superfield (so-called
1-form prepotential) with a Fayet-Iliopoulos (FI) term [36]
and chiral superfields charged under the Uð1Þ gauge
symmetry. In particular, the ANO vortex strings can be
constructed by using a D-term potential [37–42].
The dual formulations of the SUSYAbelian Higgs model

are possible. In SUSY theories, the duality between the
scalar field and the 2-form field can be extended into the
duality between a chiral superfield and a chiral spinor
gauge superfield [43–45], which we will call “2-form

prepotential” [46]. This is because the 2-form gauge field
can be embedded into the chiral spinor gauge superfield.
Furthermore, the duality between a massive 1-form field
and a massive 2-form field can also be understood as the
duality between a real superfield and a chiral spinor
superfield [47–50]. Such dual transformations were
extended to supergravity (SUGRA) [49] and extended
SUSY theories [49]. However, the superfield descriptions
of the dual formulations of the ANO vortex strings in the
SUSY context have not been understood so far. The above-
mentioned dual formulations in SUSY theories only
describe the regular part without singularities. To under-
stand nonperturbative aspects of the ANO vortex strings in
SUSY theories, it is plausible to dualize the SUSYAbelian
Higgs model including the ANO vortex strings in a mani-
festly SUSY way.
In this paper, we show the dual formulations of the four-

dimensional (4D) N ¼ 1 SUSY Abelian Higgs model
including the ANO vortex strings. We use the superspace
formalism in order to give the manifestly SUSY theories.
There are at least two ways to dualize the Lagrangian of the
Abelian Higgs model as mentioned above. We discuss both
of the dual transformations to the theories with a 2-form
gauge field and a massive 2-form field. In both of the dual
formulations, we show the dual transformations of the
ANO vortex strings in terms of superfields. As in the
bosonic Abelian Higgs model, we split a chiral superfield
describing the complex scalar field into the regular part and
the singular part. For the regular part, there are no zero
points of the complex scalar field. Therefore, the regular
part of the chiral superfield can be dualized into the 2-form
prepotential. For the singular part, the duality transforma-
tions give us the electrical coupling of the 2-form prepo-
tential with a superfield given by the singular part. We show
that the superfield given by the singular part has the string
current as well as superpartners of the string current by the
component expression of the dual Lagrangian. We can
further dualize the 1-form prepotential. In this dual trans-
formation, the Lagrangian can be written in terms of a
massive chiral spinor superfield and the superfield into
which the string current is embedded.
This paper is organized as follows. In Sec. II, we review

the dual transformations of ANO vortex strings in the
Abelian Higgs model without SUSY. In Sec. III, we show
the duality transformations of ANO vortex strings in the
SUSY Abelian Higgs model. We summarize this paper in
Sec. IV. We use the notation and convention of the textbook
in Ref. [51].

II. DUAL TRANSFORMATIONS OF VORTEX
STRINGS IN ABELIAN HIGGS MODEL

In this section, we review two dual transformations of the
ANO vortex strings of the bosonic Abelian Higgs model
[15,17] at a classical level. One is the transformation to the
system described by a 1-form gauge field and a 2-form
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gauge field, in which the ANO vortex strings are electri-
cally coupled with the 2-form gauge field. The other is the
transformation to the system described by a massive 2-form
field, which is also coupled with the ANO vortex strings.

A. Abelian Higgs model

Here, we introduce the Lagrangian of the Abelian Higgs
model. The Lagrangian is given by

LAH ¼ −
����∂mϕ −

e
2
iAmϕ

����
2

−
1

4
FmnFmn −

1

8
ðejϕj2 − ξÞ2:

ð2:1Þ

Here, Am (m ¼ 0; 1; 2; 3) is a Uð1Þ gauge field, Fmn ¼∂mAn − ∂nAm is the field strength of the gauge field, ϕ is a
complex scalar field with the Uð1Þ charge e=2, e is a
positive coupling constant of the Uð1Þ gauge field, and ξ
is a positive parameter of mass dimension 2. Note that the
parameters are normalized so that the model can be
embedded into SUSY theories. The vacuum of the model
is given by the minimum of the potential where jϕj
develops nonzero vacuum expectation value

jϕj2 ¼ ξ

e
: ð2:2Þ

Therefore, the Uð1Þ symmetry is spontaneously broken in
this vacuum. The vacuum is in the Higgs phase since the
gauge field becomes massive by eating the phase of the
scalar field.

B. Dual 2-form gauge theory with vortex strings

The Higgs phase admits spatial dimension-1
(codimension-2) objects, since the first homotopy group
of the vacuum manifold is nontrivial: π1ðUð1ÞÞ ¼ Z.
The extended objects are so-called ANO vortex strings.
The positions of the ANO vortex strings are characterized
by the zero points of ϕ, where the Uð1Þ symmetry is
recovered.
In the Lagrangian, the ANO vortex strings are expressed

by using the multivalued part of the phase of the complex
scalar field (see, e.g., Ref. [20]). We split the complex
scalar field as follows:

ϕ ¼ 1ffiffiffi
2

p ρeiðφþφ0Þ: ð2:3Þ

Here, ρ and φ are real single-valued scalar fields, and φ0 is
a real multivalued scalar field. In general, the phase can
be multivalued since φ0 → φ0 þ 2π does not change ϕ.
The Lagrangian in Eq. (2.1) can be rewritten as

LAH ¼ −
����∂mϕ − i

e
2
Amϕ

����
2

−
1

4
FmnFmn þ � � �

¼ −
1

2

����∂mρþ ið∂mφþ ∂mφ0Þρ − i
e
2
Amρ

����
2

−
1

4
FmnFmn þ � � �

¼ −
1

2
ð∂mρÞ2 −

1

2
ρ2
�
∂mφþ ∂mφ0 −

e
2
Am

�
2

−
1

4
FmnFmn þ � � � ; ð2:4Þ

where the ellipsis refers to the terms which are irrelevant to
the dual formulations.
We dualize the scalar field φ to a 2-form gauge field as

follows. We introduce the first-order Lagrangian, which is
classically equivalent to the Lagrangian in Eq. (2.4),

