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In this work, we investigate the embedding of a four-dimensional spherically symmetric metric in a six-
dimensional bulk. By using the Nash-Greene embedding theorem, the additional SOð2Þ symmetry of
the two spacelike extra dimensions induces the appearance of horizons of a lukewarm charged black hole.
In addition, a mass-dependent cosmological constant is obtained with a prediction of a bound for the mass
and minimal charge.
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I. INTRODUCTION

The possibility that the Universe might be embedded and
evolves in a higher-dimensional space-time has been
explored in the last decades as a tentative way to explain
the hierarchy of the fundamental interactions (the large
disparity of the weakness of the gravitational interaction
as compared to the gauge fields) in the hope that such
hierarchy may be broken in a higher space-time and
the ordinary matter, standard gauge interactions, and
gravity should be unified somehow. Most of these models
have been Kaluza-Klein and/or string inspired, such as the
seminal works of Arkani-Hamed, Dvali, and Dimopolous
(ADD) [1] who predicted a unification of the fundamental
interactions in a six-dimensional bulk for large extra
dimensions, later named braneworlds, suggesting a sub-
millimeter gravity. Another successful model is the
Randall-Sundrum model [2,3] in which the fixed three-
brane is embedded in a five-dimensional anti–de Sitter
(AdS5) space-time where the Israel condition applies [4].
The Dvali-Gabadadze-Porrati model is another interesting
approach where the 3þ 1 Minkowski space-time is fixed
and embedded in a flat five-dimensional bulk, predicting no
need for a small but nonzero vacuum energy density [5]. In
all those models and variants, the embedding geometry was
not completely regarded as a theoretical background since
it is generally fixed to a boundary and specific conditions
are needed to obtain its dynamics.
In this paper, we take a different path and consider the

geometric embedding as a fundamental cornerstone for a
gravitational theory, and neither a brane nor string related
framework is proposed since we start with different propo-
sitions. In the last decades, several authors investigated the
geometries of embedding as a prior mathematical structure
for a physical theory [6–18]. The fundamentals of the model

presented in this paper were originally proposed in
[7–9,19,20]. We investigate some consequences of a spheri-
cally symmetric metric in a six-dimensional bulk in the
context of a dynamical embedding. For instance, in the case
of a Schwarzschild solution the embedding would be
compromised in the Randall-Sundrum scheme, and this
problem evinces the necessity for a more general framework,
once the Schwarzschild geometry is completely embedded in
six dimensions [17,21–23]. Moreover, due to the impact of
the direct evidence of gravitational waves [24], recent black
hole studies have turned to a huge area of investigation that
impacts the problems of the standard model of particles,
the unification of the standard interactions, and the early
Universe. Thus, the study of higher-dimensional space-times
has been the focus of active research, as in [25–28], such as
analytical solutions of localized black branes in 2þ 1
dimensions [29–31] or several numerical works providing
solutions in 3þ 1 and also higher dimensions [32,33].
A review on black holes in the context of several theories
in higher dimensions can be found in [25,34].
We study the consequences of the dynamical embedding

of a four-dimensional space-time into a six-dimensional
bulk and find solutions for an electrically and magnetically
charged nonrotating black hole. The paper is organized as
follows: in the second section, we give a brief mathematical
review on the geometry of embeddings. The third section
presents the development of a calculation for a four-
dimensional metric embedded in a six-dimensional bulk,
and black hole horizons are also determined. In the fourth
section, we present the emergent cosmological constant
related to a thick embedded space-time and related quan-
tities. In the final section, we present our remarks.

II. INDUCED EMBEDDED DIMENSIONAL
EQUATIONS

The gravitational action functional in the presence of
a confined matter field on a four-dimensional embedded*abraao.capistrano@unila.edu.br
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space with thickness l embedded in a D-dimensional
ambient space (bulk) has the form

S ¼ −
1

2κ2D

Z ffiffiffiffiffiffi
jGj

p
RdDx −

Z ffiffiffiffiffiffi
jGj

p
L�
mdDx; ð1Þ

where κ2D is the fundamental energy scale on the embedded
space,R denotes the Ricci scalar of the bulk, and L�

m is the
confined matter Lagrangian (gauge fields may also be
included). In this model, the matter energy-momentum
tensor occupies a finite hypervolume with constant radius l
along the extra dimensions. The variation of Einstein-
Hilbert action in Eq. (1) with respect to the bulk metric GAB
leads to the Einstein equations for the bulk,

