
 

How does the photon’s spin affect gravitational wave measurements?
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We study the effect of the polarization of light beams on the time delay measured in gravitational wave
experiments. To this end, we consider the Mathisson-Papapetrou-Dixon equations in a gravitational wave
background, with two of the possible spin supplementary conditions: by Frenkel-Pirani, or by Tulczyjew.
In the first case, photons follow a null geodesic and thus no spin effect is present. The second case shows a
deviation of the photons from the null geodesic, resulting in a tiny effect on the measured time delay of
photons depending on their polarization state.
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I. INTRODUCTION

Gravitational wave detection in interferometers such as
the Laser Interferometer Gravitational-Wave Observatory
(LIGO) and the Virgo observatory involves laser beams
traveling through a gravitational field perturbed by a gravi-
tational wave inhomogeneity. The wave profile is recon-
structed from the difference of time of flight of the laser light
in two perpendicular linear arms. Theoretically, the time of
flight is computed by treating the beam as a collection of
photons, with each photon moving on a geodesic in a given
(gravitational wave) background. In general, however, geo-
desics are only followed by spinless particles. In the present
paper, we thus try to include the photons’ spin and check
whether it could lead to a measurable effect.
In general relativity, the motion of spinning test particles

is described by the Mathisson-Papapetrou-Dixon (MPD)
equations [1–4]. See [5] for a completely geometrical
description of these equations. These follow from the
treatment of extended test bodies based on the multipole
expansion along a certain worldline, a posteriori identified
as representing the history of the body. Such an expansion
has sense when the length scales connected with the body
are much shorter than the curvature length scale. If all the
multipoles beyond dipole are neglected, the system reduces
to the MPD equations. One then speaks of a “pole-dipole”
approximation. The MPD equations are given by,

_Pμ ¼ −
1

2
Rμ

ραβSαβ _X
ρ; ð1:1Þ

_Sμν ¼ Pμ _Xν − Pν _Xμ; ð1:2Þ
where X, P, and S denote respectively the position,
momentum, and spin tensor of the test particle. The dot
over the trajectory X denotes the ordinary derivative with

respect to its affine parameter, _X ¼ dX=dτ, while the dot
over P and S denotes the covariant derivative with respect
to that same parameter.
Note that the MPD equations do not determine the

evolution uniquely: we lack an equation for _X (the latter
needs not be parallel to P). This reflects an ambiguity in the
selection of the worldline XðτÞ representing the particle
history. One thus has to impose certain constraints to close
the system. These can be written in the form SμνVν ¼ 0,
where Vμ is a suitable vector. These constraints are usually
called spin supplementary conditions (SSCs). The vector
Vμ may in principle be chosen freely, though there are
several obvious “intrinsic” options, provided by the geom-
etry of the problem itself. In the present paper, we consider
two of such possibilities, the Mathisson-Pirani (or Frenkel-
Pirani) SSC: Vk _X [1,6,7], and the Tulczyjew SSC: VkP
[3,4]. While the former is known to generally keep the
spinning photon on a geodesic, we show that the latter leads
to nontrivial spin effects.
The lack of constitutive laws which determine how the

body responses to gravitational and inertial strains leads to
the freedom which the different supplementary conditions
fix, each in a different way. In particular, they lead
to different trajectories. It is not possible yet to say which
of the conditions is the “correct” one. See [8–12] for
comparison of different SSCs.
In the past, the Mathisson-Pirani SSC was sometimes

deemed unsatisfactory due to there not being a unique
representative worldline, depending on the choice of initial
conditions [13–15]. This issue has been clarified recently in
[16–18], in connection with discovering the momentum-
velocity relation for that SSC. The Tulczyjew SSC, on the
other hand, does provide a unique worldline, irrespectively
of how the initial conditions are prescribed [3].
Since _X needs not be parallel to P anymore, the theory

naturally offers different definitions of the body’s “mass,”*loic.marsot@cpt.univ-mrs.fr
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m ¼ ffiffiffiffiffiffiffiffiffiffiffi
PμPμ

p
, m̃ ¼ _XμPμ, and possibly VμPμ. The MPD

equations by themselves do not ensure that any of the above
masses stays constant, not even that the vectors P and _X
are, or remain, timelike. However, we obtain more infor-
mation with the help of the chosen SSC. For the Mathisson-
Pirani SSC Sμν _X