LB;1st ¼ −
1

2
ρ2
�
Cm þ ∂mφ0 −

e
2
Am

�
2

þ 1

2!
ϵmnpqBmn∂pCq −

1

4
FmnFmn; ð2:5Þ

where we have omitted the terms which are irrelevant
to the following discussions. Here, Cm is a 1-form
gauge field without singularities, and Bmn is a 2-form
gauge field. The gauge field Bmn is transformed as
Bmn → Bmn þ ∂mλn − ∂nλm, where λm is a 1-form gauge
parameter. The gauge field Cm is transformed under the
gauge transformation of Am→Amþ∂mu as Cm → Cmþ
e
2
∂mu, where u is a gauge parameter. The equivalence

between the Lagrangian and the one in Eq. (2.4) can be
seen by solving the EOM for Bmn, which gives us
Cm ¼ ∂mφ. The dual formulation can be obtained by using
the EOM for Cm and by eliminating the field. The EOM for
the Cm gives us

Cm ¼ 1

ρ2
ð�HÞm − ∂mφ0 þ

e
2
Am; ð2:6Þ

where we have defined

Hmnp ≔ ∂mBnp þ ∂nBpm þ ∂pBmn ð2:7Þ

and

ð�HÞm ≔
1

3!
ϵmnpqHnpq: ð2:8Þ

Therefore, the first-order Lagrangian in Eq. (2.5)
becomes
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LB¼
1

2ρ2
ð�HÞmð�HÞm−

1

4
FmnFmnþ

e
2
·

1

2! ·2!
ϵmnpqBmnFpq

−
1

2!
ϵmnpqBmn∂p∂qφ0: ð2:9Þ

The Lagrangian describes a system with 1-form and 2-form
gauge field with the topological coupling ϵmnpqBmnFpq.
The 2-form gauge field is electrically coupled with the
string current ϵmnpq∂p∂qφ0. Naively, ϵmnpq∂p∂qφ0 seems
to be identically zero. However, since φ0 is a multivalued
function, ϵmnpq∂p∂qφ0 is nonzero where jϕj becomes zero.
This can be seen as follows. Since φ0 is a part of the phase
of the complex scalar field, ϵmnpq∂p∂qφ0 can be rewritten
as follows:

ϵmnpq∂p∂qφ0 ¼
1

2i
ϵmnpq∂p∂q logðϕ=ϕ̄Þ: ð2:10Þ

Here, we have included the regular part φ since
ϵmnpq∂p∂qφ ¼ 0. The right-hand side of Eq. (2.10) gives
rise to a delta function:

1

2i
ϵmnpq∂p∂q logðϕ=ϕ̄Þ¼

1

2i
ϵmnpq∂p

�
1

ϕ
∂qϕ−

1

ϕ̄
∂qϕ̄

�

¼−2πiϵmnpqδ2ðϕ; ϕ̄Þ∂pϕ̄∂qϕ:

ð2:11Þ

Here, we have used a property of a two-dimensional delta
function,

∂
∂ϕ̄

1

ϕ
¼ ∂

∂ϕ
1

ϕ̄
¼ 2πδ2ðϕ; ϕ̄Þ; ð2:12Þ

where the delta function is defined by

δ2ðϕ; ϕ̄Þ ≔ 1

2
δðReϕÞδðImϕÞ: ð2:13Þ

Thus, ϵmnpq∂p∂qφ0 has singularities of the delta function
where jϕj is zero. The string current is a conserved current,

∂nϵ
mnpq∂p∂qφ0 ¼ 0; ð2:14Þ

because ϵmnpq∂nϕ∂pϕ∂qϕ̄ ¼ ϵmnpq∂nϕ∂pϕ̄∂qϕ̄ ¼ 0.

C. Dual massive 2-form theory with vortex strings

We have dualized the Lagrangian in Eq. (2.4) into the
one with the 2-form gauge field. We can also dualize the
Lagrangian into a system with a massive 2-form field. We
introduce the following first-order Lagrangian, which is
classically equivalent to the Lagrangian in Eq. (2.9):

LB0;1st ¼
1

2ρ2
ð�HÞmð�HÞm−

1

2!
ϵmnpqBmn∂p∂qφ0

þe
2
·
1

3!
ϵmnpqAmHnpq−

1

4
F0mnF0

mn

þ 1

2! ·2!
ϵmnpqB0

mnð∂pAq−∂qAp−F0
pqÞ: ð2:15Þ

Here, B0
mn is a 2-form field as a Lagrange multiplier, and

F0
mn is a 2-form field which is independent of the original

1-form gauge field Am. The EOM for the Lagrange
multiplier gives us the relation F0

mn ¼ ∂mAn − ∂nAm, and
we go back to the original Lagrangian in Eq. (2.9). Instead,
the EOM for Am gives us

1

3!
ϵmnpqHnpq ¼ −

2

e
·
1

2!
ϵmnpq∂nB0

pq: ð2:16Þ

Furthermore, the EOM for F0
mn leads to

F0
mn ¼ −

1

2!
ϵmnpqB0pq: ð2:17Þ

Substituting Eqs. (2.16) and (2.16) into the Lagrangian in
Eq. (2.15), we obtain

LB0 ¼ 2

e2ρ2
ð�H0Þmð�H0Þm −

1

4
B0mnB0

mn

−
2

e
·
1

2!
ϵmnpqB0

mn∂p∂qφ0 ð2:18Þ

up to total derivatives. Here, we have defined

ð�H0Þm ¼ 1

2!
ϵmnpq∂nB0

pq: ð2:19Þ

The second term of the Lagrangian in Eq. (2.18) is the mass
term for the 2-from B0

mn. Therefore, the Lagrangian in
Eq. (2.18) describes a system of a massive 2-form field. The
ANO vortex strings are coupled with the massive 2-form.

