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We consider an electromagnetic waveguide with a time-dependent propagation speed vðtÞ as an analog
for cosmological particle creation. In contrast to most previous studies which focus on the number of
particles produced, we calculate the corresponding two-point correlation function. For a small steplike
variation δvðtÞ, this correlator displays characteristic signatures of particle pair creation. As another
potential advantage, this observable is of first order in the perturbation δvðtÞ, whereas the particle number is
second order in δvðtÞ and thus more strongly suppressed for small δvðtÞ.
DOI: 10.1103/PhysRevD.100.065003

I. INTRODUCTION

Just a decade after Hubble’s discovery of cosmic expan-
sion [1], Schrödinger understood thismechanism to allow for
particle creation out of the quantumvacuum [2]. Beingone of
the most startling predictions of quantum field theory in
curved space-times, cosmological particle creation was
further studied by Parker [3] and others (see also Ref. [4])
in the late 1960s. In the present Universe, this effect is
extremely tiny—but, according to our standard model of
cosmology, it played an important role for the creation of
seeds of structure formation during cosmic inflation [5].
Signatures of this process can still be observed today in the
anisotropies of the cosmic microwave background radiation.
As direct experimental tests of cosmological particle

creation are probably out of reach, several laboratory analogs
[6–8] for quantum fields in expanding space-times have been
proposed for various scenarios, including Bose-Einstein
condensates [9–16], ion traps [17–20], and electromagnetic
waveguides [21]. In the following,we shall consider the latter
system (see also Ref. [22]), which has already been used to
observe an analog of the closely related dynamical Casimir
effect [21,23–26].
Instead of the often considered number of emerging

particles, one can also study other observables, such as the
two-point correlation function of the associated quantum
field. For condensed-matter analogs of black holes (see,
e.g., Refs. [6–8,27]), these correlations have already been
studied in several works including Refs. [28–31]. In fact,
the observation of analog Hawking radiation in Bose-
Einstein condensates reported in Refs. [32] and [33] was
based on density correlation measurements.

Cosmological particle creation also generates character-
istic signatures in the corresponding field correlations;
see also Ref. [14]. Due to spatial homogeneity, particles
are created in pairs with opposite momenta. When both
particles of a pair arrive at two suitable detectors at different
space or space-time points ðt1; x1Þ and ðt2; x2Þ, the asso-
ciated signals are clearly correlated.
In the following, we study two-point correlations in an

electromagnetic waveguide with a time-dependent effective
speed of light vðtÞ. Reducing this parameter vðtÞ effectively
increases all length scales in the setup under consideration—
in analogy to cosmic expansion. Therefore, laboratory
systems with a varying speed of light vðtÞ ought to produce
photon pairs in close analogy to the mechanism of cosmo-
logical particle creation.

II. CLASSICAL WAVEGUIDE MODEL

Previous research on circuit quantum electrodynamics
has brought up various possible implementations of wave-
guides with tunable parameters; see, e.g., Refs. [21,22,
34–36]. Although realistic experiments are often based on
superconducting quantum interference devices, they typi-
cally still correspond to effective circuit diagrams. In this
work, we will focus on waveguide structures that can be
modeled with the effective setup illustrated in Fig. 1.
Specifically, we consider an LC circuit of total length D

which comprises N þ 1 capacitors with equal capacities
C and N inductors with equal but time-dependent induc-
tances LðtÞ. Denoting the current in the αth inductor with
the symbol Iα and the charge on the αth capacitor with Qα,
the Lagrangian of the setup from Fig. 1 adopts the form

LðtÞ ¼
XNþ1

α¼1

1

2C
Q2

αðtÞ −
XN
α¼1

1

2
LðtÞI2αðtÞ: ð1Þ
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Analogous to Ref. [37], we introduce a new generalized
flux coordinate ΦαðtÞ satisfying the relation _ΦαðtÞ ¼
Qα=

ffiffiffiffiffiffiffiffiffiffi
CΔx

p
and eliminate all currents Iα in the above

Lagrangian LðtÞ with the second line of the classical
Kirchhoff’s laws

_Qα ¼ Iα − Iα−1;

0 ¼ Qα=Cþ ∂t½LðtÞIα� −Qαþ1=C: ð2Þ

Apart from this, we describe the discrete setup under
consideration in the continuum limit of Δx → 0 and
D ¼ const:, which is justified if the length Δx of each
mesh in Fig. 1 is significantly smaller than the characteristic
wavelengths and the total length D ¼ NΔx of the wave-
guide [38].
In this limiting case, the charge qðt; xÞ ¼ Qðt; xÞ=Δx

and current jðt; xÞ ¼ Iðt; xÞ=Δx per unit length adopt the
representations

qðt; xÞ ¼
�

C
LðtÞ

�
1=4 1ffiffiffiffiffiffiffiffi

vðtÞp _Φðt; xÞ

jðt; xÞ ¼
�

1

L3ðtÞC
�

1=4 ffiffiffiffiffiffiffiffi
vðtÞ

p
Φ0ðt; xÞ; ð3Þ

and the Lagrangian LðtÞ from Eq. (1) turns into the
expression

LðtÞ ¼ 1

2

Z
D

0

dxf½ _Φðt; xÞ�2 − v2ðtÞ½Φ0ðt; xÞ�2g; ð4Þ

where the quantity vðtÞ ¼ Δx=
ffiffiffiffiffiffiffiffiffiffiffiffi
LðtÞCp

accounts for the
effective speed of light inside the circuit. Throughout this
paper, dots are used to denote temporal derivatives
_Φ ¼ ∂Φ=∂t, while primes indicate spatial derivatives Φ0 ¼
∂Φ=∂x.
As the waveguide depicted in Fig. 1 is isolated at both

ends, the current jðt; xÞ vanishes at those points x ¼ 0
and x ¼ D, resulting in Neumann boundary conditions
Φ0ðt; 0Þ ¼ Φ0ðt; DÞ ¼ 0∀ t ∈ R for the generalized flux
Φðt; xÞ [37].

