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We study fðR; TÞ gravity, in which the curvature R appearing in the gravitational Lagrangian is replaced
by an arbitrary function of the curvature and the trace T of the stress-energy tensor. We focus primarily on
situations where f is separable, so that fðR; TÞ ¼ f1ðRÞ þ f2ðTÞ. We argue that the term f2ðTÞ should be
included in the matter Lagrangian Lm, and therefore has no physical significance. We demonstrate
explicitly how this can be done for the cases of free fields and for perfect fluids. We argue that all uses of
f2ðTÞ for cosmological modeling and all attempts to place limits on parameters describing f2ðTÞ are
misguided.
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I. INTRODUCTION

Cosmological observations have convincingly demon-
strated that the expansion of the Universe is accelerating
[1–3]. This observation is inconsistent with Einstein’s
general theory of relativity for a universe containing only
ordinary matter and radiation. This suggests either the
presence of novel matter with unusual properties or a
breakdown of general relativity on cosmological scales [4].
One modification that has gained much attention to

explain this expansion is fðRÞ gravity [5], where the
Lagrangian describing gravitational effects, normally pro-
portional to the curvature scale R, is replaced by a function
of that curvature. For example, the introduction of an R2

term in fðRÞ can lead to Starobinsky inflation [6]. The
inclusion of a constant term, fðRÞ ¼ Rþ 2Λ, corresponds
to the introduction of a cosmological constant, and there-
fore leads to the standard ΛCDM cosmology. A further
generalization of fðRÞ gravity was proposed by Harko
et al. in [7], where fðRÞ is replaced by fðR; TÞ, an arbitrary
function of the scalar curvature R and the trace of the stress-
energy tensor T. Cosmological effects of fðR; TÞ theories
have been explored by choosing several functional forms of
f. The separation fðR; TÞ ¼ f1ðRÞ þ f2ðTÞ has received
much attention [8–12]. In particular, for the special case
f2ðTÞ ¼ −2χT, limits on χ or observational predictions for
nonzero χ have been applied to models of white dwarfs
[10], strange stars [11], and Earth’s atmosphere [12].
As we will argue below, when we can separate these

theories in the form fðR; TÞ ¼ f1ðRÞ þ f2ðTÞ, the term
f2ðTÞ should not be treated as a new contribution to the
gravitational action, but instead should be incorporated into
the matter Lagrangian Lm. In Sec. II, we will introduce the

formalism and discuss general principles. In Sec. III, wewill
demonstrate how f2ðTÞ can be incorporated into Lm for the
trivial case of a free field. In Sec. IV, we will show how this
can be implemented for a generalized perfect fluid. In Sec. V,
wewill summarize our conclusions and briefly discuss some
of these ideas in generic fðR; TÞ gravity. Throughout this
paper we use units where c ¼ 1, our metric signature is
ðþ − −−Þ, and our curvature is given by Rμν ¼ RMTW

μν ,
and R ¼ −RMTW where MTW refers to the conventions of
Misner, Thorne, and Wheeler [13].

II. f ðR; TÞ FORMALISM

With our conventions, the conventional action takes the
form

I ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L; ð1aÞ

L ¼ Lm −
1

2κ2
R; ð1bÞ

where κ2 ¼ 8πG. A cosmological constant Λ can be
included by adding −Λκ−2 to L. This term can be thought
of as either a modification to gravity, R → Rþ 2Λ, or a
modification of the matter Lagrangian Lm → Lm − Λκ−2.
The two interpretations are physically indistinguishable.
The stress-energy tensor is defined in general as1

Tμν ¼ −
2ffiffiffiffiffiffi−gp δIm

δgμν
ð2Þ
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1Harko et al. [7] has this equationwith thewrong sign. This error
and consequences thereof were copied by other authors [9–11].
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where Im is the contribution to I from Lm. Where one
incorporates the contribution from the cosmological con-
stant affects the value of the stress-energy tensor: including
it in Lm adds a term Λκ−2gμν to Tμν. Not surprisingly,
Einstein’s equations, which are derived by demanding that
the full action Eq. (1a) remain stationary under changes of
the metric δgμν, are identical in both cases. Because the
metric has no divergence, one can easily show that in either
case ∇μTμν ¼ 0, so the stress-energy tensor will be con-
served in both cases.
We discuss a cosmological constant here only to empha-

size an important point: whether a term is inserted into the
Lagrangian as matter or gravity is not physically mean-
ingful. In this case, because the stress-energy is conserved
either way, we cannot base a decision on naturalness either.
When we generalize to fðR; TÞ gravity, we will make the
case that some apparently “new physics” results from
artificial division of the Lagrangian, and is thus nonphysi-
cal. Because the cosmological constant is not really
relevant to the subsequent discussion, we will dispense
with it.
The premise of fðR; TÞ gravity, as first suggested by

