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To describe charged particles interacting with the quantized electromagnetic field, we show the
differences of working in the so-called generalized and the true Coulomb gauges. We find an explicit gauge
transformation between them for the case of the electromagnetic field operators quantized near a
macroscopic boundary described by a piecewise constant dielectric function. Starting from the generalized
Coulomb gauge we transform operators into the true Coulomb gauge where the vector potential operator is
truly transverse everywhere. We find the generating function of the gauge transformation to carry out the
corresponding unitary transformation of the Hamiltonian and show that in the true Coulomb gauge the
Hamiltonian of a particle near a polarizable surface contains extra terms due to the fluctuating surface
charge density induced by the vacuum field. This extra term is represented by a second-quantized operator
on equal footing with the vector field operators. We demonstrate that this term contains part of the
electrostatic energy of the charged particle interacting with the surface and that the gauge invariance of the
theory guarantees that the total interaction energy in all cases equals the well known result obtainable by
the method of images when working in generalized Coulomb gauge. The mathematical tools we have
developed allow us to work out explicitly the equal-time commutation relations and shed some light on
typical misconceptions regarding issues of whether the presence of the boundaries should affect the field
commutators or not, especially when the boundaries are modeled as perfect reflectors.
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I. INTRODUCTION

Quantum electrodynamics in the presence of polarizable
boundaries is a crucial element of the theory describing the
interaction of quantum particles with surfaces. It is becom-
ing increasingly relevant thanks to progress in both nano-
technology and experimental techniques in atomic physics.
Modern state-of-the-art measurements in atomic physics
have reached impressive level of accuracy and subject any
theory to previously unparalleled scrutiny [1–3]. There is a
vast number of theoretical tools at one’s disposal for
studying the interaction between surfaces and quantum
objects which can be thought of as being mediated by the
electromagnetic field in its vacuum or a thermal state
[4–13]. All approaches are similar in one aspect, in that
they treat the coupling between the quantum object and
the quantized electromagnetic field perturbatively. On the
other hand, the interaction between the electromagnetic
field and the boundary surface needs to be taken into
account to all orders, i.e., an exact solution of the operator-
valued Maxwell equations is required. It is this aspect of
the theory, i.e., the quantization of the electromagnetic field
in the presence of a boundary, that even today is a subject of
ongoing discussions [14,15].
Quantum electrodynamics (QED) in free space has been

formulated in a variety of ways to suit every need and

taste [16]. Whatever approach is taken, is ultimately dictated
merely by convenience, and the gauge invariance of the
theory guarantees final results to coincide. However, the
situation is different in macroscopic cavity QED where one
typically accounts for the presence of thematerial boundaries
by introducing a spatially dependent dielectric function ϵðrÞ,
which is usually taken to be a piecewise constant function of
position r. Even in the presence of boundaries, the theory still
needs to be gauge invariant, but the choice of gauges that are
convenient to work with becomes rather restricted [17].
Macroscopic QED is one of the two fundamentally different
approaches to formulate the QED in the presence of polar-
izablemedia. Another way is to consider the electromagnetic
field as interacting with the microscopic constituents of the
macroscopic body, which is essentially equivalent, at least at
the initial stagewhen the theory is formulated, toQED in free
space. Throughout this article we will focus strictly on the
macroscopic approach to cavity QED of nonrelativistic
particles i.e., those describable by the Schrödinger equation.
For a quantum theory to be consistently formulated one

needs a Hamiltonian and an appropriate set of commutation
relations between canonically conjugate variables, which in
turn allow Heisenberg equations of motion to be derived. In
the case of QED a clear-cut way of achieving this is to start
from a classical Lagrangian that yields the macroscopic
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Maxwell equations. At this point, for suitably chosen
generalized coordinates, one can unambiguously identify
canonically conjugate momenta and proceed to write down
the Hamiltonian by using a Legendre transformation.
Quantization is then achieved by the correspondence prin-
ciple, i.e., by converting Poisson brackets to commutators.
Formally the transition from the Lagrangian, usually written
down in terms of electromagnetic potentials Aðr; tÞ and
ϕðr; tÞ, to the Hamiltonian does not require any specific
gauge to be chosen. The Hamiltonian may be written in a
gauge invariant form, that is, in terms of the electric and
magnetic fields alone [18]. However, there is a price to be
paid for that, which is that the Hamiltonian takes on a
superficial form in which the coupling terms are not
manifestly apparent. Thus, for most practical purposes,
e.g., in order to apply perturbation theory, a specific gauge
needs tobe chosen,which in turn affects theworkable formof
theHamiltonian. The choice of the gauge is usually restricted
to the ones in which an explicit form of the noninteracting
electromagnetic operators is easily derived. A common aim
is to decouple equations of motion for the potentials Aðr; tÞ
and ϕðr; tÞ and deal with them separately. For QED in free
space, this can be achieved in a number of gauges, the most
popular being the Coulomb [∇ ·Aðr; tÞ ¼ 0] and the Lorenz
[∇ ·Aðr; tÞ þ ∂ϕðr; tÞ=∂t=c2 ¼ 0] gauge [19]. However,
when a polarizable boundary is present and accounted for
by introducing piecewise-constant dielectric function ϵ ¼
ϵðrÞ, neither the Coulomb nor the Lorenz gauge result in the
decoupling of the equations ofmotion forAðr; tÞ andϕðr; tÞ.
Instead, one is led to introduce the so-called generalized
Coulomb gauge ∇ · ½ϵðrÞAðr; tÞ� ¼ 0, which allows one to
retain certain analogies between free-space QED in the
Coulomb gauge and macroscopic QED in the presence of
boundaries [20]. In particular, in both cases the scalar
potential is not quantized and remains static ϕðr; tÞ ¼
ϕðrÞ for a static charge distribution. This yields the instanta-
neous Coulomb interaction between free charges. However,
in the case of macroscopic QED with boundaries, this
interaction also includes the coupling of charges to the
surface, which for simple enough geometries can be deter-
mined by the method of images [19].
This paper demonstrates how to arrive consistently at a