III. DUAL TRANSFORMATIONS OF VORTEX
STRINGS IN SUSY ABELIAN HIGGS MODEL

In this section, we discuss the dual transformations
of ANO vortex strings of the SUSYAbelian Higgs model.
In SUSY theories, the Higgs potential can be obtained by
F-term or a D-term potentials [39]. For the former case, the
SUSY is completely broken in the core of the vortex
strings. For the latter case, half of SUSY can be preserved
in the core of the ANO vortex strings, and the ANO vortex
strings can be BPS states [39–41]. We thus discuss the latter
option in this paper.
We use the superspace formalism in order to obtain the

manifestly SUSY theories. The superspace is spanned by
the coordinates ðxm; θα; θ̄ _αÞ, where ðxmÞ (m ¼ 0; 1; 2; 3) are
coordinates of the Minkowski spacetime and ðθα; θ̄ _αÞ are
coordinates spanned by the Grassmann numbers.
The indices beginning with m; n;… are vector indices.
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The indices beginning with α; β;… _α; _β;… are spinor
indices with α ¼ 1; 2 and _α ¼ _1; _2.

A. SUSY Abelian Higgs model

We introduce a Lagrangian of the SUSYAbelian Higgs
model. We begin with the following Lagrangian:

LAH;SUSY ¼ 1

2

Z
d4θðΦ̄eeVΦþ ¯̃Φe−eVΦ̃ − ξVÞ

þ 1

4

Z
d2θWαWα þ H:c: ð3:1Þ

Here, V is a vector superfield in which a Uð1Þ vector gauge
field Am is embedded, Wα ¼ − 1

4
D̄2DαV is a gaugino

superfield given by the vector superfield, e is a positive
coupling constant of the Uð1Þ gauge symmetry, and ξ is a
FI parameter [36]. Superfields Φ and Φ̃ are chiral super-
fields with Uð1Þ charge þe=2 and −e=2, respectively. The
chiral superfields are transformed by the Uð1Þ gauge
transformation as Φ → ΦeeΛ and Φ̃ → Φ̃e−eΛ when V is
transformed as V → V − Λ − Λ̄. Here, Λ is a chiral super-
field parameter. The bosonic part of the component
Lagrangian is

LAH;SUSY;boson ¼ −
����∂mϕ − i

e
2
Amϕ

����
2

−
����∂mϕ̃þ i

e
2
Amϕ̃

����
2

−
1

4
FmnFmn þ

1

2
Dðejϕj2 − ejϕ̃j2 − ξÞ

þ FF̄ þ F̃ ¯̃Fþ 1

2
D2: ð3:2Þ

Here, we have omitted fermions which are not needed for
the following discussion in this section. In the Lagrangian
Eq. (3.2), we have used the Wess-Zumino (WZ) gauge:
Vj ¼ DαVj ¼ D̄ _αVj ¼ D2Vj ¼ D̄2Vj ¼ 0. Here, the verti-
cal bar j represents θ ¼ θ̄ ¼ 0 projection of the superfields,
and Dα and D̄ _α are SUSY-covariant spinor derivatives. The
components of the chiral superfield Φ and the vector
superfield V are denoted as

ϕ ¼ Φj; χα ¼
1ffiffiffi
2

p DαΦj; F ¼ −
1

4
D2Φj; ð3:3Þ

ϕ̃ ¼ Φ̃j; χ̃α ¼
1ffiffiffi
2

p DαΦ̃j; F̃ ¼ −
1

4
D2Φ̃j; ð3:4Þ

Aα _α¼
1

2
½Dα;D̄ _α�Vj;

Fmn¼∂mAn−∂nAm¼ 1

2i
ððσmnÞαβDαWβ−ðσ̄mnÞ _α _βD̄ _αW̄

_βÞj;

λα¼ iWαj; λ̄ _α¼−iW̄ _αj; D¼−
1

2
DαWαj¼−

1

2
D̄ _αW̄ _αj:

ð3:5Þ

The quantities ðσmÞα _α and ðσ̄mÞ _αα are four-dimensional
Pauli matrices which satisfy ðσ̄mÞ _αα ¼ ðσmÞα _α. The quantity
Aα _α is defined by the Pauli matrices as Aα _α ¼ ðσmÞα _αAm.
The quantities ðσmnÞαβ and ðσ̄mnÞ _α _β are self-dual and anti–
self dual tensors defined by

ðσmnÞαβ ¼
1

4
ððσmÞα_γðσ̄nÞ_γβ − ðσnÞα_γðσ̄mÞ_γβÞ;

ðσ̄mnÞ _α _β ¼
1

4
ððσ̄mÞ _αγðσnÞγ _β − ðσ̄nÞ _αγðσmÞγ _βÞ; ð3:6Þ

respectively.
In this model, the Uð1Þ symmetry is spontaneously

broken if the FI parameter ξ is nonzero. This can be seen by
the on-shell potential V,

V ¼ −
1

2
Dðejϕj2 − ejϕ̃j2 − ξÞ − FF̄ − F̃ ¯̃F−

1

2
D2: ð3:7Þ

To obtain the on-shell potential, we solve the EOM for the
auxiliary fields F and D. The EOM for F and F̃ are trivial,
F ¼ F̃ ¼ 0, while the EOM for D is

D ¼ −
1

2
ðejϕj2 − ejϕ̃j2 − ξÞ: ð3:8Þ

Therefore, the on-shell potential V is

V ¼ 1

8
ðejϕj2 − ejϕ̃j2 − ξÞ2: ð3:9Þ

The vacuum of the model is given by the minimum of the
potential, which is described by the condition

ejϕj2 − ejϕ̃j2 ¼ ξ: ð3:10Þ

If the FI parameter is positive ξ > 0, jϕj2 cannot be zero,
while jϕ̃j2 can be zero. Since ϕ develops the vacuum
expectation value, the Uð1Þ symmetry is broken, and the
vector field Am becomes massive by eating the phase of ϕ.
Note that SUSY is unbroken in this vacuum since the
vacuum expectation value of the auxiliary field is D ¼ 0 in
this vacuum.

B. Dual SUSY 2-form gauge theory with vortex strings

We consider a dual formulation of the SUSY Abelian
Higgs model. We use the superspace formalism in order to
make SUSY manifest. In Sec. II B, we have reviewed the
dual transformations of the bosonic Abelian Higgs model.
As in the bosonic Abelian Higgs model, there are at least
two ways to dualize the Lagrangian. One is to dualize the
chiral superfieldΦ. In this case, the dual theory is described
by a 2-form gauge field Bmn in addition to the original
1-form gauge field Am. In the dual theory, the 2-form gauge
field is topologically coupled with the 1-form gauge field.