Harko et al. [7], is to replace R with fðR; TÞ in Eq. (1b), so

L ¼ Lm −
1

2κ2
fðR; TÞ: ð3Þ

We will focus on the subcase of fðR; TÞ gravity in which
we can cleanly separate the effects of curvature and matter,
namely

fðR; TÞ ¼ f1ðRÞ þ f2ðTÞ: ð4Þ

The modified Einstein’s equations in this theory, derived
from demanding that the action remain invariant under
changes of the metric, take the form

f01ðRÞRμν −
1

2
gμνf1ðRÞ − ð∇μ∇ν − gμν∇2Þf01ðRÞ

¼ κ2Tμν þ 1

2
f2ðTÞgμν þ f02ðTÞ

∂T
∂gμν ; ð5Þ

where primes denote derivatives with respect to the argu-
ment. As has been noted in the literature, such a theory does
not, in general, result in the conservation of the stress-
energy tensor. Instead we find

∇μTμν ¼ −
1

κ2
∇μ

�
f02ðTÞ

∂T
∂gμν

�
−

1

2κ2
gμν∇μf2ðTÞ: ð6Þ

III. FREE FIELDS

As a trivial example, consider a free scalar field, with
matter Lagrangian

Lm ¼ 1

2
ð∇μϕ∇μϕ −m2ϕ2Þ: ð7Þ

The stress-energy tensor computed from Eq. (2), and its
trace, are then given by

Tμν ¼ ∇μϕ∇νϕ −
1

2
gμνð∇αϕ∇αϕ −m2ϕ2Þ; ð8aÞ

T ¼ −∇αϕ∇αϕþ 2m2ϕ2: ð8bÞ

Consider a simple linear term, where

f2ðTÞ ¼ −
κ2χT
4π

: ð9Þ

We note that, just like the cosmological constant, this
contribution can be thought of as a modification of gravity
or as a contribution to the matter Lagrangian. If we view it
as gravity, we find, using Eq. (6), that stress-energy is not
conserved. We can view it as matter by defining a modified
matter Lagrangian

L0
m ¼ Lm þ χT

8π

¼ 1

2

�
1 −

χ

4π

�
∇μϕ∇μϕ −

1

2

�
1 −

χ

2π

�
m2ϕ2: ð10Þ

We can then define the rescaled field and mass as

ϕ0 ¼ ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

χ

4π

r
; ð11aÞ

m0 ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π − 2χ

4π − χ

s
; ð11bÞ

and the resultant modified matter Lagrangian reduces to

L0
m ¼ 1

2
ð∇μϕ

0∇μϕ0 −m02ϕ02Þ; ð12Þ

which has the same form as the original matter Lagrangian.
Hence we see that Eq. (9) simply rescales the field and
mass. The “bare” mass m and field ϕ cannot be found in
the full Lagrangian, and thus have no physical meaning.
The stress-energy tensor Eq. (8a) is similarly meaningless.
A modified stress-energy tensor, derived from the modified
Lagrangian Eq. (12), will be conserved. The same reasoning
applies to a free fermion or vector field. For more compli-
cated functions f2ðTÞ, the resulting terms will of course not
be simply a rescalingof the field, butwill change the free field
into an interacting field. It will be the contention of the next
section that the incorporation of f2ðTÞ into Lm works more
generally, and such incorporation should always be per-
formed, rendering f2ðTÞ irrelevant.
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IV. PERFECT FLUIDS

Consider a perfect fluid that has a stress-energy tensor
defined in terms of the number density of particles n, the
entropy per particle s, and the fluid’s local velocity vector
uμ normalized so that uμuμ ¼ 1. The particle number and
entropy must be conserved, so that