RAB −
1

2
GAB ¼ α⋆T AB; ð2Þ

where α⋆ ¼ 8πG� is the energy scale parameter and G� is
the bulk “gravitational constant.” The tensor T AB is the
energy-momentum tensor for the bulk [8,9,12]. Generating
a thick embedded space-time is important to perturb the
related background. It can be done using the confinement
hypothesis that depends only on the four dimensionality of
the space-time [35,36]. Even though any gauge theory can
be mathematically constructed in a higher-dimensional
space, the observed phenomenology still imposes the
fourth dimensionality of space-time [37].
Looking for a more general framework as a basis for a

physical model, we adopt the embedding theorem of differ-
entiable functions as our main mathematically-oriented
guide. In this sense, Nash’s original embedding theorem
[38] used a flat D-dimensional Euclidean space, later
generalized to any Riemannian manifold including non-
positive signatures by Greene [39] with independent
orthogonal perturbations. This choice of perturbation facil-
itates obtaining a differentiable smoothness of the embed-
ding between the manifolds, which is a primary concern of
Nash’s theorem and satisfies the Einstein-Hilbert principle,
where the variation of the Ricci scalar is the minimum
possible. Hence, it guarantees that the embedded geometry
remains smooth (differentiable) after smooth (differentiable)
perturbations. With all these concepts, let us consider a
Riemannian manifold V4 with a nonperturbed metric ḡμν
being locally and isometrically embedded in a
D-dimensional Riemannian manifold Vn. The embedded
space-time V4 is endowed with the local coordinates
xμ ¼ fx0;…; x3g, whereas the extra dimensions in the bulk
space can be defined with the coordinates xa ¼
fx4;…; xD−1g and D ¼ 4þ n. Hence, the bulk local coor-
dinates can be denoted by the set fxμ; xag. All these
definitions allow us to construct a differentiable and regular
map X∶V4 → Vn satisfying the embedding equations

XA
;μXB

;νGAB ¼ ḡμν; ð3Þ
XA

;μη̄
B
aGAB ¼ 0; ð4Þ

η̄Aa η̄
B
bGAB ¼ ḡab; ð5Þ

where the set of XAðxμ; xaÞ∶XA ¼ fX0…XD−1g denotes
the nonperturbed embedding function coordinates, the met-
ric GAB denotes the metric components of VD in arbitrary
coordinates, and η̄Aa denotes a nonperturbed unit vector field
orthogonal to V4. Concerning the notation, capital Latin
indices run from 1 to n. Lowercase Latin indices refer to the
extra dimension considered. All Greek indices refer to the
embedded space-time from 1 to 4. Those sets of equations
represent, respectively, the isometry condition in Eq. (3), the
orthogonality between the embedding coordinatesX and η̄ in
Eq. (4), and thevector normalization η̄Aa and ḡab ¼ ϵaδabwith
ϵa ¼ �1 in which the signs represent the signatures of the
extra dimensions. Hence, the integration of the system of
equations (3)–(5) assures the configuration of the embedding
map X .
The second fundamental form or, more commonly, the

nonperturbed extrinsic curvature k̄μν of V4 is, by definition,
the projection of the variation of η̄ onto the tangent plane:

k̄μν ¼ −XA
;μη̄

B
;νGAB ¼ XA

;μνη̄
BGAB; ð6Þ

where the comma denotes the ordinary derivative.
If one defines a geometric object ω̄ in V4, its Lie

transport along the flow for a small distance δy is given
by Ω ¼ Ω̄þ δy£η̄Ω̄, where £η̄ denotes the Lie derivative
with respect to η̄. In particular, the Lie transport of the
Gaussian vielbein fXA

μ ; η̄Aag defined on V4 straightfor-
wardly gives the perturbed coordinate ZAðxμ; yaÞ ≔ ZA

such as

ZA
;μ ¼ XA

;μ þ δya£η̄XA
;μ ¼ XA

;μ þ δyaη̄Aa;μ; ð7Þ

ηAa ¼ η̄Aa þ δyb½η̄a; η̄b�A ¼ η̄Aa : ð8Þ

It is worth mentioning that Eq. (8) shows that the normal
vector ηA does not change under orthogonal perturbations.
However, from Eq. (6), we note that, in general, η;μ ≠ η̄;μ.
Likewise, it occurs that the so-called third geometrical form
or, more commonly, the torsion vector Aμab does not
change under orthogonal perturbations. To see how it
works, we take Eq. (12) and rewrite Eq. (4) as

gμb ¼ ZA
;μη

B
bGAB ¼ δyaAμab; ð9Þ

where ZA is a set of perturbed coordinates. Equation (9)
results from a generalization of the Gauss-Weingarten
equations