correct formulation of QED in the presence of a polarizable
boundary in the true Coulomb gauge. This is done by
finding an explicit gauge transformation connecting the
generalized Coulomb gauge ∇ · ½ϵðrÞAðr; tÞ� ¼ 0 with the
true Coulomb gauge ∇ ·Aðr; tÞ ¼ 0. It will be shown how
the Hamiltonian in the true Coulomb gauge can be obtained
from that in the generalized Coulomb gauge by a unitary
transformation. Once the Hamiltonian is known, one can
use standard perturbation theory to calculate interaction
energies between charges and surfaces; we shall be
demonstrating the gauge invariance of macroscopic QED
by explicit calculation of the electrostatic contributions
to the interaction of an electron with dielectric surface.

The explicit connection we make between the generalized
and true Coulomb gauges is very useful in practical
calculations because, while the generalized Coulomb gauge
is where the field equations can easily be solved, the true
Coulomb gauge is one where a wealth of knowledge exists
on how to develop and handle interacting quantum field
theories.

II. GENERALIZED COULOMB GAUGE

Although the considerations we report here are quite
general, we would like to explain them by referring to a
specific example. To that end, we consider a dielectric half-
space occupying the region of space z < 0. For simplicity,
the dielectric is assumed to be nondispersive, i.e., its
electromagnetic response is described by a single number,
the index of refraction n, that is one and the same for all
frequencies. This model is described by the dielectric
constant

ϵðzÞ ¼ 1þ θð−zÞðn2 − 1Þ ð1Þ

where θðzÞ is the Heaviside step function. The quantization
of the electromagnetic field that coexists with such a
dielectric can be achieved by normal-mode expansion
[20]. We start with Maxwell’s equations without sources,

∇ ·Dðr; tÞ ¼ 0; ð2Þ

∇ ·Bðr; tÞ ¼ 0; ð3Þ

∇ × Eðr; tÞ þ ∂
∂tBðr; tÞ ¼ 0; ð4Þ

∇ ×Hðr; tÞ − ∂
∂tDðr; tÞ ¼ 0: ð5Þ

For a material that is nonmagnetic and has the non-
dispersive dielectric function (1), the constitutive relations
may be written as

Bðr; tÞ ¼ μ0Hðr; tÞ; Dðr; tÞ ¼ ϵ0ϵðzÞEðr; tÞ: ð6Þ

Introducing the electromagnetic potentials in the usual
way [19]

Eðr; tÞ ¼ −
∂
∂tAðr; tÞ − ∇ϕðr; tÞ ð7Þ

Bðr; tÞ ¼ ∇ ×Aðr; tÞ; ð8Þ

takes care of Eqs. (3) and (4). The remaining two Maxwell
equations (2) and (5) turn into:

∇ · ½ϵðzÞ∇ϕðr; tÞ� þ ∂
∂t∇ · ½ϵðzÞAðr; tÞ� ¼ 0; ð9Þ
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∇ × ½∇ ×Aðr; tÞ� þ ϵðzÞ
c2

∂2

∂t2Aðr; tÞ þ ϵðzÞ
c2

∂
∂t∇ϕðr; tÞ ¼ 0:

ð10Þ

The solution of these coupled differential equations can be
very much simplified by a suitable choice of gauge for the
electromagnetic potentials. It is expedient to decouple the
two equations. In nonrelativistic QED, the most convenient
approach is to work in the generalized Coulomb gauge
where we require that

∇ · ½ϵðzÞAðr; tÞ� ¼ 0;

ϵðzÞ∇ ·Aðr; tÞ þ ð1 − n2ÞAzðr; tÞδðzÞ ¼ 0; ð11Þ

where the specific form of the dielectic constant of Eq. (1)
has been used to get the second line. We note that, since
ϵðzÞ is not spatially uniform but has a finite jump at z ¼ 0,
the generalized Coulomb gauge differs from the standard
Coulomb gauge

∇ ·Aðr; tÞ ¼ 0 ð12Þ

by a surface term that is proportional to a δðzÞ-function.
With Eq. (11) it follows from Eq. (9) that in the absence of
sources we can set ϕðr; tÞ ¼ 0. Thus in generalized
Coulomb gauge, Eq. (10) reduces to

∇ × ½∇ ×Aðr; tÞ� þ ϵðzÞ
c2

∂2

∂t2Aðr;ωÞ ¼ 0: ð13Þ

Therefore, only the vector potential undergoes quantiza-
tion, which is accomplished by expanding Aðr; tÞ in a
complete set of the mode functions that satisfy

∇ × ½∇ × fσðrÞ� − ϵðzÞω
2
σ

c2
fσðrÞ ¼ 0; ð14Þ

and are supplemented by the condition that derives from the
gauge we are working in, cf. Eq. (11)

∇ · ½ϵðzÞfσðrÞ� ¼ 0: ð15Þ

We have labeled solutions corresponding to the eigenvalue
ωσ by σ. The double-curl operator can be rewritten using
Eq. (15)

∇ × ½∇ × fσðrÞ� ¼ ∇½∇ · fσðrÞ� −∇2fσðr; σÞ
¼ −∇2fσðr; σÞ; for z ≠ 0:

Thus away from the interface we can work with the
Helmholtz equation

∇2fσðrÞ þ ϵðzÞω
2
σ

c2
fσðrÞ ¼ 0; for z ≠ 0; ð16Þ

which can be solved as usual by considering the two
distinct regions of space, z < 0 and z > 0, and using
Maxwell boundary conditions to match solutions across
the interface. Once the mode functions are known, the
expansion of the vector potential is written as