DUAL FORMULATIONS OF VORTEX STRINGS IN A … PHYS. REV. D 100, 065007 (2019)

065007-5



The other is to dualize the vector superfield V. In this case,
the dual theory is described by a massive 2-form field
where the 1-form gauge field is eaten by the 2-form gauge
field. In this subsection, we choose the former option. The
ANO vortex strings are coupled with the 2-form gauge field
electrically.

1. String current superfield

We begin with the Lagrangian

L0
AH;SUSY¼

1

2

Z
d4θðΦ̄eeVΦ−ξVÞþ1

4

Z
d2θWαWαþH:c:;

ð3:11Þ

where we have omitted the terms which are irrelevant to the
ANO vortex strings, since we are interested in the dual
formulation of the ANO vortex strings. In the presence of
the vortex strings, the Lagrangian has singular points in the
field space of Φ where Φ ¼ 0. To dualize the Lagrangian,
we split Φ into the singular part and the regular part as
follows:

Φ ¼ Φ0Φ1; where Φ0 ≔
Φ
Φ1

: ð3:12Þ

Here,Φ1 is a regular chiral superfield of mass dimension 1,
which does not have a zero point. This regular part can be
understood as a SUSY extension of eiφ in the bosonic
model in Sec. II B. SinceΦ1 is the regular chiral superfield,
we can assign nonsingular gauge transformations for Φ1.
We assume the same gauge transformation law of the chiral
superfield Φ1 as Φ: Φ1 → Φ1eeΛ. Since Φ1 is not zero
everywhere, there are no singular points for the gauge
transformation. On the other hand, Φ0 has singular
points where Φ0 is zero. Again, this singular part can be
understood as a SUSY extension of eiφ0 in the bosonic
model in Sec. II B. This zero point is originated from the zero
point of the chiral superfield Φ. Thanks to the splitting Φ ¼
Φ0Φ1, we can discuss the regular and singular parts in
manifestly gauge-covariant and -invariant ways, respectively.
We rewrite the Lagrangian in Eq. (3.2) by using Φ0 and

Φ1 as follows:

L0
AH;SUSY ¼ 1

2

Z
d4θjΦ0j2jΦ1j2eeV þ 1

4

Z
d2θWαWα

−
1

2
ξ

Z
d4θV þ H:c: ð3:13Þ

Now, we dualize jΦ1j2 by the following the first-order
Lagrangian:

L0
B;SUSY;1st ¼

1

2

Z
d4θjΦ0j2M2eUþeVþ1

4

Z
d2θWαWα

−
1

2
ξ

Z
d4θV−

1

4 ·2i

Z
d2θΣαD̄2DαUþH:c:

ð3:14Þ

Here, U is a real superfield of which the gauge trans-
formation law is U→UþeðΛþΛ̄Þ under V → V − Λ − Λ̄.
The superfield Σα is a chiral superfield, and M is a
parameter of mass dimension 1. Since the original chiral
superfieldΦ1 is regular, we can safely assume thatU is also
a regular function in the sense that eU does not have zero
points. The Lagrangian is invariant under the gauge trans-
formation of Σα,

δ2Σα ¼ −
1

4
D̄2DαΘ; ð3:15Þ

where δ2 refers to an infinitesimal gauge transformation
of Σα and Θ is a real superfield parameter. Since the
chiral spinor superfield with the gauge transformation in
Eq. (3.15) includes the 2-form gauge field Bmn as a
component field (see, e.g., Ref. [44]), we call Σα a “2-
form prepotential” following Ref. [46].
We can go back to the original Lagrangian in Eq. (3.2) by

eliminating Σα by its EOM. The EOM for Σα and its
Hermitian conjugate,

D̄2DαU ¼ D2D̄ _αU ¼ 0; ð3:16Þ

give us the solution

U ¼ Φ0 þ Φ̄0; ð3:17Þ

where Φ0 is a single-valued chiral superfield since eU is a
nonzero superfield. If we define Φ1 ¼ eΦ

0
, we obtain the

original Lagrangian.
The dual formulation can be obtained by eliminating

the real superfield U instead of eliminating Σα. The EOM
for U is

0 ¼ jΦ0j2M2eUþeV − L; ð3:18Þ

where L is a real superfield defined by

L ¼ 1

2i
ðDαΣα − D̄ _αΣ̄ _αÞ: ð3:19Þ

Note that the real superfield L is a linear superfield
since D2L ¼ D̄2L ¼ 0.
By using the real linear superfield L, U can be solved as

U ¼ log
L

jΦ0j2M2eeV
: ð3:20Þ
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Substituting the solution into the first-order Lagrangian in
Eq. (3.14), we reach the following dual Lagrangian:

L0
B;SUSY ¼ −

1

2

Z
d4θL log

�
L
M2

�
þ 1

4

Z
d2θWαWα

−
1

2

Z
d4θξV −

e
2i

Z
d2θΣαWα

−
1

2i

Z
d2θΣαJα þ H:c: ð3:21Þ

Here, we have defined the chiral superfield Jα as

Jα ≔ −
1

4
D̄2Dα log jΦ0j2; ð3:22Þ

and we call the superfield Jα a “string current superfield”
for later convenience. The terms 1

2i

R
d2θΣαJα þ H:c: are

invariant under the gauge transformation in Eq. (3.15)
because Jα satisfies

DαJα ¼ D̄ _αJ̄ _α: ð3:23Þ

Naively, Jα ¼ 0 since log jΦ0j2 ¼ logΦ0 þ log Φ̄0.
However, since Φ0 can have zero points, D̄2Dα log jΦ0j2
contains a singularity of a delta function. We will discuss
the singularity more precisely.

2. Component expression of dual formulation

In the Lagrangian in Eq. (3.21), there is a coupling
between the 2-form gauge field and the string current and
its SUSY completion. The coupling and its SUSY com-
pletion are given by the last term. To see the coupling, we
express the dual Lagrangian L0

B;SUSY in terms of the
component fields. The component expression is

L0
B;SUSY ¼−

1

2
ffiffiffi
2

p
σ
ðð∂mσÞð∂mσÞ− ð�HÞmð�HÞmÞ−

i

2
ffiffiffi
2

p
σ
ðψ̄ _αðσ̄mÞ _αα∂mψαþψαðσmÞα _α∂mψ̄

_αÞ

−
1

4σ2
ψαðσ̄mÞα _αψ̄ _αð�HÞm−

1

4
ffiffiffi
2

p
σ3

ψαψαψ̄ _αψ̄
_α −

1

4
FmnFmn −

i
2
ðλ̄αðσmÞα _α∂mλ̄

_αþ λ̄ _αðσ̄mÞ _αα∂mλαÞþ
1

2
D2−

1

2
ξD

þ e
2 · 2! · 2!

