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In this paper we focus on certain properties of the Schwarzschild metrics that, to the best of our
knowledge, have gone unnoticed. These properties include (i) the existence of a generalized Birkhoff
theorem for general nonlinear electrodynamics, (ii) the existence of two double eigenvalues of the Einstein
tensor Gμ

ν coincident in number with the two pairs of eigenvalues of the electrodynamics energy-
momentum tensors, (iii) the partial fitting of the dominant energy conditions, (iv) linear superpositions of
solutions of the Einstein electrodynamics equations through the inverse integration method, and (v) the
generating technique of solutions with a Reissner-Nordström limit at spatial infinity. Each of these aspects
are treated in detail, and a class of regular black hole solutions is reported and studied to some extent.
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I. INTRODUCTION

Nonlinear electrodynamics (NLE), formulated by Born
and Infeld (BI) in 1934 [1], provides the electron with a
spatial volume containing a charge such that its self-energy
is finite. Incidentally, two years later Heisenberg and Euler
[2] formulated their nonlinear electrodynamics in the
framework of quantum electrodynamics (QED) to deter-
mine the nonlinear interactions between photons. A gen-
eralization of the classical NLE appeared later in the work
of Plebański [3]; see also Ref. [4]. All Petrov type-D
solutions of Einstein-Born-Infeld electrodynamics allowing
for stationary and axial symmetries (among them the static
spherically symmetric solution) were published by García,
Salazar, and Plebański [5]. They developed NLE allowing
for duality rotations [6] and studied the birefringence
properties of the theory [7]. A renewed interest in BI-
NLE arose after its appearance in string theory in its low-
energy limit; see Refs. [8,9]. The first regular static
symmetric charged solution (published by Ayón-Beato
and García [10]) in which electromagnetic fields are
described in terms of NLE potentials was a major con-
tribution to the study of regular solutions in Einstein and
non-Einsteinian gravity. These authors found the nonlinear
electrodynamics source (magnetic potential) [11] for the
Bardeen model reported in 1968 [12]: the first metric
structure that fit the tensor energy conditions exhibiting
everywhere-regular Riemannian invariants. An interesting
solution described by means of a magnetic field is the
Hayward regular solution [13]. In the last decade, there
have been numerous attempts to derive stationary rotating

solutions with relative success; the number of articles is
large and this topic is outside of the scope of this paper,
although we can mention some recent works by Toshmatov
and collaborators [14,15] and the references therein
devoted to the construction and analysis of regular rotating
black hole and no-horizon spacetimes based on generic
regular black hole spacetimes related to electric or magnetic
charge for nonlinear electrodynamics coupled to general
relativity.
In 1967 Wheeler coined the term “black hole” for the

first exact solution derived by Schwarzschild in 1916 of a
point mass m, a few months after Einstein’s publication of
The Foundation of the Generalised Theory of Relativity.
The charged point mass solution was reported by Reissner
(in 1916) and Nordström (in 1918). The static spherically
symmetric representation of the Schwarzschild metric
exhibits an “apparent singularity” or “Schwarzschild sin-
gularity” at the Schwarzschild radius r ¼ 2m, a fact that
was noticed in the 1920s by various researchers (Eddington
and Lemaître, among others) who introduced new coor-
dinates to remove the “apparent singularity.” At the end of
the 1930s Oppenheimer et al. [16,17] studied the collapse
of a massive static spherical star and came to the conclusion
that in the process of approaching its critical surface the
star’s curvature will increase indefinitely, the light radiated
by an imploding star will be redshifted, and as the star
reaches its critical radius the redshift will become infinite
and the star will disappear from the observer’s sight; hence,
the star becomes black. A complete understanding of the
Schwarzschild metric was achieved by the introduction of
null coordinates by Finkelstein, Kruskal, and Szekeres for
its maximal extension and the interpretation of the
Schwarzschild radius as the surface bound to the event*aagarcia@fis.cinvestav.mx
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horizons. Since then, the theory of black holes has
established itself as an important part of theoretical physics.
In 1963, in a half-page Physical Review Letters article, Kerr
reported the rotating black hole solution, which was later
charged by Newman and collaborators. To gain insight into
black holes Penrose introduced spinors into the description
of spacetimes [18] and developed the so-called Penrose
diagram procedure. The thermodynamics of black holes
was developed by Hawking [19] in the beginning of the
1970s. Meanwhile, in differential geometry various tools
were developed, as well as the Newman-Penrose tetrad
formalism. The algebraic classification of the Riemann and
Weyl tensors by Petrov in 1966 allowed for a deeper
understanding of the structure of spacetime. The search for
solutions of specific Petrov types became an area of intense
research in the 1960s and 1970s, together with the creation
of methods and techniques to generate solutions via group
theory [20,21]. Chandrasekhar’s contributions to the math-
ematical theory of black holes can be found in Ref. [22]. An
excellent and pleasant historical account of the develop-
ments of black holes was published by Thorne [23] in 1994,
who took part in some of the “golden age” achievements.
In spite of all of these theoretical achievements, the