Agcðr; tÞ ¼
X
σ

ffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2ϵ0ωσ

s
½aσfσðrÞe−iωσ t þ C:C:�; ð17Þ

where the superscript gc reminds us that the expansion is
written down in generalized Coulomb gauge, Eq. (11).
Quantization is accomplished by the promotion of the
expansion coefficients aσ to operators that satisfy bosonic
equal-time commutation rules

½âσ; â†σ0 � ¼ δσ;σ0 ;

½âσ; âσ0 � ¼ 0: ð18Þ

In the present geometry, described by the dielectric function
(1), the procedure outlined above yields the well-known
Carnigila-Mandel modes for the vector field operator which
naturally split into two parts describing left-incident and
right-incident photons, respectively [21]:

Âgcðr; tÞ ¼
X
λ

Z
d2kk

("Z
∞

0

dkzd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2ϵ0ωkλ

s
âLkλðtÞfLkλðrÞ

#

þ
"Z

∞

0

dkz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2ϵ0ωkλ

s
âRkλðtÞfRkλðrÞ

#)
þ H:c:

ð19Þ

fLkλðrÞ ¼
êλð∇Þ

ð2πÞ3=2n fθð−zÞ½e
ikþ

d ·r þ RL
λ e

ik−
d ·r�

þ θðzÞ½TL
λ e

ikþ·r�g ð20Þ

fRkλðrÞ ¼
êλð∇Þ
ð2πÞ3=2 fθðzÞ½e

ik−·r þ RR
λ e

ikþ·r�

þ θð−zÞ½TR
λ e

ikþ
d ·r�g ð21Þ

Here λ labels the polarization of the photons λ ¼
fTE;TMg as transverse electric and transverse magnetic,
and a harmonic time-dependence of the annihilation and
creation operators is implicitly assumed i.e., akλðtÞ ¼
akλð0Þe−iωkλt. The mode functions fkλðrÞ entering the
expansion (19) contain wave vectors k and kd i.e., the
wave vectors in vacuum and dielectric, respectively
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k� ¼ ðkk;�kzÞ; k�
d ¼ ðkk;�kzdÞ: ð22Þ

Their z-components are related to each other via the law

of refraction, kzd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2k2z þ ðn2 − 1Þkk2

q
. The sign of

the square root is chosen in such a way that on the real
axis we have sgnðkzÞ ¼ sgnðkzdÞ. This ensures that for a
single mode of the electromagnetic field that consists of
incident, reflected and transmitted waves, the direction
of propagation is consistent between those waves. In
Eqs. (20) and (21) a shorthand notation has been
introduced to represent the unit polarization vectors êλ.
We have defined them as

êTEð∇Þ ¼ ð−∇2
kÞ−1=2ð−i∇y; i∇x; 0Þ; ð23Þ

êTMð∇Þ ¼ ð∇2
k∇2Þ−1=2ð−∇x∇z;−∇y∇z;∇2

kÞ; ð24Þ

where it is understood that the derivatives are acting on
plane waves and thus give the corresponding components
of the wave vector of that wave, e.g., for the right-incident
incoming wave eik

−·r the operator ∇z gives −ikz. We
emphasize that our notation is such that the polarization
vectors do not act on the step function in ϵðzÞ. This is a
convenient notation as the polarization vectors point in
different directions for incident, reflected and transmitted
waves, respectively. However, one needs to be careful
when carrying out explicit calculations with the mode
functions (20)–(21) and remember that the operator êλð∇Þ
is merely a shorthand notation. The Fresnel coefficients
in mode functions (20) and (21) are given by

RR
TE ¼

kz−kzd
kzþkzd

; RR
TM¼ n2kz−kzd

n2kzþkzd
; RL

λ ¼−RR
λ ;

TR
TE ¼

2kz
kzþkzd

; TR
TM¼ 2nkz

n2kzþkzd
; TL

λ ¼
kzd
kz

TR
λ :

ð25Þ

The mode functions (20)–(21) need to satisfy a com-
pleteness relation which can be written in the form [20]

X
λ

Z
d2kk

�Z
∞

0

dkzfRkλ;iðrÞf�Rkλ;jðr0Þ

þ
Z

∞

0

dkzdfLkλ;iðrÞf�Lkλ;jðr0Þ
�
¼ δϵijðr; r0Þ ð26Þ

where for definiteness throughout this paper we choose r0
to refer to a point that lies outside dielectric, i.e., z0 > 0.
The proof of the relation

∇2
X
λ

Z
d2kk

�Z
∞

0

dkzfRkλ;iðrÞf�Rkλ;jðr0Þ

þ
Z

∞

0

dkzdfLkλ;iðrÞf�Lkλ;jðr0Þ
�

¼ ð∇i∇j − δij∇2Þδð3Þðr − r0Þ ð27Þ
has been presented in [22]. Equation (27) is of course
obtained by acting with the Laplace operator ∇2 on (26).
However, at this point it is not obvious that

∇2δϵijðr; r0Þ ¼ ð∇i∇j − δij∇2Þδð3Þðr − r0Þ: ð28Þ
The object δϵijðr; r0Þ represents the unit kernel in the
subspace of the mode functions that satisfy the general-
ized Coulomb gauge i.e., if fkλðrÞ satisfies Eq. (15) thenZ

d3r0δϵijðr; r0Þfjkλðr0Þ ¼ fikλðrÞ: ð29Þ

Even less obvious is that, even though the generalized
Coulomb gauge differs from the standard Coulomb gauge
only by a surface term, cf. Eq. (11), the corresponding
unit kernels in the position representation in these two
gauges differ in the whole of space because of their
nonlocal character, i.e., even though

∇ · fkλðrÞ ¼ ∇ · ½ϵðzÞfkλðrÞ�; for z ≠ 0; ð30Þ
we have

δ⊥ijðr − r0Þ ≠ δϵijðr; r0Þ; for all z; z0: ð31Þ
Here, δ⊥ijðr − r0Þ is the usual transverse δ-function

