
 

Celestial current algebra from Low’s subleading soft theorem
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The leading soft photon theorem implies that four-dimensional scattering amplitudes are controlled by a
two-dimensional (2D)Uð1Þ Kac-Moody symmetry that acts on the celestial sphere at null infinity (I ). This
celestial Uð1Þ current is realized by components of the electromagnetic vector potential on the boundaries
of I . Here, we develop a parallel story for Low’s subleading soft photon theorem. It gives rise to a second
celestial current, which is realized by vector potential components that are subleading in the large radius
expansion about the boundaries of I . The subleading soft photon theorem is reexpressed as a celestial Ward
identity for this second current, which involves novel shifts by one unit in the conformal dimension of
charged operators.
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I. INTRODUCTION

In any four-dimensional (4D) theory with photons,
the soft photon theorem implies [1–5] the existence of
a two-dimensional (2D) Uð1Þ Kac-Moody symmetry. The
consequences of the symmetry become most transparent
when 4D scattering amplitudes are reexpressed as corre-
lation functions on the celestial sphere at null infinity (I),
on which the 4D Lorentz group acts as the 2D Euclidean
conformal group. The Kac-Moody currents act on this
celestial sphere and are sourced by electromagnetic
charge currents that cross it. All amplitudes are thereby
highly constrained, and in particular are set to zero by
infrared divergences [6] if the associated conservation
laws are violated. The celestial Kac-Moody current may
be explicitly realized by a sum of the gauge potentials on

the S2 boundaries of I , denoted Að0Þ
z̄ below. This story is

reviewed in [7].
In the 1950s Low and others [8–12] established a second,

universal, relation governing the subleading term in the soft
expansion of an asymptotic photon. A similar story is
expected to derive from this universal relation, but so far is
only partially understood [13–15].
In this paper we show that the subleading soft theorem

implies a second current algebra on the celestial sphere.
The currents are the constructed from the boundary
values of the subleading term of the gauge potential,

denoted Að1Þ
z̄ , in the large radius expansion around I .

Naively, Að1Þ
z̄ is determined from the leading potential Að0Þ

z̄
by the equations of motion and is not an independent field.

However, in attempting to explicitly solve for Að1Þ
z̄ in terms

of Að0Þ
z̄ , one encounters an integration function on the

sphere. This implies that the boundary values of Að1Þ
z̄ are

independent fields after all, and in fact turn out to comprise
an independent “subleading” current algebra.
The current algebra generated on the celestial sphere by

boundary values of Að1Þ
z̄ has interesting and unconventional

features. The operator product expansion of the subleading
current with a charged operator with 2D conformal weights
ðh; h̄Þ shifts the weights to ðh − 1

2
; h̄ − 1

2
Þ. This is possible

because such operators lie in the continuous unitary
principal series. Our main result is formula (26) below
which describes this action. It will be interesting to
eventually understand the constraints of (26) on scattering
amplitudes.
In this paper we make the simplifying restrictions

that there are no long range magnetic fields near spatial
infinity and that charge is carried by massless scalar fields.
As discussed in the text, we expect our results to hold in a
more general context, as their form is largely dictated by
symmetries.
This note is organized as follows. In Sec. II, we introduce

our conventions and present basic formulas. In Sec. III, we
rewrite the subleading soft theorem as a relation between
the boundary values of a subleading gauge parameter.
In Sec. IV, we take the quantum matrix element of this
conservation law and express it as a Ward identity for a
novel 2D current algebra on the celestial sphere. The
Appendix gives some details of the asymptotic expansion
about I in Lorenz gauge.
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II. MAXWELL EQUATIONS IN LORENZ GAUGE

We largely employ the retarded (advanced) coordinates
on flat Minkowski space

ds2 ¼ −du2 − 2dudrþ 2r2γzz̄dzdz̄

¼ −dv2 þ 2dvdrþ 2r2γzz̄dzdz̄; ð1Þ

with uðvÞ retarded (advanced) time and γzz̄ ¼ 2=ð1þ zz̄Þ2
the unit round metric on S2. These are related to the
Cartesian coordinates ðx0; x1; x2; x3Þ by

x0 ¼ uþ r ¼ v − r

x1 þ ix2 ¼ 2rz
1þ zz̄

x3 ¼ rð1 − zz̄Þ
1þ zz̄

: ð2Þ

In this paper we use the Lorenz gauge condition∇μAμ ¼ 0.
The Maxwell equations ∇μFμν ¼ e2jν in this gauge in
retarded coordinates are

