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Given current high-precision modern space missions, a precise relativistic modeling of observations is
required. By solving the eikonal equation within the post-Newtonian approximation, we use an iterative
method to determine light propagation in the gravitational field of an isolated, gravitationally bound
N-body system. Different from traditional N bodies that are independent of each other within a system,
our system includes the velocities, accelerations, gravitational interactions, and tidal deformations of the
gravitational bodies. The light delays of these factors are then precisely determined by the analytical
solutions. These delays are significant and are likely to reach a detectable level for strong gravitational
fields, such as binary pulsars and some gravitational-wave sources. The result’s application in the vicinity
of the Earth provides a relativistic framework for modern space missions. From the relativistic analysis in
the TianQin mission, we find possible tests for alternative gravitational theories, such as a possible
determination of the post-Newtonian parameter γ at the level of some scalar-tensor theories of gravity.
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I. INTRODUCTION

The growing accuracy of radioscience, laser, and astro-
metric observations requires a detailed modeling of light
propagation in curved spacetime. By solving the null
geodesic equations or eikonal equations in a given metric,
the problem of light propagation has been studied in several
contexts, e.g., light propagation in the gravitational field of
N arbitrarily moving bodies within the first post-Newtonian
(1PN) and 1.5PN approximations [1,2], the second post-
Newtonian (2PN) effects of one arbitrarily moving point-
like body [3], and post-Minkowskian (PM) effects on the
gravitational field of static bodies endowed with arbitrary
intrinsic mass-multipole and spin-multipole moments
[4–6]. Furthermore, light travel time has been studied
using methods based on the Synge world function [7]
and time transfer function (TTF) [8,9], such as the 3PM
TTF in the field of a static monopole [10]. These solutions
are useful when dealing with light propagation in the Solar
System’s gravitational field. When considering realistic
celestial objects the nonrigid characteristic of bodies cannot
be ignored, which could lead to tidal deformations in an
N-body system. This means that gravitational interactions
and tidal deformations must be taken into account in high-
precision observables and experiments. Corresponding
calculations of the light travel time have not been reported
yet. They should be treated carefully since their

contributions may be non-negligible for space missions
or astrometric observations in the foreseeable future. In
particular, the influences due to tidal deformations are
significant in binary pulsar systems and some recent
gravitational-wave (GW) sources.
The first direct observation of GW events (GW150914)

made by Advanced LIGO has opened the era of observa-
tional GWastronomy [11–13] and marks the beginning of a
new era in gravitational physics [14,15]. Subsequently,
several more GW events have been detected by Advanced
LIGO and Advanced VIRGO [16,17]. At present, ground-
based GW detectors are able to detect GWs in the high-
frequency regime (10 to 103 Hz). Aiming to provide more
observations of GW events and complement ground-based
detectors, space-based detectors are being developed to
make GW observations in the low-frequency regime (10−4

to 1 Hz) where picometer-level accuracy is required.
An alternative gravitational-wave mission in space

may use heliocentric or geocentric orbits for spacecraft.
The best representative of the former orbit option is the
LISA mission [18]. For the latter option, early versions of
SAGITTARIUS [19] and OMEGA [20] were proposed to
the ESA in 1993 and NASA in 1996, respectively.
Recently, the TianQin mission was proposed by Luo et al.
[21]. It relies on an equilateral triangular constellation
with an inter-spacecraft distance of about 1.7 × 105 km and
is planned to be launched in 2035. Compared to helio-
centric options, these geocentric missions have several
major advantages in terms of propulsion requirements,*cgshao@hust.edu.cn
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telecommunication systems, and the time required to inject
the mission into its final orbit. Unfortunately, they are
confronted with two technological issues: keeping sunlight
from getting into the telescopes, and generating an
extremely stable clock frequency. For TianQin, the first
issue is cured by a relatively short science run [21]. Another
issue comes from the influence of the Earth-Moon system’s
gravitational field, which remains to be solved.
The larger effects due to the Earth-Moon system are

the main difference between heliocentric and geocentric
options. The extremely stable clocks used in GW space
missions are significantly affected by gravitational fields
and geocentric orbits. The orbit-parametrized frequency
shift between spacecraft should determined by using a full
general-relativistic treatment in the Solar System barycen-
tric coordinate reference system (BCRS). Moreover, time-
delay interferometry (TDI) [22–25] requires accurate
knowledge of light propagation delays, and in simulation
code time delays should be generated as realistically as
possible. These factors require us to rigorously determine
light propagation in the gravitational field of the Solar
System. In the DSX formalism [26,27], the relativistic
phase in the gravitational field of an N-body system can be
determined by solving the eikonal equation [28,29].
Different from classical treatments in static fields, the
influences of the N-body system’s velocity, acceleration,
gravitational interactions, and tidal deformation are also
determined in this formalism. These formulas can be
applied to calculations for the Earth-Moon system.
The propagation delays and frequency shift for the LISA

mission due to the gravitational field of the Sun were
studied in Ref. [30]. Further models of the range and
frequency measurements in geocentric space missions like
GRACE Follow-On [31] and ACES [32] were developed to
analyze relativistic observables. Considering the different
satellite configurations and orbital options, it is necessary
to perform a detailed relativistic analysis for TianQin.
Meanwhile, for TianQin, some effects on the frequency
shift come from coordinate effects of the BCRS that depend
on the coordinate chart. These effects cancel each other and
thus are not detectable. These quantities should be avoided in
the simulation code and scientific missions. Finally, in
addition to TianQin’s primary goals, the analysis of the
relativistic effects may provide a formalism to test funda-
mental physics, such as the post-Newtonian parameter γ
(which describes the measure of spacetime curvature
produced by a unit rest mass) [33] and local Lorentz
invariance [34,35].
The rest of this paper is organized as follows. In Sec. II, we

discuss light propagation in the gravitational field of
the Solar System and derive the corresponding relativistic
solution for the light phase. In Sec. III, we develop the
general-relativistic phase model for TianQin. Also, the
frequency shift between spacecraft and coordinate effects
are discussed.We give our conclusion in Sec. IV. Themethod

of solving the eikonal equation is given in Appendix A. In
Appendix B, we present the instantaneous coordinate dis-
tance and corresponding derivatives. In Appendix C, some
relationships for Keplerian orbits are presented.

II. RELATIVISTIC PHASE OF LIGHT
IN THE GRAVITATIONAL FIELD

OF THE SOLAR SYSTEM

A. Space-time reference system

Einstein’s general relativity is a covariant theory in
which coordinate charts are merely labels, and thus the
physical observables should be coordinate-independent
quantities. This means that one has a wide freedom to
choose the coordinate system when describing the outcome
of a particular experiment. In fact, any reference system
covering the spacetime region of the experiment can be
used to describe the results of that experiment. However,
some available coordinate systems that are associated with
a particular celestial body or laboratory have important
advantages when describing the observations of precision
experiments. By using the harmonic gauge conditions and
conservation laws, the relativistic, proper reference frame
can be determined. In order to conveniently formulate the
coordinate picture of the measurement procedure or offer a
simpler mathematical description of the experiments under
consideration, one should pick a specific coordinate system
to model the observables. For the TianQin mission, the
choice is the Solar System BCRS.
The BCRS is a particular implementation of a barycen-

tric reference system in the Solar System with the space-
time coordinates xμ ≡ ðct;xÞ, which has its origin at the
Solar System barycenter. Given IAU recommendations
[36,37], the metric of the BCRS can be written in a form
that only depends on two harmonic potentials,