ν ¼ 0, it is m̃ that stays conserved. Setting
this to zero for a massless particle, implies that the particle
follows a null geodesic, while the momentum vector is
spacelike [19–22]. For the Tulczyjew SSC SμνPν ¼ 0, it is
m that is conserved. Setting this to zero does not necessarily
imply a null geodesic for the photon, the more so that the
vector _X may in this case become space-like [23].
Let us add that the MPD equations ensure, independently

of the SSC, the conservation, along the representative
worldline, of the spin-tensor invariant 2s2 ¼ SαβSαβ. This
scalar is sometimes called the longitudinal spin and for
photons it equals �ℏ, with signðsÞ called helicity or
handedness. By fixing the conserved mass and spin, this
completes the description of a classical elementary particle
as belonging to one of the coadjoint representations of the
Poincaré group.
In the massless case, the choice of the SSC is even more

subtle than in the massive one. Two main arguments have
been given in favor of theMathisson-Pirani SSC: (i)Maxwell
equations minimally coupled to gravity yield null geodesics
in the geometric-optic limit [24], like do the MPD equations
together with this SSC [19–21] (with just one type of
counterexample given in [20]). (ii) Imposing conformal
invariance of the theory, in particular the tracelessness of
the energy-momentum tensor, implies (a slight generaliza-
tion of) the Mathisson-Pirani constraint [22,25,26]. Less
satisfactorily, the MPD equations supplemented with that
constraint do not behave well in the m̃ → 0 limit, the
massless problem is actually unrelated to the massive one
[14,27]. On the other hand, Tulczyjews SSC has often been
considered inappropriate because, as already mentioned, it
generally leads to a spacelike motion, which is more serious
than the spacelike momentum yielded by the Mathisson-
Pirani SSC. It also leads to a certain degeneracy of the
massless problem in flat spacetime: rather than a localized
particle, it yields a plane traveling at the speed of light.
Recently, however, the Tulczyjew SSC has been revisited

in connection with phenomena observed in spin optics. As
already predicted by Fedorov and Imbert [28,29], the wave
packet of spinning light should perform an “instantaneous”
transverse shift when being reflected at an interface. This
effect can be described theoretically using the symplectic
mechanics in a 3-dimensional manifold [30–33] similar to
the symplectic representation of Souriaus spinning-particle
model involving the Tulczyjew SSC [5]. The effect, also
called spin Hall effect of light, was confirmed experimen-
tally in 2008 [34,35]. Recall that Fermats principle can be
rephrased like that the light rays follow null geodesics in a
3-dimensional Riemannian space conformally related to the

Euclidean one by a scale factor represented by the local
refractive index squared. One can then summarize the
2008’s experiments as follows: the spinning light rays
deviate from null geodesics in the above space. More
specifically, the speed of spinning light can locally become
higher than the speed of spinless light, without violating
causality over distances larger than the wavelength of the
photon.
Also in favor of the Tulczyjew SSC, one can mention the

presence of the Berry phase in quantummechanics, which is
in general connectedwith a deviation fromgeodesics aswell.
In specific examples, the treatment of the problem with
the help of a Berry phase and the treatment with the
MPD equations with the Tulczyjew SSC, or their symplectic
description, agree with each other. See, for instance [36,37]
for the treatment of chiral fermions, and [38,39] for bire-
fringence of a photon in a Schwarzschild spacetime (note that
there is a typo in thevery last formula in [38]: their anomalous
velocity is indeed transverse to the geodesic plane, just as in
[39]). Still another support for the Tulczyjew SSC was
provided by Souriau who showed [40] that geometric
quantization of the symplectic system which derives the
MPD equations with this SSC, when considered with a flat
background, leads to the Maxwell equations.
To summarize, the MPD equations with the Tulczyjew