2r∂rðr∂uAuÞ − ∂rðr2∂rAuÞ − 2γzz̄∂z∂ z̄Au ¼ e2r2ju

2∂rðrAuÞ þ 2∂u∂rðr2ArÞ − ∂2
rðr2ArÞ − 2γzz̄∂z∂ z̄Ar ¼ e2r2jr

−2r2∂u∂rAz þ r2∂2
rAz − 2r∂zðAr − AuÞ þ 2∂zðγzz̄∂ z̄AzÞ ¼ e2r2jz: ð3Þ

See Appendix for further details.

III. SUBLEADING SOFT THEOREM AS
SUBLEADING GAUGE TRANSFORMATION

Low’s subleading soft photon theorem, following the
notation of [13], can be written as an asymptotic symmetry
acting on in- and out-states. Denote a state with n massless
hard particles of energies ωk, charges eQk and momenta

pμ
k¼

ωk

1þzkz̄k
ð1þzkz̄k;zkþ z̄k;iðz̄k−zkÞ;1−zkz̄kÞ ð4Þ

by jz1;…i and hard S-matrix elements by hznþ1;…
jSjz1;…i. The Low-Burnett-Kroll-Goldberger-Gell-Mann
soft theorem says that if a positive helicity photon with
energy ω → 0, the first two terms of the soft expansion are

hznþ1;…jaout− ðq⃗ÞSjz1;…i
¼ ðJð0Þ− þ Jð1Þ−Þhznþ1;…jSjz1;…i; ð5Þ

with

Jð0Þ− ¼ e
X
k

Qk
pk · ε−

pk · q
∼Oðω−1Þ;

Jð1Þ− ¼ −ie
X
k

Qk
qμε−ν J

μν
k

pk · q
∼Oðωð0ÞÞ ð6Þ

with ε the photon polarization and Jμνk the total angular
momentum of the kth particle. The Jð0Þ− contribution can
be eliminated with the projection operator ð1þ ω∂ωÞ.
In [13] it was shown that, for the special case of a scalar
field [16] with Jkμν ¼ −iðpkμ

∂
∂pν

k
− pkν

∂
∂pμ

k
Þ, rewriting

ðpμ
k; q

μÞ in terms of ðEk; zk; z̄kÞ gives

lim
ω→0

ð1þ ω∂ωÞhznþ1;…jaout− ðq⃗ÞSjz1;…i

¼ −e
X
k

Qkffiffiffi
2

p ðz̄k − z̄Þ

�
ð1þ zz̄kÞÞ∂Ek

þ 1

Ek
ðz − zkÞð1þ zkz̄kÞ∂zk

�
hznþ1;…jSjz1;…i:

ð7Þ

As in [13] it is useful to define operators Fsub
uz̄ that create

subleading soft photons. These are defined on Iþ in terms
of the photon polarization

ε̂þz̄ ¼ ∂ z̄xμ

r
εþμ ¼

ffiffiffi
2

p

1þ zz̄
ð8Þ

by

Fsub
uz̄ ≔

Z
duuFð0Þ

uz̄ ¼
Z

duu∂uA
ð0Þ
z̄

¼ ie
8π

ε̂þz̄ lim
ω→0

ð1þ ω∂ωÞ½aout− ðωx̂Þ − aoutþ ðωx̂Þ†�: ð9Þ

The fields in this expression, and subsequent expressions,
are the functions of ðu; z; z̄Þ that appear as coefficients in
the asymptotic 1

r expansion about Iþ. The order 1
rn at

which they appears in this expansion is denoted by the
superscript (n). For simplicity, we restrict here to the case
where there are no long range magnetic fields near spatial

infinity so that Að0Þ
z is pure gauge and Fð0Þ

zz̄ ¼ 0 at Iþ
�.