g00 ¼ 1 −
2w
c2

þ 2w2

c4
þOðc−6Þ;

g0i ¼
4δikwk

c3
þOðc−5Þ;

gij ¼ −1 − δij
2w
c2

−
3δij
2

w2

c4
þOðc−6Þ; ð1Þ

where w and w are the scalar and vector harmonic
potentials, respectively, written as

w ¼
X
b

GMb

rb

�
1þ 1

c2

�
2v2b −

X
c≠b

GMc

rcb
−
1

2
ðnb · vbÞ2

−
1

2
ðrb · abÞ

��
þ wl þOðc−3Þ; ð2Þ

w ¼
X
b

GMb

rb

�
vb þ

ðsb × rbÞ
2r2b

�
þOðc−2Þ; ð3Þ
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whereGMb is the gravitational constant of the body b, sb is
the angular momentum per unit of mass of body b, rb ¼
jrbj ¼ jx − xb0j with xb0 being the barycentric position of
body b, rbc ¼ xc0 − xb0 is the distance vector pointing to
body c from b, and vb ¼ dxb0=dt and ab ¼ dvb=dt are the
barycentric velocity and acceleration of body b, respec-
tively. Last, wl contains the contributions from higher
gravitational potential coefficients characterizing the shape
of body b, and b should represent all bodies in the Solar
System.

B. Relativistic phase model

In the framework of general relativity, solving the null
geodesic equation is the standard method to obtain all
information about light propagation between two point
events [9]. Different approaches are also available for
calculating light propagation delays, such as the Synge
world function [7], time transfer functions [9], and the
eikonal equation [28]. Here, our choice is based on solving
the eikonal equation, which is closely related to the Synge
world function [7]. As discussed by Ashby et al. in
Ref. [28], the problem of light travel time can be reduced
to geometrical optics by using the eikonal equation. This
implies that when we consider the light time between two
point events, it is enough to solve the problem by using the
eikonal equation. As a scalar function, the phase φ of an
electromagnetic wave is invariant under a set of general
coordinate transformations, which satisfies the eikonal
equation [28,31,38]

gμν∂μφ∂νφ ¼ 0: ð4Þ

This equation can be derived from Maxwell’s equations
in which the solution φ describes the wave front of an
electromagnetic wave propagating in the curved spacetime.
To obtain the solution φðt;xÞ, we introduce a covector
describing the electromagnetic wavefront in the curved
spacetime, Kμ ¼ ∂μφ. For light, it satisfies the equation
gμνKμKν ¼ 0 with the vector Kμ ¼ gμν∂νφ tangent to the
light ray. Assuming that the phase φðt;xÞ is known, one can
straightforwardly study the properties of light propagation.
To find a solution of the eikonal equation, we expand the

phase φ using the perturbation method,

φðt;xÞ ¼ φ0 þ
Z

kμdxμ þ φGFðt;xÞ; ð5Þ

where φ0 is a constant, kμ ¼ k0ð1;kÞ (satisfying the
relation ημνkμkν ¼ 0) is a constant null vector along the
direction of propagation of the unperturbed electromag-
netic plane wave, and φGF represents the perturbation due
to the gravitational field. Since we can define the time
component k0 ¼ ω=c, where ω is th e constant angular
frequency of the unperturbed electromagnetic wave, the
vector k (jkj ¼ 1) is the unit vector along the light’s path.

As a consequence of the perturbation method (5), the wave
vector Kμ of light in curved spacetime can be expressed in
the form

Kμðt;xÞ ¼ gμν∂νφ ¼ kμ þ kμGFðt;xÞ; ð6Þ

where kμGFðt;xÞ is the perturbation of the wave vector due to
the gravitational field.
To determine φGF we can use asymptotic perturbation

theory [28], which is described in Appendix A. In the
metric given by Eq. (1), the solutions of φGF are given by
Eqs. (A6) and (A7). For the convenience of calculations
and presentation, we take a particular part of the perturba-
tion from φð2Þ and place it into φð1Þ. This part is the
contribution due to the G2 term in the scalar potential w.
Therefore, φGF is rewritten as φGF ¼ φ1

GF þ φ2
GF, where

φ1
GF is the sum of φð1Þ and the above-mentioned part from

φð2Þ. We assume that a unique light ray connects two
point events ðctA;xAÞ and ðctB;xBÞ with coordinate time
relationship tA < tB. From Eqs. (A6) and (A7), φ1

GF is
expressed as

φ1
GFðt;xÞ ¼ −

RABk0
2

Z
1

0

�
4w
c2

−
8w · NAB

c3

�
dλ; ð7Þ

where the integral is calculated along the straight line
between xA and xB, defined by the parametric equations

xi ¼ λðxiB − xiAÞ þ xiA; 0 ≤ λ ≤ 1; ð8Þ

and NAB ¼ ðxB − xAÞ=RAB with RAB ¼ jxB − xAj. For
calculations in the vicinity of celestial bodies, tidal defor-
mations of sources should be taken into account, which
means that we should consider potential variations caused
by the tidal deformations. By using the body’s tidal
deformations to correct the two harmonic potentials, it is
recommended to rewrite Eqs. (2) and (3) in the following
forms:

wðt;xÞ ¼ w0ðt;xÞ þ wtidðt;xÞ; ð9Þ

wðt;xÞ ¼ w0ðt;xÞ þ wtidðt;xÞ; ð10Þ

where w0 and w0 are the previous scaler and vector
potentials in Eqs. (2) and (3), respectively. wtid and wtid
represent the tidal-deformation potentials in the N-body
system. Since the vector potential effects are much smaller
than the scalar potential effects, we neglect the contribution
of wtid. Generally, wtid can be expressed in the form of Love
numbers [39],

wtidðt;xÞ ¼
X
b

ðk2Þb
R5
b

r3b

X
c≠b

GMc

2r3cb
½3ðncb · nbÞ2 − 1�; ð11Þ

LIGHT PROPAGATION IN THE FIELD OF THE N-BODY … PHYS. REV. D 100, 064063 (2019)

064063-3



where ðk2Þb is the Love number of body b, Rb is the
equatorial radius of body b, ncb¼ rcb=rcb, and nb ¼ rb=rb.
Since r3b appears in the denominator, its influence is
significant only in the vicinity of a gravitational body.
Inserting it into Eq. (7) allows us to calculate the defor-
mation effects.
Subsequently, we calculate the mass multipoles wl.