III. CANONICAL QUANTIZATION

In order to quantize the classical model from above, we
follow the path of canonical quantization and obtain the
Hamiltonian

ĤðtÞ ¼ 1

2

Z
D

0

dxfΠ̂2ðt; xÞ þ v2ðtÞ½Φ̂0ðt; xÞ�2g ð5Þ

in which the operators Φ̂ðt; xÞ and Π̂ðt; xÞ ¼ ∂tΦ̂ðt; xÞ
satisfy canonical commutation relations for a quantum
field and its associated momentum.
The corresponding Heisenberg equations of motion can

be combined to the wave equation

̈Φ̂ðt; xÞ ¼ v2ðtÞΦ̂00ðt; xÞ: ð6Þ
Bearing in mind that the field Φ̂ðt; xÞ has to satisfy
Neumann boundary conditions, the mode functions

Ψn¼0ðxÞ ¼
ffiffiffiffiffiffiffiffiffi
1=D

p
Ψn>0ðxÞ ¼

ffiffiffiffiffiffiffiffiffi
2=D

p
cos ðπnx=DÞ ð7Þ

allow for a decomposition,

Φ̂ðt; xÞ ¼
X∞
n¼0

ΨnðxÞφ̂nðtÞ; ð8Þ

of the field operator Φ̂ðt; xÞ, in which each term φ̂nðtÞ
constitutes a harmonic oscillator satisfying the differential
equation

̈φ̂nðtÞ ¼ −ωn
2ðtÞφ̂nðtÞ with ωnðtÞ ¼

πnvðtÞ
D

: ð9Þ

IV. SUDDENLY CHANGING SPEED OF LIGHT

A. Operator solution for a steplike profile vðtÞ
For a rapidly changing speed of light,

vðtÞ ¼
�
v0; t < 0

v1; t > 0;
ð10Þ

each operator φ̂nðtÞ adopts a piecewise representation,

φ̂nðt < 0Þ ¼ 1ffiffiffiffiffiffiffiffi
2ω0

n

p ½e−iω0
ntân þ H:c:�

φ̂nðt > 0Þ ¼ 1ffiffiffiffiffiffiffiffi
2ω1

n

p ½e−iω1
ntb̂n þ H:c:� ð11Þ

withωi
n ¼ πnvi=D, where the expressions ân and b̂n satisfy

canonical commutation relations for two separate sets of
bosonic annihilators. The prefactors connecting each oper-
ator φ̂nðtÞ to the corresponding creator and annihilator
adopt the same form as for a single harmonic oscillator but

FIG. 1. Illustration of an LC circuit of length D ¼ NΔx that
comprises N discrete inductors and N þ 1 capacitors. The
symbols Iα and Qα denote the current in the αth inductor and
the charge on the αth capacitor, respectively.
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are ill defined in the case of the zero mode n ¼ 0. This
irregularity just corresponds to the standard infrared diver-
gence for massless fields in (1þ 1) dimensions and has no
effect on the corresponding operators q̂ðt; xÞ ∝ ∂tΦ̂ðt; xÞ
and ĵðt; xÞ ∝ ∂xΦ̂ðt; xÞ for the charge or current because
the zero mode is temporally and spatially homogeneous.
The differential equation (9) requires each operator φ̂nðtÞ

and its temporal derivative ∂tφ̂nðtÞ to be continuous at
t ¼ 0, which implies the connection

b̂n ¼
1

2

ffiffiffiffiffi
v1
v0

r ��
1 −

v0
v1

�
â†n þ

�
1þ v0

v1

�
ân

�
: ð12Þ

B. Particle creation

Based on the previous relation (12), we can easily study
how expectation values for the particle number operator

N̂nðtÞ ¼
(
â†nân; t < 0

b̂†nb̂n; t > 0
ð13Þ

of the nth mode evolve with time.
In order to demonstrate the occurrence of particle

production, we use the Heisenberg picture and study the
expectation value h0jN̂nðtÞj0i for the initial vacuum state
j0i. This state satisfies the relation ânj0i ¼ 0 for all modes
n, because there are no photons inside the waveguide
initially. In the regime of t > 0, the particle number adopts
the finite and constant value of ðv1 − v0Þ2=ð4v0v1Þ for all
modes n (see also Ref. [22]).
Consequently, particle creation for the sudden step vðtÞ

from Eq. (10) occurs at the sharp instant of t ¼ 0 and
uniformly affects all modes [39]. However, the number of
particles produced is of second order in the perturbation
δv ¼ v1 − v0, which might constitute a challenge for future
experiments with small δv.