ηAa;μ ¼ AμacgcbηAb − k̄μρaḡρνZA
;ν: ð10Þ

Then,
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Aμab ¼ ηAa;μη
B
bGAB ¼ η̄Aa;μη̄

B
bGAB ¼ Āμab; ð11Þ

which ratifies that the torsion vector is not altered under
perturbations. In the geometric language, the presence of a
torsion potential tilts the embedded family of submanifolds
with respect to the normal vector ηAa. If the bulk has certain
Killing vectors, then Aμab transforms as the component of
a gauge field under the group of isometries of the bulk
[7,40,41]. It is worth noting that the gauge potential can
only be present if the dimension of the bulk space is equal
to or greater than 6 (n ≥ 2) in accordance with Eq. (11)
since the torsion vector fields are antisymmetric under the
exchange of extra coordinates a and b.
To describe the would-be perturbed embedded geometry,

we set a perturbed coordinate ZA needed to satisfy the
embedding equations similar to Eqs. (3)–(5) as

ZA
;μZB

;νGAB ¼ gμν; ZA
;μη

B
bGAB ¼ gμb; ηAaη

B
bGAB ¼ gab;

ð12Þ

where gab ¼ ϵaδab with ϵa ¼ �1. Thus, with Eq. (12) and
using the definition from Eq. (6), one obtains the perturbed
metric and extrinsic curvature of the new manifold as

gμν ¼ ḡμν − 2yak̄μνa þ δyaδyb½ḡσρk̄μσak̄νρb þ gcdAμcaAνdb�;
ð13Þ

and the related perturbed extrinsic curvature

kμνa ¼ k̄μνa − δybðgcdAμcaAνdb þ ḡσρk̄μσak̄νρbÞ: ð14Þ

Taking the derivative of Eq. (13) with respect to the y
coordinate, one obtains Nash’s deformation condition

kμνa ¼ −
1

2

∂gμν
∂ya : ð15Þ

The meaning of this expression can be realized in a pictorial
view under the basic theory of curves. For instance, one can
construct a one-parameter group of diffeomorphisms
defined by a map hyðpÞ∶VD → VD, describing a continu-
ous curve αðyÞ ¼ hyðpÞ that passes through the point
p ∈ V4, with unit normal vector α0ðpÞ ¼ ηðpÞ. The group
is characterized by the composition hy∘h�y0 ðpÞ ¼defhy�y0 ðpÞ,
h0ðpÞ ¼defp. With the diffeomorphism mapping all points of
a small neighborhood of p, one gets a congruence of curves
(or orbits) orthogonal to V4 [42] which consists of the
action of the extrinsic curvature. Thus, it is not important if
the parameter y is timelike or not, nor is the sign of its
signature. A similar expression was obtained years later in
the ADM formulation by Choquet-Bruhat and York [43].
From the physical point of view, the expression in Eq. (15)
localizes the matter in the embedded space-time, imposing

on it a geometric confinement. In other words, it holds true
for any perturbations resulting from n-parameter families of
embedded submanifolds denoted by ya, and the matter
remains confined to the resulting perturbed metric, which
can bend and/or stretch without ripping the manifold
(embedded space-time), which can be a valuable feature
for a quantization process.
In addition, the integrability conditions for Eq. (12) are

given by the nontrivial components of the Riemann tensor
of the embedding space expressed in the Gaussian frame
fZA

μ ; ηAag known as the Gauss-Codazzi-Ricci equations.
This guarantees reconstructing the embedded geometry and
understanding its properties from the dynamics of the four-
dimensional embedded space-time. Consequently, we can
define a Gaussian coordinate system fZA

;μ; ηAag for the bulk
in the vicinity of V4 in such a way,

GAB ¼
�
gμν þ gabAμaAνb Aμa

Aνb gab

�
ð16Þ

where the perturbed metric gμν is given by Eq. (13).
The expression in Eq. (16) is the metric of the bulk with

D ≥ 6 or at least two extra dimensions. This resembles
the non-Abelian Kaluza-Klein metric, and the quantity Aμa

plays the role of the Yang-Mills potentials where Aμa ¼
xbAμab. We emphasize that for just one extra dimension, the
torsion vector does not exist, and for two extra dimensions
it turns out to be the usual Maxwell field, which means that
the non-Abelian part of Aμa is lost in a six-dimensional
bulk. This means that the resulting force is the ordinary
electromagnetic one in the case of two extra dimensions
[10,11,19,41].
As proposed in [7–9,20], one obtains the induced field

covariant equations of motion, taking Eq. (2) in the frame
defined in Eq. (16). In the background for a 4D observer in
the embedded space, we have the following set of equations
denoted by Eqs. (17), (21), and (22):

Gμν þQμν ¼ 8πGNðTμν þ TðYMÞ
μν Þ; ð17Þ

where the quantities Tμν and T
ðYMÞ
μν denote the stress energy

tensors for ordinary matter and Maxwell-Yang-Mills fields.