δ⊥ijðr − r0Þ ¼ 1

ð2πÞ3
Z

d3k

�
δij −

kikj
k2

�
eik·ðr−r0Þ; ð32Þ

i.e., the unit kernel in the subspace of mode functions that
satisfy ∇ · fkλðrÞ ¼ 0. We also emphasize that δϵijðr; r0Þ is
not translation-invariant, because translation invariance is
broken by the presence of the interface where waves are
partially reflected.
It turns out that it is possible to calculate the

r-representation of δϵijðr; r0Þ directly by evaluating the
integrals in (26). Beforewe do so, let us rewrite the transverse
delta function (32) as

δ⊥ijðr − r0Þ ¼ δijδ
ð3Þðr − r0Þ −∇i∇j

0G0ðr − r0Þ; ð33Þ
where we have introduced the Green’s function of the
Poisson equation in free space

G0ðr − r0Þ ¼ 1

4π

1

jr − r0j : ð34Þ

Let us now turn to the explicit evaluation of the left-hand
side (LHS) of Eq. (26). First we deal with the case z < 0
and z0 > 0 for which we provide a detailed calculation.
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Substituting the mode functions (20)–(21) into (26) and
multiplying out we obtain

δϵijðr; r0Þ ¼
1

ð2πÞ3
X
λ

Z
d2kkeikk·ðrk−rk0Þ

×

�Z
∞

0

dkzd
n2

½TL�
λ êiλðkþ

d Þê�jλ ðkþÞeikzdz−ik�zz0

þRL
λ T

L�
λ êiλðk−

d Þê�jλ ðkþÞe−ikzdz−ik�zz0 �

þ
Z

∞

0

dkz½TR
λ ê

i
λðk−

d Þê�jλ ðk−Þe−ikzdzþikzz0

þRR
λ T

R
λ ê

i
λðk−

d Þê�jλ ðkþÞe−ikzdz−ikzz0 �
�

ð35Þ

where êiλðk�Þ≡ êiλð∇Þeik
�·r. We proceed by focusing atten-

tion on the kz and kzd integrals. We convert the kzd integral

using the relation kzd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2k2z þ ðn2 − 1Þkk2

q
Z

∞

0

dkzd ¼ n2
Z

0

iΓ
dkz

kz
kzd

þ n2
Z

∞

0

dkz
kz
kzd

; ð36Þ

where Γ ¼ jkkjðn2 − 1Þ1=2=n. After this change of variables
the expression we wish to evaluate consists of an integral
along the real-positive axis (traveling modes) and an integral
along part of the positive imaginary axis where kz ∈ ½0;Γ�
(evanescent modes)

δϵijðr; r0Þ ¼
1

ð2πÞ3
X
λ

Z
d2kkeikk·ðrk−rk0Þ

�Z
0þ

iΓ
dkz

�
kz
kzd

TL�
λ êiλðkþ

d Þêjλðk−Þeikzdzþikzz0þTL�
λ RL

λ ê
i
λðk−

d Þêjλðk−Þe−ikzdzþikzz0
�

þ
Z

∞

0

dkz

�
kz
kzd

TL
λ ê

i
λðkþ

d ÞêjλðkþÞeikzdz−ikzz0þTR
λ ê

i
λðk−

d Þêjλðk−Þe−ikzdzþikzz0þ kz
kzd

TL
λR

L
λ ê

i
λðk−

d ÞêjλðkþÞe−ikzdz−ikzz0

þRR
λ T

R
λ ê

i
λðk−

d ÞêjλðkþÞe−ikzdz−ikzz0
��

: ð37Þ

Here the integral on the interval kz ∈ ½iΓ; 0þ� runs on the
right side of the branch cut due to kzd that runs from kz ¼
−iΓ to kz ¼ iΓ. The last two terms in Eq. (37) cancel out
by virtue of the relations (25), and the other two terms in
that integral can be combined to a single integral running
along the interval kz ∈ ð−∞; 0−� ∩ ½0þ;∞Þ

δϵijðr; r0Þ ¼
1

ð2πÞ3
X
λ

Z
d2kkeikk·ðrk−rk0Þ

×

�Z
∞

−∞
dkz½TR

λ ê
i
λðk−

d Þêjλðk−Þe−ikzdzþikzz0 �

þ
Z

0þ

iΓ
dkz

�
kz
kzd

TL�
λ êiλðkþ

d Þêjλðk−Þeikzdzþikzz0

þTL�
λ RL

λ ê
i
λðk−

d Þêjλðk−Þe−ikzdzþikzz0
��

: ð38Þ

To proceed any further, close inspection of Eq. (38) is
necessary. To illustrate the argument, we focus on the TM
contributions to the integral. The TE contributions are
treated in an exactly analogous way. We start by noting that
for purely imaginary kz we have k�z ¼ −kz so that we get

TL�
TM ¼ 2nkz

kzd − n2kz
;

kz
kzd

TL�
TMR

L
TM ¼ 2nkz

kzd þ n2kz
:

Therefore, the kz-integral in the last two lines of Eq. (38)
can be written as

Z
0þ

iΓ
dkz

�
2nkz

kzd þ n2kz

�
êiTMðk−

d ÞêjTMðk−Þe−ikzdzþikzz0

þ
Z

0þ

iΓ
dkz

�
2nkz

kzd − n2kz

�
êiTMðkþ

d ÞêjTMðk−Þeþikzdzþikzz0 :

Now we observe that the second integral differs from the
first integral only by the sign of kzd. This allows us to
combine these two integrals into a single contour integral
around the branch-cut due to kzd

Z
C
dkzTR

TMê
i
TMðk−

d ÞêjTMðk−Þe−ikzdzþikzz0 ð39Þ

where the contour C is illustrated in Fig. 1. Thus the
completeness relation (38) may be written compactly as

