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Using simulations performed with the population synthesis code MOBSE, we compute the merger rate
densities and detection rates of compact binary mergers formed in isolation for second- and third-
generation gravitational wave detectors. We estimate how rates are affected by uncertainties on key stellar
physics parameters, namely common envelope evolution and natal kicks. We estimate how future upgrades
will increase the size of the available catalog of merger events, and we discuss features of the merger rate
density that will become accessible with third-generation detectors.
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I. INTRODUCTION

The detection of gravitational waves (GWs) from ten
binary black holes (BBHs) and a binary neutron star (BNS)
in the first two LIGO/Virgo observing runs [1], and the
subsequent detections of numerous compact binary candi-
dates in the third observing run, naturally lead to a question:
How do these binaries form, and what is the physics that
drives their evolution?
Advanced LIGO (AdLIGO) is expected to reach design

sensitivity in the near future; the so-called Aþ upgrade to
current detectors was already approved for funding, and
further upgrades (Aþþ and Voyager) are expected in the
near future [2–6]. The GW community is also planning
future, “third-generation” (3G) facilities, such as the
Einstein Telescope (ET) [7,8] and Cosmic Explorer (CE)
[6], which will extend the observable horizon to the very
early Universe.
As GW detectors improve and the number of detections

grows, we will gather information about the environments
in which compact binaries form, and constrain the physical
parameters that drive their evolution. Future GW detectors
will measure compact binary parameters (such as masses
and spins) within an accuracy of a few percent [9],

reconstructing fine details of distribution of these observ-
ables. They will observe sources up to redshifts as large as
z ∼ 102 [10], allowing us to study how the merger rate
density evolves with redshift, and ultimately to constrain
astrophysical models [11–13]. The large number of detec-
tions that comes with increased sensitivity will also
reduce statistical errors on the parameters that describe
compact binary populations to a few percent with ∼103
observations [14].
Compact-object binaries could form either in the field

[15,16] or through dynamical interactions in young
[17–19], nuclear [20,21], or globular clusters [22,23]. In
this paper, we present updated detection rates, and a road
map of our prospects for constraining the astrophysics of
compact binaries in the near future. We study how detection
rates for binaries formed in isolation (“field binaries”) will
evolve with future improvements of GW detectors, with the
goal to understand if and when characteristic features of the
astrophysical populations will become visible.
The plan of the paper is as follows: In Sec. II, we present

our astrophysical populations based on the MOBSE pop-
ulation synthesis code [24,25]. In Sec. III, we investigate
how uncertainties in binary evolution affect the evolution of
the merger rate density, and what the new generation of
detectors can tell us about this evolution. In Sec. IV, we
compute detection rates for each of the six models we*vbaibha1@jhu.edu
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consider and for different detector sensitivities. In Sec. V,
we summarize our findings and outline directions for future
work. The Appendix gives details on how detection rates
are computed from the MOBSE simulations. Throughout the
paper, we use the standard cosmological parameters deter-
mined by the Planck Collaboration [26]. We assume that a
source is detected if the single-detector signal-to-noise ratio
(SNR) ρ is such that ρ > 8.

II. ASTROPHYSICAL POPULATIONS

We use simulations performed with the population
synthesis code MOBSE [25]. MOBSE is an upgrade of the
BSE code [16] which includes up-to-date prescriptions for
the evolution of massive stars. The treatment of stellar
winds accounts for the stellar metallicity and luminosity
dependence of the mass loss. Compact objects are produced
via different channels, including core collapse, electron
capture, and (pulsational) pair instability supernovae (SNe).
In our simulations, the primary star’s mass m1 is

distributed according to the Kroupa mass function [27]:

F ðm1Þ ∝ m−2.3
1 with m1 ∈ ½5–150� M⊙; ð1Þ

while the mass ratio q ¼ m2=m1 scales like [28]

F ðqÞ ∝ q−0.1 with q ∈ ½0.1–1�: ð2Þ

The orbital period P is drawn from

F ðPÞ ∝ P−0.55 with P ¼ log10

�
P
day

�
∈ ½0.15–5.5�;

ð3Þ

and the eccentricity e follows the distribution [28]

F ðeÞ ∝ e−0.42 with 0 ≤ e < 1: ð4Þ

Among the many physical processes involved in the
formation of compact binaries that can merge within a
Hubble time, the so-called common envelope phase is
believed to be critical [29,30]. When a star in a binary
system overfills its Roche lobe, it starts transferring mass,
and it eventually forms a common envelope that engulfs the
companion. The common envelope does not corotate with
the stars or their cores, and this leads to a drag force. As a
result, the stars spiral in and transfer their orbital energy to
the envelope. The system will survive only if the energy
transferred is sufficient to eject the envelope [31–33]. The
efficiency of this mechanism constitutes a main uncertainty
in compact binary formation modeling.
Another important source of uncertainty are natal kicks.