0 ¼ ∇μðnuμÞ; ð13aÞ

0 ¼ ∇μðsnuμÞ: ð13bÞ

The stress-energy tensor is given by

Tμν ¼ ðρþ pÞuμuν − pgμν; ð14Þ

where ρ ¼ ρðn; sÞ is the energy density and p ¼ pðn; sÞ is
the pressure. If stress-energy is conserved, then using the
equation uν∇μTμν ¼ 0, one can show that the energy
density and pressure are related by

n
∂
∂n ρ ¼ ρþ p: ð15Þ

When stress-energy is not conserved, we can still use
Eq. (15) as a definition of p. We will henceforth use this
equation throughout our work without referencing it.
It is not immediately obvious how to write the matter

Lagrangian for a perfect fluid. The literature commonly
assumes Lm ¼ p [7,9–12]2 without explaining where this
relation comes from. As we will demonstrate shortly, it is
not true in general. In the absence of non-standard gravity,
it is derived, as done in [14], by taking the starting
Lagrangian

Lm ¼ −ρðn; sÞ þ JμðβA∇μα
A − s∇μθ −∇μϕÞ; ð16Þ

where Jμ ¼ nuμ, αA are a set of index functions used to
label fluid flow lines, and βA, θ and ϕ are Lagrange
multipliers used respectively to ensure that current flows
along flow lines, entropy is not transferred, and current is
conserved. The number density n is now to be interpreted
as an implicit function of Jμ, given by

n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνJμJν

p
; ð17Þ

and not as an independent variable. The stress-energy
tensor and its trace, computed using Eq. (2) will be

Tμν ¼ ðρþ pÞuμuν − gμνLm; ð18aÞ

T ¼ ρþ p − 4Lm: ð18bÞ

The equations of motion resulting from demanding
stationarity of the Lagrangian with respect to all the fields
(other than the metric) are then

0 ¼ ∇μf½1þ 2κ−2f02ðTÞ�Jμg; ð19aÞ

0 ¼ ∇μfs½1þ 2κ−2f02ðTÞ�Jμg; ð19bÞ

0 ¼ ½1þ 2κ−2f02ðTÞ�Jμ∇μα
A; ð19cÞ

0 ¼ −∇μfβA½1þ 2κ−2f02ðTÞ�Jμg; ð19dÞ

0 ¼ −
�
1þ 2

κ2
f02ðTÞ

��∂ρ
∂s − Jμ∇μθ

�

−
1

2κ2
f02ðTÞ

∂
∂s ðρþ pÞ; ð19eÞ

0 ¼
�
1þ 2

κ2
f02ðTÞ

��
βA∇μα

A − s∇μθ −∇μϕ −
∂ρ
∂n uμ

�

−
1

2κ2
f02ðTÞuμ

∂
∂n ðρþ pÞ: ð19fÞ

We can then use Eq. (19f) to show that the Lagrangian
density Eq. (16), when evaluated on shell, can be rewritten as

L̄m ¼ pþ f02ðT̄Þ
2κ2 þ 4f02ðT̄Þ

n
∂
∂n ðρþ pÞ; ð20Þ

where the bars on Lm and T will be used to mean “on shell”
henceforward.
If f2 ¼ 0, then we have L̄m ¼ p, as is commonly

assumed, and Eqs. (19a) and (19b) will conserve particles
and entropy, corresponding to Eqs. (13a) and (13b), and the
stress-energy tensor Eq. (18a) will match the desired form
Eq. (14). But when f2ðTÞ is anything other than a constant,
this goal is not achieved, and the various terms that were
included in Eq. (16) have not achieved their intended goals.
It appears that the actual conserved current should be the
rescaled current ½1þ 2κ−2f02ðTÞ�Jμ.
It turns out to be more convenient to define the actual

current as this taken on shell:

J0μ ¼ ½1þ 2κ−2f02ðT̄Þ�Jμ; ð21aÞ

n0 ¼ ½1þ 2κ−2f02ðT̄Þ�n; ð21bÞ

where the primes on J and n denote corrected quantities.
The change has no physical significance as all physics takes
place on shell. The on-shell trace of the stress-energy tensor
T̄ can be found as an implicit function of n and s by
substituting Eq. (20) into Eq. (18b) to yield

T̄ ¼ ρ − 3p −
2f02ðT̄Þ

κ2 þ 2f02ðT̄Þ
n
∂
∂n ðρþ pÞ: ð22Þ2Harko et al. [7] has Lm ¼ −p due to his error in Eq. (2). This

was copied by other authors [9–11].
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Equation (21a) guarantees that particle number and entropy
will be conserved on shell, i.e.,∇μJ0μ ¼ 0 and∇μðsJ0μÞ ¼ 0.
It is worth noting that neither the four-velocity uμ nor the
entropy per particle s needs to be redefined.
By analogy with the scalar field, we contend that the