ϵmnpqBmnFpqþ
ieffiffiffi
2

p ðλαψα − λ̄ _αψ̄
_αÞþ 2

ffiffiffi
2

p
eσD−

1ffiffiffi
2

p ðψαjαþ ψ̄ _αj̄ _αÞþ
1

2 · 2!
J̃mnBmnþ

ffiffiffi
2

p
σJ: ð3:24Þ

Here, the components of the chiral superfield Σα and the
linear sueprfield L are denoted as

Bmn¼−iððσmnÞαβDαΣβ−ðσ̄mnÞ _α _βD̄ _αΣ̄
_βÞ;

Hmnp¼∂mBnpþ∂nBpmþ∂pBmn¼
1

4
ϵmnpqðσ̄qÞ _αβ½Dβ;D̄ _α�L;

σ≔
1ffiffiffi
2

p Lj; ψα≔
1ffiffiffi
2

p DαLj¼þ i

4
ffiffiffi
2

p D2Σαj;

ψ̄ _α≔
1ffiffiffi
2

p D̄ _αLj¼−
i

4
ffiffiffi
2

p D̄2Σ̄ _αj: ð3:25Þ

The vector component can also be written as

ð�HÞm ¼ 1

3!
ϵmnpqHnpq ¼

1

4
ðσ̄mÞ _αβ½Dβ; D̄ _α�L; ð3:26Þ

or

½Dα; D̄ _α�Lj ¼ −2ð�HÞα _α: ð3:27Þ
Note that we have used the WZ gauge for the 2-form
prepotential Σα:

Σαj ¼ Σ̄ _αj ¼ ðDαΣα þ D̄ _αΣ̄ _αÞj ¼ 0: ð3:28Þ
Note that the superparters of the phase of the complex
scalar field are also dualized to the 2-form prepotential in

the Lagrangian in Eq. (3.24) due to SUSY in contrast to the
bosonic case. In the Lagrangian in Eq. (3.24), the fields jα,
j̄ _α, Jmn, and J are the components of Jα:

jα¼ Jαj; j̄ _α¼ J̄ _αj;

Jmn¼
1

2i
ððσmnÞαβDαJβ− ðσ̄mnÞ _α _βD̄ _αJ̄

_βÞj;

J̃mn¼
1

2!
ϵmnpqJpq;

J¼−
1

2
DαJαj ¼−

1

2
D̄ _αJ̄ _αj: ð3:29Þ

It seems that Jα ¼ 0 since log jΦ0j2 ¼ logΦ0 þ log Φ̄0.
However, since Φ0 can have zero points, D̄2Dα log jΦ0j2
should contain a term like a delta function as mentioned
above. The delta function arises as a SUSY extension of
Eq. (2.12),

∂
∂Φ0

∂
∂Φ̄0

log jΦ0j2 ¼
∂

∂Φ0

1

Φ̄0

¼ ∂
∂Φ̄0

1

Φ0

¼ 2πδ2ðΦ; Φ̄Þ;

ð3:30Þ

where δ2ðΦ; Φ̄Þ is defined by

δ2ðΦ; Φ̄Þ ¼ 1

2
δðReΦÞδðImΦÞ: ð3:31Þ
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Note that this property of log jΦ0j2 can also be understood
as a SUSY extension of the two-dimensional Green’s
function. We explicitly write down the components of Jα
as follows:

jα ¼ Jαj ¼ −
1

4
D̄2Dα log jΦ0j2j

¼ 2
ffiffiffi
2

p
πδ2ðϕ0; ϕ̄0ÞF̄0χ0α

− 2
ffiffiffi
2

p
iπδ2ðϕ0; ϕ̄0Þðσ̄mÞα _α∂mϕ0χ̄

0_α

−
ffiffiffi
2

p
π

� ∂
∂ϕ̄0

δ2ðϕ0; ϕ̄0Þ
�
χ̄0_αχ̄

_α
0χ0α: ð3:32Þ

Here, ϕ0, χ0, and F0 are defined by

ϕ0 ¼Φ0j; χ0α ¼
1ffiffiffi
2

p DαΦ0j; F0 ¼−
1

4
D2Φ0j; ð3:33Þ

and we have used

Dα log jΦ0j2 ¼ ðDαΦ0Þ
∂

∂Φ0

log jΦ0j2 ð3:34Þ

and its Hermitian conjugate. The component J can also be
rewritten as

J ¼ −
1

2
DαJαj ¼ −

1

2
D̄ _αJ̄ _αj ¼ 1

8
DαD̄2Dα log jΦ0j2j

¼ 4πδ2ðϕ0; ϕ̄0Þ
�
−∂mϕ0∂mϕ̄0 −

i
2
χα0ðσnÞα _α∂nχ̄

_α
0 −

i
2
χ̄0_αðσnÞ _αα∂nχ0α þ F0F̄0

�

þ 2iπ

� ∂
∂ϕ̄0

δ2ðϕ0; ϕ̄0Þ∂mϕ̄0 −
∂

∂ϕ0

δ2ðϕ0; ϕ̄0Þ∂mϕ0

�
χ̄0_αðσ̄mÞα _αχ0α

− 2π

� ∂
∂ϕ̄0

δ2ðϕ0; ϕ̄0Þ
�
χ̄0_αχ̄

_α
0F0 − 2π

� ∂
∂ϕ0

δ2ðϕ0; ϕ̄0Þ
�
χα0χ0αF̄0 þ π

� ∂
∂ϕ0

∂
∂ϕ̄0

δ2ðϕ0; ϕ̄0Þ
�
χα0χ0αχ̄0_αχ̄

_α
0: ð3:35Þ

This component may correspond to (twice) the Lagrangian of the nonlinear sigma model in which the Kähler potential is
given by K ¼ log jΦ0j2. Finally, the component J̃mn ¼ 1