experimental discovery of black holes was elusive until
recently: on September 14, 2015 the Laser Interferometer
Gravitational-wave Observatory (LIGO) detected the gravi-
tational wave GW150914 [24], which was emitted by a
binary system of rotating black holes many thousands of
years ago. This gravitational-wave detection showed indi-
rectly the existence of spinning black holes, and certainly
new studies in the field of experimental black hole physics
will be undertaken. This last paragraph shows, to some
extent, how hard it is to achieve experimental (astrophysi-
cal) success in this area.
In the framework of the above-mentioned theories—

NLE and Einstein gravity—we shall focus on the search for
solutions for Schwarzschild-like metrics, in particular
regular black holes. With this purpose in mind, in what
follows we shall develop various topics:
(1) A demonstration of the Birkhoff theorem in NLE.
(2) The determination of the algebraic types of the Ein-

stein and electrodynamics energy-momentum tensors.
(3) A definition of the inverse integration method.
(4) The generation of electromagnetic solutions via the

linear superposition method.
(5) A definition and characterization of a multiparamet-

ric solution to Einstein NLE.
The well-known Birkhoff theorem states that any spheri-

cally symmetric vacuum solution (gravitational field with a
cosmological constant Λ, if any) is static. Generalizations
of this theorem for a Maxwell field (with a Λ term) can be
found in Sec. 13.4 of Ref. [21] and references therein. Here
we generalize this theorem to nonlinear electrodynamics.
Since the Einstein tensor of Schwarzschild-like-metrics

(for short Schwarzschild metrics) allows for two pairs of

double eigenvalues, it permits electrodynamic fields
besides the vacuum solution with a Λ term. Moreover,
the traceless Ricci tensor allows for equal pairs of quad-
ruple eigenvalues that are opposite in sign.
The inverse integration method consists in expressing the

Lagrangian and electromagnetic field tensor components in
terms of the structural functions via the Einstein electro-
dynamics equations; thus, for a set of given structural
functions one evaluates the Lagrangian and field tensor
which, by construction, fulfill the dynamical equations and
conservation field equations. For the Schwarzschild met-
rics, there are two independent Einstein equations, which
are used to determine the electromagnetic Lagrangian and
field through the metric functions; the electromagnetic field
equations hold identically.
In the general theory of electrodynamics, one assumes

a relation L ¼ LðF ; Q̌Þ depending on the invariants F ∼
ðEÞ2 − ðBÞ2 and Q̌ ∼E · B, where E and B denote,
respectively, the electric and magnetic vectors. In practice,
it is quite hard to a priori guarantee that the proposed
Lagrangian satisfies the Maxwell limit and, at the same
time, the energy-momentum tensor fulfills the energy
conditions. In this respect, see Ref. [6] and references
therein. In the inverse procedure proposed above, one
overcomes these difficulties in part: there is no need to
solve for the coordinate r in terms of F , and later substitute
rðF Þ into L to get LðF Þ. Recall that in the standard
integration method the Lagrangian is given in terms of the
invariant LðF Þ and substituted into the dynamical equa-
tions, and from there one integrates to obtain the structural
functions.
A generating solution technique is given for the

Schwarzschild metrics based on a seed metric and a set
of “distorting” functions. The seed metrics are the Reissner-
Nordström (RN)-like solutions, and the distorting functions
FI , I ¼ fϵ;M; q;Λg are such that at spatial infinity,
r → ∞, their leading term is 1: FIðr → ∞Þ → 1. Then,
the new structural function

QðrÞ ¼ ϵFϵ − 2M=rFM þ q2=r2Fq − Λr2=3FΛ; ð1Þ

which has the correct limiting Reissner-Nordström-like
solution at infinity, determines a class of solutions for
nonlinear electrodynamics, which in turn becomes
Maxwell electromagnetism at infinity; the Lagrangian L
equals the invariant F ¼ ðFμνFμνÞ=4, L ¼ F , i.e.,
the weak limit of the generated electrodynamics is the
Maxwell one.
Applying the generating procedure outlined above to the

