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Wheeler’s approach to finding exact solutions in Lovelock gravity has been predominantly applied to
static spacetimes. This has led to a Birkhoff theorem for arbitrary base manifolds in dimensions higher than
four. In this work, we generalize the method and apply it to a stationary metric. Using this perspective, we
present a Taub-NUT solution in eight-dimensional Lovelock gravity coupled to Maxwell fields. We use the
first-order formalism to integrate the equations of motion in the torsion-free sector. The Maxwell field is
presented explicitly with general integration constants, while the background metric is given implicitly in
terms of a cubic algebraic equation for the metric function. We display precisely how the NUT parameter
generalizes Wheeler polynomials in a highly nontrivial manner.
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I. INTRODUCTION

Higher-dimensional theories appear in different contexts
of theoretical physics. For instance, an important open
problem is the question about the enormous difference
between the Planck and the electroweak scales. An attempt
to deal with this hierarchy problem consists in considering
field theories with extra spatial dimensions [1,2]. For the
additional dimensions, the corresponding field equations
must be generalized by including higher-curvature terms in
the action. These terms appear also in the renormalization
approach of quantum field theory in curved spacetimes
[3] or in the low-energy limit of string theory [4]. The
AdS=CFT correspondence [5–7], on the other hand, is an
additional motivation to study gravity in higher dimen-
sions, since it provides a nonperturbative approach to
strongly coupled systems by means of a weakly coupled
gravitational dual within an extradimensional spacetime.
This evidence indicates that gravitational theories with
extra dimensions possessing higher-order curvature terms
may have important applications in the context of quantum
field theory and theoretical physics, in general.
In the case of gravity, the Lanczos-Lovelock theory is the

natural generalization of general relativity (GR) in higher
dimensions [8,9]. The corresponding action principle is
endowed with higher-curvature terms, while sharing some

of the main features of GR: namely, (i) it is invariant under
local Lorentz transformations and diffeomorphisms, (ii) it
is torsion free, and (iii) it yields second-order field
equations for the metric. This theory is free of ghosts
[10], and it has the same degrees of freedom as the Einstein-
Hilbert action in any dimension [11]. The first nontrivial
term of the Lovelock series, i.e., the Gauss-Bonnet term,
appears as a low-energy correction of string theory [12],
modifying the field equations in dimensions higher than
four. In fact, several static exact solutions have been found
in this scenario [13–23], some of which have not been
studied from a thermodynamic viewpoint or any of its more
recent extensions. Although in four dimensions the Gauss-
Bonnet term does not contribute to the field equations since
it is a topological invariant proportional to the Euler
characteristic class, its inclusion becomes relevant in the
regularization of conserved charges in asymptotically
locally AdS spacetimes [24] and in the context of holo-
graphic renormalization [25]. Moreover, the AdS=CFT
correspondence has been used to impose bounds on the
shear-viscosity-to-entropy ratio for supersymmetric CFT
by considering the Lanczos-Lovelock theory as its gravi-
tational dual [26,27]. Quantum anomalies, on the other
hand, have been computed from the holographic principle
in Lanczos-Lovelock gravity, showing that the Weyl and a
particular non-Abelian asymptotic symmetry are broken
at the quantum level on the dual CFT [28]. Remarkably,
when the theory has a unique AdS vacuum, there exists
a gauge fixing that leads to a finite Fefferman-Graham
expansion [29].
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One aspect of higher-dimensional gravity which is
interesting for the present investigation is the (non)unique-
ness of static black holes [30,31]. Indeed, consider the line
element

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΣ2; ð1Þ

where dΣ2 is the metric of an arbitrarily chosen codimen-
sion-two submanifold, henceforth referred to as the base
manifold. In fact, the only static black hole in higher-
dimensional GR which is asymptotically flat is given by the
Schwarzschild-Tangherlini metric, whose base manifold
is a round hypersphere. However, nonasymptotically flat
solutions are obtained for different base manifolds,
although the field equations imply that it must be an
Einstein manifold. In Eq. (1), the geometry of the
Einstein manifold is parametrized so that its Ricci scalar
coincides with that of a hypersphere with the same
dimension; this fact is closely related to the higher-
dimensional Birkhoff theorem. The Lovelock version of
this result also imposes conditions on the base manifold.
Nevertheless, they no longer need to be Einstein manifolds,
and a number of new geometries come into the fold.
Returning to Eq. (1), when spherical symmetry is

assumed, Wheeler devised an approach to determine
the metric function f [32]. The differential equation for
the metric function is integrated in an elementary way.
Remarkably, this method yields an algebraic equation for
f ¼ fðrÞ. Moreover, defining an auxiliary function by
F ¼ ð1 − fÞ=r2, the general result is that

PðF Þ≡Xp
i¼0

aiF ðrÞi ¼ M
rD−1 : ð2Þ

This polynomial in F has constant coefficients ai deter-
mined by the Lovelock coupling constants, D is the
spacetime dimension, p ¼ ½ðD − 1Þ=2� is the highest-order
curvature term contributing to the field equations, and the
squared brackets denote the integer part. In Eq. (2),M is the
integration constant, which is later related to the black hole
mass. The function P is what has been dubbed the Wheeler
polynomial of the solution. This showcases how incredibly
restrictive spherical symmetry is. A family of p spacetimes
are uniquely determined by the roots of Eq. (2). Of course,
in higher dimensions, the exact solutions are increasingly
more complex, and the lack of closed form begins in 11
dimensions for Lovelock gravity. Nonetheless, some gen-
eral results have been proven to hold for this set of
solutions. For instance, a solution always exists for at least
one value of the sign ofM [32]. Moreover, the extension of
the asymptotic solution increases monotonically as r
decreases, until it ends for small values of r in one of
the following two possibilities: either a curvature singu-
larity at the origin is surrounded by exactly one event
horizon or the singularity happens at a finite value of r,

where at most one event horizon is present. Notice that this
includes the possibility of a naked singularity.
All maximally symmetric spaces are equally restrictive.