This allows us to focus clearly on the difference in
boundary values of pure gauge part of the photon gauge
field, which is the quantity of physical interest in this
note. Multiplying (7) by ε̂þz̄ and then acting with γzz̄Dz̄Dz

and using (9) gives
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hznþ1;…jQþ
S Sjz1;…i

¼ −
i
4π

X
k

Qk

�
−2πγzz̄Dz̄δ

2ðz − zkÞ∂Ek

þ 1

Ek

γzkz̄k

ðz̄ − z̄kÞ2
∂zk

�
hznþ1;…jSjz1;…i; ð10Þ

where we can define the “soft” charge

Qþ
S ¼ 2

e2

Z
duu∂uγ

zz̄Dz̄DzA
ð0Þ
z̄ : ð11Þ

For the leading soft charge, the analog of the soft term is a
total u-derivative and reduces to a difference between two
terms on the boundaries of Iþ, signaling the central role
of I boundary dynamics. In contrast, this total derivative
structure is not manifest in the soft term given in [13] and
in (11). However, we now show that this structure reappears
when Qþ

S is reexpressed in terms of the subleading

component Að1Þ
z of the gauge field, which enables one to

rewrite it in terms of hard currents and the Iþ
� boundary

values of Að1Þ
z . The elimination of Að0Þ

z̄ from (11) in favor of

Að1Þ
z̄ proceeds via the asymptotic expansion of the Maxwell

equations, which are without sources for the soft insertion
(see Appendix for details)

∂2
uA

ð1Þ
z̄ ¼ −∂uDzDzA

ð0Þ
z̄ : ð12Þ

This allows us to rewrite the soft charge as

Qþ
S ¼ 2

e2
ð1 − u∂uÞAð1Þ

z̄

����
Iþ
þ

Iþ
−

: ð13Þ

Lorenz gauge ∇μAμ ¼ 0 leaves unfixed residual gauge
transformations of the form Aμ → Aμ þ ∂με with □ε ¼ 0.
The solution to this equation in retarded coordinates
requires two pieces of free data, at different orders in
the asymptotic expansion: the free function εð0Þðz; z̄Þ, which
is related to the leading soft theorem, and the free function
εð1Þðu; z; z̄Þ, which is independent free data. This latter
residual freedom enables us to fix the subsidiary gauge
condition

Að1Þ
u ¼ 0; ð14Þ

which implies that ∂uε
ð1Þ ¼ 0. We are left with a free

function εð1Þðz; z̄Þ. The gauge transformations are para-
metrized as

ε ¼ εð0Þðz; z̄Þ þ u
2
D2εð0Þðz; z̄Þ log r

r
þ εð1Þðz; z̄Þ

r
þ � � �

ð15Þ

At early and late times along future null infinity, where the
matter current is zero, the field configurations return to pure
gauge. Hence the asymptotic behavior near Iþ

� is

Að0Þ
z̄� ¼ Dz̄φ

ð0Þ
� ðz; z̄Þ; Ãð1Þ

z̄� ¼ u
2
Dz̄D2φð0Þ

� ðz; z̄Þ;

Að1Þ
z̄� ¼ Dz̄φ

ð1Þ
� ðz; z̄Þ; ð16Þ

where the tilde denotes a log r dependence (see Appendix
for details) and where the boundary fields φ shift under

gauge transformations as φð0Þ
� → φð0Þ

� þ εð0Þ and φð1Þ
� →

φð1Þ
� þ εð1Þ. The difference in their values at Iþ

þ and Iþ
− is

determined by the action of the soft factor and cannot be
gauge-fixed to zero. To underscore this, we rewrite (10) as