δϵijðr; r0Þ ¼
1

ð2πÞ3
X
λ

Z
d2kkeikk·ðrk−rk0Þ

×
Z
γ
dkzTR

λ ê
i
λðk−

d Þêjλðk−Þe−ikzdzþikzz0 ð40Þ
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where the contour γ runs along the negative real axis from
kz ¼ −∞ to kz ¼ 0−, then around the branch-cut along the
contour C depicted in Fig. 1 and then from kz ¼ 0þ to
kz ¼ ∞. The kz-integral may now be evaluated with the
help of the residue theorem. We note that for z < 0 and
z0 > 0 the integrand in Eq. (40) vanishes exponentially in
the upper kz-plane so that we can close the contour there.
To do so we need to determine the position of the
integrand’s poles, if any. The Fresnel coefficients for the
half-space geometry are analytic for ImðkzÞ > 0 so that it
remains to look at the analytic properties of the polarization
vectors defined in Eqs. (23)–(24). For the TE mode we
immediately note that êTE are independent of kz. Thus the
transverse electric modes do not contribute to the integral
(40). For the TMmode, each polarization vector contributes

a factor of 1=jkj where jkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ k2

k
q

. Thus for a TM

mode the integrand has a simple pole in the upper half-
plane at kz ¼ ijkkj. Using the residue theorem, one can
now easily show that

δϵijðr; r0Þ ¼ −∇i∇0
jG

Tðr − r0Þ; for z < 0; z0 > 0

ð41Þ

where

GTðr − r0Þ ¼ 1

4πn2
2n2

n2 þ 1

1

jr − r0j ð42Þ

is the transmitted part of the electrostatic Green’s function
in the half-space geometry, see e.g., [19].
In order to evaluate Eq. (26) for the case z > 0, z0 > 0we

again substitute the relevant the mode functions (20)–(21)
and after utilizing straightforward properties of the Fresnel
reflection coefficients we arrive at

δϵijðr; r0Þ ¼
1

ð2πÞ3
X
λ

Z
d2kkeikk·ðrk−rk0Þ

×

�Z
∞

−∞
dkzêiλðkþÞêjλðkþÞeikzðz−z0Þ

þ
Z

∞

−∞
dkzRR

λ ê
i
λðkþÞêjλðk−Þeikzðzþz0Þ

þ
Z

0

iΓ
dkz

kz
kzd

jTL
λ j2êiλðk−Þêjλðk−Þeikzðzþz0Þ

�

ð43Þ

with Γ ¼ jkkjðn2 − 1Þ1=2=n and êiλðk�Þ≡ êiλð∇Þeik
�·r.

Now we note that, because of the completeness properties
of the polarization vectors, the first kz integral in Eq. (43)
yields the transverse δ-function, Eq. (32). The remaining
two terms can be combined into a single contour integral

around the branch cut due to kzd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2k2z þ ðn2 − 1Þk2

k
q

.

This is done in exactly the same manner as in [11,22]. Thus
the result reads

δϵijðr; r0Þ ¼ δ⊥ijðr − r0Þ þ 1

ð2πÞ3
X
λ

Z
d2kkeikk·ðrk−rk0Þ

×
Z
γ
dkzRR

λ ê
i
λðkþÞêjλðk−Þeikzðzþz0Þ ð44Þ

where the contour γ runs along the negative real axis from
kz ¼ −∞ to kz ¼ 0−, then around the branch cut along the
contour C depicted in Fig. 1 and then from kz ¼ 0þ to
kz ¼ ∞. Since the reflection coefficient RR

λ has no poles in
the upper kz-plane we can close the contour there. Then, for
the TE mode the integral vanishes because the polarization
vectors do not depend on kz. For the TM mode, however,
the polarization vectors contribute a pole in the upper half-
plane at kz ¼ ijkkj. The integral is easily evaluated using
the residue theorem and leads to the final result that can be
written explicitly as

δϵijðr; r0Þ ¼ δijδ
ð3Þðr − r0Þ −∇i∇0

j½G0ðr − r0Þ þ GRðr; r0Þ�
for z; z0 > 0 ð45Þ

with GRðr; r0Þ being the reflected part of the electrostatic
Green’s function in the half-space geometry

GRðr; r0Þ ¼ −
1

4π

n2 − 1

n2 þ 1

1

jr − r̄0j ð46Þ

where r̄0 ¼ ðx0; y0;−z0Þ.
The results (41) and (45) may be written in compact

form as

δϵijðr; r0Þ ¼ δijδ
ð3Þðr − r0Þ −∇i∇0

jGðr; r0Þ; for z0 > 0

ð47Þ

FIG. 1. The dashed line represents the contour C used to
evaluate the kz-integral in Eq. (39).
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where

Gðr; r0Þ ¼ 1

4πn2
2n2

n2 þ 1

1

jr − r0j θð−zÞ

þ
�
1

4π

1

jr − r0j −
1

4π

n2 − 1

n2 þ 1

1

jr − r̄0j
�
θðzÞ ð48Þ

is the Green’s function of the Poisson equation for the case
of a source being outside the dielectric occupying the z < 0
region of space. We see that the end result has formally the
same form as (33) only that the free-space Green’s function
of the Poisson equation is replaced by the Green’s function
in the presence of a dielectric half-space of refractive index
n. The result (47) may be formally written as

δϵijðr; r0Þ ¼ ðδij þ∇i∇0
j∇−2Þδð3Þðr − r0Þ ð49Þ

provided an appropriate meaning is attached to the integral
operator∇−2. Wewould like to remark that it is in this sense
that the completeness relation proven in [23] holds. There,
of course, the Green’s function is that in the slab geometry,
see the Appendix of Ref. [24]. Equation (49) needs to
be compared with Eq. (28). Note in particular, that the
derivative ∇0

j which acts on r
0 can not be shifted to act on r

because of the reflection term in (48). This is possible
only after one acts with Laplace operator on (49). Only then
one can replace ∇j