In this sense, the tensor TðYMÞ
αβ is written as

TðYMÞ
μν ¼ 1

4πβg2i

�
Fσ
μlmF

lm
νσ −

1

4
gμνFμνlmFμνlm

�
; ð18Þ

where the quantity Fμνab in terms of Aμa is denoted by
Fμνab ¼ Aμab;ν − Aνab;μ − Ac

νaAμcb þ Ac
μaAνcb, which is the

curvature associated with the torsion vector Aμab that obeys

∇νFμνab ¼ 0: ð19Þ

LUKEWARM BLACK HOLES IN THE NASH-GREENE FRAMEWORK PHYS. REV. D 100, 064049 (2019)

064049-3



The structure constant β originates from the adjoint repre-
sentation of the Lie algebra Lab of the group of rotations
[19,20] such that ½Lab; Lcd� ¼ fabcdmn Lmn. Moreover, the
structure constants are given by fabcdmn ¼ 2δm½bηa�½cδ

n
d�, and

we calculate the following relation [44]:

fabcdmn fa
0b0mn

cd ¼ βðadÞ½δab0δa0b − δaa0δbb0 �: ð20Þ

Hence, using the former relation, one determines the result-
ing constant β, which can be written as

β ¼
�
2ðn − 2Þ n ≠ 2

2 n ¼ 2
;

and the terms gi are the coupling constants that indicate the
strength of the fundamental gauge interaction.
The second equation involves relations with extrinsic

terms k̄αβa and Aμab,

∇�
νk̄a −∇�

μk̄
μ
aν ¼ 8πGNTaν; ð21Þ

where the term ∇�
μk̄αβa denotes ∇�

μk̄αβa ≔ k̄αβa;μ − Aμabk̄bαβ
and the semicolon denotes the covariant derivative.
The third equation is denoted as

GN

β

�
Fμν
amFm

μνb þ
1

2
ηabFlm

μνF
μν
lm

�

−
1

2
ηabðRþ k̄μνmk̄μνm − k̄ak̄aÞ ¼ 8πGNTab; ð22Þ

where ηab ¼ ϵaδab with ϵa ¼ �1. The quantities GN , Taν,
Tab denote the induced gravitational Newton’s constant,
and the stress energy tensor projections of TAB on the cross
and normal directions of the space-time, respectively.
Those sets of equations are the result of the integrability

conditions of the embedding given by the Gauss-Codazzi-
Ricci equations. From the Nash-Green theorem, the sol-
utions of these equations were obtained by a differentiable
process [7]. The first two equations are known, respec-
tively, by the gravitational tensorial equation (a modified
Einstein’s equation by the appearance of the extrinsic
curvature) as in Eq. (17) and the gravitational vectorial
equation as in Eq. (21). In summary, they reflect the
meaning of a dynamical embedding: the pseudo-
Riemann curvature of the embedding space acts as a
reference for the pseudo-Riemann curvature of the
embedded space-time. Moreover, the projection of the
Riemann tensor of the embedding space along the normal
direction is given by the tangent variation of the extrinsic
curvature as shown by Eq. (21), which is the trace of the
Codazzi equation composed of the extrinsic terms
k̄αβa; Aμab. The last equation is known as the gravitational
scalar equation and serves as a constraint on the torsion
vector fields Aμab.

The quantity Qμν is denoted by

Qμν ¼ ḡcdðḡρσ k̄μρck̄νσd − k̄μνdḡαβk̄αβcÞ ð23Þ

−
1

2
ðk̄λϕck̄λϕd − ḡαβk̄αβdḡγδk̄γδcÞḡμν; ð24Þ

and it is an independently conserved quantity in the sense
that Qμν;ν ¼ 0, which means that this geometric new term
does not exchange gravitational energy with ordinary
matter resembling the quintessence in the dark energy
problem. The conservation of Qμν holds true for perturbed
quantities of gμν and kμνa. Implications of this term in
cosmology have been investigated in [8–13,15–18].
From a relation between normal curvature radii L with a

thickness l of the embedded space-time and the gauged
coupling gi, one can write the four-dimensional Planck
mass applied in such a way [20],