RN structural function, a “multiparametric solution” is
derived; it is denoted as Sðϵ=e;M=m;Eq;Λ=ljp; a; b; sÞ,
where ϵ, M, Eq, and Λ are the curvature parameter (related
to α), mass, charge, and cosmological constant, respec-
tively, which are equipped with the exponents p, a, b, s and
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numerical parameters e, m, l which denote the number of
charges q.
This family of solutions branches out a chain of

solutions, among them the regular black hole class, which
do not exhibit a singularity at the origin of the coordinate
system and possess an event horizon; the regularity of the
solutions is established by determining the range of
the parameters for which the absence of singularities of
the Riemann algebraic invariants in the entire spacetime
holds. In 1998 the first regular solution to Einstein NLE
was published and analyzed in detail by Ayón and García
[10]. Since that publication many works on regular
solutions have been published; see the list of citations to
Ref. [10] in spires. Nowadays, regular black holes occupy
an outstanding place in exact solutions of Einstein gravity.

II. BIRKHOFF THEOREM FOR NONLINEAR
ELECTRODYNAMICS

A spherically symmetric Schwarzschild metric that is
coupled to electrodynamics of any kind (depending on the
electromagnetic invariant F ¼ FμνFμν=4) and fulfills the
equations derived from the LagrangianL constructed onF ,
LðF Þ, in the presence of a Λ term (if any) is static. The
extension to Schwarzschild-like metrics is immediate.
No conditions on the components of the electromagnetic

fields Fμν are imposed, except for their antisymmetry,
Fμν ≔ 2A½ν;μ�, and thus at this stage all components are
present. The electrodynamics is derived from a Lagrangian
L depending on a single invariant F ,

F ¼ 1

4
FμνFμν; L ¼ LðF Þ: ð2Þ

The energy-momentum electromagnetic tensor for LðF Þ is
given by

Tμν ¼ −Lgμν þ
dL
dF

FμσFν
σ: ð3Þ

The metric is assumed to be spherically symmetric (flat or
pseudospherically symmetric) and of the form

g ¼ y2dx2

Xðα; xÞ þ y2Xðα; xÞdϕ2 þ dy2

Qðy; tÞ − Pðy; tÞdt2; ð4Þ

where Xðα; xÞ ≔ ða0 − αx2Þ. The spatial sector fx;ϕg
allows for various possible two-dimensional spaces of
constant curvature depending on the function Xðα; xÞ:

Xð1;cosθÞ∶ spherical space;ds22 ¼K2ðdθ2þ sin2θdϕ2Þ;
Xð0;−Þ∶ flat space; ds22 ¼K2ðdx2þ dz2Þ;

Xð−1;coshθÞ∶ pseudospherical space;

ds22 ¼K2ðdθ2 þ sinh2θdϕ2Þ;

whereK stands for the constant Gaussian curvature; see, for
instance, Eqs (21.15)–(21.17) of Ref. [25]. The Einstein
equations

Eμ
ν ≔ Rμ

ν − Rδμν=2þ Λδμν − κTμ
ν ¼ 0 ð5Þ

for this metric and an energy-momentum tensor associated
to electrodynamics give rise to a number of independent
equations of the form

Ex
y∶ Pðy; tÞFxϕFyϕ − y2Xðα; xÞFxtFyt ¼ 0;

Ex
t ∶ y2Qðy; tÞXðα; xÞFxyFyt þ FxϕFϕt ¼ 0: ð6Þ

It is easy to detect which components ought to vanish to
fulfill the algebraic system. The zero solutions are Fxt ¼
0 ¼ Fyϕ and Fxy ¼ 0 ¼ Fϕt. Hence, the remaining com-
ponents Fxϕ and Fyt are free. Under these conditions, the
equation

Ey
t ≔ y

� ∂
∂t Qðy; tÞ

�
Xðα; xÞ − dL

dF
QFyϕFϕt

þ dL
dF

Qðy; tÞFxyFxtXðα; xÞ2 ð7Þ

is equal to zero, by virtue of the previous results, if Qðy; tÞ
is time independent,

∂
∂t Qðy; tÞ ¼ 0 → Qðy; tÞ → QðyÞ: ð8Þ

From the equation Et
t − Ey

y ¼ 0, to eliminate L one
arrives at the equations

yXðα; xÞ
�
Q

∂
∂yP − P

∂
∂yQ

�
−
dL
dF

ðPQFyϕ
2 þ Fϕt

2Þ

−
dL
dF

ðPQFxy
2 þ Fxt

2ÞXðα; xÞ2 ¼ 0:

Substituting here all the previously derived results, one
writes the above equation as