0 with −∇j and recover the result (28)
derived in [22].
Once the completeness relation of the mode functions

has been explicitly calculated, one can also evaluate the
equal-time field commutator. Using Eq. (17) we have

½Agc
i ðrÞ; ϵ0Ejðr0Þ� ¼ −iℏδϵijðr; r0Þ ð50Þ

so for the case of the electromagnetic field in the presence
of a dielectric half-space the commutator between the
vector potential and electric field operator reads

½Agc
i ðrÞ; ϵ0Ejðr0Þ� ¼ −iℏδijδð3Þðr − r0Þ

þ iℏ∇i∇0
jGðr; r0Þ: ð51Þ

whereGðr; r0Þ is given by (48) and we remind the reader that
we consider the case z0 > 0 only. We see that, compared to
the standard commutation relations of QED, the commutator
in the presence of the dielectric gains an additional term that
represents the reflection from the surface. Note that in the
limit of perfect reflectivity, i.e., n → ∞, we recover the
results obtained in [8,25]. We will come back to this fact at
the end of the Sec. III.

III. COULOMB GAUGE

The natural question arising is whether it is possible to
quantize the electromagnetic field in the presence of a

dielectric half-space but work in true Coulomb gauge. The
direct approach to solving the Maxwell equations (9)–(10)
proves intractable, but we shall show that one can exploit a
gauge transformation for working out the field operators in
the true Coulomb gauge from the ones in the generalized
Coulomb gauge. A gauge transformation from the gener-
alized Coulomb gauge to the true Coulomb gauge may be
written as follows

Acðr; tÞ ¼ Agcðr; tÞ − ∇χðr; tÞ; ð52Þ

ϕcðr; tÞ ¼ ϕgcðr; tÞ þ ∂
∂t χðr; tÞ: ð53Þ

where we set ϕgcðr; tÞ ¼ 0 in the absence of charges. It is
clear that in the true Coulomb gauge, even in the absence of
charges, the scalar potential does not vanish. In fact, we shall
see shortly that in true Coulomb gauge the scalar potential
enters the Hamiltonian on an equal footing with the vector
potential as a second-quantized operator. We note that the
left-hand side of Eq. (52) is transverse, and sinceAgc is not,
the gradient of the generating function χðr; tÞmust compen-
sate for it [18]. In other words we have [26]

∇iχðr; tÞ ¼
Z

d3r0δkijðr − r0ÞAgc
j ðr0; tÞ: ð54Þ

The form of the χ can be easily found if we use the position
representation of the longitudinal δ-function

∇iχðr; tÞ ¼
1

4π

Z
d3r0

�
∇i∇0

j
1

jr − r0j
�
Agc
j ðr0; tÞ ð55Þ

where the primed derivative acts only on theGreen’s function
and not on Agc

j . After integrating by parts, we identify

χðr; tÞ ¼ −
1

4π

Z
d3r0

1

jr − r0j∇
0 ·Agcðr0; tÞ: ð56Þ

The generating function χðr; tÞ can be obtained directly by
using the explicit form of the field operatorAgc fromEq. (19)
and evaluating the integrals in Eq. (56). Alternatively, we
take the divergence of Eq. (52) followed by a time derivative
and find that the scalar potential in the true Coulomb gauge
ϕc ¼ _χ satisfies the Poisson equation

−∇2 _χðr; tÞ ¼ σðrk; tÞ
ϵ0

δðzÞ; ð57Þ

with the surface charge density
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σðrk; tÞ ¼ −2i
Z

d2kkjkkj

×

��Z
∞

0

dkzd

ffiffiffiffiffiffiffiffiffi
ℏϵ0
2ωk

s
âLkTMðtÞgLkðrkÞ − H:c:

�

þ
�Z

∞

0

dkz

ffiffiffiffiffiffiffiffiffi
ℏϵ0
2ωk

s
âRkTMðtÞgRkðrkÞ − H:c:

��
:

ð58Þ

Here we have introduced the two mode functions

gRkðrkÞ ¼
1

ð2πÞ3=2
n2 − 1

2n2
ð1þ RR

TMÞeikk·rk ; ð59Þ

gLkðrkÞ ¼
1

ð2πÞ3=2
n2 − 1

2n2
TL
TM

n
eikk·rk ; ð60Þ

with reflection coefficients as given by Eqs. (25). The
solution of Eq. (57) can be easily found as

_χðr; tÞ ¼ i
Z

d2kke−jkkjjzj

×

("Z
∞

0

dkzd

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2ϵ0ωk

s
âLkTMðtÞgLkðrkÞ − H:c:

#

þ
"Z

∞

0

dkz

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2ϵ0ωk

s
âRkTMðtÞgRkðrkÞ − H:c:

#)
:

ð61Þ

As anticipated, the potential ϕc ¼ _χ turns out to be a second-
quantized operator. It relates the vector potential in true
Coulomb gauge to that in generalized Coulomb gauge via
Eq. (52). It only affects photons with TM polarization
and, interestingly, it is symmetricwith respect to the interface

i.e., _χð−zÞ ¼ _χðzÞ. The generating function χ is found by
integrating Eq. (61) with respect to time,

χðr; tÞ ¼ −
Z

d2kke−jkkjjzj

×

("Z
∞

0

dkzd

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2ϵ0ω
3
k

s
âLkTMðtÞgLkðrkÞ þ H:c:

#

þ
"Z

∞

0

dkz

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2ϵ0ω
3
k

s
âRkTMðtÞgRkðrkÞ þ H:c:

#)
:

ð62Þ

Let us now come back to the issue of the commutation
relations between the field operators. In true Coulomb
gauge we expect