2!
ϵmnpqJpq can be calculated as

J̃mn ¼ −4iπδ2ðϕ0; ϕ̄0Þϵmnpq∂pϕ0∂qϕ̄0 − 2πδ2ðϕ0; ϕ̄0Þϵmnpqðχα0ðσqÞα _αð∂pχ̄ _α
0Þ − χ̄0_αðσ̄qÞ _αβ∂pχ0βÞ

þ 2πϵmnpq

� ∂
∂ϕ̄0

δ2ðϕ0; ϕ̄0Þ∂pϕ̄0 þ
∂

∂ϕ0

δ2ðϕ0; ϕ̄0Þ∂pϕ0

�
χ̄0_αðσ̄qÞ _ααχ0α: ð3:36Þ

Since the right-hand side of the first line in Eq. (3.36)
corresponds to Eq. (2.11) in the bosonic case, J̃mn can be
understood as a SUSY extension of the string current. The
conservation law of J̃mn can be derived by the relation
DαJα ¼ D̄ _αJ̄ _α in Eq. (3.23), which implies

∂mJ̃mn ¼ 0: ð3:37Þ

Note that Eq. (3.38) is equivalent to the property that Jmn is
closed:

ϵmnpq∂nJpq ¼ 0: ð3:38Þ

Before closing this section, a comment is in order on the
string current superfield. Since Eqs. (3.23) and (3.38) hold,
the string current superfield can be a SUSY extension of
the closed 2-form, which cannot be expressed by the
exterior derivative of a regular 1-form. If we regard the
string current superfield as a “gaugino superfield” of a
singular 2-form field strength, the “prepotential” for the
gaugino superfield may correspond to log jΦ0j2. In this

case, the vector component of log jΦ0j2 is singular at the
zero points of ϕ0:

ð½Dα;D̄ _α�logjΦ0j2Þj

¼−2iðσmÞα _α
�
1

ϕ̄0

∂mϕ̄0−
1

ϕ0

∂mϕ0

�
−8πδ2ðϕ0;ϕ̄0Þχ0αχ̄0_α:

ð3:39Þ

3. String charge in original and dual formulations

While we have obtained the string current superfield Jα
in the dual formulation, it is still unclear whether Jα
recovers the vortex string in the original formulation.
Here, we show that the string charge, which is obtained
by Jα in the dual theory, is equal to the string tensorial
charge in the original theory. We focus on the configuration
such that all the fermionic excitations are negligible.
In the original formulation, the string tensorial

charge Zm is saturated by the configuration of the 1-form
gauge field [52],
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Zm ¼ ξ

Z
d3xϵ0mnp∂nAp; ð3:40Þ

where
R
d3x denotes a three-dimensional spatial integra-

tion. Note that the quantity Zm is defined in the original
formulation, while Zm itself can make sense in the dual
formulation because the 1-form gauge field has not been
dualized.
On the one hand, in the original formulation, the

tensorial charge can be evaluated as follows. Since the
integrand is a total derivative, we can evaluate the tensorial
charge as a configuration of the gauge field Am at an
infinitely large distance from vortices. We require a
boundary condition for the scalar field ϕ such that the
covariant derivative on the scalar field ∂mϕ − ie

2
Amϕ should

vanish at an infinitely large distance from vortices in order
to realize a configuration with a finite energy per unit length
of the vortices. By this condition, the 1-form gauge field Am
is related to the derivative ∂mϕ as

Am → A∞
m ¼ 1

2i
·
2

e
∂m logðϕ=ϕ̄Þ: ð3:41Þ

Therefore, the string tensorial charge can be expressed as

Zm ¼ ξ

Z
d3xϵ0mnp∂nA∞

p

¼ ξ

2i
·
2

e

Z
d3xϵ0mnp∂n∂p logðϕ=ϕ̄Þ: ð3:42Þ

By using Eq. (2.11), the string tensorial charge can be now
expressed as a configuration of the vortices,

Zm ¼ 4πi
ξ

e

Z
d3xϵ0mnpδ2ðϕ0; ϕ̄0Þ∂nϕ0∂pϕ̄0; ð3:43Þ

where we have used ϵmnpq∂n∂p logðϕ=ϕ̄Þ ¼ ϵmnpq∂n∂p

logðϕ0=ϕ̄0Þ, since only the zero points of the scalar field ϕ0

contribute to the singularities.
On the other hand, in the dual formulation, we try to

construct the quantity Z0m, which corresponds to the
tensorial charge in the original formulation:

Z0m ¼ ξ

Z
d3xϵ0mnp∂nAp: ð3:44Þ

In the dual formulation, the configuration of the 1-form
gauge field is given by the 2-form gauge field Bmn and the
string current J̃mn rather than the configuration of the scalar
field. The configuration can be seen by the EOM for the
2-form gauge field:

e
2
F̃mn ¼ −

1

2
J̃mn þ ∂q

�
1ffiffiffi
2

p
σ
Hqmn

�
: ð3:45Þ

Substituting the equation into Eq. (3.40), we obtain string
charge in the dual formulation:

Z0m ¼ 2ξ

e

Z
d3x

�
−
1

2
J̃0m þ ∂q

�
1ffiffiffi
2

p
σ
Hq0m

��
: ð3:46Þ

The second term in the right-hand side is a surface integral.
This surface term vanishes by the following boundary
conditions, which are required by the finiteness of the
energy per unit length of the vortices. At a large-distance
limit, the scalar field σ approaches the minimum of the

potential of σ, σ →
ffiffi
2

p
ξ

4e , and the field strength Hmnp goes to
zero, Hmnp → 0. Therefore, the string charge is saturated
by the string current Jmn. By using Eq. (3.36), we find that
the string charge in the dual formulation is equal to the
tensorial charge in the original formulation in Eq. (3.43):

Z0m¼−
ξ

e

Z
d3xJ̃0m

¼4πi
ξ

e

Z
d3xϵ0mnpδ2ðϕ0;ϕ̄0Þ∂nϕ0∂pϕ̄0¼Zm: ð3:47Þ

Therefore, the string current Jmn consistently reproduces
the string charge, which corresponds to the tensorial charge
in the original formulation.

