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The thermodynamics of the Taub-NUT solution has been predominantly studied in the Euclidean sector,
upon imposing the condition for the absence of Misner strings. Such thermodynamics is quite exceptional:
the periodicity of the Euclidean time is restricted and thence the Newman-Unti-Tamburino (NUT) charge
cannot be independently varied, the entropy is not equal to 1=4 of the area, and the thermodynamic volume
can be negative. In this paper we revisit this paradigm and study the thermodynamics of the Lorentzian
Taub-NUT solution, maintaining (as recently shown relatively harmless) Misner strings. We argue that in
order to formulate a full cohomogeneity first law where the NUT parameter can be independently varied, it
is natural to introduce a new charge together with its conjugate quantity. We consider two scenarios: one in
which the entropy is given by the Lorentzian version of the Noether charge, and the other in which the
entropy is given by the standard Bekenstein-Hawking area law. In both cases consistent thermodynamics
with positive thermodynamic volume can be formulated.
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The Lorentzian Taub-NUT metric [1,2] is one of the
most intriguing (vacuum) solutions of general relativity.
Featuring two Killing horizons and no curvature singular-
ity, it carries a peculiar type of gravitational charge, the
Newman-Unti-Tamburino (NUT) charge, which is in many
respects analogous to the magnetic monopole. Associated
with it is a Misner string singularity on the polar axis
(sometimes interpreted a singular source of angular
momentum [3,4]) and the existence of spacetime regions
with closed timelike curves in its vicinity.
To avoid these issues, Misner suggested rendering the

string unobservable (similar to the Dirac string) by impos-
ing the periodicity of the time coordinate [5]. However, this
not only leads to the existence of closed timelike curves
everywhere, but also makes the maximal extension of the
spacetime problematic, e.g., [5–7]. On the other hand,
when the time periodicity condition is abandoned, the
Kruskal extension through both horizons is easily obtained
[8], and as recently demonstrated [9,10] the spacetime

becomes geodesically complete and is free from causal
pathologies for freely falling observers. More specifically,
for geodesics the Misner string is completely transparent,
and (provided some restrictions are imposed on the
parameters of the NUT solution—discussed below) no
closed timelike or null geodesics exist in the spacetime,1

thereby removing important obstructions to recognition of
the physicality of Lorentzian Taub-NUT spacetimes with
Misner strings present.
In this paper we pursue these new exciting developments

and show that, contrary to some previous doubts, e.g.,
[11,12], a consistent and reasonable thermodynamics of the
Lorentzian Taub-NUT[-anti–de Sitter (AdS)] spacetime
with Misner strings present can be formulated—adding
thus one more piece to the mosaic of “rehabilitation” of
these spacetimes.
Let us begin our exploration by introducing the

Lorentzian Taub-NUT-AdS spacetime and reviewing its
basic properties. The solution reads [9,13]

ds2 ¼ −f½dtþ 2nðcos θ þ σÞdϕ�2 þ dr2

f

þ ðr2 þ n2Þðdθ2 þ sin2θdϕ2Þ; ð1Þ
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1It is assumed in these papers that the backreaction of non-
geodesic observers (which can in principle violate causality) will
modify the spacetime so that causality is preserved.
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f ¼ r2 − 2mr − n2

r2 þ n2
−
3n4 − 6n2r2 − r4

l2ðr2 þ n2Þ ; ð2Þ

where n stands for the NUT charge, m for the mass
parameter, and l for the AdS radius,

Λ ¼ −
3

l2
: ð3Þ

Although eliminable by a “large coordinate transforma-
tion” t → t − 2nσϕ, the constant σ is a physical parameter,
determining the position of the Misner string(s). Namely,
for σ ¼ 1 the south pole axis is regular, for σ ¼ −1 the
north one is regular, and for σ ¼ 0 both strings are
“symmetrically” present. According to Misner [5], all such
strings are unobservable provided the time is identified as

t ∼ tþ 8πn: ð4Þ

In what follows we shall not impose this requirement. As
shown in [9], the spacetime is geodesically complete for
any value of σ, but the requirement for the absence of
closed timelike and null geodesics requires jσj ≤ 1.
We note the characteristic behavior of NUT spacetimes,

namely that the gtϕ component of the metric remains finite
at infinity ðr → ∞Þ,

gtϕ ∼ −2nfðcos θ þ σÞ; ð5Þ

with f ∼ 1 for the asymptotically flat and f ∼ r2=l2 for the
asymptotically AdS Taub-NUT solutions, respectively.
The spacetime admits two Killing horizons generated by

the Killing vector ξ ¼ ∂t. In what follows we concentrate
on the outer horizon, located at rþ given by the largest root
of fðrþÞ ¼ 0. Note the proper normalization of this Killing
vector at infinity, ξ2 ¼ −f, and the corresponding horizon
area