∂
∂y

�
Pðy; tÞ
QðyÞ

�
¼ 0 → Pðy; tÞ ¼ FðtÞQðyÞ: ð9Þ

By a scale transformation of the time coordinate one
obtains FðtÞ ¼ 1. Hence, the spherically symmetric metric
(4) becomes static, and consequently we have demonstrated
an extension of the Birkhoff theorem to the case of
electrodynamics of any kind.
Incidentally, also in the general theory of nonlinear

electrodynamics where one assumes a relation L ¼
LðF ; Q̌Þ depending on both invariants F ∼ ðEÞ2 − ðBÞ2
and Q̌ ∼ E · B, an extension of the Birkhoff theorem also
holds: for general NLE with
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L ¼ LðF ; Q̌Þ; F ¼ FμνFμν=4; Q̌ ¼ FμνF⋆μν=4;

with F⋆
αβ ¼ ϵαβμνFμν, where ϵαβμν is the totally antisym-

metric Levi-Civita pseudotensor, the spherically symmetric
metric coupled to gravity is static. Its demonstration
follows a similar pattern to the one exhibited above.
In what follows, the function QðyÞ is replaced by

QðyÞ=y2. The static metric structure, in coordinates
fx; y;ϕ; tg, then assumes the form

g ¼ y2dx2

Xðα; xÞ þ y2Xðα; xÞdϕ2 þ y2dy2

QðyÞ −
QðyÞ
y2

dt2: ð10Þ

III. EINSTEIN EQUATIONS FOR
NONLINEAR ELECTRODYNAMICS

The Einstein equations coupled to a matter field tensor
Tμν and a cosmological constant Λ are

Eμν ≔ Gμν þ Λgμν − Tμν ¼ 0: ð11Þ
The evaluation of the Einstein tensor Gμ

ν and the curvature
scalar R for the metric (10) yields

Gμ
ν ¼ Gx

xðδμxδxν þ δμϕδ
ϕ
ν Þ þ Gt

tðδμyδyν þ δμt δ
t
νÞ;

Gx
x ¼

1

2

Q̈
y2

−
_Q
y3

þ Q
y4

; Gt
t ¼

_Q
y3

−
Q
y4

−
α

y2
;

R ¼ 2
α

y2
−
Q̈
y2

: ð12Þ

From the point of view of the eigenvalue problem, this
allows for two different double eigenvalues: λ1 ¼ λ3 ¼ Gx

x
and λ2 ¼ λ4 ¼ Gt

t. Thus, the related energy-momentum
tensor may describe electrodynamics; see, for instance,
Ref. [26]. Other way to arrive at this conclusion is by means
of the search for the eigenvalues of the traceless Ricci
tensor Sμν ¼ Rμ

ν − R
4
δμν, which amounts to

Sμν ¼ Sðδμxδxν − δμyδ
y
ν þ δμϕδ

ϕ
ν − δμt δ

t
νÞ;

S ¼ Q̈
4y2

−
_Q
y3

þ Q
y4

þ α

2y2
; ð13Þ

where ðSμνÞ¼Sdiagð1;−1;1;−1Þ. The relation Gx
x−Gt

t¼
2S is remarkable. Hence, according to the Plebański
classification of matter tensors [27] this algebraic structure
corresponds to the electrodynamics, regardless of whether
it is nonlinear or of Maxwell type. In the standard
nomenclature, the traceless Ricci tensor canonical structure
for electrodynamics is

½ð11Þð1;1Þ�∼ ½2S− 2T�ð11Þ; λ1 ¼ λ2 ¼ −λ3 ¼ −λ4 ¼ S:

A straightforward consequence of the coincidence of
the algebraic types of the Einstein tensor and the

energy-momentum tensor in electrodynamics for static
Schwarzschild metrics is the following Theorem: besides
the vacuum with Λ solutions, static Schwarzschild-like
metrics only allow electromagnetic solutions to the Einstein
(linear or nonlinear) electrodynamics equations.
In a certain sense, we are facing a theorem about the

uniqueness of classes of electrodynamics solutions: besides
the vacuum with Λ solution, the static spherical (pseudos-
pherical) metric only allows electrodynamics solutions; in
such a case, for each electromagnetic invariant LagrangianL
related to the electromagnetic invariant F the solution is
unique. Due to the established existence of two pairs of
eigenvalues there is no room for fluids; see Chap. 2 of
Ref. [26] regarding the structure of fluids. Any attempt to
accommodate other kind of fields different from electrody-
namics or vacuum in the above Schwarzschild metric (10) is
spurious, although in the literature one finds “solutions” (let
us call them better spacetime models) for fluids.
For the above metric structure (10), it is natural to choose

the electromagnetic field tensor to be dependent on the
electric field component FytðyÞ ≔ E only, as a function of
y, namely,