C. Dual SUSY massive 2-form theory
with vortex strings

Here, we further dualize the Lagrangian in Eq. (3.21).
The Lagrangian in Eq. (3.21) is described by the 1-form
prepotential V and the 2-form prepotential Σα with the
topological coupling ϵmnpqBmnFpq. In this picture, the string
current superfield is coupled with the 2-from prepotential
in a gauge-invariant way. We can further dualize the
Lagrangian as we will see below. In this picture, the 2-form
gauge field is manifestly massive since the 2-form gauge
field eats the 1-form gauge field by the Stückelberg
mechanism. The dual transformation can be done by adding
a Lagrange multiplier ϒα in the Lagrangian:

L0
B0;SUSY;1st ¼−

1

2

Z
d4θL log

�
L
M2

�
þ1

4

Z
d2θW0αW0

α

þ1

2

Z
d4θðeL−ξÞV−

1

2i

Z
d2θΣαJα

−
1

2i

Z
d2θΥα

�
W0

αþ
1

4
D̄2DαV

�
þH:c:

ð3:48Þ

Here,ϒα is a chiral superfield as a Lagrange multiplier, and
W0

α is a chiral superfield which is independent of the real
superfield V. Note that ϒα do not have a gauge symmetry,
in contrast to Σα. The EOM for ϒα gives us the original
Lagrangian as before, while the EOM for W0

α gives us
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W0
α ¼ −iϒα: ð3:49Þ

This equation implies thatW0
α is now described by the chiral

superfieldϒ0
α. Further, the EOM for the 1-form prepotential

V leads to

L ¼ 1

e
ðΨþ ξÞ; ð3:50Þ

where Ψ is given by

Ψ ≔
1

2i
ðDαϒα − D̄ _αϒ̄

_αÞ: ð3:51Þ

The relation in Eq. (3.50) means that the 2-form prepotential
Σα can be described by the chiral superfieldΥα. Substituting
Eqs. (3.49) and (3.50) into the Lagrangian in Eq. (3.48), we
obtain the following dual Lagrangian:

L0
B0;SUSY¼−

1

2e

Z
d4θðΨþξÞ log

�
Ψþξ

eM2

�
þ1

4

Z
d2θϒαϒα

þ ξ

2e

Z
d4θ logjΦ0j2−

1

2ie

Z
d2θϒαJαþH:c:

ð3:52Þ

The Lagrangian is now given by the chiral superfields
ϒα and Φ0. The chiral superfield ϒα describes a massive
2-form and its superpartners. The first term is the kinetic
term for the massive 2-form, and the second term is the
mass term. The third and the fourth terms are the
coupling between the massive 2-form superfield and
the string current superfield. These terms can be explic-
itly seen by the component expression of the Lagrangian
in Eq. (3.52).

To show the component Lagrangian, we define the
component fields of the chiral spinor superfield ϒα as
follows. The θ ¼ θ̄ ¼ 0 components are defined as

λ0α ¼ þiϒαj; λ̄0_α ¼ −iϒ̄ _αj: ð3:53Þ
The components given by first-order spinor derivatives are

D0 ¼ −
1

4
ðDαΥα þ D̄ _αῩ _αÞj;

σ0 ¼ 1ffiffiffi
2

p Ψj ¼ 1

2
ffiffiffi
2

p
i
ðDαΥα − D̄ _αῩ _αÞj;

B0
mn ¼ −iððσmnÞαβDαΥβ − ðσ̄mnÞ _α _βD̄ _αῩ

_βÞj: ð3:54Þ
Here, B0

mn is a (nongauge) 2-form field. The components
defined by second-order spinor derivatives are

ψ 0
α ≔

1ffiffiffi
2

p DαΨj ¼ þ i

4
ffiffiffi
2

p D2Υαj þ ∂α _βῩ
_βj;

ψ̄ 0 _α ≔
1ffiffiffi
2

p D̄ _αΨj ¼ −
i

4
ffiffiffi
2

p D̄2Ῡ _αj − ∂ _αβΥβj: ð3:55Þ

Since ϒα is a chiral superfield, the components of higher
than the second order are given by spacetime derivatives of
the lower components. For example, the exterior derivative
on the 2-form field is expressed in terms of the superfield as
follows:

H0
mnp ≔ ∂mB0

np þ ∂nB0
pm þ ∂pB0

mn

¼ 1

4
ϵmnpqðσ̄qÞ _αβ½Dβ; D̄ _α�Ψj: ð3:56Þ

By using these component fields, we obtain the component
Lagrangian:

L0
B0;SUSY ¼ −

1

2eð ffiffiffi
2

p
σ0 þ ξÞ ðð∂

mσ0Þð∂mσ
0Þ − ð�H0Þmð�H0ÞmÞ −

i

2eð ffiffiffi
2

p
σ0 þ ξÞ ðψ̄

0
_αðσ̄mÞ _αα∂mψ

0
α þ ψ 0αðσmÞα _α∂mψ̄

0 _αÞ

−
1

2eð ffiffiffi
2

p
σ0 þ ξÞ2 ψ

0αðσ̄mÞα _αψ̄ 0 _αð�H0Þm −
1

2eð ffiffiffi
2

p
σ0 þ ξÞ3 ψ

0αψ 0
αψ̄

0
_αψ̄

0 _α −
1

16
B0mnB0

mn þ
1

2
D02 −

1

4
σ02

−
i
2
ðλ0βðσmÞβ _β∂mλ̄

0 _β þ λ̄0_βðσ̄mÞ
_ββ∂mλ

0
βÞ −

1ffiffiffi
2

p iðλ0αψ 0
α − λ̄0_αψ̄

0 _αÞ þ 1

2 · 2!e
J̃mnB0

mn þ
1

2e
ð

ffiffiffi
2

p
σ þ ξÞJ

−
1ffiffiffi
2

p
e
ðjαψ 0

α þ j̄ _αψ̄ 0 _αÞ þ i
2e

ðjαðσmÞα _β∂mλ̄
0 _β þ j̄ _αðσ̄mÞ _αβ∂mλ

0
βÞ: ð3:57Þ

The term B0mnB0
mn is the mass term for the 2-form field. The

coupling between the 2-form field and the string current is
represented by J̃mnB0

mn. In this Lagrangian, we find that
there are couplings between the fermionic component of
the string current superfield jα and λ0α compared with the
Lagrangian in Eq. (3.24). Note that the superpartners of the
1-form gauge field are also dualized to the chiral spinor

superfield in the Lagrangian in Eq. (3.57) due to SUSY,
similarly to the Lagrangian in Eq. (3.24).