hznþ1;…j
�
2

e2
Dz̄φ

ð1Þ
����
Iþ
þ

Iþ
−

�
Sjz1;…i

¼ −
i
4π

X
k

Qk

�
−2πγzz̄Dz̄δ

2ðz − zkÞ∂Ek

þ 1

Ek

γzkz̄k

ðz̄ − z̄kÞ2
∂zk

�
hznþ1;…jSjz1;…i: ð17Þ

Similarly, for the insertion of an incoming soft photon I−,

hznþ1;…jS
�
2

e2
Dz̄φ

ð1Þ
����
I−
þ

I−
−

�
jz1;…i

¼ i
4π

X
k

Qk

�
−2πγzz̄Dz̄δ

2ðz − zkÞ∂Ek

þ 1

Ek

γzkz̄k

ðz̄ − z̄kÞ2
∂zk

�
hznþ1;…jSjz1;…i: ð18Þ

To write a shift along all of I , we consider

hzn;…jQþ
S S − SQ−

S jz1;…i

¼ −
i
2π

X
k

Qk

�
−2πγzz̄Dz̄δ

2ðz − zkÞ∂Ek

þ 1

Ek

γzkz̄k

ðz̄ − z̄kÞ2
∂zk

�
hznþ1;…jSjz1;…i: ð19Þ

We see that, if there is a nontrivial scattering process, it is

impossible to set Að1Þ
z ¼ Dzφ

ð1Þ to zero on all boundaries
of I , just as the leading soft theorem makes it impossible

to set Að0Þ
z ¼ Dzφ

ð0Þ to zero on all boundaries. Hence εð1Þ,
as well as εð0Þ, is a large gauge transformation, and maps
one vacuum to a physically inequivalent one.

IV. CELESTIAL CURRENT WARD IDENTITY

It is illuminating to rewrite scattering amplitudes as
correlation functions on the celestial sphere, adopting the
compact notation [7]
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hznþ1;…jSjz1;…i → hOð1Þ
E1
ðz1; z̄1Þ � � �Oð1Þ

En
ðznz̄nÞi: ð20Þ

In this context, we define the subleading soft photon current

Jð1Þz̄ ¼ 4π

e2
ðDz̄φ

ð1ÞjIþ
þ
− 2Dz̄φ

ð1ÞjIþ
−
þDzφ

ð1ÞjI−
−
Þ; ð21Þ

where we have used the antipodal matching

φð1ÞjIþ
−
¼ φð1ÞjI−

þ
: ð22Þ

The subleading soft theorem then becomes [18,19]

D
Jð1Þz̄ Oð1Þ

E1
ðz1; z̄1Þ � � �Oð1Þ

En
ðznz̄nÞ

E

¼
Xn
k¼1

−iQk

Ekðz̄ − z̄kÞ2
Dz̄k

D
Oð1Þ

E1
ðz1; z̄1Þ � � �Oð1Þ

En
ðzn; z̄nÞ

E
:

ð23Þ

TheMellin transform to a conformal basis for particles with
helicity s with conformal weights

ðh;h̄Þ¼1

2
ðΔþs;Δ−sÞ¼1

2
ð−E∂Eþs;−E∂E−sÞ ð24Þ

is simply

Oðh;h̄Þðz; z̄Þ ¼
Z

dEEΔ−1Oð1Þ
E ðz; z̄Þ: ð25Þ

In this conformal basis, (23) becomes the current algebra
relation

D
Jð1Þz̄ Oðh1;h̄1Þ � � �Oðhn;h̄nÞ

E

¼ −i
X
k

Qk

ðz̄− z̄kÞ2
Dz̄k

D
Oðh1;h̄1Þ � � �Oðhk−1

2
;h̄k−1

2
Þ � � �Oðhn;h̄nÞ

E
:

ð26Þ

This is the celestial representation of the subleading soft
theorem.
The operators O which create spacetime particles in a

conformal basis appearing in celestial amplitudes are in
different types of representations—typically the continuous
unitary principal series‡than those we are accustomed to in
standard 2D CFT. The corresponding amplitudes take a
rather different form often involving delta functions on the
sphere [20–23], which makes possible relations between
amplitudes with shifted conformal weights. Relations of
this general type were noted in the gravitational context in
[24] and verified by Stieberger and Taylor [25] in some
special cases. It would be of interest to examine (26) in
explicit examples.