SSC may provide an effective, semi-classical description of
phenomena tied to the photon spin and involving the
occurrence of faster speeds than that of spinless light.
Note that if causality is not violated over distances larger
than the wavelength of the photon, it should not imply any
problem, since the pole-dipole approximation as such only
holds if the length scales tied to the particle (herewavelength
of the photon) are much smaller than the curvature length
scale. Indeed, in papers where the Tulczyjew SSC was
employed, e.g., to study photons in the Schwarzschild, de
Sitter or FLRWbackgrounds [23,39,41,42], causality has not
been found to be violated over meaningful distances.
Note that the Tulczyjew SSC has already been used in the

problem of massive spinning-particle motion in an exact
gravitational wave solution [43]. In [44], classical as well as
quantummassive fermions were studied, with application to
a gravitational-wave background (among others).
Let us add, finally, that gravitational birefringence had

already been considered experimentally in 1974 [45],
resulting in an upper bound for this effect in gravitational
lensing, but the results were somewhat inconclusive, since
the effect can actually be expected to be much weaker than
the experiment precision [38,39]. Thanks to the high
sensitivity of LIGO and Virgo, experimental bounds can
also be found for birefringence predicted by other theories,
for example those violating the Lorentz invariance [46,47].
The paper is organized as follows. In Sec. II, we introduce

the notation. In Sec. III, the main point is explained which is
to consider a photon in a gravitational-wave background as
a limit of an ultrarelativistic particle traveling in one
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direction. Section IV contains the computations needed to
obtain the equations of motion in a weak-field approxima-
tion. And we conclude by summary and comments in
Sec. V.

II. NOTATIONS

First, let us introduce our notations. The metric has
signature ð−;−;−;þÞ. The components of the Riemann
curvature tensor are defined by the convention Rμ

ναβ ¼
∂αΓ

μ
βν − ∂βΓ

μ
αν þ � � �. In this paper, we often suppress

indices by considering linear maps instead of 2-tensors.
For instance, we use the linear map S ¼ ðSμνÞ and likewise
for the shorthand notation RðSÞ, with RðSÞμν ¼ Rμ

ναβSαβ.
In the same way, we have the vector P and the asso-
ciated covector P̄ ¼ ðP̄μÞ where indices are lowered with
the metric. Another shorthand notation will be RðSÞðSÞ ¼
RμναβSμνSαβ.
For a skew-symmetric linear map F, the operator Pf

gives its Pfaffian PfðFÞ. With the fully skew-symmetric
Levi-Civita tensor ϵμνρσ, with ϵ1234 ¼ 1, we have the
expression PfðFÞ ¼ − 1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgαβÞ

p
ϵμνρσFμνFρσ. We have

the relation PfðFÞ2 ¼ detðFÞ. Indeed, the determinant of a
skew-symmetric matrix can always be written as a perfect
square.

III. PHOTONS AS A LIMIT OF
ULTRARELATIVISTIC PARTICLES

The so-called Souriau-Saturnini equations are the
combination of the MPD equations, together with the
Tulczyjew constraint SP ¼ 0, and applied to the case
of the photon. For massless particles, we consider the
momentum such that P2 ¼ 0, and so, for RðSÞðSÞ ≠ 0, we
have the equations (Souriau [5] and Saturnini [23] in
French, see [41] for the proof in English),

_X ¼ Pþ 2

RðSÞðSÞ SRðSÞP; ð3:1Þ

_P ¼ −s
PfðRðSÞÞ
RðSÞðSÞ P; ð3:2Þ

_S ¼ P _̄X − _X P̄ : ð3:3Þ

The Souriau-Saturnini equations describe the trajectory
of a massless photon with spin in a gravitational field.
While they work rather well in a Robertson-Walker back-
ground [41], or in the proximity of a star [23,39], they break
down when the curvature of the gravitational background
vanishes. This is due to the lonely term RðSÞðSÞ in the
denominator of (3.1). When the curvature vanishes, the
equations become those of a plane wave traveling at
the speed of light. Indeed, massless and chargeless particles
cannot be localized in flat spacetime with this approach.