C. Two-point correlation for the operator Φ̂ðt;xÞ
In case of a sharp step function vðtÞ, the two-point

correlations for all three operators Φ̂ðt; xÞ, q̂ðt; xÞ, and
ĵðt; xÞ can be evaluated analytically. For reasons of clarity,
the following considerations will focus on the generalized
flux Φ̂ðt; xÞ, but corresponding results for the charge q̂ðt; xÞ
and current ĵðt; xÞ can easily be obtained (up to a prefactor)
by differentiating the expression h0jΦ̂ðt1; x1ÞΦ̂ðt2; x2Þj0i
with respect to either t1 and t2 or x1 and x2 [40].
In order to extract real results, we henceforth focus on the

expression

κðt1; x1; t2; x2Þ ¼ Re½h0jΦ̂ðt1; x1ÞΦ̂ðt2; x2Þj0i� − χ∞; ð14Þ

which has been symmetrized with respect to an exchange of
both space-time points ðt1; x1Þ and ðt2; x2Þ. Here, the term
χ∞ compensates for the infinite but constant contribution of

the infrared divergence already discussed in connection
with Eq. (11).
Exact analytic results for the correlation κðt1; x1; t2; x2Þ

and corresponding expressions for the operators q̂ðt; xÞ and
ĵðt; xÞ are calculated in Appendixes A and B. For all pairs
of fixed times t1 and t2, the expression κðt1; x1; t2; x2Þ has
logarithmic singularities along characteristic lines in the
ðx1; x2Þ-plane. The two-point correlations of the other
operators q̂ðt; xÞ and ĵðt; xÞ obtained by differentiating
κðt1; x1; t2; x2Þ then acquire singularities at the same space-
time points, but they are power law ∝ 1=ξ2 instead of
logarithmic ∝ ln ξ, where ξ is explicitly given in Eq. (A2).

1. Two-point correlation for negative t1 and t2
If both times t1 and t2 are negative, the two-point

correlation κðt1 ≤ 0; x1; t2 ≤ 0; x2Þ given in Appendix A
diverges to positive infinity under the condition

x1 þ s1x2 − s2v0ðt1 − t2Þ ¼ 2Dm ð15Þ

with s1, s2 ∈ f�1g, and m ∈ Z.
This identity just accounts for the standard light-

cone singularities (including reflections at the boundaries)
in the initial vacuum state; see Figs. 2 and 3. For the
corresponding charge-charge correlation, condition (15)
characterizes divergences to negative infinity. In contrast,
divergent contributions to the current-current correlation
can have both signs, which results from the fact that the
quantity jðt; xÞ is phase shifted on each reflection at a
boundary with jðt; 0Þ ¼ jðt; DÞ ¼ 0 (analogous to a string
with fixed ends).

2. Two-point correlation for positive t1 and t2
For positive times t1 and t2, the expression κðt1 > 0;

x1; t2 > 0; x2Þ calculated in Appendix A adopts singular-
ities under conditions of two different types:

FIG. 2. Rescaled equal-time correlation v0κðt1; x1; t1; x2Þ plot-
ted for an arbitrary argument t1 ≤ 0. Singularities just occur along
the line with x1 ¼ x2.
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x1 þ s1x2 − s2v1ðt1 − t2Þ ¼ 2Dm

x1 þ s1x2 − s2v1ðt1 þ t2Þ ¼ 2Dm: ð16Þ
Except for a modified speed of light, the first identity from
Eq. (16) has the same form as the corresponding expression
(15) for negative times t1 and t2. It thus also describes usual
light-cone singularities.
In contrast, the second type of singularities stems from

the creation of particle pairs at t ¼ 0. As one indication, the
second line of Eq. (16) is not invariant under time trans-
lation. As another indication, the corresponding prefactors
in the result κðt1 > 0; x1; t2 > 0; x2Þ from Appendix A
scale linearly with the perturbation δv ¼ v1 − v0. In an
intuitive picture, one can imagine pair creation at the sharp
time t ¼ 0 and some random position x0, where the
produced particles propagate with opposite velocities
�v1. The condition x2 − x1 ¼ v1ðt1 þ t2Þ associated with
this configuration is illustrated in Fig. 4.
Figure 5 provides plots of the correlation function

κðt1; x1; t2; x2Þ for two fixed pairs of identical positive
times t1 ¼ t2. The singularities characterized by the second
line of Eq. (16) occur along the black rectangle appearing in
both of these plots. As a function of time, the corners of this
structure continuously move along the boundaries of the
domain ½0; D�2.
Note that the sign of correlations along the rectangular

pattern from Fig. 5 depends on the ratio of both velocities

v0 and v1. We obtain divergences to negative infinity if
v0 > v1 and to positive infinity in the case of v0 < v1.
Thus, the former case v0 > v1 offers the advantage that
singularities due to pair production are well distinguishable
from light-cone singularities.
The explicit results in Appendixes A and B further reveal

that the two-point correlations for both operators Φ̂ðt; xÞ
and q̂ðt; xÞ have identical signs along the characteristic
rectangle from Fig. 5 but opposite signs under the light-
cone condition. Therefore, different types of singularities in
the charge-charge correlation can be distinguished by their
sign if v0 < v1. As the current alters its sign on reflection at
boundaries with jðt; 0Þ ¼ jðt; DÞ ¼ 0, the corresponding
correlation can again have both signs depending on the
number of reflections involved.