Fμν ¼ 2FytðyÞδy½μδν�t; F ¼ 1

4
FμνFμν ¼−

1

2
ðFytÞ2; ð14Þ

leaving aside the magnetic field Fxϕ which happens to be
constant. Therefore, the components of the nonvanishing
electromagnetic energy-momentum tensor (3) are given in
tensor form as

Tμ
ν ¼ Tx

xðδμxδxν þ δμϕδ
ϕ
ν Þ þ Tt

tðδμyδyν þ δμt δ
t
νÞ;

Tt
t ¼ −L −

dL
dF

ðFytÞ2; Tx
x ¼ −L; ð15Þ

from which the electrodynamics eigenvalue property
becomes apparent. The contraction of this tensor gives
Tμ

μ¼−4L−2 dL
dF ðFytÞ2. The field equation ðdLdF FμνÞ

;ν ¼ 0

yields

y2
dL
dF

Fyt ¼ −Q0 → y2
dL
dy

−Q0

dFyt

dy
¼ 0; ð16Þ

where Q0 is an integration constant related to the charge.
One only has three equations: two Einstein equations

arising from the components Ex
x and Ey

y, namely,

Ey
y ¼ Et

t ¼
_Q
y3

−
Q
y4

−
α

y2
þ Λþ Lþ dL

dF
ðFytÞ2 ¼ 0;

Ex
x ¼ Eϕ

ϕ ¼ Q̈
2y2

−
_Q
y3

þ Q
y4

þ Λþ L ¼ 0; ð17Þ

and the operational electromagnetic field equation (16).
The difference of Ey

y and Ex
x gives rise to
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Q0FytðyÞ ¼ −
Q̈
2
þ 2

_Q
y
− 2

Q
y2

− α; ð18Þ

which can be considered as an independent equation. Using
the inverse integration process, this last equation (18) is
considered as a relation to determine the electromagnetic
field Fyt for a given metric structure function QðyÞ. In a
similar manner, LðyÞ in terms of the function QðyÞ is given
by Ex

x,

LðyÞ ¼ −
Q̈
2y2

þ
_Q
y3

−
Q
y4

− Λ: ð19Þ

The substitution of Fyt from Eq. (18) and L from Eq. (19)
into the field equation (16) leads to an identity; there are no
further differential restrictions at all except for the equa-
tions (18) and (19).
The optimal and time-saving way to characterize the

gravitational field is to use the null tetrad Newman-Penrose
formalism consisting in deriving the curvature quantities in
the null tetrad basis, where the metric is determined as

g ¼ 2e1e2 − 2e3e4 ¼ gabeaeb; ð20Þ

ðgabÞ ¼

0
BBB@

0 1 0 0

1 0 0 0

0 0 0 −1
0 0 −1 0

1
CCCA; ea ¼ eaμdxμ;

e1

e2

�
¼ 1ffiffiffi

2
p

�
ydxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 − αx2

p � i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 − αx2

q
ydϕ

�
;

e3

e4

�
¼ 1ffiffiffi

2
p

� ffiffiffiffiffiffiffiffiffiffi
QðyÞp

dt
y

� ydyffiffiffiffiffiffiffiffiffiffi
QðyÞp

�
: ð21Þ

The Newman-Penrose Weyl curvature tensor scalars reduce
to the single Weyl complex component

− 12y4Ψ2 ¼ y2Q̈ − 6y _Qþ 12Q − 2αy2; ð22Þ

and thus the gravitational field is of Petrov type D or
conformally flat. The nonvanishing traceless Ricci tetrad
components are S12 ¼ S34 ¼ S ¼ 2Φ11, and finally one
adds to this set the scalar Riemann curvature R. All of these
quantities (Ψ2, S, Φ11, R) are per se invariants; all other
algebraically constructed Riemann invariants (quadratic
and so on) can be expressed through them. Notice
the invariant relations 2S ¼ −Q0Fyt=y2 and the relation
between the quadratic Weyl tensor invariants
CαβγδCαβγδ ≕W2 ¼ 48Ψ2

2.