It becomes a problem for a metric of gravitational waves, as
they are usually computed as a perturbation around flat
spacetime.
This time, for massive particles, P2 ¼ m2 ≠ 0, and we

have similar equations [27,48],

_X ¼ P −
2SRðSÞP

4P2 − RðSÞðSÞ ; ð3:4Þ

_P ¼ −
1

2
RðSÞ _X; ð3:5Þ

_S ¼ P _̄X − _X P̄ : ð3:6Þ

Notice that we recover the Souriau-Saturnini equations
in the limit P2 → 0, which is not, a priori, trivial. For
example, this is not the case with the Pirani constraint.
Now, for massive particles, the denominator of (3.4)

behaves in a nicer way. When the Riemann tensor goes
to zero, or when m2 ≫ RðSÞðSÞ, we recover the usual
geodesic equation. To be sure the denominator does not
vanish in the massive case, we should have 4m2 >
RðSÞðSÞ. We thus have a lower bound on the mass of
the test particle. With f the frequency of the gravitational
wave and c the speed of light, that requirement becomes

m2 >
ϵπ2f2ℏ2

c4
: ð3:7Þ

Note that this depends on the amplitude ϵ of the gravita-
tional waves. As this amplitude goes to zero, the mass
restriction reduces to m > 0. In the case of gravitational
wave detections, the frequency of gravitational waves is
typically around f ¼ 50 Hz, and the amplitude around
ϵ ¼ 10−20. This gives

m > 10−59 kg; ð3:8Þ

to have a consistent set of equations describing a massive
particle with spin in a typical background with gravita-
tional waves.
The main idea to compute the time delay due to the

photon’s spin in a background of gravitational waves is to
only compute the effect in the direction defined by the
momentum. Indeed, the photon goes back and forth in one
direction of propagation, so here we are not interested in the
full trajectory in space of the photon/particle. Therefore, to
compute the delay, we can compute the effect of spin on a
massive particle, though with a mass much smaller than its
momentum. Since we only compute the time delay in the
direction defined by the momentum, and since (3.4)
reduces to (3.1) in the limit P2 → 0, the mass will drop
out of the equations when compared to the momentum, thus
giving us the expected time of flight delay for a photon.
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Notice that, in any case, the best experimental measure-
ments on the mass of a photon give us an upper bound
for the mass of about 10−50 kg to 10−54 kg depending on
the type of measurements and assumptions [49,50]. These
upper bounds are a few orders of magnitude higher than the
constraint on the mass of the photon (3.8) in the massive
equations.

IV. EQUATIONS OF MOTION FOR THE
ULTRARELATIVISTIC PHOTON

Using Cartesian coordinates ðx1; x2; x3; tÞ, we linearize
the gravitational field equations with the metric,

gμν ¼ ημν þ ϵhμν þOðϵ2Þ ð4:1Þ
where ðημνÞ ¼ diagð−1;−1;−1; 1Þ is the flat Minkowski
metric, hμν the linear deviation of the metric to flat
spacetime, and ϵ ≪ 1 a small parameter encoding the
amplitude of the gravitational wave.
Linearizing the Einstein field equations in ϵ, and con-

sidering a gravitational wave propagating in the direction of
the z axis, leads to the well-known solution for the
perturbation hμν,