3. Two-point correlation for t1 and t2 having
opposite signs

If the times t1 and t2 differ in sign, we obtain singularities
of the same types as in the previous paragraph. Given the
exemplary case of t1 < 0 and t2 > 0, divergences occur
under the specific conditions

FIG. 3. Worldlines for two different “signals” passing through a
given space-time point ðt1; x1Þ at velocities of absolute value v0.
For all points ðt2; x2Þ on either worldline, the correlation function
κðt1 ≤ 0; x1; t2 ≤ 0; x2Þ diverges.

FIG. 4. Worldlines for a photon pair which is produced at an
arbitrary position x0 and the sharp time t ¼ 0. For all points
ðt1; x1Þ and ðt2; x2Þ located on opposite worldlines, the correla-
tion function κðt1 > 0; x1; t2 > 0; x2Þ has singularities character-
ized by the second line of Eq. (16).

(a)

(b)

FIG. 5. Rescaled equal-time correlation v0κðt1; x1; t1; x2Þ plot-
ted for two different arguments t1 > 0 and velocities v0 ¼ D as
well as v1 ¼ 0.8D. The parameter t1 adopts the values 0.1 in plot
a) and 0.2 in plot b). Singularities described by the second line of
Eq. (16) occur along the black rectangular structure visible in
both plots. The color scale is consistent with Fig. 2.
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x1 þ s1x2 − s2ðv0t1 − v1t2Þ ¼ 2Dm

x1 þ s1x2 − s2ðv0t1 þ v1t2Þ ¼ 2Dm: ð17Þ

Taking the change of propagation velocity at t ¼ 0 into
account, singularities specified by the first line of Eq. (17)
can be associated with the light cone once again.
On the other hand, the second line of Eq. (17) indicates that

quantum vacuum fluctuations propagating at an initial speed
of eitherþv0 or−v0 are also partly reflected at the time t ¼ 0
and afterward propagate with the new velocity −v1 or þv1,
respectively. An illustration of both possible worldlines
emerging from such a partial reflection is provided in
Fig. 6. The splitting of initial fluctuations into superpositions
of left- and right-moving components corresponds to the
mixing of initial creation and annihilation operators â†n and
ân in the new annihilators b̂n and is hence essential for pair
creation. Therefore, the partial reflections encoded in the
second line of Eq. (17) also constitute a characteristic imprint
of particle production and show how particle creation
originates from the initial quantum fluctuations.

V. CONTINUOUSLY CHANGING SPEED

In order to assess whether the singularities obtained in
Sec. IV also arise for smooth profiles vðtÞ, we repeat the
previous calculations for a continuous function,

v2ðtÞ ¼ γ− tanh ðt=τÞ þ γþ with γ� ¼ v21 � v20
2

; ð18Þ

where τ measures the finite time of change.
Particle production in this modified setup can be exam-

ined analogous to Sec. 3.4 of Ref. [4] (see also Ref. [41]
for technical details). Again, we study the expression
κðt1; x1; t2; x2Þ and analyze its behavior along the character-
istic lines specified by Eq. (16). This involves several
approximations that are further discussed in Appendix C.

A. Operator solution for a smooth step vðtÞ
For the continuous profile v2ðtÞ from Eq. (18), solutions

φ̂nðtÞ of the differential equation (9) generally have non-
trivial time dependencies. However, in the limiting cases of
t → �∞, the operators φ̂nðtÞ still adopt asymptotic repre-
sentations equivalent to the expression (11) for a sharp step.
Explicit calculations reveal the specific connection

b̂n ¼ ζðþÞ
n ân þ ζð−Þn â†n ð19Þ

with

ζð�Þ
n ¼

ffiffiffiffiffiffi
ω1
n

ω0
n

s
Γ½1 ∓ iω0

nτ�Γ½−iω1
nτ�

Γ½1 ∓ i
2
ðω0

n � ω1
nÞτ�Γ½∓ i

2
ðω0

n � ω1
nÞτ�

ð20Þ

between the asymptotic annihilator b̂n after changing the
speed of light and the corresponding initial ladder operators
ân and â†n; see also Ref. [4].

B. Particle creation for a smooth step vðtÞ
By evaluating expectation values h0jb̂†nb̂nj0i for the

initial vacuum j0i, we find the number of photons created
in the nth mode to adopt the well-known value [4,22]

h0jb̂†nb̂nj0i ¼ jζð−Þn j2 ¼ sinh2½π
2
ðω0

n − ω1
nÞτ�

sinh ½πω0
nτ� sinh ½πω1

nτ�
ð21Þ

for times t → ∞ [42]. For sharp step functions with τ → 0
or in the case of n ¼ 0, the above result reduces to the
familiar expression ðv0 − v1Þ2=ð4v0v1Þ. On the other hand,
the photon number h0jb̂†nb̂nj0i undergoes exponential
decay for n → ∞, which results in a suppression of particle
creation at short wavelengths λn ¼ 2D=n [44]. Apart from
this, particle production also vanishes if the continuous step
vðtÞ from Eq. (18) has a broad temporal width τ → ∞.