Using the Blanchet-Damour moments, wl can be theoreti-
cally determined from the distribution of mass and matter
currents. As an example, Earth’s contribution to wl is
represented here. Usually, it is useful to present these
moments of the Earth as parameters evaluated by numeri-
cally fitting to various kinds of experimental data, such as
satellite motion tracking, geodetic measurements, and
gravimetry. An approximate expansion of the Earth’s

multipoles wl;E is the spherical harmonic expansion, which
is given by [40]

wl;EðxÞ ¼
GME

rE

X∞
l¼2

Xþl

k¼0

�
RE

rE

�
l
Plkðcos θÞ

× ðCElk cosðkϕÞ þ SE
lk sinðkϕÞÞ; ð12Þ

where RE is the Earth’s equatorial radius, Plk are associated
with the Legendre polynomials, CElk and SE

lk are spherical
harmonic coefficients characterizing the Earth, and CEl0 ¼
−JEl is the mass multipole moment of the Earth.
To solve Eq. (7), we use Eqs. (9)–(12) to calculate the

perturbed phase. The perturbation φ1
GF is further written as

φ1
GFðt;xÞ ¼ −2RABk0

Z
1

0

�X
b

GMb

c2rb

�
1þ 1

c2

�
2v2b −

X
c≠b

GMc

rcb
−
1

2
ðnb · vbÞ2 −

1

2
ðrb · abÞ

��
þwl

c2
þ wtid

c2
−
2w ·NAB

c3

�
dλ:

ð13Þ

It may be noted that for the mass multipoles wl, the J2 moment is the main contribution, and the higher moments can be
neglected since their influences are much smaller than that of the quadrupole term. After some mathematical manipulations,
φ1
GF is obtained as

φ1
GFðt;xÞ ¼

X
b

�
−
2GMbk0

c2

�
1 −

X
c≠b

GMc

c2rcb

�
ln
rbA þ rbB þ RAB

rbA þ rbB − RAB
þ φb

vðt;xÞ þ φb
r·aðt;xÞ þ φb

tidðt;xÞ

−
GMbk0R2

bRABJb2
c2ðrbArbB þ xbA · xbBÞ

�
1 − ðIb · nbAÞ2

rbA
þ 1 − ðIb · nbBÞ2

rbB
−
�

1

rbA
þ 1

rbB

� ½Ib · ðnbA þ nbBÞ�2
1þ nbA · nbB

�

þ 4GMbk0
c3

RAB · ½sb × ðnbA þ nbBÞ�
ðrbA þ rbBÞ2 − R2

AB

�
; ð14Þ

where Ib is the unit vector along the body b’s rotation axis, φb
vðt;xÞ represents the correction from the velocity, φb

r·aðt;xÞ is
the acceleration contribution to the phase, and φb

tidðt;xÞ comes from the tidal deformations. This equation describes the
gravitational contributions of an N-body system in phase including the influences of the system’s mass, oblateness J2,
velocity, acceleration, gravitational interactions, rotation, and tidal deformations. After further calculation we obtain
φb
vðt;xÞ,

φb
vðt;xÞ ¼

GMbk0
c2

RAB

��
4NAB · vb
cRAB

−
4v2b

c2RAB
þ ðNAB · vbÞ2

c2RAB

�
ln
rbA þ rbB þ RAB

rbA þ rbB − RAB

þ ðrbA · vbÞ½2rbAðrbB · vbÞ þ ðrbB − rbAÞðrbA · vbÞ�
c2r2bAr

2
bBððnbA · nbBÞ þ 1Þ −

r2bAðNAB · vbÞ2½ðrbB − rbAÞ þ 2rbBðnbA · nbBÞ�
c2r2bAr

2
bBððnbA · nbBÞ þ 1Þ

�
; ð15Þ

with NAB ¼ ðxB − xAÞ=RAB. Clearly, its value is zero for a static gravitational body. The first term is a direct relativistic
correction to the Shapiro term in which the largest correction is proportional to the velocity of the gravitational body. The
latter two terms are indirect corrections to the Shapiro delay. Integrating the acceleration-dependent term, the acceleration
perturbation in Eq. (14) is given by

φb
r·aðt;xÞ ¼

GMbk0
c4

�
ðrbB − rbAÞðNAB · abÞ þ ½ðrbA · abÞ − ðNAB · abÞðNAB · rbAÞ� ln

rbA þ rbB þ RAB

rbA þ rbB − RAB

�
: ð16Þ
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The acceleration contributions also include direct and indirect corrections to the Shapiro delay, which do not exist in the
case of a static gravitational field. Equations (15) and (16) are sufficient to describe the effects of motion on light
propagation delays for the gravitational field of an isolated, gravitationally bound N-body system.
By introducing the impact vector db ¼ NAB × ðxbA × NABÞ with db ¼ jdbj, the term φb

tid is

φb
tidðt;xÞ ¼ −k0ðk2ÞbR5

b

X
c;c≠b

GMc

c2r3cb

�
r2bA
r2bB

ðr3bB − r3bAÞBc1 þ 3r2bARABBc2 þ RABðR2
AB þ 3xbA ·RABÞBc3

d4brbB

þ 1

d2b

�
NAB · xbA

rbA
−
NAB · xbB

rbB

��
; ð17Þ

where

Bc1 ¼ s2Ac
2
cAcA þ 2ccAccð1þ c2AÞ þ 2cAðc2cA þ c2cÞ; ð18Þ

Bc2 ¼ ð1þ c2AÞðc2cA þ 2cAccAccÞ þ 2c2Ac
2
c; ð19Þ

Bc3 ¼ ð1þ c2AÞc2c þ 2c2cA þ 4cAccAcc; ð20Þ

with cA ¼ nAb ·NAB, ccA ¼ nbA · nbc, cc ¼ NAB · nbc, and
sA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2A

p
. The tidal effects are in direct proportion to

the Love number ðk2Þb that is dependent on body b, and
ðk2ÞE is about 0.3 for the Earth. A more massive source of
tidal force will lead to more a obvious deformation on the
surface of the body, which produces a greater potential
variation. Then, the corresponding light delay arising from
this potential variation may become non-negligible. GW
missions recently observed events from binary neutron star
inspirals. In these systems, as well as in binary pulsar
systems, tidal deformations are significant due to the strong
gravitational interactions.
Since φ1

GF has been determined from the above equa-
tions, we consider another term: φ2

GF. φ
2
GF can be deter-

mined from Eq. (A7). For the sake of discussion, we rewrite
it in two parts: the contribution of the square of the
Newtonian potential φ2

GF and the contribution of the
coupling terms φ2

c. The velocity- and acceleration-term
contributions are higher order than c−4, and thus can be
safely ignored. φ2

GF consists of the squared termsG2M2
b [7],

φ2
GF ¼

X
b

G2M2
bk0RAB

c4rbArbB

�
4

1þ cos θb
−

15θb
4 sin θb

�
; ð21Þ

with cos θb ¼ nbA · nbB. For φ2
c, we consider contributions

from the terms in w2 like ðGMb=c2rbÞðGMc=c2rcÞ of two
sources, and other contributions are of the same magnitude.
The analytical solution requires cumbersome calculations.
For our calculations in the vicinity of one source, such as a
body b, another distance rc can be expressed in the form

1

rc
¼ 1

rbc
þ nbc · rb

r2bc
þOðr−3bc Þ: ð22Þ

This allows us to compute the coupling term effect φ2
c,

φ2
c ¼ −

GMbk0
4c4

X
c

GMc

rbc

�ðnbc ·NABÞðrbB − rbAÞ
rbc

þ rbc þ xbA · nbc − ðxbA ·NABÞðnbc ·NABÞ
rbc

× ln
rbA þ rbB þ RAB

rbA þ rbB − RAB

�
: ð23Þ

This equation describes the potential-coupling effect when
the light signal passes near body b. Its contribution for
TianQin is smaller than that of Eq. (21), and thus can be
neglected.
Finally, using the above method we consider light

propagation between the TianQin spacecraft (as described
in Sec. III). At the instant of reception on spacecraft B, the
signal’s phase received from the interferometer on space-
craft A can be expressed as

φðtB;xBÞ ¼ φðtA;xAÞ þ φGW þ φnoise þ
2π

c
fA

�
dτA
dt

�
tA

× ½cðtB − tAÞ −RABðxA;xBÞ�; ð24Þ

where xA ¼ xAðtAÞ, xB ¼ xBðtBÞ, fA is the proper fre-
quency of the transmitter on spacecraft A, RAB is the total
geodesic distance without considering gravitational waves,
φGW is the phase contribution of gravitational waves, and
φnoise is the noise term containing various kinds of noise,
such as laser-frequency noise, clock noise, optical path-
length noise, etc., Clearly, the perturbations of the gravi-
tational field in phase have been merged into RAB.