Finally, we note that integrating around a contour C
weighted by an antiholomorphic function εðz̄Þ, the sub-
leading soft theorem takes the alternate form

�I
C

dz̄
2πi

εðz̄ÞJð1Þz̄ Oðh1;h̄1Þ � � �Oðhn;h̄nÞ

	

¼ −i
X
k∈C

QkhOðh1;h̄1Þ � � �∂ z̄kεðz̄kÞDz̄kOðhk−1
2
;h̄k−1

2
Þ � � �Oðhn;h̄nÞi;

ð27Þ

where the sum is restricted to operators inside the contour.
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APPENDIX: ASYMPTOTIC EXPANSION

This Appendix gives a few details of the large r
expansion about Iþ.
A massless scalar field has 1

r expansion near Iþ as

Φðu; r; z; z̄Þ ¼
X∞
n¼1

ΦðnÞðu; z; z̄Þ
rn

: ðA1Þ

The matter currents

jμ ¼ iQðΦ̄∂μΦ −Φ∂μΦ̄Þ ðA2Þ

fall off as

ju∼O
�
1

r2

�
; jz;jz̄∼O

�
1

r2

�
; jr∼O

�
1

r3

�
: ðA3Þ

Finite energy flux and charge suggest the falloffs

Au∼O
�
1

r

�
; Az;Az̄∼Oð1Þ; Ar∼O

�
1

r2

�
: ðA4Þ

In order to consistently solve the Maxwell equations in
∇μAμ ¼ 0 gauge we must allow logarithmic falloffs in the
gauge fields. This gives the expansion
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Au ¼
X∞
n¼2

AðnÞ
u

rn
þ
X∞
m¼1

ÃðmÞ
u

rm
log r

Ar ¼
X∞
n¼2

AðnÞ
r

rn
þ
X∞
m¼2

ÃðmÞ
r

rm
log r

Az ¼
X∞
n¼0

AðnÞ
z

rn
þ
X∞
m¼1

ÃðmÞ
z

rm
log r

Az̄ ¼
X∞
n¼0

AðnÞ
z̄

rn
þ
X∞
m¼1

ÃðmÞ
z̄

rm
log r: ðA5Þ

Our gauge condition leaves unfixed gauge transformations
of the form □ε ¼ 0, among which are residual gauge
transformations with falloff Oðr−1Þ which, like a radiative
massless scalar field, have an arbitrary boundary depend-

ence. We have used this freedom to set Að1Þ
u ¼ 0.

The Maxwell equations ∇μFμν ¼ e2jν in retarded coor-
dinates, with Fμν ¼ ∂μAν − ∂νAμ, are

ð∂u − ∂rÞðr2FruÞ þ γzz̄ð∂ z̄Fuz þ ∂zFuz̄Þ ¼ e2r2ju

−∂rðr2FruÞ þ γzz̄ð∂ z̄Frz þ ∂zFrz̄Þ ¼ e2r2jr

r2ð∂r − ∂uÞFrz − r2∂rFuz − ∂zðγzz̄Fzz̄Þ ¼ e2r2jz

r2ð∂r − ∂uÞFrz̄ − r2∂rFuz̄ − ∂ z̄ðγzz̄Fz̄zÞ ¼ e2r2jz̄; ðA6Þ

while the Lorenz gauge condition reads

−∂uðr2ArÞ − ∂rðr2Au − r2ArÞ þ γzz̄ð∂zAz̄ þ ∂ z̄AzÞ ¼ 0:

ðA7Þ

Together these imply

Oðlog rÞ∶2∂uÃ
ð1Þ
z̄ − 2∂ z̄Ã

ð1Þ
u ¼ 0 ðA8Þ

Oð1Þ∶ − 2∂uÃ
ð1Þ
u ¼ e2jð2Þu ðA9Þ

2∂uA
ð1Þ
z̄ − 2∂uÃ

ð1Þ
z̄ þ 2DzDzA

ð0Þ
z̄ ¼ e2jð2Þz̄ : ðA10Þ

where we have used that Oðlog rÞ expression for j̃ð2Þz̄ is set
to zero because the currents should not have logarithmic

falloff. Note that jð2Þu would be incorrectly set to zero if log
terms were not included in the expansion. We substitute
(A8) and (A.9) into (A.10) to arrive at (12).
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