C. Two-point correlation after a smooth step vðtÞ
Unlike a sudden step function vðtÞ, the continuous profile

vðtÞ from Eq. (18) does not yield a compact expression for
the two-point correlation κðt1; x1; t2; x2Þ. However, for
sufficiently large times t1 and t2 ≫ τ, further discussions
in Appendix C provide an approximate result κðt1; x1; t2; x2Þ
that correctly includes the contributions of modes with large
n. Since all singularities of the quantity κðt1; x1; t2; x2Þ arise
from high modes approaching n → ∞, the large-n approxi-
mation in Appendix C clearly reveals whether a smooth step
vðtÞ yields the same divergent contributions as its discon-
tinuous counterpart from Eq. (10) [45].
As expected, we find the two-point correlation

κðt1; x1; t2; x2Þ to still diverge under the light-cone conditions

x1 þ s1x2 − s2v1ðt1 − t2Þ ¼ 2Dm; ð22Þ

FIG. 6. Two possible worldlines for an initial quantum fluc-
tuation passing through a space-time point ðt1; x1Þ with t1 < 0.
The condition in the first line of Eq. (17) is satisfied for all points
ðt2 > 0; x2Þ that are located on the right branch of the depicted
light cone. The second type of singularities emerges for those
points ðt̃2 > 0; x̃2Þ which belong to the other worldline illustrated
above.
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while the additional singularities due to pair creation

x1 þ s1x2 − s2v1ðt1 þ t2Þ ¼ 2Dm ð23Þ
from Sec. IV are smoothened for continuous profiles vðtÞ.
This can be explained by the fact that particle creation can
no longer be associated with a sharp point of time.

VI. CONCLUSION

As a laboratory analog for cosmological particle crea-
tion, we have considered a waveguide with a time-
dependent speed of light vðtÞ and calculated the two-point
correlation κðt1; x1; t2; x2Þ for the generalized flux variable
Φ̂ðt; xÞ. First, we studied a sudden step function vðtÞ. In
addition to the usual light-cone singularities (including
reflections at the boundaries), we found a distinctive pattern
of logarithmic singularities in κðt1; x1; t2; x2Þ which clearly
reflects the dynamics of pair creation occurring at a sharp
instant of time. If we replace the sudden step in vðtÞ by a
smooth profile, those additional singularities are smooth-
ened. Nevertheless, the correlation κðt1; x1; t2; x2Þ displays
distinctive signatures of pair creation, which could be
observed experimentally. Qualitatively similar patterns also
arise for the two-point correlations of the electric charge
q̂ðt; xÞ and corresponding current ĵðt; xÞ inside the wave-
guide, which might constitute more direct observables.
In contrast to the number of particles produced (see, e.g.,

Ref. [22]), the imprint of pair creation onto the correlation
functions is of first order in the perturbation δv ¼ v1 − v0.
Therefore, we propose that measuring two-point correla-
tions instead of particle numbers may enhance the chances
for observing analog cosmological particle creation in
future experiments with tunable waveguides.
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APPENDIX A: CALCULATION OF THE
SYMMETRIZED TWO-POINT

CORRELATION FOR A
RAPID STEP vðtÞ

In order to work out the symmetrized two-point corre-
lation κðt1; x1; t2; x2Þ for a steplike profile vðtÞ, we insert
the expressions (8) and (11) into Eq. (14). After evaluating
all quantum mechanical expectation values, elementary
trigonometric identities can be used to rearrange the
function κðt1; x1; t2; x2Þ into a sum containing multiple
expressions of the characteristic shape

X∞
n¼1

pn cos ðnξÞ
n

¼ −
1

2
ln ½1 − 2p cosðξÞ þ p2�; p2 ≤ 1;

ðA1Þ

with here p ¼ 1, where the result on the right-hand side has
been taken from Eq. (1.448) in Ref. [46].
Typical arguments ξ occurring in terms of the specific

shape (A1) can be abbreviated with a symbol

ξ
ðvi;vjj�Þ
s1;s2 ðt1; x1; t2; x2Þ ¼

π

D
½x1 þ s1x2 − s2ðvit1 � vjt2Þ�

ðA2Þ

in which the indices s1 and s2 ∈ f�1g constitute place
holders for two variable signs.
By applying the previous considerations to expressions

κðt1; x1; t2; x2Þ with different combinations of signs sgnðt1Þ
and sgnðt2Þ, we obtain the specific results

κðt1 ≤ 0; x1; t2 ≤ 0; x2Þ

¼ −
1

8πv0

X
si¼�1

ln ½2 − 2 cos ½ξðv0;v0j−Þs1;s2 ðt1; x1; t2; x2Þ��;

ðA3Þ

κðt1 > 0; x1; t2 > 0; x2Þ

¼ −
1

16πv0

X
γ¼�1

�
1 − γ

v02

v12

�

×
X
si¼�1

ln ½2 − 2 cos ½ξðv1;v1jγÞs1;s2 ðt1; x1; t2; x2Þ�� ðA4Þ

and

κðt1 ≤ 0; x1; t2 > 0; x2Þ

¼ −
1

16πv0

X
γ¼�1

�
1 − γ

v0
v1

�

×
X
si¼�1

ln ½2 − 2 cos ½ξðv0;v1jγÞs1;s2 ðt1; x1; t2; x2Þ��: ðA5Þ

For arbitrary fixed arguments t1 and t2, the above
findings (A3) to (A5) have logarithmic singularities along
characteristic lines in the ðx1; x2Þ-plane. More specifically,

such singularities arise if the respective term ξðv0;v0j−Þs1;s2

ðt1;x1;t2;x2Þ, ξðv1;v1jγÞs1;s2 ðt1;x1;t2;x2Þ, or ξðv0;v1jγÞs1;s2 ðt1;x1;t2;x2Þ
corresponds to an integer multiple of 2π.