If a compact object forms from a supernova explosion, it is
expected to receive a birth kick because of asymmetric
mass ejection. A nonzero kick (the so-called Blaauw

kick [34]) is expected even in the unlikely case where
mass loss is symmetric, but the compact object is part of a
binary system. This natal kick can disrupt the binary or
substantially modify its orbit. Kicks set the fraction of
stellar binaries which are unbound by the SN explosion,
and consequently play a major role in determining GW
detection rates [15,24,35].
As described by Giacobbo and Mapelli [36] and sum-

marized in Table I, we consider six representative pop-
ulations of merging binaries, aiming at bracketing the
uncertainties in the physics of both the common envelope
and natal kicks. These two parameters might be the first to
be constrained with GW data (see, e.g., Refs. [14,37]).
The common envelope phase is treated using the so-

called αλ formalism [32,38], where α quantifies the
efficiency of energy transfer to the envelope and λ repre-
sents the binding energy of the envelope. In this work, we
consider α as a free parameter, while λ depends on the
stellar type [39], and it is computed by using the pre-
scriptions derived in Ref. [40]. Kicks are extracted from a
Maxwellian distribution with root-mean-square speed
(rms) σCCSN for core-collapse SNe that produce neutron
stars.1 For black holes, we reduce the kick velocity vBH
by taking into account fallback: vBH ¼ ð1 − ffbÞvNS,
where vNS is the natal kick for neutron stars and ffb
parametrizes the amount of fallback on the protocompact
object [42].
The CC15 models produce natal kicks ≤100 km s−1,

and therefore they are in tension with the proper motions
of the fastest single Galactic neutron stars [43]. These
models were chosen because they give a local merger
rate density of binary neutron stars consistent with the one
inferred from GW170817 [44], without requiring exotic
assumptions about the common envelope.

MOBSE predicts the NS masses from 1.1 to 2 M⊙, where
light (heavy) NSs are preferred during BNS (NSBH)
mergers. On the other hand, NSBH mergers favor low
BH masses (<15 M⊙) while BBH mergers could have
BHs as heavy as 45 M⊙, with most binaries having mass
ratios close to unity [36].

TABLE I. Catalog of MOBSE models considered in this study.

Model σCCSN α

α1 265 km=s 1
α3 265 km=s 3
α5 265 km=s 5
CC15α1 15 km=s 1
CC15α3 15 km=s 3
CC15α5 15 km=s 5

1Neutron stars can also form through electron capture SNe,
which are less energetic, faster, and do not develop large
asymmetries. This is generally expected to lead to small kicks,
and therefore we assume σECSN ¼ 15 km=s [41].
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III. MERGER RATE DENSITIES

The merger rate density RðzmÞ as a function of merger
redshift zm tracks the distribution of merging binaries
across cosmic time, and it depends on two factors:

(i) The rate of binary formation at a given redshift zf.
(ii) The distribution of time delays tdelay between the

formation of the parent stars in the binary and the
merger of their compact object remnants.

In turn, binary formation at zf depends on the star for-
mation rate and the metallicity, both of which evolve over
time. The time delay distribution is sensitive to the physics
that drives binary evolution (see, e.g., Refs. [22,45,46]).
In Fig. 1, we plot the evolution of the merger rate density

for the six MOBSE models considered in this study. The low-
redshift behavior is often parametrized as a power law:
RðzÞ ≈R0ð1þ zÞλ0 [11,13], where R0 is the local merger
rate density and λ0 is a model-dependent parameter that
describes its evolution. The parameter λ0 can be used to
infer astrophysical information. The star formation rate is
well approximated by λ0 ≃ 2.4 for 0.1 < z < 1 [11].
Therefore, an observed λ0 < 2.4 would imply that mergers
peaked before the peak of star formation, which is only
possible if compact object binary formation is high at low
metallicities and if the time delays are short enough [11].
Current detectors can only investigate the evolution of the
merger rate at low redshift, but in the near future we will be
able to trace the redshift evolution of the merger rate
density.
Figure 1 shows that the BNS rate density follows quite