The topological versions of these solutions are determined
by Wheeler polynomials as well, but with the auxiliary
function redefined as F ¼ ðκ − fÞ=r2, where κ is the
spatial sectional curvature. However, the most general
admissible base manifolds require the use of an analogue
of Wheeler’s polynomial defined by [31]

QðUÞ≡Xp
k¼0

bkr−2kAkðUÞ ¼ M
rD−1 ; ð3Þ

where the constants bk depend on the geometry of the base
manifold, and the auxiliary function is defined as
U ¼ −f=r2. Wheeler polynomials [Eq. (2)] are rearrange-
able as just above; e.g., spaces of constant sectional
curvature κ have constants bs ¼ κs. The polynomials Ak
are of order p − k and are defined by

AkðUÞ≡Xp
i¼0

�
i

k

�
aiUi−k; ð4Þ

where the ai’s are, as before, the coefficients in Eq. (2).
Notice that the highest-order polynomial is A0 ¼ PðUÞ
and that the polynomials comply with the recurrence
relation A0

k ¼ ðkþ 1ÞAkþ1.
Even outside the context of determining exact solutions,

Wheeler polynomials provide a remarkable theoretical tool
to investigate gravitational physics. Equation (3), for
instance, provides a way for black hole thermodynamics
to be carried out even when a closed form for f is not
available [33,34]. In essence, this can be carried out
because black holes have event horizons characterized
by the vanishing of the metric function. Hence, the
Wheeler polynomial may be evaluated in the null hyper-
surface to yield an important algebraic relation. Taking the
differentiation of the polynomial and restricting to the
horizon determines the Hawking temperature. Of course, it
is crucial to relate the integration constant with the physical
parameters of the solution, especially the mass of the black
hole. The relation between gravitational parameters and
thermodynamical ones allows for a vast class of scenarios
to be explored in this direction. However, staticity need not
limit this line of research.
The original Taub and Newman-Tamburino-Unti metrics

[35,36]—hereafter referred to as Taub-NUT—have moti-
vated a plethora of investigations in gravitational physics.
A particular research area is spacetime thermodynamics,
where the similarities between Taub-NUT metrics and
black holes have been studied through Euclidean tech-
niques. Relying on the methods of finite-temperature
quantum field theory, an analytical continuation of the
metric is performed, and the period of the Euclidean time
circle is chosen in such a way that no conical singularity is
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present. The action of the Uð1Þ isometry group, in general,
has a set of fixed points which comes from the Killing
horizon in the Lorentzian sheet. If the set is zero dimen-
sional, the analytically continued sheet is called Taub-NUT;
otherwise, it is dubbed Taub-Bolt. Possible observational
signatures of this spacetimes have been studied in Ref. [37].
Higher-dimensional Taub-NUT and Taub-Bolt metrics

are a special type of inhomogeneous geometry on complex
line bundles over a Kähler manifold [38–40]. Thus,
they exist only in even dimensions. These metrics have
Lorentzian counterparts which in the static limit coincide
with Eq. (1); in this case, the basemanifold is Kähler. In fact,
Taub-NUT geometries, in Boyer-Lindquist coordinates,
quite resemble the line element (1). This, in turn, implies
that the Wheeler approach is applicable to these stationary
spacetimes aswell. Of course, themethod is blind towhether
the metric is Lorentzian or not. These spacetimes carry a
gravitational charge which in many ways is analogous to a
magnetic monopole moment (for a recent discussion, see
Ref. [41]). An important example are the famous Kaluza-
Klein monopoles [42], where the Euclidean Taub-NUT
space is used as a seed manifold. Both the Taub-NUT
solution and the Kaluza-Klein monopole have rich geo-
metric structures which have led to applications in GR
[43,44] and string theory [45], as well as insights in differ-
ential geometry [46,47]. In a complementary manner, the
Taub-Bolt space has a very interesting topological structure
which closely resembles Euclidean black holes. This resem-
blance has allowed for the construction of holographic heat
engines [48]. It also allows for the space to possess
electromagnetic fields which generalize theDiracmonopole
field [49]. Taub-NUT metrics have been found to exist in a
wide range of vacuum and electrovacuum gravitational
theories, which include, but are not limited to, the
Lanczos-Lovelock-Maxwell theory [50–56].
In this work, we revisit the eight-dimensional Lovelock

theory, where solutions in a closed form for arbitrary
coupling constants are already intractable [57]. This frame-
work is extended by considering arbitrary coefficients for
the Lovelock series and by adding minimally coupled
Maxwell fields with general integration constants. For the
sake of comparison, we use the same Ansätze of Ref. [58]
for the metric and Maxwell fields, which can be found in
Eqs. (23) and (26), respectively. The charged Taub-NUT
solution in cubic Lovelock gravity—the main result of this
work—is presented as a root of the Wheeler polynomial
in Eq. (3), given by UðrÞ ¼ −fðrÞ=r2, where fðrÞ is the
metric function appearing in Eq. (23). The latter is
determined by a generalization of Eq. (3)—that is,