IV. LINEAR SUPERPOSITION OF SOLUTIONS
IN ELECTRODYNAMICS

It has been established in the previous section that for
any given function QðyÞ one determines a Lagrangian
function LðyÞ and the corresponding electric field
component FytðyÞ≕ EðyÞ according to the equations (18)
and (19). Since these equations depend linearly on the
structural function QðyÞ and its derivatives, a linear super-
position of structural functions QiðyÞ yields a linear
superposition of the Lagrangian functions LðQiðyÞÞ and
the fields EðQiðyÞÞ, and consequently one arrives at the
following result.
Theorem.—For static Schwarzschild metrics coupled to

electrodynamics (linear and nonlinear) and a Λ term (if
any), any linear superposition of structural functions leads
to linear superpositions of Lagrangian functions and the
corresponding electromagnetic field functions. The result-
ing set is a solution of the Einstein electrodynamics field
equations:

Eμ
νðfQi;LðQiÞ; EðQiÞgÞ ¼ 0;

Q ¼
X

QiðyÞ → fL ¼
X

LðQiÞ; E ¼
X

EðQiÞg;
Eμ
νðfQ;L; EgÞ ¼ 0:

Therefore one may, for instance, add the Born-Infeld
structural function to the RN one; for each structural
function one evaluates the corresponding Lagrangian and
field function. Each set of functions in turn fulfills the
Einstein electrodynamics equations, and hence their super-
position should be a solution too.
This theorem explains why one can add a cosmological

term to any solution of the Einstein electrodynamics
equations with no effort. Moreover, each structural function
Q of the set

fαy2 − 2my; αy2 − Λy4=3; αy2 − 2my − Λy4=3g;

on its own, is a solution of the Einstein–vacuum–
cosmological constant equations, and thus there is no need
to add the term associated with the two-dimensional
curvature constant, the mass term, or the term related to
Λ to any chosen structural function every time; it is enough
to make these additions (if needed) to the total structural
function once. In a certain sense, the Kottler structural
function QK ¼ αy2 − 2my − Λy4=3, like the solution to
homogeneous equations (i.e., in the absence of electro-
magnetic quantities), can be added to the structural function
Q responding to the electromagnetic fields. Thus, in the
“Einstein-Electrodynamics Zoo Park” one can accommo-
date large families of species.
In the gravitational theory, the fields ought to fulfill the

sine qua non “dominant energy conditions” which demand,
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for an observer with time like vector uμ, uμuμ ≤ 0,
the projection of the energy-momentum tensor Tμν

must ensure that a) the local energy density Tμνuμuμ ≥ 0

is non-negative, and b) the local energy flow vector
Vμ ≔ Tμνuν is a nonspacelike vector VμVμ ≤ 0 (see
Sec. 5.3 of Ref. [21]).
For the electrodynamics under consideration, the natural

choice of the timelike vector is uμ ¼ δμty=
ffiffiffiffi
Q

p
, while the

electromagnetic local energy density is Tμνuμuν ¼
Lþ dL

dF ðFytÞ2 and it has to be positive. The local energy
flow vector is timelike,

Vμ ≔ Tμνuν ¼ δtμ
ffiffiffiffi
Q

p �
Lþ dL

dF
ðFytÞ2

�
=y;

VμVμ ¼ −
�
Lþ dL

dF
ðFytÞ2

�
2

≤ 0: ð23Þ

Therefore, one has to wonder about the positiveness of the
local energy. Besides the energy conditions, some classes
of solutions must satisfy some physical conditions, such as
fitting some weak field behavior or being regular through-
out the entire spacetime.

V. MULTIPARAMETRIC SOLUTION TO
EINSTEIN NONLINEAR ELECTRODYNAMICS

In what follows we deal with a multiparametric solution
Sðϵ=e;M=m;Eq;Λ=l;p; a; b; sÞ of Einstein nonlinear
electrodynamics theory. The structure of this gravitational
field is determined by the metric (10) with the structural
function

QðyÞ ¼ ϵy2
yp

ðy2 þ e2q2Þp=2 − 2M
yaþ1

ðy2 þm2q2Þa=2

þ E
yb

ðy2 þ q2Þb=2 −
Λ
3

y4ys

ðy2 þ l2q2Þs=2 ; ð24Þ

where ϵ;M; Eq, and Λ stand for the curvature parameter
(related to α), mass, charge, and a cosmological constant,
respectively; the distorting functions are equipped with
exponents denoted by p, a, b, s. and the numerical
parameters e, m, l associated with the terms with ϵ, M,

Λ, respectively, denote the number the corresponding
charges q. The curvature parameter ϵ, related to the
spherical (flat, pseudospherical) character of the metric,
and the charge E → q2 are introduced for “transition
solution” purposes; this point will become apparent later
in the transition limit to the RN solution. To simplify
notation, auxiliary functions of the form