APPENDIX B: SYMMETRIZED TWO-POINT
CORRELATIONS FOR THE CHARGE AND
CURRENT IN CASE OF A RAPID STEP vðtÞ

Based on the quantized counterpart of Eq. (3), we can
express the symmetrized two-point correlations

κqðt1; x1; t2; x2Þ ¼ Re½h0jq̂ðt1; x1Þq̂ðt2; x2Þj0i�
κjðt1; x1; t2; x2Þ ¼ Re½h0jĵðt1; x1Þĵðt2; x2Þj0i� ðB1Þ
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for the electric charge q̂ðt; xÞ and current ĵðt; xÞ in terms
of the flux-flux correlation κðt1; x1; t2; x2Þ calculated in
Appendix A:

κqðt1; x1; t2; x2Þ ¼
�

1

Lðt1ÞLðt2Þ
�

1=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C
vðt1Þvðt2Þ

s

× ∂t1∂t2κðt1; x1; t2; x2Þ

κjðt1; x1; t2; x2Þ ¼
�

1

Lðt1ÞLðt2Þ
�

3=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vðt1Þvðt2Þ

C

r

× ∂x1∂x2κðt1; x1; t2; x2Þ: ðB2Þ

Assuming that the sudden step (10) in the speed of light
vðtÞ is caused by a rapid change of the inductivity LðtÞ from
initially Lðt < 0Þ ¼ L0 to the new value Lðt > 0Þ ¼ L1, we
obtain the following results by inserting the expressions (A3)
to (A5) into the function κqðt1; x1; t2; x2Þ from Eq. (B2):

κqðt1 ≤ 0; x1; t2 ≤ 0; x2Þ

¼ −
π

8D2

ffiffiffiffiffiffi
C
L0

s X
si¼�1

ð1 − cos ½ξðv0;v0j−Þs1;s2 ðt1; x1; t2; x2Þ�Þ−1;

ðB3Þ

κqðt1 > 0; x1; t2 > 0; x2Þ

¼ −
π

16D2

ffiffiffiffiffiffi
C
L1

s
v1
v0

X
γ¼�1

ð−γÞ
�
1 − γ

v02

v12

�

×
X
si¼�1

ð1 − cos ½ξðv1;v1jγÞs1;s2 ðt1; x1; t2; x2Þ�Þ−1 ðB4Þ

and

κqðt1 ≤ 0; x1; t2 > 0; x2Þ

¼ −
π

16D2

�
C2

L0L1

�
1=4 ffiffiffiffiffi

v1
v0

r X
γ¼�1

ð−γÞ
�
1 − γ

v0
v1

�

×
X
si¼�1

ð1 − cos ½ξðv0;v1jγÞs1;s2 ðt1; x1; t2; x2Þ�Þ−1: ðB5Þ

Due to 1 − cos x ≥ 0, the correlation function κqðt1 ≤ 0;
x1; t2 ≤ 0; x2Þ before changing the speed of light is negative
for all points x1 and x2. In the case of v0 > v1, this statement
generalizes to arbitrary combinations of signs sgnðt1Þ and
sgnðt2Þ. On the other hand, if v0 < v1, all contributions
with γ ¼ 1 are positive. Analogous to the discussion in
Sec. IV, the correlation κqðt1; x1; t2; x2Þ diverges, wherever
the term ξð…j…Þ

s1;s2 ðt1; x1; t2; x2Þ equals an even multiple of 2π.
Singularities with γ ¼ 1, once again, constitute a character-
istic signature of particle pair creation.
By considering spatial instead of temporal derivatives of

the expressions (A3) to (A5), we obtain similar results,

κjðt1 ≤ 0; x1; t2 ≤ 0; x2Þ

¼ π

8D2

1ffiffiffiffiffiffiffiffiffi
L3
0C

q X
si¼�1

s1ð1 − cos ½ξðv0;v0j−Þs1;s2 ðt1; x1; t2; x2Þ�Þ−1;

ðB6Þ

κjðt1 > 0; x1; t2 > 0; x2Þ

¼ π

16D2

1ffiffiffiffiffiffiffiffiffi
L3
1C

p v1
v0

X
γ¼�1

�
1 − γ

v02

v12

�

×
X
si¼�1

s1ð1 − cos½ξðv1;v1jγÞs1;s2 ðt1; x1; t2; x2Þ�Þ−1 ðB7Þ

and

κjðt1 ≤ 0; x1; t2 > 0; x2Þ

¼ π

16D2

�
1

L3
0L

3
1C

2

�
1=4

ffiffiffiffiffi
v1
v0

r X
γ¼�1

�
1 − γ

v0
v1

�

×
X
si¼�1

s1ð1 − cos ½ξðv0;v1jγÞs1;s2 ðt1; x1; t2; x2Þ�Þ−1; ðB8Þ

for the correlation of the current ĵðt; xÞ. Obviously, these
results have the same singularities as the corresponding
flux-flux and charge-charge correlations. However, the
factor s1 occurring in the previous expressions allows
the correlation κjðt1; x1; t2; x2Þ to generally adopt either
positive or negative values.