IV. SUMMARY

In this paper, we have derived the dual formulations of
the SUSY Abelian Higgs model with the FI term in four
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dimensions. In particular, we have focused on the dual
transformations of ANO vortex strings in N ¼ 1 super-
space. These formulations of the ANO vortex strings can be
obtained by splitting the chiral superfield charged under the
Uð1Þ gauge symmetry into the regular part and singular
part. For the regular part, which does not have zero points,
we have dualized this part into a 2-form prepotential in a
previously known way. In both of the dual formulations, the
superpartners of the phase of the scalar field and 1-form are
dualized into the 2-form prepotential and chiral spinor
superfield due to SUSY, in contrast to the bosonic case,
respectively.
In the dual transformation to the system with the 2-form

prepotential, we have shown that the singular part of the
chiral superfield gives us the string current superfield which
has singularities of the two-dimensional delta function. The
string current superfield is coupled with the 2-form
prepotential or the chiral spinor superfield and satisfies
the current conservation law by the SUSY algebra. This
current conservation law is consistent with the gauge
symmetry of the 2-form prepotential. Furthermore, we
have identified the components of the string current super-
field. There are vortex strings as well as their superpartners.
We have confirmed that the vortex strings in the string
current superfield are the same as the ones in the bosonic
(non-SUSY) Abelian Higgs model.
We have further dualized the Abelian Higgs model into a

theory described by a massive 2-form field. The dual
transformation has also been obtained by the previously
known way. We have also shown that the string current
superfield is coupled with the chiral spinor superfield into
which the massive 2-form field is embedded.
There are several avenues for futurework?One is the BPS

conditions for the ANO vortex strings in the dual formu-
lations. We have not considered the BPS conditions for the
ANO vortex strings, although the conditions are important
in SUSY theories. Thus, we should discuss the dualities of
the BPS conditions on the ANO vortex strings. Another is
the dual formulations including superpotentials, which
uplift flat directions of the D-term potential. In particular,
we may discuss the dual formulations of the so-called M
model [53,54], in which the D-term potential is uplifted by a
superpotential with an additional neutral chiral superfield.
The physical meaning of the bosonic and the fermionic

superpartners of the string current should also be inves-
tigated. These superpartners are defined by spinor deriv-
atives of the singular part of the chiral superfield. They are
coupled with the superpartners of the 2-form prepotential or
the chiral spinor superfield of the massive 2-form. It may be
an open question whether such couplings are particular
ones for SUSY theories or can be generalized to non-
SUSY cases.
Mathematical structures of the string current superfield

would be interesting. In 4D N ¼ 1 SUSY theories, the
superspace expressions of closed or exact p-forms have

been already known [44]. On the other hand, the string
current superfield formulated in this paper can be an
example of a superspace extension of the closed 2-form
Jmn, which cannot be expressed by an exterior derivative of
a globally well-defined 1-form. The generalization of such
properties of the string current superfield to other p-forms
may be useful to discuss other topological solitons.
The SUSY Abelian Higgs model is the simplest

Lagrangian consisting of a single vector superfield and a
single chiral superfield. When such a theory is realized as a
low-energy effective action, it usually contains higher-
derivative corrections. Ghost-free higher-derivative terms
for a vector superfield and chiral superfield are available in
Ref. [55] and Refs. [56–66], respectively. An extension of
our duality with vortex strings in more general cases with
higher derivative terms is one of future directions.
The dual transformations discussed in this paper can be

extended to cosmic strings in SUGRA [40–42]. It will be
convenient to use conformal SUGRA [67–73] when we
discuss thedual transformations ofANOvortex strings, since
the canonically normalized Einstein-Hilbert term can be
obtained by the superconformal gauge fixingwithout tedious
super-Weyl rescalings [69]. In particular, the conformal
superspace formalism [71] and p-form gauge theories in
the conformal superspace [74,75] would be useful, since we
can discuss dual transformations in a manifestly SUSY way.
One of the important extensions would be a non-Abelian

extension. A UðNÞ gauge theory coupled with N × N
Higgs fields in the fundamental representation with
common Uð1Þ charges is known to admit a non-Abelian
vortex accompanied with non-Abelian CPN−1 moduli
[76–82]; see Refs. [32,54,83,84] as a review. A non-
Abelian duality of a non-Abelian vortex in a non-SUSY
casewas done in the context of denseQCD [27,29], by using
a non-Abelian 2-form field [23,24].1 There, a coupling
between the CPN−1 fields localized on a vortex world sheet
and a non-Abelian 2-form field in the bulk was obtained. A
non-Abelian duality of non-Abelian vortex strings in a
SUSYcasewould be possible by a non-Abelian extension of
a chiral spinor superfield including a non-Abelian 2-form
field as a component [86,87]. Another possibility of
extensions is the case of an SUð2Þ ×Uð1Þ gauge theory
coupled with the triplet Higgs fields with an equal charge,
admitting a BPS Alice string [88,89]. This will be also
possible by using a non-Abelian chiral spinor superfield.
It would be interesting to consider the dual transforma-

tions of N ¼ 2 extended SUSY theories allowing ANO
vortex strings as well as non-Abelian vortex strings
[76–82]. To this end, the framework discussed in
Ref. [49] might be useful. N ¼ 2 extended SUSY theories
also admit several composite solitons containing vortices
such as vortex strings ending on a domain wall [90–92], a

1Instead of the full non-Abelian duality, a partial duality can be
done by focusing on Abelian diagonal components [85].
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monopole confined by vortices [78,93–95], Yang-Mills
instantons trapped inside a vortex [78,93,94], and inter-
secting vortex strings [96,97]. The dual transformations in
the presence of these composite solitons would be one of
interesting future directions. Along this line, a dual trans-
formation of a vortex-monopole complex was already
discussed in Ref. [98].
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