QnðUÞ≡Xp
k¼0

bkr−2kBkðUÞ ¼ M
rD−1 ; ð5Þ

where BkðUÞ is a deformation of AkðUÞ by warping
functions which depend on the NUT parameter n. When

the latter vanishes, we recover Eq. (3), i.e.,Q0 ¼ Q. Notice
that in eight dimensions the polynomial is cubic—namely,
p ¼ 3. The field equations are solved by means of the first-
order formalism, focusing on the torsion-free sector of the
space of solutions. To the best of the authors’ knowledge,
this result represents the first Wheeler-like polynomial for
Taub-NUT spacetimes in Lovelock gravity.
The article is organized as follows: In Sec. II, we present

the eight-dimensional Lanczos-Lovelock theory coupled to
Maxwell fields and their field equations. In Sec. II A, we
restrict ourselves to lower orders in the Lovelock series and
write the (analogue) Wheeler polynomials for a spherical
and complex projective base manifold. This explicitly
shows that, although one may freely parametrize the base
manifold to set b1 ¼ 1, other bk coefficients cannot be
arbitrarily fixed, in contrast to the Einstein case for higher-
order theories. In Sec. III, the higher-dimensional Ansatz is
presented together with lower-dimensional Taub-NUT
Wheeler polynomials which represent a generalization
relative to Eq. (3). In Sec. IV, we report and discuss the
charged Taub-NUT solution with arbitrary coefficients of
the Lovelock series. Finally, conclusions and further dis-
cussions are given in Sec. V. The Appendix has been
included for additional details of the computation. In our
notation, greek and latin characters denote spacetime and
Lorentz indices, respectively; the Minkowski metric is
ηab ¼ diagð−;þ;…;þÞ; and the language of differential
forms will be used from here onwards.

II. EIGHT-DIMENSIONAL
LANCZOS-LOVELOCK GRAVITY

In this work, we use the first-order formalism to treat
Lovelock’s gravity [59]. This is done by considering the
vielbein ea ¼ eaμdxμ and the Lorentz connection ωab ¼
ωab

μdxμ 1-forms as independent gravitational fields.
The former is related to the spacetime metric through
gμν ¼ ηabeaμebν, where ηab is the Minkowski metric, while
the latter allows us to perform the parallel transport of
Lorentz-valued p-forms over the spacetime manifold. The
curvature and torsion 2-forms are defined through the
Cartan structure equations

Rab ¼ dωab þ ωa
c ∧ ωcb ¼ 1

2
Rab

cdec ∧ ed; ð6Þ

Ta ¼ dea þ ωa
b ∧ eb ¼ 1

2
Ta

bceb ∧ ec; ð7Þ

where ∧ is the wedge product, d is the exterior derivative,
and D is the Lorentz-covariant exterior derivative with
respect to ωa

b. These fields satisfy the Bianchi identities
DTa ¼ Ra

b ∧ eb and DRab ¼ 0.
The eight-dimensional Lovelock theory coupled to Uð1Þ

gauge fields A ¼ Aμdxμ—the theory we are interested in
throughout this work—is described by the action principle
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S½ea;ωab; A� ¼ Sg þ Sm; ð8Þ

where the gravity and matter action are denoted by Sg and
Sm, respectively, and they are considered to be minimally
coupled. The Lovelock action functional is given by

Sg ¼
Z

ϵabcdefgh

�
α0
8!

ea ∧ eb ∧ ec ∧ ed ∧ ee ∧ ef

þ α1
6!

Rab ∧ ec ∧ ed ∧ ee ∧ ef

þ α2
4!

Rab ∧ Rcd ∧ ee ∧ ef

þ α3
2!

Rab ∧ Rcd ∧ Ref

�
∧ eg ∧ eh; ð9Þ

with ϵ01234567 ¼ 1 (for a discussion of Lovelock gravity in
terms of spacetime components, see Ref. [9]). Notice that in
eight dimensions, this theory admits a quartic term in the
curvature 2-form. However, it represents the dimensional
continuation of the Euler density, and it does not contribute
to the vielbein dynamics on the bulk. The Lovelock action
is conformed by a series of dimensionally continued Euler
densities. For a given dimension, the series terminates
according to the differential form of maximum degree. In
addition to the gravitational sector, we write the Maxwell
action functional as

Sm ¼ −
1

2

Z
F ∧ ⋆F: ð10Þ

Here, ⋆ denotes the Hodge dual and F ¼ dA is the field
strength of the Uð1Þ gauge fields.
The field equations of this theory are obtained by

performing stationary variations with respect to the viel-
bein, Lorentz connection, andUð1Þ gauge fields, leading to

0 ¼ ϵabcdefgh

�
α0
7!

eb ∧ ec ∧ ed ∧ ee ∧ ef ∧ eg

þ α1
5!

Rbc ∧ ed ∧ ee ∧ ef ∧ eg

þ α2
3!

Rbc ∧ Rde ∧ ef ∧ eg

þ α3Rbc ∧ Rde ∧ Rfg

�
∧ eh − τa; ð11Þ

0 ¼ ϵabcdefgh

�
α1
5!

ec ∧ ed ∧ ee ∧ ef þ α2
3
Rcd ∧ ee ∧ ef

þ 3α3Rcd ∧ Ref

�
∧ Tg ∧ eh; ð12Þ

0 ¼ d⋆F; ð13Þ

respectively, where we have defined the energy-momentum
7-form of the gauge fields as

τa ¼
1

2
ðF ∧ ⋆ðea ∧ FÞ − iaF ∧ ⋆FÞ; ð14Þ

with ia being the inner contraction along the vector field
Ea ¼ Eμ

a∂μ such that eaμEν
a ¼ δνμ and eaμEμ

b ¼ δab. The
Noether theorem associated with the invariance under diffeo-
morphisms [60–62] implies that the energy-momentum
7-form in Eq. (14) satisfies the conservation law:

Dτa ¼ iaTb ∧ τb: ð15Þ

Invariance under local Lorentz transformations, on the other
hand, implies a conservation law that is trivially satisfied for
Maxwell fields. It is worth mentioning that the Bianchi
identities impose severe restrictions on the torsion compo-
nents when arbitrary coefficients of the Lovelock series are
considered in vacuum [63]. These restrictions can be avoided
if the coefficients are chosen in such a way that the action
principle can be written as the Chern-Simons form for the
(A)dS group or as Born-Infeld gravity in odd and even
dimensions, respectively. This implies that the theory has the
maximum number of degrees of freedom [63].1 Here, we
consider arbitrary coefficients of the Lovelock series and
focus our attention on the torsion-free sector of the space of
solutions, namely Ta ¼ 0, which automatically solves
Eq. (12). This condition allows one to solve the Lorentz
connection in terms of the vielbein, reducing its form to the
standard Levi-Civita connection. Thus, the solution pre-
sented here belongs to the Riemannian branch of the
Lovelock theory, even though vacuum solutions with non-
trivial torsion have been reported for different isometry
groups in Refs. [64–69].

A. Lower-order Wheeler polynomials

Before going on to compute the Wheeler polynomial for
the Taub-NUT solution in eight-dimensional Lovelock-
Maxwell theory, it is useful to summarize the lower-order
solutions in the static limit. They portray how the original
Wheeler polynomials [32], which consider spherical sym-
metry, are generalized to the Kähler case. In the next
section, we explain why we specialize to the case where the
base space is complex projective.
Let us focus on vacuum Einstein-Gauss-Bonnet theory

with a cosmological constant Λ and a Gauss-Bonnet
coupling constant αGB. This fixes the coupling constants
in Eq. (9) in terms of these last two parameters, and in
particular sets α3 ¼ 0. In arbitrary spacetime dimension D,
the Wheeler polynomial (2) is

1In fact, the choice of the coefficients such that the action can
be written in a Born-Infeld form has been used in Ref. [57] to
obtain the uncharged Taub-NUT solution in third-order Lovelock
theory. For the sake of generality, the analysis presented in this
work does not assume any relation on the parameters whatsoever.
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−
2Λ

ðD − 1ÞðD − 2Þ þ F þ ðD − 3ÞðD − 4ÞαGBF 2 ¼ M
rD−1 :

ð16Þ

This equation yields the Boulware-Deser solution [13] and,
setting αGB ¼ 0, leads to the familiar Schwarzschild-
Tangherlini result

fðrÞ ¼ 1 −
M
rD−3 −

2Λr2

ðD − 1ÞðD − 2Þ : ð17Þ

For comparative reasons, we rewrite this result in the
form of Eq. (3), which in eight dimensions is

A0 þ r−2A1 þ r−4A2 ¼
M
r7

; ð18Þ

with polynomials AkðUÞ given by

A0ðUÞ ¼ −
Λ
21

þ U þ 20αGBU2; ð19Þ

A1ðUÞ ¼ 1þ 40αGBU; ð20Þ

A2ðUÞ ¼ 20αGB; ð21Þ

recalling that U ¼ −f=r2. If we now substitute the base
manifold from a hypersphere S6 to a complex projective
space CP3, then the previous polynomials remain
unchanged, but the equivalent to Eq. (18) is

A0 þ r−2A1 þ 2r−4A2 ¼
M
r7

: ð22Þ

Recall that the coefficients bk in Eq. (3) depend on the
geometry of the base manifold. Since the complex projec-
tive spaces with the Fubini-Study metric are Einstein
manifolds, the results of Ref. [30] imply that Eqs. (18)
and (22) only differ in the coefficient b2, once the para-
metrization convention of this reference is adopted.
Additionally, we mention that the Taub-NUT solution
found in Ref. [70] has as its static limit the black hole
determined by Eq. (22). In the next section, we discuss how
the NUT parameter generalizes polynomials such as the
ones presented above.

III. HIGHER-DIMENSIONAL TAUB-NUT
GEOMETRY

The definition of a higher-dimensional Taub-NUT space
we consider here is given by the family of inhomogeneous
geometries built over complex line bundles presented in
Ref. [39]; this is

ds2 ¼ fðrÞðdτ þ 2nBÞ2 þ dr2

fðrÞ þ ðr2 − n2ÞdΣ2; ð23Þ

where τ is the Euclidean time coordinate and n is the NUT
parameter. This parameter sources the magnetic part of the
Weyl tensor, and it is, in general, related to the magnetic
mass of the geometry [71,72]. Notice that, for n → 0,
we recover a metric equivalent to Eq. (1), which is a
static metric modulo a Wick rotation. The line element dΣ2

is Kähler, and its associated symplectic form is given
by ω ¼ dB. The original Taub-NUT solutions are the
special case where the base manifold is a sphere S2, which
coincides with the complex projective line CP1. Thus, the
static limit leads to a spherically symmetric spacetime. This
is the particular case in four dimensions, since no hyper-
sphere admits a Kähler structure [73]. We will specialize to
higher-dimensional Taub-NUT solutions with hyperspher-
ical boundary conditions. These are the only ones which
admit non-singular Euclidean sheets with nuts [38]. This, in
turn, implies that they are the only conditions under which
Hawking-Page-like [74] phase transitions are possible [75].
As for Eq. (3), there is no greater loss of generality than
variation of its coefficients. These boundary conditions
imply a Hopf fibration of the Euclidean time direction over
a complex projective space. Hence, we fix the geometry of
the base manifold to that of Fubini-Study. For the complex
projective space of real dimension 2k, our notation is
B ¼ Ak, and we add a subscript k to the line element in
Eq. (23) to indicate that it is the Fubini-Study metric
on CPk.
An iterative construction of the Fubini-Study metric

using explicitly real expressions is useful [76]. We write the
recursion relation as