APPENDIX C: APPROXIMATE RESULT FOR
THE SYMMETRIZED FLUX-FLUX

CORRELATION AFTER A
SMOOTH STEP vðtÞ

1. General structure of the two-point correlation
for large times t1, t2 ≫ τ

For times t ≫ τ located after the smooth step vðtÞ from
Sec. V, the full quantum field Φ̂ðt; xÞ adopts the asymptotic
representation

Φ̂ðt ≫ τ; xÞ ¼
X∞
n¼0

ΨnðxÞffiffiffiffiffiffiffiffi
2ω1

n

p ½e−iω1
ntb̂n þ H:c:� ðC1Þ

in which the terms b̂n are given by Eq. (19).
After inserting the above expression into the sym-

metrized correlation function (14), we obtain (see [42])

κðt1;x1; t2;x2Þ¼ κAðt1;x1; t2;x2Þþ κBðt1;x1; t2;x2Þ ðC2Þ

with
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κA ¼
X∞
n¼1

1

2ω1
n
Ψnðx1ÞΨnðx2Þ cos ½ω1

nðt1 − t2Þ�

×
sinh2½π

2
ðω0

n þ ω1
nÞτ� þ sinh2½π

2
ðω0

n − ω1
nÞτ�

sinh ½πω0
nτ� sinh ½πω1

nτ�
ðC3Þ

and

κB ¼
X∞
n¼1

4π

½ðω0
nÞ2 − ðω1

nÞ2�τ
Ψnðx1ÞΨnðx2Þ

× Re

�
e−iω

1
nðt1þt2Þ

sinh ðπω0
nτÞ

�
Γ½−iω1

nτ�
Γ½− iðω0

nþω1
nÞτ

2
�Γ½iðω0

n−ω1
nÞτ

2
�

�
2
�
:

ðC4Þ
As the function κA just depends on the temporal difference
t1 − t2, it corresponds to those terms yielding light-cone
singularities in the sudden-step limit of τ → 0. On the other
hand, the expression κB is a function of t1 þ t2 in analogy to
the terms from Appendix A which contain an imprint of
pair production.

2. Expansions allowing for an explicit evaluation

As both expressions κA and κB involve sums that
lack straightforward analytic solutions, the following stud-
ies rely on approximations of the respective summands.
In order to assess whether the two-point correlation
κðt1; x1; t2; x2Þ after a smooth step vðtÞ acquires the same
singularities as the corresponding expression (A4) for a
rapidly changing speed of light, it is sufficient to examine
the contributions of modes with large indices n → ∞
because using an inaccurate approximation for a finite
number of regular summands with low indices n cannot
cause divergence of the entire sum.
Based on the asymptotic expansion

sinh πx ∼ eπx=2 for x → ∞ ðC5Þ
and the Stirling formula

ΓðzÞ ∼
ffiffiffiffiffiffi
2π

p
e−zzz−1=2 for jzj → ∞; ðC6Þ

we can significantly simplify both expressions (C3)
and (C4).
Numerical studies reveal that the relative error associated

with the approximation (C5) is negligibly small for all
arguments x ≥ 1. Apart from this, the Stirling formula (C6)
also yields at least qualitatively reliable results for all purely
imaginary arguments z ¼ ix with jxj > 1.
Bearing in mind the relation ωi

n ¼ πnvi=D, the expan-
sions (C5) and (C6) are clearly applicable to all summands
in the expressions κA and κB that have sufficiently large
indices n. Moreover, they even hold for smaller integers
n≳ 1 if the step width τ of the continuous profile vðtÞ
exceeds the characteristic times D=ðπv0Þ, D=ðπv1Þ and
2D=jπðv0 − v1Þj.
For the exemplary setup studied in Ref. [21], the values

D ¼ 4 mm and v0 ¼ 0.5c0 constitute realistic experimental

parameters with c0 denoting the vacuum speed of light.
Ifwe further assumev1 ¼ 0.45c0, the asymptotic expansions
(C5) and (C6) hold for all indices n ∈ N as long as
τ ≥ 1.7 × 10−10 s.
In the opposite case of τ violating the above require-

ments, the subsequent results contain incorrect contribu-
tions for modes with small indices n. Nevertheless, as
explained above, all conclusions concerning the appearance
of singularities remain valid even if the underlying approx-
imations are unreliable for low integers n.