C. Estimating the magnitudes
of different gravitational terms

Using the procedure described in Sec. II B we can
estimate the magnitudes of various terms in phase in the
context of the TianQin mission. TianQin’s spacecraft are
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placed in orbit around the Earth so that the influences of the
Earth-Moon system on laser signal propagation are sig-
nificant. A convenient method is to split the gravitational
delays into the Earth-Moon-system contribution and an
external contribution (excluding the Earth and Moon). At
the instant of reception on spacecraft B, the relativistic
phase is determined by Eq. (24). The term RAB contains
light propagation delays, which is required in TDI. To study
the various gravitational contributions in RAB, it is con-
venient to express the term RAB as

RAB ¼ RAB þ Δ1EM þ Δ1ext þ Δtid þ Δ2
GF; ð25Þ

where the last four terms represent the gravitational con-
tributions derived from Eqs. (14), (17), and (21). With the
nominal orbital parameters of TianQin, we subsequently
use their values to evaluate the order of various gravita-
tional terms.
We start with the second term in Eq. (25). In order to

calculate its magnitude, this term can be expressed as

Δ1EM ¼ Δ1EM
m þ Δ1EM

J2
þ Δ1EM

s þ Δ1EM
v þ Δ1EM

a : ð26Þ

The first term in Eq. (26) is the Shapiro term from the
contribution of the Earth and Moon’s mass monopoles,
which is given by

Δ1EM
m ≈

2GME

c2
ln
rEA þ rEB þ RAB

rEA þ rEB − RAB
þ 2GMM

c2
RAB

dM
; ð27Þ

with dM ¼ ðrMA þ rMBÞ=2. If we consider the gravitational
delays in the parametrized post-Newtonian (PPN) formal-
ism, this Shapiro term should be revised as ð1þ γÞΔ1EM

m =2,
which can be used to test the PPN parameter γ. A classical
experiment to test γ in the Solar System was based on the
Sun’s Shapiro delay [41]. For the Earth, the Shapiro term is
almost a constant (about 2.34 cm), due to the stable
triangular constellation of spacecraft with respect to the
Earth. For the Moon, the Shapiro delay term is at the level
of 5 × 10−5 m. However, the Moon’s Shapiro delay is not a
constant, but rather varies with dM. The amplitude of the
variation part reaches several micrometers, with a fre-
quency that is about the same as the orbital frequency of
the spacecraft. Assuming that θMA=B ¼ nME · nEA=B, the
Moon’s contribution can be expressed as

Δ1M
m ¼ 2GMM

c2
RAB

rEM

�
1þ rA cos θMA þ rB cos θMB

2rEM

�
: ð28Þ

For an order of magnitude estimate, we can assume that the
spacecraft’s orbit plane coincides with that of the Moon.
Equation (28) can be rewritten as

Δ1M
m ¼ 2GMM

c2
RAB

rEM

�
1þ rA

rEM
cosωmst

�
; ð29Þ

where ωms is the summation of angular frequencies of
the spacecraft’s orbit and the Moon’s orbit (for inverse
orbital directions). The constant part is about 49 μm and the
amplitude of the variation part is about 6 μm. If we
compute this term without this approximation (the spacecraft
orbital plane coincides with that of the Moon), we would get
a slightly longer delay, which is greater than the estimate of
Eq. (29) by about 0.5 μm. Equation (29) can be used to
estimate the magnitude; however, in the actual calculations
and applications, we use Eq. (27). To demonstrate the
influence of the Earth-Moon system’s Shapiro delay on
the TianQin mission, we use Fourier analysis for the rough
estimations. From the Fourier analysis of Eq. (27), we find
that the effects of the Earth-Moon system’s Shapiro delay
lead to a contribution of 3 × 10−13 m=Hz1=2 at 6 mHz,
which is smaller than TianQin’s position-measurement
accuracy level of 1 pm=Hz1=2 at 6 mHz. In the low-
frequency regime (10−4–1 Hz), all contributions from the
Shapiro delay are smaller than 1 pm=Hz1=2. Therefore, the
influence of the light delays due to the Earth-Moon system’s
gravitational field is negligible for the TianQin mission.
Moreover, the Shapiro delay may have the potential to
improve the accuracy of the post-Newtonian parameter γ,
whose current best value of γ ¼ 1þ ð2.1� 2.3Þ × 10−5 was
reported by the Cassini mission [41]. From the Moon’s
contribution to the Shapiro delay, this gives a 5.6 μm
amplitude at the orbital frequency. If the position-
measurement accuracy can reach 1 pm=Hz1=2 at the μHz
level, the uncertainty in the PPN parameter γ can be tested
with an accuracy of 1.8 × 10−7, which approaches the
level where some scalar-tensor theories of gravity predict
that a deviation from general relativity might be expected
[42,43]. A smaller deviation from general relativity at the
level of 10−9 is predicted by heuristic string-theory argu-
ments, which may be tested by space missions like
BEACON [44] or LATOR [43].
The second term Δ1EM

J2
in Eq. (26) is the contribution

from the mass’s quadrupole moment J2. Since the Moon’s
mass is much smaller than that of Earth, it is sufficient to
neglect the Moon’s quadrupole moment. Considering the
equilateral triangular constellation, we can adopt the values
nEA · nEB ¼ −1=2 and rEA ¼ rEB for this term. From the
penultimate term of Eq. (14), the delay due to the Earth’s
oblateness can be computed as

ΔE
J2
¼ 1.35 × 10−7 m ·

�
1 −

5

2
ðIE · nEAÞ2 −

5

2
ðIE · nEBÞ2

− 4ðIE · nEAÞðIE · nEBÞ
�
: ð30Þ

This shows that the Earth’s quadrupole contribution to the
delay is large enough to be observed.
The third term in Eq. (26) is the delay due to the angular

momentum of the Earth. The last term in Eq. (14) gives
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ΔE
s ¼ −

4GME

c3
RAB · ½sE × ðnEA þ nEBÞ�

ðrEA þ rEBÞ2 − R2
AB

¼ 1 × 10−9 m ·NAB · ½IE × ðnEA þ nEBÞ�: ð31Þ

The Earth-rotation contribution does not exceed 1 nm, and
we can amplify or inhibit by choosing an optimized orbit.
In an ideal situation, it may be used to test gravitomagnetic
effects on light propagation.
Next, we look at the fourth term in Eq. (26), which is due

to the velocity effect of gravitational sources. Since the
velocity and acceleration corrections are higher-order
effects, it is sufficient to use the relationship rEA ¼ rEB.
From Eqs. (14) and (15), the Earth-velocity-dependent term
gives

Δ1E
v ¼ 2GME

c2

��
−
2NAB · vE

c
þ 2v2E

c2
−
ðNAB · vEÞ2

2c2

�

× ln
rEA þ rEB þ RAB

rEA þ rEB − RAB

−
RAB

c2rEB
½ðNAB · vEÞ2 þ 2ðnEA · vEÞðnEB · vEÞ�

�
:

ð32Þ

From this equation, the first-order velocity contribution
ðvE=cÞ to the delay is −4.7 μm · cosωst, where ωs is the
angular frequency of the spacecraft with respect to
the Earth. (In this and subsequent subsections, the initial
phase value in cosine/sine functions is set to 0.) The
second-order velocity contribution ðvE=cÞ2 is about
ð4.1þ 0.2 cos 2ωstÞ × 10−10 m.
The last term in Eq. (26) is the acceleration correction to

light delay, which contains the contributions from the
Earth’s acceleration and interactions with other bodies.
From Eqs. (14) and (16), it is expressed as