B ¼ Ak ¼ ðkþ 1Þsin2ψk

�
dϕk þ

1

k
Ak−1

�
; ð24Þ

dΣ2
k ¼ 2ðkþ 1Þ

�
dψ2

k þ sin2ψkcos2ψk

�
dϕk þ

1

k
Ak−1

�
2

þ 1

2k
sin2ψkdΣ2

k−1

�
: ð25Þ

Notice how the metric on the CPk manifold is built on top
of the one on the CPk−1 submanifold. This submanifold is
in fact totally geodesic, or extrinsically flat. In these
coordinates, ψk ¼ π=2 corresponds exactly to this special
submanifold. This fact is commented on further below.
The four-dimensional charged Taub-NUT solution

[50,51] possesses a Maxwell field whose null directions
are aligned with the repeated principal null directions of the
Weyl tensor. In this spirit, we choose

A ¼ hðrÞðdτ þ 2nBÞ; ð26Þ

as the Ansatz for the gauge potential. This form of the gauge
field was used in a higher-dimensional setting for the first
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time in Ref. [55]. Moreover, even without an explicit form
of the metric function f in Eq. (23), we notice that the
Maxwell equation [Eq. (13)] can be solved independently.
In other words, Maxwell’s equations together with the
Ansatz (26) yield a differential equation for h, namely

h00ðr2 − n2Þ2 þ ðD − 2Þ½rðr2 − n2Þh0 − 2n2h� ¼ 0; ð27Þ

where the prime denotes a derivative with respect to the
coordinate r. This equation admits the general solution

hðrÞ ¼ qr
ðr2 − n2Þk þ

vWk

ð1 − n2=r2Þk ; ð28Þ

where q and v are integration constants andWk denotes the
series

Wk ≡
Xk
i¼0

�
k

i

�
2k − 1

2i − 1

�
−
n2

r2

�
k−i

: ð29Þ

Notice that it resembles the binomial expansion

�
1 −

n2

r2

�
k

¼
Xk
i¼0

�
k

i

��
−
n2

r2

�
k−i

: ð30Þ

The function Wk may be generated, if so desired, by an
integral formula. It may also be written in terms of
Legendre polynomials or a hypergeometric function by
setting the appropriate parameters. To illustrate how
Wheeler polynomials are generalized by NUT parameters,
we present the special cases of Lovelock Taub-NUTs in
four dimensions given by

QnðUÞ ¼ −
Λ
3
W2 þ

�
1 −

n2

r2

�
U þ r−2W1; ð31Þ

and in six dimensions by

QnðUÞ ¼ −
Λ
10

W3 þ
�
1 −

n2

r2

�
2

U þ 6αGBW1U2

þ r−2
�
W2 þ 12αGB

�
1 −

n2

r2

�
U

�

þ 2r−4½6αGBW1�: ð32Þ

Recall that Qn has been defined in Eq. (5). Equations (29)
and (30) are, in fact, the deformation elements of the
Wheeler polynomials [Eq. (3)] when the NUT parameter is
turned on. It should be noted that, when n → 0, both series
become unity. Recall that in four dimensions, the base
manifold is the complex projective line, while in six
dimensions, it is the complex projective plane.

IV. CHARGED EIGHT-DIMENSIONAL SOLUTION

We are now in a position to present the charged eight-
dimensional solution which fits within Ansatz (23). To
this end, we use a generalized Wheeler polynomial.
The base manifold is the complex projective space CP3.
The Euclidean time direction is Hopf-fibered over this base
space, resulting in r ¼ constant hypersurfaces wich are
hyperspheres S7. The isometry algebra of the total space is
suð4Þ ⊕ uð1Þ, and the topology will either be Euclidean, if
it has a nut, or complex projective minus a point, if it
possesses a bolt.
The explicitly real Fubini-Study metric on the base

manifold may be found by Eqs. (24) and (25); thus,

A1 ¼ 2sin2ψ1dϕ1; ð33Þ

dΣ2
1 ¼ 4½dψ2

1 þ sin2ψ1cos2ψ1dϕ2
1�; ð34Þ

A2 ¼ 3sin2ψ2

�
dϕ2 þ

A1

2

�
; ð35Þ

dΣ2
2¼6

�
dψ2

2þsin2ψ2cos2ψ2

�
dϕ2þ

A1

2

�
2

þ1

4
sin2ψ2dΣ2

1

�
;

ð36Þ

A3 ¼ 4sin2ψ3

�
dϕ3 þ

A2

3

�
; ð37Þ

dΣ2
3¼8

�
dψ2

3þsin2ψ3cos2ψ3

�
dϕ3þ

A2

3

�
2

þ1

6
sin2ψ3dΣ2

2

�
:

ð38Þ

We choose the vielbein basis, as shown in the Appendix.
Since we are looking for torsion-free solutions, the Lorentz
connection can be solved in terms of the vielbein by solving
dea þ ωa

b ∧ eb ¼ 0. The 2-form curvature associated with
this connection can be computed from the first Cartan
equation (6). However, due to the cumbersome nature of its
components, we report them in the Appendix. Moreover,
we write the field strength in the following manner:

F ¼ dA ¼ FIe0 ∧ e1 þ FIIðe2 ∧ e3 þ e4 ∧ e5 þ e6 ∧ e7Þ;
ð39Þ

with

FI ¼ −h0 and FII ¼
2nh

r2 − n2
: ð40Þ

Here, hðrÞ is the function defined in Eq. (26). The soð1; 7Þ-
valued energy-momentum 7-form [Eq. (14)] for this Ansatz
yields
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τ0 ¼ −ρe1 ∧ e2 ∧ e3 ∧ e4 ∧ e5 ∧ e6 ∧ e7; ð41Þ

τ1 ¼ ρe0 ∧ e2 ∧ e3 ∧ e4 ∧ e5 ∧ e6 ∧ e7; ð42Þ

τā ¼ pϵā b̄ c̄ d̄ ē f̄e
0 ∧ e1 ∧ eb̄ ∧ ec̄ ∧ ed̄ ∧ eē ∧ ef̄; ð43Þ

where ā ¼ 2;…; 7 are indices of dΣ2
3 such that ϵ234567 ¼ 1,

and

ρM ¼ F2
I − 3F2

II

2
and pM ¼ F2

I þ F2
II

2
: ð44Þ

Although we know the solution for the Maxwell field
beforehand, we mention that the Maxwell equation takes
the form

F0
Iðr2 − n2Þ þ 6ðrFI þ nFIIÞ ¼ 0; ð45Þ

whose explicit solution is [cf. Eq. (28)]

hðrÞ ¼ 1

ðr2 − n2Þ3 ½qrþ vðr6 − 5n2r4 þ 15n4r2 þ 5n6Þ�:

ð46Þ

In our notation, this corresponds to

FI ¼
vð60n6rþ 40n4r3 − 4n2r5Þ þ qð5r2 þ n2Þ

ðr2 − n2Þ4 ; ð47Þ

FII ¼
2n½vð5n6 þ 15n4r2 − 5n2r4 þ r6Þ þ qr�

ðr2 − n2Þ4 : ð48Þ

Examining the asymptotic behavior of the field strength
reveals q to be the electric charge up to some rescaling. The

other integration constant v can be interpreted as the value
of the electric potential at infinity [55]. For the gauge
potential to be regular at the nut (or bolt, respectively),
where the Euclidean time direction degenerates, it must be
null there. So v is, in fact, a potential difference across the
entire manifold. Furthermore, there is a topological inter-
pretation of v which endows it with a magnetic flavor [41].
This Maxwell field naturally lives in a principal Uð1Þ

bundle over the Euclidean background. The bundle’s
connection is locally represented by the gauge potential.
This circle bundle is classified by a single topological
index, which can be calculated by integrating over the
background. If the background has a nut, then the index
vanishes. In the complementary case, we have

c ¼ 1

16π4

Z
F ∧ F ∧ F ∧ F ¼ ð8nvÞ4: ð49Þ

So, we see that v and n are related to a topological invariant
of the underlying bundle space. However, the circle bundle
just described possesses a principal Uð1Þ sub-bundle
defined over the unique totally geodesic sphere that lies
at the asymptotic boundary. This sub-bundle is isomorphic
to the Dirac monopole bundle and has Chern number 8nv,
which must be an integer. In the Dirac monopole, the Chern
number is twice the magnetic charge; this can be carried
over to this eight-dimensional Taub-Bolt. For the gauge
potential [Eq. (46)], this means that the magnetic charge, p,
is given by 4nv. This is also consistent with an asymptotic
examination such as the one carried out for the electric
charge.
On the other hand, the functions ρM and pM can be read

off from Eqs. (47) and (48) by using their definition in
Eq. (44). Then, the field equation (11) reads

−ρM ¼ α0 þ 6α1ð2RIII þ RIV þ 4RVÞ þ 24α2ð4RIIIRIV þ 16RIIIRV þ R2
IV þ 4RIVRV þ 10R2

V þ 6R2
VIÞ þ 48α3ð6RIIIR2

IV

þ 24RIIIRIVRV þ 60RIIIR2
V þ 36RIIIR2

VI þ R3
IV þ 6RIVR2

V þ 18RIVR2
VI þ 8R3

V þ 24R3
VIÞ; ð50Þ

pM ¼ α0 þ 2α1ðRI þ 10RIII þ 2RIV þ 8RVÞ þ 8α2ð2RIRIV þ 8RIRV þ 12R2
II þ 20R2

III þ 12RIIIRIV þ 48RIIIRV þ R2
IV

þ 4RIVRV þ 10R2
V þ 6R2

VIÞ þ 48α3ðRIR2
IV þ 4RIRIVRV þ 10RIR2

V þ 6RIR2
VI þ 12R2

IIRIV þ 24R2
IIRV þ 24R2

IIRVI

þ 12R2
IIIRIV þ 48R2

IIIRV þ 2RIIIR2
IV þ 8RIIIRIVRV þ 20RIIIR2

V þ 12RIIIR2
VIÞ; ð51Þ

where RI;…; RVI have been defined in the Appendix. It is worth mentioning that these equations are not linearly
independent, since differentiating the former results in the latter, after some algebraic manipulation. Thus, the equation of
motion admits the following solution given in terms of a generalized Wheeler polynomial:

X3
k¼0

bkr−2kBkðUÞ ¼ M
r7

þ PðrÞ
r7

; ð52Þ

where M is an integration constant and
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B0ðUÞ ¼ α0
42