½Ac
i ðrÞ; ϵ0Ejðr0Þ� ¼ −iℏδ⊥ijðr − r0Þ ¼ −iℏδijδð3Þðr − r0Þ

þ iℏ∇i∇0
jG

0ðr − r0Þ ð63Þ

which is a consequence of the fact that ∇χ is the
longitudinal part of Agc, cf. Eq. (54). This can also be
confirmed by an explicit calculation using the mode
functions (59)–(60). The commutator splits as follows

½Ac
i ðrÞ; ϵ0Ejðr0Þ� ¼ ½Agc

i ðrÞ −∇iχðrÞ; ϵ0Ejðr0Þ�
¼ −iℏδϵijðr; r0Þ − ½∇iχðrÞ; ϵ0Ejðr0Þ� ð64Þ

where δϵijðr; r0Þ is given by Eq. (47) and the reader is
reminded that we consider the case z0 > 0 only.
Substituting the mode functions (59)–(60) into Eq. (64),
we find, using the same techniques as in the calculation of
the completeness relation (26), that

½∇iχðrÞ; ϵ0Ejðr0Þ�

¼ iℏ∇i∇0
j

(
− n2−1

n2þ1
G0ðr − r0Þ for z < 0; z0 > 0;

GRðr; r0Þ for z > 0; z0 > 0;
ð65Þ

whereG0 andGR are the Green’s functions as introduced in
Eqs. (34) and (46). Equation (65) when combined with
Eqs. (47) and (64) confirms the assertion stated by Eq. (63).
The above considerations have clearly demonstrated

that the commutator between the vector potential and the
electric field operators is gauge dependent. Therefore, the
modification of the QED commutation relations is not a
physical effect but rather is related to the choice of gauge
in which the electromagnetic field is quantized, which is of
course ultimately only a matter of convenience. However,
we note that the commutation relations between the
physical fields retain the standard form, as they should.
Consider the commutator

½BðrÞ;Eðr0Þ� ¼ ∇ × ½AðrÞ;Eðr0Þ�: ð66Þ

We see from Eq. (52) that, regardless of the gauge one uses
to calculate the right-hand side of the above relation, the
end result is the same. The commutators (51) and (63) differ
only by a longitudinal part that is annihilated by the curl
operator. Thus, the shape of the cavity has no impact on the
fundamental commutation relations of physical fields.

IV. PERFECT REFLECTORS

If the walls of the cavity are modeled as perfectly
reflecting mirrors, the generalized Coulomb gauge (11)
is meaningless. Then, a common way to quantize the
electromagnetic field is to work with the free-space form of
Eq. (10) in true Coulomb gauge (12) and demand that the
fields are excluded from the interior of the perfect reflector,
i.e., one solves
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�
∇2 −

∂2

∂t2
�
Aðr; tÞ ¼ 0;

∇ ·Aðr; tÞ ¼ 0; ð67Þ

together with the condition that the electric field vanishes
for z ≤ 0. This implies in particular that

Exðz ¼ 0þÞ ¼ 0; Eyðz ¼ 0þÞ ¼ 0: ð68Þ
The relation between the vector potential and the electric
field is taken to be

Eðr; tÞ ¼ −
∂Aðr; tÞ

∂t ; ð69Þ

and for this reason the boundary conditions for the electric
field immediately imply rules for the vector potential. This
method of quantization gives the vector field operator that
can be obtained by taking the n → ∞ limit of Eq. (19). This
in turn implies that the commutation relations for the field
operators are given by the perfect reflector limit of the
commutation rule (51) and not by Eq. (63). Explicitly:

½AiðrÞ; ϵ0Ejðr0Þ� ¼ −iℏδijδð3Þðr − r0Þ

þ iℏ
4π

∇i∇0
j

�
1

jr − r0j −
1

jr − r̄0j
�
;

z; z0 > 0; ð70Þ
where r̄ ¼ ðx; y;−zÞ. At first it seems surprising that,
despite the Coulomb gauge condition having been imposed
on the vector potential, the reflected part of the Green’s
function appears in the commutator. However, this can be
explained as follows. In the presence of a perfect reflector
the fluctuations of the quantized electromagnetic field
imply the existence of a fluctuating charge density on
the surface of the perfect reflector. Gauss’s law reads

∇ ·Eðr; tÞ ¼ σðrk; tÞ
ϵ0

δðzÞ; ð71Þ

where σðrkÞ is given as a perfect-reflector limit of Eq. (58).
Relation (71) is a consequence of the boundary conditions
applied to the electric field at z ¼ 0 (and vice versa). We
observe that Eqs. (67), (69) and (71) cannot be simulta-
neously satisfied on the surface of the perfect reflector.
Thus, the gauge condition in Eq. (67) must for a perfect
reflector be amended to read

∇ ·Aðr; tÞ ¼ 0 for z ≠ 0 ð72Þ
which is in fact an adaptation of the generalized Coulomb
gauge condition (11) to the case of the perfect reflector rather
than the true Coulomb gauge. This is the origin of the
reflected Green’s function term appearing in the commutator
(70) as has also been pointed out in Ref. [28]. Our analysis
also permits us to observe that the oversimplified model of

perfectly reflecting cavity walls obscures the fact that the
form of the commutation relation is actually determined
by the choice of gauge. While it is claimed in Ref. [28] that
the commutator between the physical fields (66) is affected
by the cavity walls if one assumes them to be perfectly
reflecting, we have clearly shown this to be an erroneous
conclusion.