A ¼ 4πðr2þ þ n2Þ: ð6Þ

We now turn to the thermodynamics of these solutions.
Over the years, the thermodynamics of the Taub-NUT
solution has been predominantly studied in the Euclidean
regime (upon Wick rotating the time t → iτ and the NUT
parameter n → iν) and requiring the absence of Misner
strings, e.g., [13–19]. Let us briefly recapitulate this “NUTs
and bolts” approach. In addition to the standard temper-
ature

TBH ¼ f0ðrþÞ
4π

; ð7Þ

coming from the regularity of the Euclidean solution on
the “horizon”, the absence of Misner strings, (4), imposes
a condition on the periodicity of the Euclidean time

coordinate τ ∼ τ þ β, β ¼ 8πν, which then leads to the
following prescription for the temperature:

TS ¼ 1

8πν
: ð8Þ

Imposing equality TS ¼ TBH yields a nontrivial restriction
on the parameters of the solution: ν is no longer indepen-
dent and becomes a function ν ¼ νðrþÞ, reducing the
cohomogeneity of the first law. In the absence of other
charges this simply reads

δM ¼ TSδS̃þ ṼδP; ð9Þ

with an entropy S̃ that is not equal to the horizon area over
four, giving thus a counterexample to the Bekenstein-
Hawking area law. The latter term is present only in
AdS spacetime, in which case the thermodynamic pressure
P is identified with the (negative) cosmological constant Λ,
and the thermodynamic volume Ṽ is the corresponding
conjugate quantity [20]:

P ¼ −
Λ
8π

; Ṽ ¼
�∂M
∂P

�
S̃
: ð10Þ

Surprisingly, for the Euclidean Taub-NUT-AdS black hole,
the thermodynamic volume

Ṽ ¼ 4

3
πr3þ

�
1 −

3ν2

r2þ

�
ð11Þ

can be negative [18,19] (and thence also automatically
violates the conjectured reverse isoperimetric inequality
[21]), adding yet another “strange feature” to the thermo-
dynamics of the Euclidean Taub-NUT solution.
We revisit this paradigm and attempt to formulate “more

standard” thermodynamics for the Taub-NUT-AdS solu-
tion. We seek a full cohomogeneity first law where the
NUT parameter can be independently varied. To achieve
this we depart from conventional wisdom by imposing the
following assumptions: (i) We consider the Lorentzian
Taub-NUT-AdS solution instead of the Euclidean one
and (ii) the (as above argued relatively harmless) Misner
strings are kept present.
These assumptions imply that the time periodicity

condition (4) is not imposed, and the temperature is given
by the standard formula (7) (see [12] for a quantum
tunneling derivation supporting this result):

T ¼ 1

4πrþ

�
1þ 3ðn2 þ r2þÞ

l2

�
; ð12Þ

which is manifestly positive; the horizon is never extremal.
The NUT parameter is no longer a function of the horizon
radius and can be independently varied in the first law.
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To maintain the full cohomogeneity, the corresponding first
law thus has to have an additional term, associated with
some new charge related to the NUT parameter.2 In what
follows we call this charge N and its conjugate quantity ψ,
so that the first law takes the following form:

δM ¼ TδSþ ψδN þ VδP: ð13Þ

In order to find N and ψ explicitly we shall adopt two
scenarios: one where the entropy is given by the Lorentzian
version of the Noether charge [25], and another where it is
given by the Bekenstein-Hawking area formula. As we
shall demonstrate, both scenarios lead to consistent thermo-
dynamics with the same positive thermodynamic volume.
To find mass and angular momentum, we use the method

of conformal completion [26], which gives the following
charges:

Qð∂tÞ ¼ m; Qð∂ϕÞ ¼ 3σmn; ð14Þ

respectively associated with Killing vectors ∂t and ∂ϕ.
Obviously, the position of Misner strings affects the angular
momentum of the spacetime. In what follows we concen-
trate on the simplest possible case σ ¼ 0, for which the
spacetime does not contain closed timelike or null geo-
desics [9], the strings are “symmetrically distributed” [4],
and the total angular momentum of the spacetime vanishes.
In this case we find

M ¼ m; J ¼ 0; ð15Þ

for the mass and angular momentum, respectively.
To proceed further, we calculate the Euclidean action

I ¼ 1

16π

Z
M
d4x

ffiffiffi
g

p �
Rþ 6

l2

�

þ 1

8π

Z
∂M

d3x
ffiffiffi
h

p �
K −

2

l
−
l
2
RðhÞ

�
; ð16Þ

where K andRðhÞ are, respectively, the extrinsic curvature
and Ricci scalar of the boundary. In this expression we have
included, apart from the Einstein-Hilbert and Gibbons-
Hawking pieces, also the standard AdS counterterms [15].
Similar to the Kerr-AdS case [27], in the process of
calculating the action one has to not only Wick rotate
the time coordinate t → iτ but also the NUT parameter
n → iν, assume the periodicity τ ∼ τ þ β, and at the end
Wick rotate the NUT parameter back, ν → −in, upon

which we obtain the following simple result for the free
energy:

F ¼ I
β
¼ m

2
−

1

2l2
ð3n2rþ þ r3þÞ: ð17Þ

We stress that in obtaining this result no special attention
was given to the polar axis where the Misner strings are
present.
Let us first turn to the “pure NUT case,” setting for the

moment M ¼ 0 ¼ Λ, in which case (17) yields

F ¼ 0: ð18Þ
This is a rather peculiar result, as we still have a Killing
horizon located at rþ ¼ n and it has a nontrivial temper-
ature. One possibility to achieve F ¼ 0 is to use common
wisdom and demand

F ¼ M − TS; ð19Þ

to infer that (contrary to the area law) we have to have
S ¼ 0. Another possibility is to consider positive entropy
and introduce conjugates ψ and N in the free energy
formula in a manner similar to the ΩJ term in the grand-
canonical ensemble:

F ¼ M − TS − ψN: ð20Þ

Let us look at these more closely for generic M and Λ.
Demanding (19), (17) yields the following expression for

the entropy:

S¼SNC¼
πð3r4þþ12n2r2þþr2þl2−n2l2−3n4Þ

3n2þ l2þ3r2þ
; ð21Þ

which is the Lorentzian version of the entropy obtained by
Noether charge methods [25]. We then find that the
following quantities:

ψ ¼ −
nðl2 þ 3n2 − 3r2þÞ
2ð3n2 þ l2 þ 3r2þÞ

; N ¼ n
rþ

þ 3nðn2 þ r2þÞ
rþl2

;

ð22Þ

together with the volume

V ¼ 4

3
πr3þ

�
1þ 3n2

r2þ

�
; ð23Þ

satisfy the first law (13) and the Smarr formula

M ¼ 2ðTS − VPÞ; ð24Þ

with the latter consistent with the first law by the dimen-
sional scaling argument [28]. Note that the NUT potential
Ψ and charge N both vanish as n → 0.

2The introduction of this charge seems quite natural in light of
recent developments in understanding the thermodynamics of
accelerated black holes, where an extra term accounting for the
string tension (causing the acceleration of the black hole) had to
be introduced [22–24].

THERMODYNAMICS OF LORENTZIAN TAUB-NUT SPACETIMES PHYS. REV. D 100, 064055 (2019)

064055-3



The second possibility (20) is not unique, unless we
specify the form of the entropy. In what follows we
concentrate on the “natural choice” and require the entropy
to be given by the Bekenstein-Hawking area law:

S ¼ SBH ¼ A
4
¼ πðr2þ þ n2Þ: ð25Þ

The quantities ψ and N are then uniquely determined
and read

ψ ¼ 1

8πn
; N ¼ −

4πn3

rþ
þ 12πrþn3

l2

�
1 −

n2

r2þ

�
: ð26Þ

Together with the same P and V, (23), they satisfy the first
law (13) and the modified Smarr formula:

M ¼ 2ðTS − VPþ ψNÞ; ð27Þ

with the two consistent by the dimensional scaling
argument [28].3

Note that both sets of thermodynamic quantities have a
smooth asymptotically flat limit, Λ → 0, yielding thus a
consistent thermodynamics of asymptotically flat Taub-
NUT spacetimes. Furthermore, the thermodynamic volume
V, (23), is manifestly positive4 and the same for each case.
Moreover, the isoperimetric ratio (taking ω2 ¼ 4π) reads

R ¼
�
3V
ω2

�
1=3

�
ω2

A

�
1=2

¼ ð1þ 3q2Þ1=3ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p ; q ¼ n
rþ

:

ð28Þ

The reverse isoperimetric inequality [21] requires R ≥ 1,

which is true for q ∈ ½0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2

ffiffiffi
3

pp
≈ 2.54�. It is easy

to show that q ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2=

ffiffiffi
3

pq
≈ 1.47 for horizons charac-

terized by positive M, and so the reverse isoperimetric
inequality holds for the Lorentzian Taub-NUT-AdS
spacetimes.5

Our results imply that Lorentzian Taub-NUT spacetimes,
with Misner strings present, are much less pathological

than previously expected—in addition to admitting a
Kruskal extension through both Killing horizons, being
geodesically complete and not violating causality for
geodesic observers (despite containing regions with closed
timelike curves), they also admit a consistent thermody-
namic formulation. The thermodynamic first law (13) and
the associated Smarr formulas (24) and (27) can be con-
sistently formulated in two distinct scenarios, opening a
window for further physical interpretation of these sol-
utions and their potential astrophysical applications (for
example, possible NUT signatures in microlensing data
have been considered [29–31]).
The key ingredient for formulating the “Lorentzian

thermodynamics” of the Taub-NUT solution proposed in
this paper is to maintain Misner strings, relaxing the time
periodicity condition (4). Consequently (and contrary to the
Euclidean case) the horizon radius and the NUT parameter
are treated as independent and the full cohomogeneity first
law, with a new conjugate pair ψ − N, can be written down.
Two possible scenarios are viable, and we conclude by
commenting on each.
By computing entropy via the Noether charge method