W4 þ α1U

�
1 −

n2

r2

�
3

þ 20α2U2

�
1 −

2n2

5r2
−
3n4

5r4

�

þ 120α3U3

�
1 −

n2

r2
þ 16n2

5ðr2 − n2Þ
�
; ð53Þ

B1ðUÞ ¼ α1W3 þ 40α2U

�
1 −

n2

r2

�
2

þ 360α3U2W1; ð54Þ

B2ðUÞ ¼ 20α2W2 þ 360α3U

�
1 −

n2

r2

�
; ð55Þ

B3ðUÞ ¼ 120α3W1: ð56Þ
In Eq. (52), the coefficients are b0 ¼ 1, b1 ¼ 1=5,
b2 ¼ 1=20, and b3 ¼ 1=40. Notice that we have not set
b1 ¼ 1, which is convenient in the setting of Ref. [30].
However, this may be done by a reparametrization of r. The
left-hand side of Eq. (52) is completely invariant under this
change except in the bk coefficients. Moreover, PðrÞ is the
Maxwell contribution, and it is a shorthand for

PðrÞ≡ −1
12rðr2 − n2Þ3

�
300v2n10ðr2 − n2Þ

þ 280n6v2r4ðr2 − 5n2Þ − 4v2r8n2ðr2 − 25n2Þ

þ 32qn2vr3ðr2 − 5n2Þ − 5q2
�
r2 −

n2

5

��
: ð57Þ

To evaluate the static limit, we first interchange vwith its
equivalent p=4n and then take n → 0. After this limit has
been taken, the vielbein component e0 has only the
Euclidean time direction. Careful evaluation yields two
parts of the gauge potential, that we write in the following
manner:

A ¼ q
r5
dτ þ 2psin2ψ3½dϕ3 þ sin2ψ2ðdϕ2 þ sin2ψ1dϕ1Þ�:

ð58Þ
The Wheeler polynomial (52) reduces to

X3
k¼0

bkr−2kAkðUÞ ¼ M
r7

þ 5q2

12r12
þ p2

48r4
; ð59Þ

with polynomials AkðUÞ, given by

A0ðUÞ ¼ α0
42

þ α1U þ 20α2U2 þ 120α3U3; ð60Þ

A1ðUÞ ¼ α1 þ 40α2U þ 360α3U2; ð61Þ

A2ðUÞ ¼ 20α2 þ 360α3U; ð62Þ

A3ðUÞ ¼ 120α3: ð63Þ

As far as the Wheeler polynomial is concerned, the static
limit amounts to setting the warping functions in the Taub-
NUT solution to unity. Moreover, the appearance of
warping functions (29) and (30) is recurrent. The Gauss-
Bonnet case (α3 ¼ 0) shows a change of warping function
from six dimensions to eight, cf. Eqs. (32) and (56). Notice
that, in eight dimensions, the coefficients that appear in
the polynomials just above are recurrent in Lovelock
gravity. The cosmological constant α0=2 is divided by
ðD − 1ÞðD − 2Þ=2 ¼ 21, and the Gauss-Bonnet para-
meter is multiplied by ðD − 3ÞðD − 4Þ ¼ 20. The factor
ðD − 3ÞðD − 4ÞðD − 5ÞðD − 6Þ ¼ 120 accompanies the
cubic order coupling.

V. CONCLUSIONS

In this work, we considered the eight-dimensional
Lanczos-Lovelock-Maxwell theory in the realm of the
first-order formalism of gravity. By focusing on the
torsion-free sector of the space of solutions, we have
generalized the Wheeler approach of integrating the equa-
tions of motion of Lovelock theory, reducing them to an
algebraic equation. This new generalization allows us to
investigate stationary spacetimes, in addition to the static
case which has been considered so far in the literature. In
particular, we focus on Taub-NUT geometries with differ-
ent higher-curvature terms of the Lovelock series to pave
the way towards most general situations. The application of
the method is novel, since previous cases were limited only
to static manifolds. Taub-NUT spacetimes are stationary
and are considerably more tractable than rotating space-
times such as the Kerr solution. Considering inhomo-
geneous geometries on complex line bundles over
Kähler manifolds has proven to be a nontrivial generali-
zation of the approaches used for static manifolds [31,32].
However, the geometries resemble static metrics in such a
way that the generalization is straightforward.
Using the extended version of Wheeler’s methodology,

we presented a new solution to Lanczos-Lovelock theory
supplemented by Maxwell sources in a rather compact
form. Arbitrary parameters of the Lovelock series are used,
allowing us to analyze gravity theories such as Born-Infeld
or pure Lovelock for the corresponding values of the
couplings. The warping functions in the Wheeler poly-
nomial are independent of the rescalings of the base
manifold, except in the coefficients which encode its
geometry. The Taub-Bolt branch of the solution presented
here is a generalization of the Dirac monopole which
includes self-gravity [41]. It has a unique Chern index
[cf. Eq. (49)] which completely classifies all possible
configurations and results in an electromagnetic parameter
being a topological charge.
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Interesting questions remain open. For instance, given
the recent development of Lorentzian thermodynamics for
Taub-NUT spacetimes [77–79], a higher-dimensional treat-
ment including the example presented here is certainly
desirable. The Euclidean method can be applied to the
generalized Wheeler polynomial we provide in Eqs. (52)
and (57). We stress that this thermodynamic exploration
does not require the explicit solution of the metric function,
as the Wheeler polynomial suffices. The black hole limit
may also deserve a thermodynamic study in the extended
black hole mechanics by considering the Lovelock cou-
pling constants as thermodynamic entities. Interpreting
them as thermodynamic variables which are held fixed
in the action—and thus in the ensemble associated to them
as well—naturally leads to their variation in the associated
thermodynamic potential. We expect to consider this task in
future works.
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APPENDIX: VIELBEINS AND CURVATURE
ASSOCIATED WITH AN EIGHT-DIMENSIONAL