ðhμνÞ ¼

0
BBB@

fþðt − x3Þ f×ðt − x3Þ 0 0

f×ðt − x3Þ −fþðt − x3Þ 0 0

0 0 0 0

0 0 0 0

1
CCCA ð4:2Þ

with fþ and f× two functions describing the two polari-
zation states of the gravitational waves.
For concreteness, take fþðt − x3Þ ¼ cosðωðt − x3ÞÞ and

f×ðt − x3Þ ¼ 0with c ¼ 1. The linearized metric thus takes
the form,

ðgμνÞ¼

0
BBB@
−1þϵcosðωðt−x3ÞÞ 0 0 0

0 −1−ϵcosðωðt−x3ÞÞ 0 0

0 0 −1 0

0 0 0 1

1
CCCA

þOðϵ2Þ ð4:3Þ

Up to linear order in ϵ, we have R3
131 ¼ −R3

141 ¼
−R3

232 ¼ R3
242 ¼ R4

131 ¼ −R4
141 ¼ −R4

232 ¼ R4
242 ¼

− 1
2
ω2ϵ cosðωðt − x3ÞÞ.
Now, to alleviate notations, we write k≡ cosðωðt − x3ÞÞ.

The conditions P2 ¼ m2, and to recover the usual four-
momentum P in the limit ϵ → 0, dictate the expression,

ðPμÞ ¼

0
BBB@

p1ð1þ ϵ
2
kÞ

p2ð1 − ϵ
2
kÞ

p3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ kpk2

p

1
CCCAþOðϵ2Þ; ð4:4Þ

where the pi ¼ piðtÞ, i ¼ 1; 2; 3 are the unknown compo-
nents of the 3-momentum, and with kpk2 ¼ p2

1 þ p2
2 þ p2

3.
Likewise, the spin tensor is defined by its constraints. To

linear order in ϵ we have, with si ¼ siðtÞ understood,

ðSμνÞ ¼

0
BBBBBBBB@

0 −s3ð1þ ϵkÞ s2ð1þ ϵ
2
kÞ ðp2s3−p3s2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2þkpk2
p ð1þ ϵ

2
kÞ

s3ð1 − ϵkÞ 0 −s1ð1 − ϵ
2
kÞ ðp3s1−p2s3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2þkpk2
p ð1 − ϵ

2
kÞ

−s2ð1 − ϵ
2
kÞ s1ð1þ ϵ

2
kÞ 0

ðp1s2−p2s1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þkpk2

p
ðp2s3−p3s2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2þkpk2
p ð1 − ϵ

2
kÞ ðp3s1−p2s3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2þkpk2
p ð1þ ϵ

2
kÞ ðp1s2−p2s1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2þkpk2
p 0

1
CCCCCCCCA

ð4:5Þ

such that S is skew-symmetric, and still up to linear order,

SP ¼ 0 and −
1

2
TrðS2Þ ¼ j2 ð4:6Þ

with

j2 ¼ ðs · pÞ2 þm2ksk2
kpk2 þm2

: ð4:7Þ

Note that in the limit m → 0 in the above relation, we
recover the square of the scalar spin, or longitudinal spin, of
a massless particle. In other words, in the massless case, the
longitudinal spin is the projection of the spin vector along
the direction of the momentum.

Next, we have,

PfðRðSÞÞ ¼ Oðϵ2Þ: ð4:8Þ
See the Appendix for the expressions of RðSÞðSÞ

and SRðSÞP.
We then have the equations of motion for the position of

the massive particle (3.4),

_X ¼ P −
2SRðSÞP

4P2 − RðSÞðSÞ ; ð4:9Þ

So, we get the equations of motion on 3d-space, with
respect to the time coordinate t, in the 3þ 1 splitting
ðx; tÞ, as
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dx
dt