closely the star formation rate, with a peak at slightly lower
redshift (because of the short but finite time delays).
Current observations favor models with low kicks and
large α: as shown by the red shaded region in the top panel
of Fig. 1, only low-kick models with α ¼ 3 and α ¼ 5 can
explain the high local merger rates resulting from the
detection of GW170817 [36,48]. Most BNS formation
models have weak dependence on metallicity. Quite inter-
estingly, some of them show a bimodal distribution, with a
dip at zm ≈ 5.6 and a second peak at zm ≈ 9. Indeed, the
efficiency in forming merging BNSs has a minimum at
intermediate metallicity Z ∼ 0.1Z⊙ (see, e.g., Fig. 14 of
Ref. [36]). Stars at intermediate metallicities tend to
develop larger radii, and this leads to the formation of
wide BNS systems that either do not merge in a Hubble
time, or are easily disrupted by a SN explosion (because of
their large orbital separation). However, not all models that
show a dip in the merger efficiency lead to a bimodal
merger rate density. Since most detectors are not sensitive
to binaries from such large redshifts, 3G detectors are
needed to observe this behavior in the early Universe.
By contrast, BBH production is very efficient at low

metallicities because of the impact of metallicity on stellar
radii and evolutionary stages. At solar metallicity, massive
stars become Wolf-Rayet stars quite rapidly, after leaving
the giant branch, because of stellar wind efficiency.

Wolf-Rayet stars have small radii (1−2 R⊙); thus, it is
highly unlikely that such stars enter the common envelope.
Without a common envelope, the binary star evolves into a
BBH with a large orbital separation, which will not be able
to merge within a Hubble time. In contrast, metal-poor
massive stars can retain a large fraction of their hydrogen
envelope and avoid the Wolf-Rayet stage, increasing the
probability of undergoing mass transfer and entering the

FIG. 1. Merger rate density RðzmÞ for the models listed in
Table I. Here “low kicks” corresponds to σCCSN ¼ 15 km=s,
while “high kicks” corresponds to σCCSN ¼ 265 km=s. Black
dashed lines are proportional to the star formation rate. Vertical
dashed gray lines correspond to the horizon obtained by
assuming BNSs of mass ð1.4þ 1.4Þ M⊙, NSBHs of mass
ð1.4þ 5Þ M⊙, and BBHs of mass ð10þ 10Þ M⊙ (see Ref. [47]
for a discussion). For BBHs, the CE horizon z ¼ 77 is so large
that it lies to the right of the x-axis range in the figure. The red
shaded region shows the allowed ranges for the merger rate
densities based on O1 and O2 observations, with their “power
law” model for BBHs and “uniform mass” model for BNSs
obtained using the PyCBC pipeline).
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common envelope. The rate density peaks at z≳ 2, earlier
than the peak of star formation, and the merger rate density
at small redshifts is not as steep as the star formation rate
(i.e., it has λ0 < 2.4). We should soon be able to verify this
trend with current detectors.

IV. DETECTION RATES

To study how detection rates will benefit from detector
improvements, here we will consider noise power spectral
densities for the AdLIGO design sensitivity noise [2];
planned upgrades to existing LIGO detectors (Aþ, Aþþ,
and Voyager [3–5]); and 3G detectors, including CE [6] and
the Einstein Telescope (more specifically, ET-B [7]). We
approximate the detector noise for the O2 and O3 runs by
rescaling the AdLIGO noise curve in such a way that the
resulting BNS ranges are 90 Mpc [1] and 140 Mpc [49],
respectively. In Fig. 2, we plot the distribution of signal-to-
noise ratios (SNRs) for these detectors using the low-kick
model with α ¼ 5. Most of the binaries with very large

SNRs come from the local Universe, so their distribution
scales like 1=ρ4 [50].2 Since CE (and, for BBHs, also ET)
will see past the peak of the merger rate density (cf. Fig. 1),
the maximum detection redshift is not controlled by the
detector capabilities, but by the physics that governs the
merger rate density RðzmÞ. Figure 3 shows the detection
rates, Rdet, for different astrophysical models and different
detectors, comparing them with the intrinsic merger rate in
the Universe that would correspond to an ideal, noiseless
detector (see the Appendix for details of the detection rate
calculations). According to our models, AdLIGO at design
sensitivity could see 220–360 BBH, up to 9 NSBH, and
9 BNS mergers per year. Upgrading AdLIGO detectors to a
configuration like Aþwould increase the detection rates by

FIG. 2. SNR distribution for the low-kick α ¼ 5 model and different detectors. Here Rdet is the number of detections per year for the
given detector, as defined in Eq. (A1).