Yðn; vÞ ≔ ðy2 þ n2q2Þ−2−v=2

are introduced. The evaluation of the field Fyt yields

Q0Fyt ¼ Fϵ þ FΛ þ FM þ FEq
− α;

Fϵ ¼ ϵpe2q2ypð3y2 þ e2q2 − pe2q2ÞYðe; pÞ=2
þ ϵypðy2 þ e2q2Þ2Yðe; pÞ;

FΛ ¼ 1

6
Λl2q2sð3l2q2 þ sl2q2 þ y2Þy2þsYðl; sÞ;

FM ¼ aMm2q2½m2q2ða − 3Þ − 5y2�ya−1Yðm; aÞ;

FEq
¼ −

E
2
bq2ðq2b − 5q2 − 7y2Þy−2þbYð1; bÞ

− 2Eðy2 þ q2Þ2y−2þbYð1; bÞ; ð25Þ

where Q0 is proportional to the charge q; it can be chosen
as Q0 ¼ q or

ffiffiffi
2

p
q.

The Lagrangian amounts to

L ¼ Lϵ þ LΛ þ LM þ LEq
;

Lϵ ¼
ϵ

2
pe2q2ðy2 − pe2q2 − e2q2Þyp−2Yðe; pÞ;

LΛ ¼ Λ
6
sl2q2ð3y2 þ sl2q2 þ 5l2q2ÞysYðl; sÞ

− Λþ Λðy2 þ l2q2Þ2ysYðl; sÞ;
LM ¼ aMm2q2½m2q2ða − 1Þ − 3y2�ya−3Yðm; aÞ;

LEq
¼ −

E
2
bq2ðbq2 − 3q2 − 5y2Þyb−4Yð1; bÞ;

− Eðy2 þ q2Þ2yb−4Yð1; bÞ: ð26Þ

The nonvanishing Weyl component Ψ2 is given by

Ψ2 ¼ −
ϵe2q2p
12

½e2q2ðp − 3Þ − 5y2�yp−2Yðe; pÞ − ϵ

6
ðy2 þ e2q2Þ2yp−2Yðe; pÞ þ 1

36
l2q2Λsðl2q2 þ sl2q2 − y2ÞYðl; sÞys

þ aM
6

m2q2½m2q2ða − 5Þ − 7y2�Yðm; aÞya−3 þMðy2 þm2q2Þ2Yðm; aÞya−3 − E
12

bq2ðbq2 − 7q2 − 9y2ÞYð1; bÞyb−4

− Eðy2 þ q2Þ2Yð1; bÞyb−4 þ 1

6

α

y2
: ð27Þ

The structures of the traceless Ricci tensor eigenvalue function S and the scalar curvature R follow a similar pattern; these
quantities are given as
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S ¼ Sϵ þ SΛ þ Sm þ SE;q þ Sα;

Sϵ ¼ −
1

4
ϵpe2q2yp−2ð3y2 þ e2q2 − pe2q2ÞYðe; pÞ

þ ϵy−2

2ðy2 þ e2q2Þp=2 ½ðy
2 þ e2q2Þp=2 − yp�;

SΛ ¼ −
1

12
Λsl2q2ð3l2q2 þ sl2q2 þ y2ÞysYðl; sÞ;

Sm ¼ M
2
am2q2½m2q2ð3 − aÞ þ 5y2�ya−3Yðm; aÞ;

SE;q ¼
1

4
Ebq2ðq2b − 5q2 − 7y2Þyb−4Yð1; bÞ

þ Eðy2 þ q2Þ2yb−4Yð1; bÞ;

Sα ¼
1

2y2
ðα − ϵÞ: ð28Þ

Finally, the scalar curvature can be given as

R ¼ Rϵ þ RΛ þ Rm þ RE;q þ Rα;

Rϵ ¼ −ϵpe2q2yp−2ðy2 þ 3e2q2 þ pe2q2ÞYðe; pÞ

þ 2
ϵy−2

ðy2 þ e2q2Þp=2 ½ðy
2 þ e2q2Þp=2 − yp�;

RΛ ¼ Λ
3
sl2q2ð7l2q2 þ sl2q2 þ 5y2ÞysYðl; sÞ

þ 4Λ − 4
Λ

ðy2 þ l2q2Þs=2 ½ðy
2 þ l2q2Þs=2 − ys�;

Rm ¼ 2aMm2q2½m2q2ð1þ aÞ − y2�ya−3Yðm; aÞ;
RE;q ¼ −bEq2ðbq2 − q2 − 3y2Þyb−4Yð1; bÞ;

Rα ¼
2

y2
ðα − ϵÞ: ð29Þ

It should be pointed out that the first link in the chain
Sðϵ; m; E=q;Λ;p; a; b; sÞ is the regular black hole solution
Sð1; m; q;Λ; 0; 3; 4; 0Þ [10]; one can add a series of these
solutions with different amounts of charges and masses,
and again it would be a solution, although not necessarily
regular or with the de Sitter–anti de Sitter (dS-AdS) limit at
infinity.