3. Approximate result for the term κAðt1;x1;t2;x2Þ
By applying the asymptotic expansion (C5) to each

summand of Eq. (C3), we obtain the approximate result

κA ≈
X∞
n¼1

Ψnðx1ÞΨnðx2Þ
2ω1

n
cos ½ω1

nðt1 − t2Þ�

× ½1þ e−2πmin fω0
n;ω1

ngτ� ðC7Þ
that can be further simplified analogous to Appendix A.
More specifically, we expand the square brackets in the

last term of Eq. (C7); use the identity (A1) with p1 ¼ 1 and
p2 ¼ exp ½−2π2 min fv0; v1gτ=DÞ�; and finally retain the
expression

κA ≈ −
1

8πv1

X
k¼1;2

X
si¼�1

× ln ½1 − 2pk cos ½ξðv1;v1j−Þs1;s2 ðt1; x1; t2; x2Þ� þ p2
k�:

ðC8Þ
The (k ¼ 1) contribution to the latter result obviously
resembles the ðγ ¼ −1Þ terms in the corresponding func-
tion κðt1 > 0; x1; t2 > 0; x2Þ from Appendix A. Therefore,
the expression κAðt1; x1; t2; x2Þ similarly adopts singular-
ities under the condition

x1 þ s1x2 − s2v1ðt1 − t2Þ ¼ 2Dm: ðC9Þ
On the other hand, all terms satisfying k ¼ 2 remain finite
for arbitrary combinations of space-time points ðt1; x1Þ
and ðt2; x2Þ.

4. Approximate result for the term κBðt1;x1;t2;x2Þ
Based on the Stirling formula (C6), the square brackets

in Eq. (C4) can be approximated according to

�
Γ½−iω1

nτ�
Γ½− iðω0

nþω1
nÞτ

2
�Γ½iðω0

n−ω1
nÞτ

2
�

�
2

≈
inτ
8D

ðv20 − v21Þ
v1

e
π2τ
D nðv0−v1ÞΘðv0−v1Þ

× e
−iπnτD ½v0 lnðjv0−v1 jv0þv1

Þþv1 lnð
4v2

1

jv2
0
−v2

1
jÞ�; ðC10Þ

where the symbol Θ denotes the Heaviside function.
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If we likewise replace the factor sinh ðπω0
nτÞ by means of

Eq. (C5), the resulting expression κB can be further reduced
to the form

κB ≈
X

si∈f�1g

X∞
n¼1

−
s2

2πv1

×
e−

π2nτ
D min fv0;v1g

n
sin ½nξ̃s1;s2ðt1; x1; t2; x2Þ� ðC11Þ

with

ξ̃s1;s2ðt1; x1; t2; x2Þ
¼ π

D
½x1 þ s1x2 − s2v1ðt1 þ t2Þ

− s2τ½ðv0 − v1Þ ln jv0 − v1j − ðv0 þ v1Þ ln ðv0 þ v1Þ
þ 2v1 ln ð2v1Þ��: ðC12Þ

By afterward using the identity

X∞
n¼1

pn sin ðnxÞ
n

¼ arctan

�
p sin x

1 − p cos x

�
; p2 ≤ 1;

ðC13Þ

taken from Eq. (1.448) in Ref. [46], we finally obtain the
approximate result

κB ≈
X

si∈f�1g
−

s2
2πv1

× arctan

�
sin ½ξ̃s1;s2ðt1; x1; t2; x2Þ�

e
π2τ
D min fv0;v1g − cos ½ξ̃s1;s2ðt1; x1; t2; x2Þ�

�
:

ðC14Þ

Since the arctangent adopts finite values for all real
arguments, the expression κB never diverges. This finding

requires all singularities obeying the second line of Eq. (16)
to be smoothened for continuous profiles vðtÞ.

5. Behavior of former singularities in case
of a very broad step vðtÞ

So far, the approximate result κB from Eq. (C14)
correctly accounts for the contributions of large indices
n only. However, in the limiting case of a broad step vðtÞ
meeting the requirements τ ≫ D=ðπv0Þ and τ ≫ D=ðπv1Þ,
i.e., if the speed of light vðtÞ changes on timescales greater
than the time required by a signal to pass through the entire
waveguide, this approximation is valid for all positive
integers n. Nevertheless, inaccurate contributions of small
indicesn inevitably become significant for narrow stepsvðtÞ.
Therefore, considerations basedon the expression (C14)may
yield incorrect results in the sudden-step limit τ → 0.
For broad steps vðtÞ satisfying the relations τ ≫

D=ðπv0Þ and τ ≫ D=ðπv1Þ, Eq. (C14) finds the expression
κB to vanish under the condition ξ̃s1;s2ðt1; x1; t2; x2Þ ¼ mπ
with m ∈ Z. If we further assume a weak perturbation
δv ¼ v1 − v0, the last three terms of Eq. (C12) reduce to a
small offset, and the function ξ̃s1;s2ðt1; x1; t2; x2Þ hence

approaches the corresponding expression ξðv1;v1jþÞ
s1;s2 ðt1; x1;

t2; x2Þ from Appendix A. As a result, the function κB
vanishes under the condition

x1 þ s1x2 − s2v1ðt1 þ t2Þ ¼ Dm; ðC15Þ

which includes the lines on which its sudden-step counter-
part from Appendix A grows singular.
Although this last observation illustrates how singular-

ities for a rapidly changing speed of light vðtÞ are
smoothened for very broad steps vðtÞ, it does not constitute
a quantitative result for the full correlation function
κðt1; x1; t2; x2Þ because the term κA still has a generally
nonvanishing contribution.
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