FIG. 3. Detection rates of BBHs, NSBHs, and BNSs for second- and third-generation detectors. Here “low kicks” corresponds to
σCCSN ¼ 15 km=s, while “high kicks” corresponds to σCCSN ¼ 265 km=s. Horizontal lines represent all events in the Universe, as
would be seen by a perfect (noiseless) detector.

2In the local Universe, the total number of binaries within
luminosity distance D� is NðD < D�Þ ∝ D3�, or equivalently
Nðρ > ρ�Þ ∝ ρ−3� , so the SNR probability distribution scales like
Nðρ�Þ ¼ dNðρ>ρ�Þ

dρ�
∝ ρ−4� .

VISHAL BAIBHAV et al. PHYS. REV. D 100, 064060 (2019)

064060-4



a factor of 3. With 3G detectors, BBH rates would increase
by up to 2–3 orders of magnitude, while NSBH and BNS
detection rates would increase by up to 3–4 orders of
magnitude. CE would see at least 92% of all BBH mergers
in the Universe, compared to the 0.06%–0.24% seen by
AdLIGO at design sensitivity. Current-generation detectors
like AdLIGO have low BNS and NSBH detection rates,
detecting only 10−5 (∼10−4) of all BNS (NSBH) mergers in
the Universe. By contrast, CE will see more than 50%
(∼75%) of all BNS (NSBH) mergers.
It is also clear from Fig. 3 that α and σCCSN can affect the

detection rates of all compact binary systems by up to an
order of magnitude. In particular, BBH and BNS rates are
affected in different ways by the common envelope
efficiency parameter α: lower values of α yield smaller
rates for BNSs and larger rates for BBHs. This can be
understood as follows: BBHs form from massive stars that
can develop very large radii during their evolution, and
therefore enter the common envelope phase with a wide
orbital separation. If α > 1, the envelope will be ejected
easily while the binary is still widely separated, and the
outcome will be a wide binary that is unlikely to merge in a
Hubble time [36]. In contrast, BNSs form from smaller
stars, and the orbital separation at the beginning of the
common envelope phase is smaller. Therefore, high values
of α lead to the formation of a close binary that can merge
in a Hubble time, while small values of α cause a premature
merger of the system.
Low kicks (CC15α1, CC15α3, CC15α5) lead to higher

detections rates for BNS and NSBH mergers, because
strong kicks are efficient at disrupting these binaries. On the
other hand, most BBH progenitors undergo direct collapse
in the models presented here: nearly all of the star’s mass
falls back onto the compact object, and kicks are sup-
pressed. For this reason, BBH detection rates are nearly
insensitive to natal kicks.3

Local NSBH merger rates for low-kick models are larger
than those for high-kick models by a factor of 3–10. If we

assume low (high) SN kicks, the NSBH merger rate
increases (decreases) with α. This is because large SN
kicks tend to unbind the binary. If the natal kick is high, a
small value of α increases the probability that the system
merges, because if α is small, the system’s semimajor axis
shrinks considerably during CE, after the first supernova.
Thus, if the kick is high, a small value of α increases the
NSBH merger rate. In contrast, if the kick is low, a small
value of α might trigger the premature merger of the
binary, before the second compact object has formed. Thus,
if the kick is low, the highest NSBH merger rate is achieved
for a rather large value of α, as already explained
in Ref. [48].
We list minimum and maximum rates across all models

in Table II.

V. CONCLUSIONS

We studied the detection rates and redshift evolution of
BNS, NSBH and BBH merger rate densities. The redshift
distribution of the merger rates contains important clues
about the physics that drives the evolution of these compact
objects (see also the companion papers [24,48,52]). The
merger rate history of compact object binaries is obtained
by convolving their formation history with the time-delay
distribution. The formation rate depends on both star
formation rate and metallicity. The formation of BNSs
depends only mildly on metallicity, and therefore their
formation across cosmic time follows quite closely the star
formation rate (but it is shifted to slightly lower redshifts,
because of finite delay times). Therefore, for BNSs we
expect λ0 ≳ 2.4; i.e., the merger rate peak occurs after, but
very close to the peak of star formation. Current detectors
have small BNS horizons, so they will mainly see binaries
that formed in the local Universe, where metallicity is high,
but 3G detectors should allow us to observe large-redshift
BNSs and to verify this prediction. In contrast, BBH
production (and, marginally, NSBH production) is very
efficient at low metallicities. Most BBHs form at z≳ 2,
before the peak of star formation, and their merger rate
density evolves slowly compared to BNSs: most BBHs and
NSBHs formed before the peak of star formation, yielding

TABLE II. Minimum and maximum detection rates (yr−1) across all models.