“bare” stress-energy tensor of Eq. (18a) is not only not
conserved, it is not physically meaningful, because the
separation of L into a matter term Lm and the contribution
f2ðTÞ is not physically meaningful. Only the combination
of the effects of these two quantities can be measured,
and for this reason we define the physical stress-energy
tensor as

T 0μν ¼ Tμν þ 1

κ2
ffiffiffiffiffiffi−gp ∂

∂gμν ½
ffiffiffiffiffiffi
−g

p
f2ðTÞ�

¼ Tμν þ 1

κ2
f02ðTÞ

∂T
∂gμν þ

1

2κ2
f2ðTÞgμν: ð23Þ

It is easy to see from Eq. (6) that this quantity will be
conserved.
The stress-energy trace T, as given by Eq. (18b) depends

on the metric only by the implicit dependence of ρ and p on
the number density n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gμνJμJν
p

, which works out to

∂T
∂gμν ¼

1

2
uμuν

�
4þ n

∂
∂n

�
ðρþ pÞ: ð24Þ

Substituting Eqs. (24) and (18a) into Eq. (23), we find the
true stress-energy tensor is

T 0μν ¼
�
ρþ pþ 1

2κ2
f02ðTÞ

�
4þ n

∂
∂n

�
ðρþ pÞ

�
uμuν

− gμν
�
Lm −

1

2κ2
f2ðTÞ

�
: ð25Þ

By comparison with Eq. (18a), we see that the true
energy density and pressure will be given by

ρ0 þ p0 ¼ ρþ pþ 1

2κ2
f02ðTÞ

�
4þ n

∂
∂n

�
ðρþ pÞ; ð26aÞ

p0 ¼ Lm −
1

2κ2
f2ðTÞ: ð26bÞ

The true density ρ0 is the difference of these two equations,
which can be simplified by using Eq. (18b) to yield

ρ0 ¼ 1

4
ð3ρþ 3pþ TÞ þ 1

2κ2
f02ðTÞ

�
4þ n

∂
∂n

�
ðρþ pÞ

þ 1

2κ2
f2ðTÞ: ð27Þ

This equation has the disadvantage that the density is a
function of all the field variables, not just n and s. We can
correct this deficiency by replacing all the T’s by T̄’s. The

formula can be further simplified by using Eq. (22) to
replace

1

2κ2
f02ðT̄Þn

∂
∂n ðρþ pÞ ¼ 1

4

�
1þ 2

κ2
f02ðT̄Þ

�
ðρ − 3p − T̄Þ;

ð28Þ

so we find on shell that

ρ0 ¼ ρþ 1

2κ2

�
f02ðT̄Þ

�
4þ n

∂
∂n

�
ρþ f2ðT̄Þ − T̄f02ðT̄Þ

�
:

ð29Þ

We have written the stress-energy tensor on shell strictly
in terms of n and s, but can we somehow incorporate f2ðTÞ
into Lm, so as to eliminate the need for f2ðTÞ entirely? Let
us define a modified Lagrangian by analogy with Eq. (16),
using the corrected current J0μ and density ρ0:

L0 ¼ L0
m −

1

2κ2
f1ðRÞ; ð30aÞ

L0
m ¼ −ρ0ðn0; sÞ þ J0μðβA∇μα

A − s∇μθ −∇μϕÞ: ð30bÞ

This Lagrangian is not identical to the original
Lagrangian. But will it yield the same equations of motion?
The difference between the two Lagrangians is given by

L0 − L ¼ L0
m − Lm þ 1

2κ2
f2ðTÞ

¼ ρ − ρ0 þ ðJ0μ − JμÞðβA∇μα
A − s∇μθ −∇μϕÞ

þ 1

2κ2
f2ðTÞ: ð31Þ

This is then simplified using sequentially Eqs. (21a), (16),
(18b), and (29) to yield

L0 − L ¼ 1

2κ2
½f2ðTÞ − f2ðT̄Þ þ ðT̄ − TÞf02ðT̄Þ�: ð32Þ

When we apply the equations of motion, so T ¼ T̄, this
difference vanishes. In fact, for small variations near the
stationary point, we see that