V. HAMILTONIANS

Quantum electrodynamics in the presence of dielectrics
is most conveniently formulated in the generalized
Coulomb gauge. The minimal-coupling Hamiltonian of a
charged particle that is placed near dielectric half-space and
coupled to the quantized electromagnetic field may be
written as [17]

Hgc ¼ ½p − qAgcðr0Þ�2
2m

þ 1

2

Z
d3r

�
ϵ0ϵðzÞ

�∂AgcðrÞ
∂t

�
2

þB2ðrÞ
μ0

�

þ 1

2

Z
d3rϵ0ϵðzÞ∇ϕgcðrÞ · ∇ϕgcðrÞ; ð73Þ

where r0 is the position of the particle. In the following, it
will prove most convenient to write the Hamiltonian Hf of
the electromagnetic field in the form

Hf ¼
X
k;λ

ℏωk

�
a†kλakλ þ

1

2

�
: ð74Þ

The integral involving the scalar potential ϕgc is a c-number
and it contains the infinite self-energy of the particle Ξ as
well as the z0-dependent electrostatic interaction between
the dielectric and the charge

1

2

Z
d3rϵ0ϵðzÞ∇ϕgcðrÞ · ∇ϕgcðrÞ ¼ Ξþ Ves; ð75Þ

with

Ves ¼ −
q2

4πϵ0

n2 − 1

n2 þ 1

1

4z0
: ð76Þ

Equation (76) can be seen as an interaction energy of a
static charge with its image in the dielectric, multiplied by a
factor of 1=2 because the image is not independent but
a consequence of the charge [19]. Dropping the irrelevant
self-energy of the particle Ξ, one can write the Hamiltonian
Hgc as

Hgc ¼ ½p − qAgcðr0Þ�2
2m

þHf þ Ves: ð77Þ

Perhaps the most instructive way of obtaining the
Hamiltonian in true Coulomb gauge Hc is by using the
unitary transformation
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Hc ¼ eiS=ℏHgce−iS=ℏ þ iℏ

�
d
dt

eiS=ℏ
�
e−iS=ℏ; ð78Þ

with the operator S is given by

Sðr0; tÞ ¼ −qχðr0; tÞ: ð79Þ

The generating function χðr; tÞ is given by Eq. (62) and
now taken at the position of the particle r0. In what follows
we set operators to be time-independent (adopting the
Schrödinger picture) so that the term containing the time
derivative in Eq. (78) does not contribute. Then, using the
same methods as in the proof of the completeness relation
(26), it is not difficult to show that

eiS=ℏ½p − qAgcðr0Þ�e−iS=ℏ ¼ ½p − qAcðr0Þ�;
as well as

eiS=ℏHfe−iS=ℏ ¼ Hf þ i
ℏ
½Sðr0Þ; Hf�

þ 1

2

�
i
ℏ

�
2

½Sðr0Þ; ½Sðr0Þ; Hf��

¼ Hf þ q_χðr0Þ −
n2 − 1

2n2
Ves: ð80Þ

With this, we obtain for the Hamiltonian in the Coulomb
gauge

Hc ¼ ½p − qAcðr0Þ�2
2m

þHf þ q_χðr0Þ þ
�
n2 þ 1

2n2

�
Ves:

ð81Þ
We see that compared to the Hamiltonian of Eq. (77)
written out in the generalized Coulomb gauge, some of
the electrostatic interaction energy has been redistributed
and is now contained in the second-quantized part of the
Hamiltonian Hc. One can actually see that this electrostatic
interaction energy is now shared between two terms

Hes
int ¼ q_χðr0Þ þ

�
n2 þ 1

2n2

�
Ves: ð82Þ

Using standard time-independent perturbation theory
applied to the interaction term q_χðrÞ, one finds that the
first nonvanishing contribution is of second order in the
perturbation and is given by

ΔEes¼
X
k;pf

jhpf;1kTMjq_χðr0Þjp;0ij2
p2

2m− ðp
2
f

2mþωkÞ
≈−q2

X
k

j_χðrÞj2
ωk

¼−
q2

2ϵ0

Z
d2kke−2jkkjz0

×

�Z
∞

0

dkzd
jgLkðrkÞj2

ω2
k

þ
Z

∞

0

dkz
jgRkðrkÞj2

ω2
k

�
; ð83Þ

where we have used the no-recoil approximation. The mode
functions g are given in Eqs. (59) and (60). The resulting
integrals in Eq. (83) can be calculated analytically and the
result is

ΔEes ¼
�
n2 − 1

2n2

�
Ves: ð84Þ

Thus, the contributions from both terms in Eq. (82) add up to
yield the whole of the electrostatic interaction energy

�
n2 − 1

2n2

�
Ves þ

�
n2 þ 1

2n2

�
Ves ¼ Ves: ð85Þ

This is of course what one would expect since both
formulations of the theory must lead to the same physical
results.

VI. CONCLUSIONS

In this paper we have illustrated some intricacies involved
in the quantization of the electromagnetic field when polar-
izable boundaries are present and modeled macroscopically
by the introduction of the spatially varying and piecewise
constant dielectric function. Starting from the generalized
Coulomb gauge we have derived the expression for the
coordinate representation of the unit kernel in that gauge,
thereby explicitly verifying the completeness relation of the
mode functions. While this calculation has its own merit, it
has served us to develop tools that allow us to explicitly carry
out a gauge transformation from the generalized Coulomb
gauge to the true Coulomb gauge, where the expression for
the vector field operators is truly transverse even in the
presence of the boundaries. This has shed light on some
misconceptions about the nature of the commutation rela-
tions in macroscopic quantum electrodynamics, especially
in the case when the boundaries are modeled as perfect
reflectors.
We have also written down the Hamiltonian for a charged

particle near a dielectric boundary in true Coulomb gauge
and shown that and why it is different from the one in
generalizedCoulomb gauge. It contains extra terms due to an
induced fluctuating surface charge at the boundary, now
represented as a second-quantized operator. This term con-
tains parts of the electrostatic interaction of a particle and the
surface, which in generalized Coulomb gauge is represented
by a c-number, namely the electrostatic potential obtained
by classical methods, e.g., the method of images. Finally,
we have explicitly demonstrated the gauge invariance of
the theory by working out the electrostatic parts of the
charge-surface interactions. This work paves the way to
more elaborate gauge transformations which provide a link
between well understood approaches to macroscopic QED
and more elaborate theories.
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