Detector BNS NSBH BBH

O2 0.028–0.91 0.12–1.1 27–40
O3 0.11–3.4 0.46–3.9 94–1.5 × 102

AdLIGO 0.27–8.6 1.2–9.3 2.2 × 102–3.6 × 102

A+ 0.88–28 3.2–26 5.6 × 102–9.7 × 102

A++ 2.3–71 8.1–63 1.3 × 103–2.4 × 103

Voyager 32–9.4 × 102 1.0 × 102–7.8 × 102 9.7 × 103–2.7 × 104

ET-B 1.1 × 103–2.7 × 104 2.4 × 103–2.2 × 104 4.9 × 104–2.7 × 105

CE 1.6 × 104–2.7 × 105 1.6 × 104–1.4 × 105 8.6 × 104–5.4 × 105

Noiseless 2.8 × 104–4.5 × 105 2.0 × 104–1.8 × 105 9.2 × 104–5.7 × 105

3BBHmerger rates are found to strongly depend on SN kicks if
fallback is suppressed [24,35,51].
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λ0 < 2.4. Only CE (and, in the case of BBHs, ET) will
allow us to see beyond the merger rate peak of compact
object binaries.
We also investigated how these rates are affected by

common envelope efficiency and natal kicks, considering
both second- and third-generation detectors. We found that
a lower common envelope efficiency leads to smaller BNS
detection rates and larger BBH detection rates. This is
because lower efficiency causes a longer inspiral of the
stellar cores, leading to BNS progenitors that merge
prematurely, before they can collapse into a neutron star.
By contrast, BBH progenitors are much larger, and their
orbits are wider compared to BNS progenitors. Natal kick
assumptions affect only BNS and NSBH mergers in our
models: high kicks can more easily disrupt binaries and
usually lead to lower detection rates. On the other hand,
BBH kicks are suppressed because of the large amount of
material that falls back onto the compact object after the
supernova explosion.
In Fig. 4, we plot the growth of the GW catalog size as

detectors improve, based on the rate calculations of Fig. 3.
We assume 1 year of observations for O3, which started in
2019. The observing run O4 for AdLIGO at design
sensitivity is expected to start in 2021, and it should last
for ∼2 years, followed by a 1-year commissioning period
for upgrades to Aþ (which is currently targeted to be
operational by 2024 [53]). We assume the operational time
for Aþ to be 6 years [54], with further upgrades to “Aþþ”
in 2027. By the beginning of the 2030s, when new
detectors—Voyager in the existing LIGO facilities, and
CE=ET in separate facilities—may start operations, we
could have a GW catalog of up to 104 events. In Fig. 4, we
assume a 5-year observation period before Voyager is
superseded by CE.
As the detectors improve, the rapid growth of the GW

catalog should allow us to place stringent constraints on the
population parameters that influence the final stages of the
lives of massive stars.
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APPENDIX: DETECTION RATE
CALCULATIONS

The detection rate is given by [56,57]

Rdet ¼
Z

t0

0

pdetRðzmÞ
dVc

dtm

dtm
dtdet

dtm; ðA1Þ

where t0 is the age of the Universe and pdet is the
probability of detecting a given binary, defined in
Eq. (A11) below. The factor dtm=dtdet ¼ 1=ð1þ zmÞ
accounts for the different clock rates at merger and at
the detector. The source-frame merger rate density at
redshift zm is

RðzmÞ≡ dN
dVcdtm

¼
Z

tm

0

sfrðzfÞ
dN

dtmdMf
dtf; ðA2Þ

where the star formation rate is sfrðzfÞ≡ dMf

dVcdtf
. The second

term in the integrand accounts for the number of binaries
per unit star-forming mass that form at tf and merge at tm.
Here, we have marginalized over the distribution of
component masses and time delays. We can rewrite
Eq. (A1) (after switching the order of the integrals over
tf and tm) as

Rdet ¼
Z

t0

0

sfrðzfÞ
d

dMf

�Z
t0

tf

dN
dtm

pdetðzmÞ
1þ zm

dVc

dtm
dtm

�
dtf;

¼
Z

t0

0

sfrðzfÞ
d

dMf

�XpdetðzmÞ
1þ zm

dVc

dzm

dzm
dtm

�
dtf:

ðA3Þ

In the second line above, we converted the integral over a
distribution to a Monte Carlo sum,

Z
dN
dtm

fðtmÞdtm →
X
i

fðtimÞ: ðA4Þ

FIG. 4. Growth of catalog size as detectors improve for models
in agreement with current observations. The timeline for different
detectors and their upgrades is estimated following Refs. [53–55].
We assume an optimistic duty cycle of 100%, which is compat-
ible with expectations for future observations with multiple
detectors.
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In practice, the term in parentheses is evaluated by
Monte Carlo integrations, where the samples tim are
generated from the distribution dN=dtm. The comoving
volume element dVc=dz is given by

dVc

dz
ðzÞ ¼ 4π

c
H0

D2
c

EðzÞ ; ðA5Þ

where EðzÞ is the function that describes the evolution of
the Hubble parameter, i.e., HðzÞ ¼ H0EðzÞ, and Dc is
comoving distance [58]. The factor of 4π takes into account
the angular integration over the sky.
In practice, at a given metallicity Zf, MOBSE starts with

a given total mass Msim and outputs a distribution of
binaries. For each set of free parameters in Table I, we have
12 simulations of 107 binaries each, with metallicities
Z ¼ 0.01–1Z⊙. We simulate a set of compact-object
binaries formed at different times tf inside bins of
Δtf ¼ 10 Myr. At the time of formation tf, we assume
that the metallicity is given by

log
ZðzfÞ
Z⊙

¼
�−0.19zf; zf ≤ 1.5

−0.22zf; zf > 1.5
; ðA6Þ

i.e., we follow the metallicity evolution of Ref. [59], but we
rescale it so that Zð0Þ ¼ Z⊙. Each formation time bin is
assigned one the 12 metallicities according to Eq. (A6).
However, since the MOBSE simulation started with total
binary massMsim, we need to rescale this mass according to
the star formation in that particular time bin. We have
adopted the following fit for star formation rate [60]:

sfrðzÞ ¼ 0.015ð1þ zÞ2.7
1þ ½ð1þ zÞ=2.9�5.6 M⊙ Mpc−3: ðA7Þ

These binaries are then evolved in time until they merge
at tm. This produces a catalog of binaries that form at tf
and merge at zm. The integral in Eq. (A3) can be now be
written as

Rdet ¼
X
i

ðsiðtfÞΔtfÞ
pdet

1þ zm

dVc

dzm

dzm
dtm

; ðA8Þ

where all terms except the first are evaluated at the merger
redshift zm. The first term is the number density of binaries
formed at redshift zf:

siðzfÞΔtf ¼ fbinfIMF
sfrðzfÞ

MsimðZfÞ
Δtf: ðA9Þ

The factors fbin ¼ 0.5 and fIMF ¼ 0.285 take into account
the fact that MOBSE only simulates binaries with primary
mass larger than 5 M⊙.
Finally, a binary is assumed to be detected if it has the

SNR ρ ¼ ρ0w > 8, where ρ0 is the SNR assuming that the
binary is optimally oriented and located in the sky, while
0 ≤ w ≤ 1 is the projection factor that depends on the
binary’s sky position and orientation. The optimal SNR is
calculated as

ρ20 ¼ 4

Z
∞

0

h̃�ðfÞh̃ðfÞ
ShðfÞ

df; ðA10Þ

where hðfÞ is the frequency-domain GW signal and ShðfÞ
is the detector noise power spectral density [61,62]. The
horizon zh is the farthest redshift for which a binary with
component masses m1 and m2 can be detected, i.e.,
ρ0ðm1; m2; zhÞ ¼ 8. The quantity ρ0 determines the prob-
ability of detecting a binary that lies within the detector’s
horizon (i.e., ρ0 > 8, or equivalently z < zh):

pdet ¼
Z

1

8=ρ0

pðωÞdω; ðA11Þ

where pðwÞ is the probability distribution function of ω
[63]. Detection rates only depend on pdet, hence ρ0. We
calculate the SNR of BBH mergers using the waveform
approximant IMRPhenomD, while for NSBH and BNS
mergers we use TaylorF2. Since MOBSE does not have any
prescriptions to evolve the spins, we assume black holes
and neutron stars to be nonspinning. Spins are expected to
impact detection rates within a factor 1.5 [35], which
should be added to the error budget of our estimates.
Note that in Fig. 2, where we look at the distribution of

ρ ¼ ρ0w, we sample pðωÞ for each binary in the catalogs
mentioned above and assign the SNR accordingly.
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