δL0 − δL ¼ 1

2κ2
fδT½f02ðTÞ − f02ðT̄Þ� þ ðT̄ − TÞδf02ðT̄Þg:

ð33Þ

On shell, this vanishes as well. Hence L and L0 will have
identical equations of motion.
Do the physical pressure p0 and energy density ρ0 satisfy

Eq. (15)? Starting with Eq. (29), we see that
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n0
∂ρ0
∂n0 ¼ n0

∂ρ
∂n0 þ

1

2κ2
f02ðT̄Þn0

∂
∂n0

�
4ρþ n

∂ρ
∂n

�

þ 1

2κ2

�
n0

∂
∂n0 f

0
2ðT̄Þ

��
4ρþ n

∂ρ
∂n − T̄

�
: ð34Þ

We can now use Eq. (21b) to show that

n0
∂
∂n0 ¼

�
1 −

2

κ2 þ 2f02ðT̄Þ
n0

∂
∂n0 f

0
2ðT̄Þ

�
n
∂
∂n : ð35Þ

Applying this to the first two terms of Eq. (34) and
substituting Eq. (22) for T̄ in the final term, yields, after
considerable simplification,

n0
∂ρ0
∂n0 ¼ ρþ pþ 1

2κ2
f02ðT̄Þ

�
4þ n

∂
∂n

�
ðρþ pÞ: ð36Þ

Comparison with Eq. (26a) shows that on shell we have

n0
∂ρ0
∂n0 ¼ ρ0 þ p0: ð37Þ

Indeed, we would expect this relationship, since the true
stress-energy tensor T 0μν is conserved.

V. CONCLUSIONS AND GENERALIZATION

As we have demonstrated, when fðR; TÞ gravity can be
broken into a curvature term and a stress-energy term,
fðR; TÞ ¼ f1ðRÞ þ f2ðTÞ, we can incorporate f2ðTÞ into
Lm so as to eliminate the need for f2ðTÞ entirely, and
therefore f2ðTÞ is not physically meaningful. We demon-
strated this explicitly for both a free scalar field and a
generalized perfect fluid. But sources [10,12] have claimed
to put limits on f2ðTÞ; specifically, on the parameter χ that
appears in the linear case Eq. (9). If it is physically
meaningless, how can such limits be obtained?
These papers have made two errors. First, they assume

that Lm ¼ p, even though this formula does not generally
apply. Secondly, they identify ρ and p with the physical
energy density and pressure. This error is most clear in [10],

which uses the equation of state for a degenerate electron
gas. The presence of a term of the form Eq. (9) simply
rescales the field and mass for a fermion, and hence the
equation of state (once rescaled masses are used) for the
electron gas will be unchanged. Similarly, in [12] the ideal
gas law is used, but this ideal gas law should be applied to
the physical energy density and pressure, not the “bare”
energy density and pressure.
Can we generalize these conclusions to generic fðR; TÞ

gravity? Consider, for example, a perfect fluid, for which
Eqs. (19a)–(19f) need to be modified by replacing f02ðTÞ
with fTðR; TÞ ¼ ∂

∂T fðR; TÞ. This would suggest that
the physical current, analogous to Eq. (21a) should be
defined as

J0μ ¼ ½1þ 2κ−2fTðR; T̄Þ�Jμ: ð38Þ

We note that this would result in a number density
depending on the curvature, and this in turn would result
in an energy density and pressure that also depend on the
curvature. Unlike f2ðTÞ, cross terms in fðR; TÞ will yield
new physics, and limits on such terms could be placed by
comparison with observations.
At the least, it seems sensible that terms in fðR; TÞ that

do not depend on curvature should be incorporated intoLm,
so that we could define

L0
m ¼ Lm −

1

2κ2
fð0; TÞ: ð39Þ

After all, fð0; TÞ terms represent the behavior of matter in
the absence of curvature, and hence should not be consid-
ered part of the gravitational Lagrangian. This is exactly
what we did in Eq. (12) for a scalar field. For a perfect fluid,
this was not exactly what we did, but Eq. (32) shows that it
matches what we did on-shell and to first order nearly on-
shell. This does not give us sufficient insight about how to
deal with cross terms, so we do not expect that Eq. (39)
would represent the correct “physical” Lagrangian. General
fðR; TÞ gravity is therefore a focus of our ongoing
research.
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