Δ1E
a ¼ GME

c4

�
ðNAB · aEÞðNAB · rEAÞ − ðrEA · aEÞ

−
X
c≠E

2GMc

r2cE
rcE

�
ln
rEA þ rEB þ RAB

rEA þ rEB − RAB
: ð33Þ

Through rough estimations, the acceleration contribution
to the delay is about 3.8 × 10−14 m (which is negligible),
and the delay due to interactions is longer, reaching
−2.3 × 10−10 m.
The third term in Eq. (25) represents the external

gravitational contribution to the delay, which is mainly
due to the Sun and other planets. Since these gravitational
sources are remote, Δ1ext can be expressed as

Δ1ext ¼
X

b≠E;M

�
1 −

2NAB · vb
c

�
2GMb

c2
RAB

db
; ð34Þ

with db ¼ ðrbA þ rbBÞ=2. Assuming that ωE and eE are the
angular frequency and eccentricity of the Earth’s orbit,
respectively, a direct estimate gives that the Sun’s contri-
bution is 3.3 m · ð1þ ζ cosωstþ eE cosωEtÞ, whereas for
Jupiter it is 0.5–0.8 mm. ζ ¼ rEA=ð1 AUÞ is a constant.
The delay contribution of tidal deformations is given by

the fourth term in Eq. (25). Only taking the Earth into
account, we obtain

Δtid ¼
X
b≠E

ffiffiffi
3

p ðk2ÞEGMbR5
E

c2r3Ebd
2
E

ð12Bb2 þ 30Bb3 − 1Þ; ð35Þ

where ðk2ÞE is Earth’s Love number, and dE is the impact
parameter which has a value of about rEA=2 or rEB=2. The
Moon and Sun are the main sources of deformations of the
Earth. The calculation implies that their contribution
reaches the picometer level and the contribution from
the Moon’s tidal force is about 2 times that from the
Sun. This tidal-deformation delay is more significant when
the impact parameter of light with respect to the Earth is
smaller. In the BEACON mission, the tidal-deformation
delay can even reach several nanometers, which suggests
that BEACON could yield a test of this delay with an
accuracy of order 10%.
Finally, we evaluate the last term in Eq. (25), which is the

2PN contribution of the Sun’s mass. Equation (21) yields
the Sun’s 2PN delay, 2.8 × 10−8 m · ð1þ 2eE cosωEtÞ.
Clearly, the Earth’s contribution to this term is at the level
of 0.1 pm, and the contributions from other bodies are
much smaller. Therefore, we just keep the Sun’s contribu-
tion in this term. To summarize, we give a list of the various
gravitational delays in Table I.

III. GENERAL-RELATIVISTIC PHASE MODEL
AND FREQUENCY SHIFT FOR TIANQIN

Arthur Schawlow advised to never measure anything
but the frequency [45,46]. Essentially, the measurable
laser ranging interferometric (LRI) quantity is the fre-
quency difference, which is usually expressed in the form
of the frequency shift. For the TianQin mission, the
frequency shift between spacecraft A and B (connected
by laser link) can be split into three parts: the light-
trajectory-dependent part, the spacecraft-dependent
(clock-dependent) part, the and coupling part between
the light’s trajectory and the spacecraft (Fig. 1). The light-
trajectory-dependent part includes the first-order Doppler
effect, propagation delay effects, the GW signal, and
higher-order effects in the light trajectory. The spacecraft-
dependent part concerns the gravitational redshift, grav-
itomagnetic clock effect, clock noise, etc., For the
coupling part, the biggest term (of order c−3) comes
from the coupling between the gravitational redshift and
first-order Doppler effect, while other terms are higher
order than c−3. From the theoretical point of view, the
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one-way frequency shift between spacecraft is charac-
terized as

Δf
f

ðvA; tA;xA; tB;xBÞ

¼
�
Δf
f

�
GW

þ
�
Δf
f

�
s
þ
�
Δf
f

�
GF

þ
�
Δf
f

�
n
þ � � � ;

ð36Þ

which is dependent on the velocities and positions of the
spacecraft. (For a more detailed description, the gravita-
tional constants of the Earth and Moon, their angular
momentum, and other parameters are needed.) The first
term on the right-hand side of the equation is the
gravitational-wave effect on the frequency shift, which
is the target effect of TianQin. The second term represents
the special-relativistic Doppler effect including the first-
order and higher-order Doppler effects, and the third term

contains all contributions from the gravitational field,
such as gravitational redshift. The last term describes the
noise term mentioned in Eq. (24). Laser frequency noise
can be directly introduced into Eq. (36). For shot noise or
phase noise, we can start the analysis by using Eq. (24).
The ellipsis includes other possible observable effects in
TianQin, such as effects due to the possible violation of
local Lorentz invariance and local position invariance,
which will be studied in future works.
In order to model the LRI observables of TianQin in

detail, we consider that the spacecraft A and B move on
their worldlines xAðtÞ and xBðtÞ, respectively. At coordi-
nate time t1, a laser signal with phase φðt1;xA1Þ is trans-
mitted by the onboard oscillator of spacecraft A, where in
the following xAi represents xAðtiÞ, and similarly for the
corresponding quantities xBi. At coordinate time t2, this
signal is received at spacecraft B (t2, xB2) with phase
φðt2;xB2Þ ¼ φðt1;xA1Þ. The interferometer onboard space-
craft B compares the phase of the local laser oscillator at t2
to the phase of the received signal at xB2 from spacecraft A.
This comparison procedure produces the phase difference
and frequency observables, from which the range and range
rate between the two spacecraft are deduced. These phase
and frequency data constitute the GW signal, gravitational
field effects, Doppler effects, etc., For the two-way meas-
urement (as shown in Fig. 2), this signal is coherently
retransmitted at spacecraft B (t2, xB2) with phase φðt2;xB2Þ
and is subsequently received at spacecraft A (t3, xA3) with
phase φðt3;xA3Þ ¼ φðt2;xB2Þ. Similarly, the interferometer
onboard spacecraft A compares the phase of the local laser
oscillator at t3 to the phase of the received signal at xA3
from the transponder on spacecraft B.
We start our discussion with the one-way measurement.

At spacecraft B, the detectable quantity is the difference
between the instantaneous local phase and the received
phase. For the one-way measurement, an oscillator onboard

A B

FIG. 1. Schematic diagram of the TianQin laser ranging
interferometric instrument. A light signal with frequency fA sent
from spacecraft A is received by spacecraft B. The local oscillator
or clock on the spacecraft compares its frequency fB with the
received signal frequency, which forms the frequency observable.
Clearly, the frequency shift can be split into a spacecraft-
dependent (S-D) part, light-trajectory-dependent (L-T-D) part,
and their coupling (C-D) part.

TABLE I. Parametrized estimates of light propagation delays between TianQin spacecraft for various gravitational terms. For the sake
of simplicity, we set the constant phase value of all cosine functions in Table I to zero, and use the function fðx1; x2Þ ¼
ð5=2Þðx21 þ x22Þ þ 4x1x2, where x1 ¼ IE · nEA and x2 ¼ IE · nEB. For the Moon, we assume that the orbits of the spacecraft and Moon
are coplanar. Mb ¼ GMbc−2=r describes the gravitational potential of body b.