¼ ð2m2 − 1
2
RðSÞðSÞÞP − SRðSÞP

ð2m2 − 1
2
RðSÞðSÞÞP4 − SRðSÞP4

ð4:10Þ

At this point, the mass terms allow us to take the limit
ϵ → 0. Indeed, as we will see below. From (3.5) and (3.6),
which we can rewrite as equations for dp=dt and ds=dt
with the 3þ 1 split, we see that dp=dt ∼ ds=dt ∼OðϵÞ.
Hence, if we take the following initial conditions for the
photon,

x0¼

0
B@
0

0

0

1
CA; p0¼

0
B@

0

p20

0

1
CA; s0¼

0
B@
s10
s20
s30

1
CA; ð4:11Þ

we have the following momentum and spin, pðtÞ ¼ p0 þ
ϵqðtÞ þOðϵ2Þ and sðtÞ ¼ s0 þ ϵσðtÞ þOðϵ2Þ. Since we
only want the equation of motion dx2=dt at linear order in
ϵ, it is sufficient to have pðtÞ and sðtÞ at the zeroth order in
ϵ. Indeed, as we will see below, contributions in qðtÞ and
σðtÞ vanish after the ultrarelativistic limit.

Thus, for the velocity in the direction we are interested in, at first order in ϵ, we have,

dx2
dt

¼ p20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

2
0

p þ ϵ
m2q2ðtÞ

ðm2 þ p2
2
0Þ3=2

þ

−
ϵ

2

p20ðm2 þ p2
2
0Þ þ ω2ðp20ðs120 − s320Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

2
0

p
s20s30Þ

ðm2 þ p2
2
0Þ3=2

cosðωðt − x3ÞÞ þOðϵ2Þ: ð4:12Þ

We might be interested here in the behavior of the function q2ðtÞ. From (3.5) and the 3þ 1 split, we get,

dq2ðtÞ
dt

¼ ϵ

2
ωðp20 sinðωðt − x3ÞÞ − s10ω cosðωðt − x3ÞÞÞ: ð4:13Þ

The important take here is that q2ðtÞ does not contain any mass term. Thus, when p2
2
0 ≫ m2, we have

dx2
dt

¼ 1 −
ϵ

2
cosðωðt − x3ÞÞ −

ϵ

2

λ2γ
λ2GW

ðs120 − s320 − s20s30Þ
ℏ2

cosðωðt − x3ÞÞ þOðϵ2Þ ð4:14Þ

with λγ the wavelength associated to the photon, and λGW ¼
2π=ω is the wavelength of the gravitational wave. With
values taken from LIGO/Virgo, λγ ¼ 1064 nm,

ϵ

2

λ2γ
λ2GW

∼ 10−46:

This means that geodesic effects of order ϵ2 ∼ 10−40

would be seen before observing any spin effect in LIGO/
Virgo type detectors.
The effect is maximum when photons are polarized such

that s ¼ ð0;ℏ;ℏÞ, at least in the classical limit. In that case,
the measured time delay is decreased from Δτ to

fΔτ ¼ Δτ
�
1 − 2

λ2γ
λ2GW

�
: ð4:15Þ

A corollary is that two photons of different polarization
will have different times of flight. Thus, a beam made up of
photons of random polarization will introduce a noise due

to spin curvature effects. Away to eliminate this noise is to
polarize the beams of light before sending them into the
arms. However, the amplitude of the noise created by this
birefringence is of the relative order of 10−46 in LIGO/
Virgo, which is much below the current sensitivity in LIGO
and Virgo experiments.

V. CONCLUSIONS

To take into consideration the possible effects of the
photon’s spin on its trajectory in curved space, we used the
Mathisson-Papapetrou-Dixon equations for spinning test
particles, together with two possible supplementary con-
ditions for photons, by Frenkel-Pirani, or by Tulczyjew.
While for a massive spinning body, such as a spinning star,
the choice of SSC does not seem to have much practical
impact on the observable trajectory (unless the angular
momentum of the body is extremely large [51]), the choice
for elementary particles has more consequences.
The Frenkel-Pirani SSC for a massless particle leads

to a trajectory along a null geodesic, regardless of the
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gravitational background. In that case, there would be no
change to the geodesic trajectory of photons in a back-
ground of gravitational waves.
The Tulczyjew SSC for a massless particle predicts a