[25], we find that it is consistent with the expected
expression (19) for the free energy. The (AdS) Taub-NUT
black hole, regarded as a single system, has an entropy
smaller than that given by the area law, and the temperature is
given by (12). No attempt is made to impose identification
with (8); this formula is obtained by demanding the absence
of the string in the Euclidean section and upon analytic
continuation yields an imaginary value for the temperature.
Indeed, given the benign nature of the Misner string [9,10],
this additional constraint is not necessary. However the set of
variables (21)–(23) has the peculiar feature that if M ¼ 0,
S ¼ 0 (implying likewise that F ¼ 0), but the temperature
(12) remains nonvanishing. In this case the spacetime has a
finite temperature but has vanishing entropy—a situation
unprecedented in statistical physics. There is also some
ambiguity in determining the conjugate pair ψ − N since it
does not appear in either the action or the Smarr relation;
however this ambiguity can be fixed by demanding that both
vanish linearly as n → 0.
A perhaps more promising alternative is to require that

the entropy of the system is given by the Bekenstein-
Hawking area law for the outer Killing horizon. That
is, contrary to the conventional wisdom applied in the
Euclidean section (e.g., [15,16,25,32]) we have not
assigned any entropy to the Misner string on the axis.
The new conjugate pair ψ − N is determined by requiring
(20) to hold in a manner consistent with the first law,
with the peculiar feature that ψ diverges as n → 0. This
situation is analogous to the thermodynamics of accel-
erated black holes, where the area law still applies despite
the presence of cosmic strings on the axis [22–24].
In the Euclidean case, it was argued [32] that Misner

strings located on the north or south axis correspond to a

3Let us stress here that the new thermodynamic quantities ψ
and N have different dimensions in the two proposed cases. This
is simply a consequence of demanding consistent thermo-
dynamics, with both the first law and the Smarr relations valid
(and related by a dimensional scaling argument). Whereas in the
“Bekenstein case” the quantity N appears in the Smarr relation
and has units of entropy, in the “Noether approach” it is
dimensionless and thence absent in the Smarr relation.

4Note that the possible negativity of (11) is simply an artifact
of the Wick rotation of the NUT charge; cf. (11) and (23).

5The horizon structure changes upon the Wick rotation n → iν.
Although in the Lorentzian case horizons can exist even for
M < 0, we have concentrated here on positive mass solutions.
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Killing horizon generated by ∂τ � 1
2ν ∂ϕ which yields the

temperature (8) and has associated with it (negative)
degrees of freedom. This is rather questionable in the
Lorentzian case where the spacetime is geodesically
complete and such a horizon does not really “hide any
information,” suggesting that (25) may perhaps be a better
choice than (21). Note, however, that in this case one might
regard ψ and N in (26) as the respective Lorentzian
temperature and entropy of the Misner string. If such an
interpretation is correct, one would have (similar to de
Sitter black hole spacetimes, e.g., [33]) a system out of
thermodynamic equilibrium unless ψ ¼ 1=ð8πnÞ were set
equal to the temperature T in (12). This would reduce the
cohomogeneity of the system, rendering thermodynamics
qualitatively similar (but quantitatively different) to the
Euclidean case [15,16,25,32]. Let us finally note that
a proposal similar to (25) and (26) was recently advocated
in [34] in the context of Euclidean Taub solutions with
toroidal base spaces. Such solutions do not possess Misner
strings, but consistent thermodynamics requires the intro-
duction of a new potential ψ ∝ 1=ν.
Our proposed approach to thermodynamics of the Taub-

NUT spacetimes raises interesting questions regarding the
nature of gravitational thermodynamics. What is the
physical meaning of the new charge N and its conjugate
quantity ψ? Extensions to charged and rotating cases
[35,36] have recently been considered, and a geometrical

or physical meaning of the new quantities ψ and N in the
Bekenstein approach (26) [37] has been given. Can con-
sistent thermodynamics be formulated also for the Taub-
NUT solutions with additional charges and/or rotation, and
their generalizations to higher dimensions and beyond
Einstein gravity? Can we find any interesting thermody-
namic phase transitions, similar to what is observed for the
AdS black hole spacetimes [20]? Even more generally, can
the obtained thermodynamics be used to understand the
physical sources of the Taub-NUT solutions? And finally,
taking into account all the obstructions removed, can these
spacetimes be astrophysically realized?
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