Effect Equation Contribution Source Parametrized value

Earth’s monopole mass Eq. (27) ME 2.34 cm
Earth’s velocity Eq. (32) vE −4.7 μm · cosωst
Earth’s acceleration Eq. (33) aE 3.8 × 10−14 m
Interaction with Earth Eq. (33) −2.3 × 10−10 m
Moon’s monopole mass Eq. (29) MM 49 μm þ 6 μm · cosωmst
Earth’s quadrupole moment J2 Eq. (30) J2 1.35 × 10−7 m · ½1 − fðx1; x2Þ�
Earth’s angular momentum Eq. (31) sE 1 nm ·NAB · ½IE × ðnEA þ nEBÞ�
Sun’s monopole mass Eq. (34) MS 3.3 m · ð1þ ζ cosωstþ eE cosωEtÞ
Deformation due to Moon Eq. (35) 2.1 pmð12BM2 þ 30BM3 − 1Þ
Deformation due to Sun Eq. (35) 1 pmð12BS2 þ 30BS3 − 1Þ
Sun’s 2PN 28 nm · ð1þ 2eE cosωEtÞ
Jupiter’s mass MJ ð5 − 8Þ × 10−4 m
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spacecraft A with proper frequency fA generates a signal
with frequency fAðτA1Þ at proper time τA1. This signal is
received by spacecraft B at proper time τB2, and the local
oscillator’s proper frequency is fBðτB2Þ at that instant.
Then, the infinitesimal difference δφABðτB2Þ between the
received phase dφABðτB2Þ and the locally generated phase
dφBðτB2Þ can be expressed by taking the difference
between the two phase values as

δφABðτB2Þ ¼ dφBðτB2Þ − dφABðτB2Þ
¼ 2πðfBðτB2Þ − fABðτB2ÞÞdτB2; ð37Þ

where fABðτB2Þ is the frequency of the oscillator on
spacecraft A measured at spacecraft B. The received
phase dφABðτB2Þ is originally generated at spacecraft A
at proper time τA1, and can be expressed in terms of the
proper frequency fAðτA1Þ and infinitesimal proper time
interval dτA1 at spacecraft A as dφABðτB2Þ ¼ dφAðτA1Þ ¼
2πfAðτA1ÞdτA1. This relationship allows us to express the
frequency fABðτB2Þ in terms of the frequency fAðτA1Þ at the
proper time τA1 on spacecraft A,

fABðτB2Þ ¼
dτA1
dτB2

fAðτA1Þ: ð38Þ

Using Eq. (38), the infinitesimal difference δφABðτ2Þ in the
phase can be rewritten in the form of proper frequencies
generated locally at spacecraft A and B

δφABðτB2Þ ¼ 2π

�
fBðτB2Þ − fAðτA1Þ

dτA1
dτB2

�
dτB2: ð39Þ

In fact, spacecraft B will use a phase-locked detection
scheme to confirm the presence of the detection signal with
high sensitivity, in which a frequency offset fBoðτB2Þ is
introduced into the locally generated signal. This frequency

offset can respond to the received signal for its subsequent
retransmission process. A coherent retransmission implies
that the frequency offset satisfies the relationship

fBðτB2Þ þ fBoðτB2Þ ¼ fAðτA1Þ
dτA1
dτB2

: ð40Þ

The retransmitted signal is received at proper time τA3 and
compared with the locally generated signal on spacecraft A.
Thus, similar to the expression for δφABðτ2Þ, the infini-
tesimal difference δφBAðτA3Þ in phase measured on space-
craft A is given by

δφBAðτA3Þ

¼ 2π

�
fAðτA3Þ − ðfBðτB2Þ þ fBoðτB2ÞÞ

dτB2
dτA3

�
dτA3:

ð41Þ

Equations (39) and (41) can be used to deduce the
observational equations, which are needed to process the
scientific data.
For more practical considerations, the LRI observables

of TianQin are a continuous signal. The continuous
changes in the phase difference generate time series data.
To obtain the changes in the phase difference, the proper
times should be treated as continuous variables, allowing to
formally integrate Eqs. (39) and (41) as follows:

ΔφABðτB2Þ ¼
Z

δφABðτB2Þ; ð42Þ

ΔφBAðτA3Þ ¼
Z

δφBAðτA3Þ: ð43Þ

These two quantities are the LRI observables on spacecraft
B and A, respectively, which are obtained by comparing
the phase of the local oscillator with the phase of the
received signal.
In order to develop Eq. (39) or Eq. (41), we should

establish the differential equation between the spacecraft’s
proper times (τA and τB) and coordinate time in BCRS,
which is given by

dτA=B
dt

¼ 1 −
1

c2

�
v2A=B
2

þ wðxA=BÞ
�
þOðc−4Þ: ð44Þ

We analyze δφABðτB2Þ, but the same process can be used
for δφBAðτA3Þ. Using Eq. (44), Eq. (39) is rewritten as
follows:

FIG. 2. Schematic diagram of the timing events on TianQin for
signal propagation. xAðtÞ and xBðtÞ are the trajectories of
spacecraft A and B, respectively, which almost coincide with
each other. The transmission of the signal is the event point
(t1, xA1), and it is received at xB2 by spacecraftB at time t2. For the
two-way measurement, the signal returns to spacecraft A at xA3.
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δφABðτB2Þ

¼ 2π

�
fBðτB2Þ − fAðτA1Þ

�
dτA
dt

�
t1

�
dτB
dt

�
−1

t2

dt1
dt2

�
dτB2:

ð45Þ

Considering light propagation in the gravitational field, the
ratio of the coordinate times in this equation can be
expressed as

dt1
dt2

¼ 1 −
1

c
d
dt2

RABðxA1;xB2Þ: ð46Þ

By introducing the instantaneous coordinate distance
DAB ¼ jxB2 − xA2j (see Appendix B), this equation is
further written as

dt1
dt2

¼ 1 −
1

c
d
dt2

�
DAB þ ΔGF

AB þ DAB · vA
c

þDAB

2c2

�
v2A − DAB · aA þ ðDAB · vAÞ2

D2
AB

��
: ð47Þ

Apparently, the light-trajectory-dependent parts of the
frequency shift may be described by this equation, such
as the first-order Doppler effect and Sagnac effect. The
second term in the parentheses describes the frequency
shift due to the gravitational delay. Using the Shapiro delay
term gives

dΔGF
AB

cdt
¼

X
b

2GMb

c3rbArbB

�ðrbA þ rbBÞNAB · vAB
1þ nbA · nbB

−
ðnbA · vbA þ nbB · vbBÞRAB

1þ nbA · nbB

�
: ð48Þ

The contribution of the Earth’s gravitational delays is about
4 × 10−15e, where e is the eccentricity of the spacecraft
with respect to the Earth.
Inserting Eq. (44) into Eq. (45), we have

�
dτA
dt

�
t1

�
dτB
dt

�
−1

t2

¼ 1þ 1

c2

�
v2B − v2A

2
þ wB − wA

�
þOðc−4Þ: ð49Þ

This constitutes most of the clock-dependent part of the
frequency shift. Estimating this equation, the second-
order Doppler effect is about 1 × 10−9 and the gravitational
redshift due to the Sun is about 1 × 10−11. However, the
observable physical quantities are much smaller.
Considering TianQin’s constellation, the second-order