A. Ranges of regularity

As far as the class of regular fields is concerned one has
to investigate the regular (nonsingular) behavior of the
algebraic invariants in the whole spacetime, in particular,
as the spatial coordinate yð¼ rÞ approaches the origin
y ¼ r ¼ 0 of the coordinate system. The invariants
F ð¼ −ðFytÞ2=2Þ;L;Ψ2; S, and R are well-behaved func-
tions of y if

ϵ ¼ α; s ≥ 0; p ¼ 0; a ≥ 3; b ≥ 4:

Consequently, the solutions with exponents fitting those
ranges may describe regular black holes, with the event
horizon radius fulfilling the condition QðyÞ ¼ 0, which
ought to be the outermost horizon.

B. Limiting transition

In gravitation, to establish the physical character of a
solution one searches for its weak partner. For instance, the
weak partner of the Schwarzschild solution is the field for a
central Newtonian mass in the weak limit of gravity. For the
Reissner-Nordström solution its limit is the charged point
particle, and so on. Thus, to judge the physical character of
this solution we derive its limiting transitions by looking at
the solution in the far region, i.e., at y → ∞. Taking into
account the behavior at y → ∞ of terms like

yp

ðy2 þ n2q2Þp=2 ≈ 1 −
1

2

pn2q2

y2
þ n4q4

8y4
ð2pþ p2Þ þ � � � ;

one establishes, via their substitutions in QðyÞ, the
Reissner-Nordström structural function limit

QRN ¼ −
Λ
3
y4 þ ϵ0y2 − 2Myþ E0;

where the constant ϵ and the electric constant E have been
replaced, respectively, by

ϵ ¼ ϵ0 −
Λ
6
l2q2s;

E ¼ E0 þ
Λ
24

l2q4s½ðsþ 2Þl2 − 2e2p� þ ϵ0
2
e2q2p:

Notice that the Lagrangian L and the electric field Fyt as y
approaches infinity behave as

Ly→∞≈−
1

y4
E0; Q0Fyty→∞≈−

2

y2
E0þ ϵ0−α: ð30Þ

Therefore, by replacing Q0 → q, E0 → q2, ϵ0 → α, and
y → r one arrives at the RN solution of the Maxwell
theory in the presence of a cosmological constant Λ, i.e.,
the RN solution immersed in the dS or AdS spacetime.
For ϵ0 ¼ 1, x ¼ cos θ, and a0 ¼ 1, one obtains the standard
RN static spherically symmetric metric in Schwarzschild
coordinates.

VI. FINAL REMARKS

There are various theoretical aspects that deserve further
attention that are outside the scope of this work, such as the
motion of test particles and light rays through the study of
the geodesic equations, the determination of the geodesic
deviation for null geodesics, and the study of birefringence,
among others. In the theory of black holes, the thermody-
namics of black holes is highly relevant to determine to
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what extend the nonlinearity of the fields distorts the
physical quantities in comparison to those considered as
the linear or weak limits of the theory, such as the modified
Smarr relation and the first law of thermodynamics. As far
as experimental effects are concerned, we only recently
(2015) received indirect insight into the interaction of
rotating black holes through the detection of gravitational
waves; these experiment require high accuracy, fine-
tunings, and extremely precise measurements. These exper-
imental achievements may enhance new studies, such as the
study of the deflection of light or the deviation of the
perihelia of a test star in the neighborhood of a massive
nonlinear electrodynamically charged astrophysical object.
It is clear that the most observable effect on the trajectories
(of photons, and charged and neutral particles) will be
caused by the central mass followed by the effect of the
charge and momentum, if any. In the last decade plasma
physics (plasma waves) and powerful laser instrumentation
have become areas of great interest; see, for instance, the

studies on particle acceleration in nonlinear electrodynam-
ics in Ref. [28] and references therein. In astrophysics,
nonlinear classical electromagnetic fields have been used in
the description of electron emission by massive stars, and
also to explain the accelerated expansion of the Universe.
NLE has been coupled to inflationary models to avoid the
big bang.
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Note added in proof.—An alternative point of view on the
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nonlinear electrodynamics in Einstein gravity has been
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