very small effect due to the polarization of the light on its
trajectory. Since the massive equations with this condition
lead to the massless equations in the limit m → 0, and
because of the instability of the localization of the test
particle in the equations near zero curvature, the photon is
treated in this paper as an ultrarelativistic massive particle.
This mass, which can be both large compared to the spin-
curvature coupling term RðSÞðSÞ and extremely small
compared to the momentum of the photon, allows for
convenient limits to be taken in the equations. The geodesic
equations in a gravitational wave background are recov-
ered, together with a new term depending on the spin
polarization of the photon. This means that with this
supplementary condition, the time of flight of a photon
in a detector depends on its polarization state. This
dependence is, however, many order of magnitudes lower
than the first order effects of gravitational waves on the time

of flight. But, if we achieve that kind of precision, polar-
izing the laser beam in a specific way would be an easy way
to reduce the noise introduced by birefringence. With
enough precision, this could even potentially be a way
to discriminate between the two possible spin supplemen-
tary conditions.
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APPENDIX: EXPRESSIONS
OF R(S)(S) AND SR(S)P

From the expression of the Riemann tensor, of the
spin tensor (4.5), k≡ cosðωðt − x3ÞÞ, and RðSÞðSÞ ¼
RμνλσSμνSλσ, we get,

RðSÞðSÞ ¼ 2ω2ϵk
m2 þ kpk2

h
2ðp1s1 − p2s2Þs3

�
p3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ kpk2

q �
− ðp2

1 − p2
2Þs23þ

− ðs21 − s22Þ
�
p3

�
p3 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ kpk2

q
Þ þ ðm2 þ kpk2Þ

��
þOðϵ2Þ: ðA1Þ

Similarly, we obtain, with SRðSÞPμ ¼ Rμ
νλσPνSλσ,

SRðSÞP ¼

0
BBB@

SRðSÞP1

SRðSÞP2

SRðSÞP3

SRðSÞP4

1
CCCA; ðA2Þ

with,

SRðSÞP1 ¼ K
�
s3ðm2 þkpk2Þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þkpk2

q
−p3

��
s1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þp2

q
−p3

�
þp1s3

�
þ

−
�
s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þkpk2

q � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þkpk2

q
−p3

�
þp2s3Þ

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þkpk2

q
−p3

�
ðp2s1 þp1s2Þ þ 2p1p2s3Þ

�
þOðϵ2Þ;

ðA3Þ

SRðSÞP2 ¼Kðs3ðm2þkpk2Þ
�
p3−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þkpk2

q �
ðs2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þkpk2

q
−p3

�
þp2s3

�
þ
�
s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þkpk2

q � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þkpk2

q
−p3

�
þp1s3

��� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þkpk2

q
−p3

��
p2s1þp1s2

�
þ 2p1p2s3

��
þOðϵ2Þ;

ðA4Þ
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SRðSÞP3 ¼ K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ kpk2

q �
ðs22 − s21Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ kpk2

q � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ kpk2

q
− p3

�2

þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ kpk2
q

− p3

��
−s3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ vp2

q
ðp1s1 − p2s2Þ þ p2

2s
2
1 − p2

1s
2
2

�
þ 2p1p2s3ðp2s1 − p1s2Þ

�
þOðϵ2Þ;

ðA5Þ

SRðSÞP4 ¼ K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ kpk2

q �
2p2

3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ kpk2

q
− p3

�
ðs21 − s22Þ þ s3ðp3

1s1 − p3
2s2Þ

þ 3s3p1p2ðp2s1 − p1s2Þ þ
�
m2 þ 3p2

3 − 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ kpk2

q
p3

�
s3ðp1s1 − p2s2Þþ

−
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ kpk2
q

− 2p3

�
ðp2

1s
2
2 − p2

2s
2
1Þ þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ kpk2

q
− p3

�
s23ðp2

1 − p2
2Þþ

− p3ðp2
1s

2
1 − p2

2s
2
2Þ −m2p3ðs21 − s22Þ

�
þOðϵ2Þ; ðA6Þ

and,

K ¼ ω2ϵ cosðωðt − x3ÞÞ
ðm2 þ kpk2Þ3=2 : ðA7Þ
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