Doppler term can be reexpressed as

1

c2

�
v2B − v2A

2

�
¼ 1

c2
d
dt

ðRAB · vEÞ −
RAB · aE

c2

þ 1

2c2
ðv2EB − v2EAÞ: ð50Þ

The first term is essentially the coordinate effect, which will
cancel with the third term in the parentheses of Eq. (47).
This cancellation leads to measurable effects in the term of
Eq. (47) that is only dependent on the spacecraft’s velocity
with respect to Earth. The magnitude of the second term is
−1 × 10−11, which is equivalent to the gravitational redshift
but with opposite sign. Further, the gravitational redshift
term can be rewritten as

wB − wA

c2
¼

ffiffiffi
3

p
GMEe
c2a

�
1þ 3R2

E

2a2
J2

�
cosωst

þ 1

c2
X
b≠E

GMb

r3bE
xbE ·RBA þOðe2; r−3bEÞ; ð51Þ

with semimajor axis a ¼ 105 km. Clearly, the first term is
the Earth’s gravitational redshift, in which the contribution
of the mass monopole is about 7.7e × 10−11, whereas that
of the quadrupole moment is 4.7e × 10−16. The second
term represents the gravitational redshift due to other
body’s gravitational field, which would cancel with the
second term in Eq. (50) since the Earth’s acceleration is
given by ∇P

b≠EðGMbÞ=rbE. Thus, the influence of the
Sun and the Moon’s gravitational fields is only given in
the form of a tidal potential. This is a characteristic of the
geocentric orbit option. The influences of other bodies
(except for the Earth) become

utB − utA
c2

≃
X
b≠E

3GMba2

2c2r3bE
½ðnbE · nEBÞ2 − ðnbE · nEAÞ2�;

ð52Þ

where ut is defined by the tidal potential. This equation is
the ignored term in Eq. (51) involving r−3bE. The contribu-
tions due to the Moon and Sun are 1 × 10−14 and 6 × 10−15,
respectively. The other body’s contributions are even
smaller and can be omitted (e.g., of order 10−20 for Jupiter).
Subsequently, the Earth’s tidal deformation is taken

into account. From Eq. (11), its effect on the frequency
shift ðδf=fÞtid is obtained, which is given in the form of
Love numbers,

�
δf
f

�
tid
¼
X
c≠E

3ðk2ÞEGMcR5
E

2c2r3cEa
3

½ðncE ·nEBÞ2− ðncE ·nEAÞ2�:

ð53Þ

The Sun and Moon are the main sources of tidal force
deformations, which lead to a negligible frequency shift of

QIN, TAN, CHEN, and SHAO PHYS. REV. D 100, 064063 (2019)

064063-10



order 10−20. This effect grows for lower orbits. The estimate
implies that the frequency shift due to tidal deformations
may reach a measurable level in binary pulsar systems.
For the coupling terms, we consider a frequency shift due

to the coupling between the Earth’s gravitational redshift

and the Doppler effect, which is about 5 × 10−17e2,
whereas the coupling term involving the Sun is smaller.
The coupling effects for TianQin are negligible.
After the above mathematical manipulations and using

Eq. (B5), the infinitesimal difference δφAB becomes

δφABðτB2Þ ¼ 2π

�
fBðτB2Þ − fAðτA1Þ þ fAðτA1Þ

�
NAB · vAB

c
−
v2EB − v2EA

2c2

þ 1

c2
ððNAB · vEAÞðNAB · vEBÞ − ðNAB · vEAÞ2 þ DAB · aEAÞ

−
ffiffiffi
3

p
GMEe
c2a

�
1þ 3R2

E

2a2
J2

�
cosωst −

X
b≠E

3GMba2

2c2r3bE
½ðnbE · nEBÞ2 − ðnbE · nEAÞ2�

��
dτB2: ð54Þ

The c−1 term is the first-order Doppler effect, which can
be written in the orbit-parameter form

−
NAB · vAB

c
¼

ffiffiffi
3

p
e

2c

ffiffiffiffiffiffiffiffiffiffiffi
GME

a

r
sinωst¼ 5.8× 10−6 · e sinωst:

ð55Þ

For Keplerian orbits, the velocity is sufficiently described
by the relation v2 ¼ 2U þ K, where U is the Newtonian
gravitational potential and K is a constant. The clock’s
second-order Doppler effect can be written as

v2EB − v2EA
2c2

¼
ffiffiffi
3

p
GMEe
c2a

cosωst: ð56Þ

This term has the same magnitude as the Earth’s gravita-
tional redshift, which is a characteristic of a Keplerian orbit.
In fact, the practical orbit deviates from the Keplerian orbit,
which also causes relativistic effects between the space-
craft’s clocks. These effects may need to be considered after
a long-time integral, which can be estimated by a perturbed
Keplerian orbit [47]. After a complete orbital period
(3.65 days), the relative frequency difference between
the spacecraft’s clocks may reach the level of 10−13e. To
summarize, several important effects are listed in Table II.

IV. CONCLUSION

High-precision space missions require accurate model-
ing of the relativistic observations of laser and frequency
data. By solving the eikonal equation in the BCRS
within the post-Newtonian approximation, we studied light
propagation in the gravitational field of an isolated,
gravitationally boundN-body system. Based on the method
of asymptotic perturbation theory, the various gravitational
perturbations in phase were solved and the corresponding
time delays were subsequently obtained. In addition to
the conventional static fields, the solutions include the

influence of motion, such as velocity and acceleration. At
the same time, we treated the system not as N independent
bodies, but rather as interaction-bound bodies. The gravi-
tational interactions and tidal deformations were taken into
account for realistic, nonrigid astronomic bodies. The
condition of gravitationally bound N-body system is
important in strong gravitational fields; for example, tidal
effects are significant and must be considered in binary
pulsar systems or some GW sources. Our solutions give a
more precise description of physicalN-body systems and are
sufficient for use in modern space missions. We applied
these solutions to a relativistic analysis of the TianQin
mission, focusing on the gravitational influences of the
Earth-Moon system. Based on the parameters of Keplerian
orbits, we estimated the various terms in the light propaga-
tion delays between spacecraft (listed in Table I), which can
be used in a numerical model of TianQin. Equation (24) or
Eq. (36) can be used to discuss the various effects of noise on
the TianQin sensitivity curve in future works. From the
relativistic analysis of TianQin, we found that the Moon’s
gravitational effects on the onboard clocks and inter-space-
craft signal propagation are comparable to those of the Earth,
and the contributions of the Earth-Moon system’s gravita-
tional delays are below the picometer level in the mHz

TABLE II. Parametrized estimates of the one-way frequency
shift between spacecraft for the TianQin mission. We set the
original phase in the sine and cosine functions to 0. The angles
are given by cos θbA=B ¼ nbE · nEA=B, where b represents the
Moon or Sun.