TAUB-NUT SPACE

For the eight-dimensional geometry we focus on, the
vielbein basis has been chosen as follows:

e0 ¼
ffiffiffiffiffiffiffiffiffi
fðrÞ

p
½dτ þ 8nsin2ψ3fdϕ3 þ sin2ψ2ðdϕ2

þ sin2ψ1dϕ1Þg�; ðA1aÞ

e1 ¼ drffiffiffiffiffiffiffiffiffi
fðrÞp ; ðA1bÞ

e2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðr2 − n2Þ

q
dψ3; ðA1cÞ

e3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðr2 − n2Þ

q
sinψ3 cosψ3ðdϕ3

þ sin2ψ2½dϕ2 þ sin2ψ1dϕ1�Þ; ðA1dÞ

e4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðr2 − n2Þ

q
sinψ3dψ2; ðA1eÞ

e5 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðr2 − n2Þ

q
sinψ3 sinψ2 cosψ2ðdϕ2 þ sin2ψ1dϕ1Þ;

ðA1fÞ

e6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðr2 − n2Þ

q
sinψ3 sinψ2dψ1; ðA1gÞ

e7 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðr2 − n2Þ

q
sinψ3 sinψ2 sinψ1 cosψ1dϕ1: ðA1hÞ

We write them here explicitly to complement recursive
definitions in the main text. These recursive relations
appear because the base manifold of the complex line
bundle, where the metric is supported, has as base manifold
a complex projective space of six real dimensions. As is
probably anticipated by the reader, the geometry is that of
Fubini-Study, up to a rescaling.
The components of the curvature 2-form are

R01 ¼ RIe0 ∧ e1 þ 2RII ðe2 ∧ e3 þ e4 ∧ e5 þ e6 ∧ e7Þ;
ðA2Þ

R02 ¼ RIIIe0 ∧ e2 þ RIIe1 ∧ e3;

R03 ¼ RIIIe0 ∧ e3 − RIIe1 ∧ e2; ðA3Þ

R04 ¼ RIIIe0 ∧ e4 þ RIIe1 ∧ e5;

R05 ¼ RIIIe0 ∧ e5 − RIIe1 ∧ e4; ðA4Þ

R06 ¼ RIIIe0 ∧ e6 þ RIIe1 ∧ e7;

R07 ¼ RIIIe0 ∧ e7 − RIIe1 ∧ e6; ðA5Þ

R12 ¼ RIIIe1 ∧ e2 − RIIe0 ∧ e3;

R13 ¼ RIIIe1 ∧ e3 þ RIIe0 ∧ e2; ðA6Þ

R14 ¼ RIIIe1 ∧ e4 − RIIe0 ∧ e5;

R15 ¼ RIIIe1 ∧ e5 þ RIIe0 ∧ e4; ðA7Þ

R16 ¼ RIIIe1 ∧ e6 − RIIe0 ∧ e7;

R17 ¼ RIIIe1 ∧ e7 þ RIIe0 ∧ e6; ðA8Þ

R23 ¼ 2RIIe0 ∧ e1 þ RIVe2 ∧ e3

þ 2RVIðe4 ∧ e5 þ e6 ∧ e7Þ; ðA9Þ

R24 ¼ RVe2 ∧ e4 þ RVIe3 ∧ e5;

R25 ¼ RVe2 ∧ e5 − RVIe3 ∧ e4; ðA10Þ

R26 ¼ RVe2 ∧ e6 þ RVIe3 ∧ e7;

R27 ¼ RVe2 ∧ e7 − RVIe3 ∧ e6; ðA11Þ

R34 ¼ RVe3 ∧ e4 − RVIe2 ∧ e5;

R35 ¼ RVe3 ∧ e5 þ RVIe2 ∧ e4; ðA12Þ

R36 ¼ RVe3 ∧ e6 − RVIe2 ∧ e7;

R37 ¼ RVe3 ∧ e7 þ RVIe2 ∧ e6; ðA13Þ
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R45 ¼ 2RIIe0 ∧ e1 þ 2RVIe2 ∧ e3 þ RIVe4 ∧ e5

þ 2RVIe6 ∧ e7; ðA14Þ
R46 ¼ RVe4 ∧ e6 þ RVIe5 ∧ e7;

R47 ¼ RVe4 ∧ e7 − RVIe5 ∧ e6; ðA15Þ
R56 ¼ RVe5 ∧ e6 − RVIe4 ∧ e7;

R57 ¼ RVe5 ∧ e7 þ RVIe4 ∧ e6; ðA16Þ
R67 ¼ 2RIIe0 ∧ e1 þ 2RVIe2 ∧ e3 þ 2RVIe4 ∧ e5

þ RIVe6 ∧ e7: ðA17Þ
Here we have introduced various shorthands, RI…RVI ,
which are detailed below:

RI ¼ −
f00

2
; RII ¼

n
2

d
dr

�
f

ðr2 − n2Þ
�
;

RIII ¼ −
f0r

2ðr2 − n2Þ þ
fn2

ðr2 − n2Þ2 ; ðA18Þ

RIV ¼ 1

2

1

r2 − n2
− f

r2 þ 3n2

ðr2 − n2Þ2 ;

RV ¼ 1

8

1

r2 − n2
−

fr2

ðr2 − n2Þ2 ;

RVI ¼
1

8

1

r2 − n2
−

fn2

ðr2 − n2Þ2 : ðA19Þ
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