Effect Parametrized value

First-order Doppler effect 5.8 × 10−6 · e sinωst
Second-order Doppler effect 7.7 × 10−11 · e cosωst
Earth’s mass monopole 7.7 × 10−11 · e cosωst
Earth’s mass J2 term 4.7 × 10−16 · e cosωst
Moon’s mass monopole 1 × 10−14ðcos2 θMB − cos2 θMAÞ
Sun’s mass monopole 6 × 10−15ðcos2 θSB − cos2 θSAÞ
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regime, and thus are negligible for GW detections.
Furthermore, we found that TianQin may provide some
classical tests of general relativity. For example,
the uncertainty in the post-Newtonian parameter γ can be
tested at the level of some scalar-tensor theories of gravity
and the Earth’s gravitomagnetic effect on light propagation
can be tested.
We also computed the relativistic frequency shift

between the spacecraft’s clocks due to the various motion
and gravitational field terms. Parametrized estimates are
listed in Table II. We found the surprising result that the
general-relativistic contribution to the frequency shift is
much smaller than our a priori expectation. These smaller
contributions to the frequency shift are mainly caused by
the TianQin’s configuration, which causes several effects
to cancel with each other. At the same time, our results
demonstrate that most general-relativistic effects are de-
pendent on the orbital parameters. Thus, we can amplify or
inhibit these effects by choosing an optimized orbit. This
analytical formalism and parametrized estimates of the
relativistic effects will provide support for the TianQin
scientific mission.
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APPENDIX A: EIKONAL EQUATION

To solve the eikonal equation we use the asymptotic
perturbation method. We choose a small parameter G
(gravitational constant), and expand every function in the
eikonal equation in corresponding power series. This
method is similar to the approach developed by C.
Le Poncin-Lafitte et al., which was initially based on the
Synge world function [7], and then on the TTF [8]. The
asymptotic power series can provide a safe way to select
the terms to keep at each order. The metric tensor gμν is
represented by a series in ascending powers of G:

gμνðx; GÞ ¼ ημν þ
X∞
n¼1

GngðnÞμν ðxÞ: ðA1Þ

Also, gμν can be given by a similar expansion with the
relationships

gμνð1Þ ¼ −ημαηνβgð1Þαβ ðA2Þ

and

gμνðnÞ ¼ −ημαηνβgðnÞαβ −
Xn−1
p¼1

ημαgðpÞαβ g
βν
ðn−pÞ: ðA3Þ

Further, the phase φ is expressed as a similar expansion,

φðt;xÞ ¼ φ0 þ
Z

kμdxμ þ
X∞
n¼1

GnφðnÞðt;xÞ; ðA4Þ

where φ0 is a constant, and φðnÞðt;xÞ is the phase
perturbation of the nth order in G.
Let us define a light ray connecting xA ¼ ðctA;xAÞ and

xB ¼ ðctB;xBÞ with the point event x ¼ ðjx − xAj þ Δ;xÞ,
where Δ is the gravitational delay and x is defined by the
parameter equation (8). Inserting Eqs. (A2)–(A4) into
the eikonal equation, we have the Hamilton-Jacobi-like
equation

gμνðxÞ∂μφðxA; xÞ∂νφðxA; xÞ ¼ 0: ðA5Þ

Using the above equations, the perturbation terms φðnÞ can
be determined by a recursive procedure. Each term φðnÞ can
be given by the integral along a straight line between
transmission and reception. This avoids the calculation
of the gravitational perturbation of the geodesic joining
the given points. In contrast, the integrals for φðnÞ have to
contain products of the first-order derivatives of lower-
order terms φðn−pÞ, p ¼ 1;…n − 1. This means that the
calculations of integrals along the null geodesic are
replaced by calculations of the integrals of these deriva-
tives. This method has been demonstrated by Poncin-
Lafitte et al. [7,8]. When we only consider the case
of n ≤ 2, the solution of the eikonal equation is expressed
as [8,29]

φð1Þ ¼ −
RAB

2k0

Z
1

0

gμνð1Þkμkνdλ ðA6Þ

and

φð2Þ ¼ −
RAB

2k0

Z
1

0

ðημν∂μφ
ð1Þ∂νφ

ð1Þ

þ 2gμνð1Þkμ∂νφ
ð1Þ þ gμνð2ÞkμkνÞdλ: ðA7Þ

All integrals are calculated along the straight line defined
by Eq. (8). Obviously, Eq. (A6) are the terms of order G
or c−2, in which an integral along a straight line is valid.
Equation (A7) is of order c−4. For the calculation of φð2Þ,
the recursive procedure with terms ∂μφ

ð1Þ avoids the
integral along the perturbed paths.

APPENDIX B: INSTANTANEOUS
COORDINATE DISTANCE

In space missions, the arrival time of the signal is
recorded at one of the satellites. Therefore, it is convenient
to express the distance between the spacecraft at the time of
reception tB. We introduce an instantaneous coordinate
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distance DAB ¼ jDABj ¼ jxBðtBÞ − xAðtBÞj. By using the
Taylor expansion, the coordinate distance RAB ¼ xBðtBÞ −
xAðtAÞ can be written as

RAB¼DABþvAðtBÞTAB−
1

2
aAðtBÞT2

ABþOðc−3Þ; ðB1Þ

where vA and aA are the velocity and acceleration of A at
the coordinate time tB, respectively. By an iterative process,
RAB can be rewritten as

RAB ¼ DAB þ DAB · vA
c

þDAB

2c2

�
v2A −DAB · aA

þ ðDAB · vAÞ2
D2

AB

�
þOðc−3Þ; ðB2Þ

where all of the quantities are measured at the reception
time tB. Then, we can obtain its derivative as

dRAB

cdtB
¼ nAB · vAB

c
þ 1

c2
ðvAB · vA þ DAB · aAÞ þOðc−3Þ

ðB3Þ

with nAB ¼ DAB=DAB. Combining Eqs. (B1) and (B2), the
unit vector nAB can be expressed in terms of the unit vector
NAB,

nAB ¼ NAB

�
1þ NAB · vA

c
þ 1

2c2
ð3ðNAB · vAÞ2 − v2A

−RAB · aAÞ
�
−
vA
c

�
1þ NAB · vA

c

�

þ aA
2c2

RAB þOðc−3Þ: ðB4Þ

Using this, Eq. (B3) can be rewritten as

dRAB

cdtB
¼ NAB · vAB

c
þ 1

c2
½ðNAB · vAÞðNAB · vBÞ

− ðNAB · vAÞ2 þRAB · aA� þOðc−3Þ: ðB5Þ

Neglecting the acceleration term, this expression takes the
usual Doppler-effect form, and this method allows us to
obtain the higher-order Doppler terms.

APPENDIX C: USEFUL RELATIONSHIPS FOR
KEPLERIAN ORBITS

We consider a Keplerian equation r ¼ að1 − e cos uÞ in
the orbital plane, where a is the semimajor axis, e is the
eccentricity, and u is the eccentric anomaly. In the orbital
plane, the position vector is given by

r ¼ aðcos u − e;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
sin uÞ: ðC1Þ

By this equation, its unit vector is given by

n ¼ r
r
¼

�
cos u − e
1 − e cos u

;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
sin u

1 − e cos u

�
: ðC2Þ

Considering the time derivative of the eccentric anomaly
_u ¼ ffiffiffiffiffiffiffiffiffiffiffi

GMa
p

=ar, the velocity vector is

v ¼
ffiffiffiffiffiffiffiffiffiffiffi
GMa

p

r

	
− sin u;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
cos u



: ðC3Þ

We consider two spacecraft A and Bwith different eccentric
anomalies uA and uB. Using Eqs. (C1)–(C3), we obtain
several relationships in orders of e:

rAB · vAB
rAB

¼ −2
ffiffiffiffiffiffiffiffi
GM
a

r
e sinKAB cosKAB sinLAB; ðC4Þ

rAB · rA
rAB

¼ −aðsinKAB − e sinLABÞ; ðC5Þ

rAB · vA
rAB

¼
ffiffiffiffiffiffiffiffi
GM
a

r
cosKABð1þ e cos uAÞ; ðC6Þ

with rAB ¼ jrABj ¼ jrB − rAj, KAB ¼ ðuB − uAÞ=2, and
LAB ¼ ðuB þ uAÞ=2.
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