L ¼ nβ
4ðnþ 2Þ l

3M2
pl
g2i
4π

;

where normal radii are the smallest value of the curvature
radii obtained from

detðgμν − lakμνaÞ ¼ 0: ð25Þ

In a geometrical sense, the term ya ¼ la represents displace-
ment of the embedded space along the extra dimensions.
To interpret this solution, consider a small displacement of
the foot of the normal vector ηa along a tangent direction dxμ

to the embedded space-time and look for a fixed point of the
bulk in line with the same normal direction. The point is the
local center of curvature, and the local radii of curvature are
the values ya of the extra dimensional coordinate satisfying
the condition detðgμν − yakμνÞ ¼ 0 [7,44,45]. For a given
kμν, there are at most four distinct solutions yaðαÞ; ðαÞ ¼
1;…; 4 of such an equation. Consequently, all points of the
embedded space-time solutions must have all directions dxμ

as principal directions. The single curvature radius la is the
smallest of these solutions, corresponding to the direction in
which the embedded space deviates more sharply from the
tangent plane. Considering all contributions of la, in such a
way that the smaller solution prevails, the curvature radius
may also be expressed as

1

l
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνgab

1

lμa

1

lνb

s
:

III. CHARGED BLACK HOLE IN A
SIX-DIMENSIONAL BULK

In this section, we consider a static and symmetric
solution of induced field equations and the consequences
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of an electromagnetic energy-momentum tensor TðEMÞ
μν as a

source. In six dimensions, there is an additional SOð2Þ
symmetry generated by two spacelike Killing vectors
of the two extra dimensions (n ¼ 2). Moreover, the gauge
fields, the gauge fields result in the ordinary electro-
magnetic force, which can be realized if one assumes that
Aabμ ¼ ϵabAμ, where the antisymmetric symbols are
defined as ϵ12 ¼ −ϵ21 ¼ 1. Without any further ado, we
determine the induced field equations (2), which are given
by the following induced metric:

ds2 ¼ −e−2aðrÞdt2 þ e2bðrÞdt2 þ r2dΩ2; ð26Þ

where dΩ is the ordinary two-sphere element. We stress
that the y coordinate is not necessary on the induced metric
once the embedding equations are correctly applied. Since
Nash’s idea on embedding of manifolds using smooth
deformations is applied to the embedding, the y coordinate,
commonly used in rigid embedded models, e.g., Randall-
Sundrum and variants [2,3], can be omitted in the line
element [7–14].
In six dimensions, Eq. (19) reduces to the Maxwell

equations ∇νFμν ¼ 0, and TðYMÞ reduces to the energy-

momentum tensor TðEMÞ
μν . Therefore, the field strength in the

Lorentz gauge ∇μAμ ¼ 0 is given by

F ¼ −
qffiffiffiffiffiffi
4π

p eaþb

r2
dt ∧ dr −

gffiffiffiffiffiffi
4π

p sinðθÞdθ ∧ dφ; ð27Þ

where q and g denote electric and magnetic charges,
respectively. Because of the embedding, they are located
in the center of Kruskal space-time. The related energy-
momentum tensor components of Eq. (18) are found to be

TEM
00 ¼ Z2e2a

8πr4
; TEM

11 ¼ −
Z2e2b

8πr4
;

TEM
22 ¼ Z2

8πr2
; TEM

33 ¼ sin2ðθÞTEM
22 ; ð28Þ

where all other TðEMÞ
μν ¼ 0, and Z2 ¼ 1

4π ðq2 þ g2Þ.
Equations (22) give the restriction on the electric and

magnetic charges q2 ¼ g2, and g2i
4π ¼ Z2. Moreover, Eq. (21)

gives the components of extrinsic curvature as

kμνa ¼ ϕagμν; ð29Þ

where the set ϕa are constants. Hence, Eq. (25) leads to
L−2 ¼ ηabϕ

aϕb. Therefore, there is not a direction in which
any normal curvature has an extreme value, and conse-
quently, the four-dimensional submanifold is umbilic
[44,45], which leads to

Qμν ¼
3

L
gμν: ð30Þ

Hence, using Eqs. (28) and (30) the components of G00

and G11 in Eq. (17) become

1

r2
− e−2b

�
1

r2
−
2b0

r

�
¼ 3

L2
þ Z2G

r4
; ð31Þ

1

r2
− e−2b

�
1

r2
þ 2a0

r

�
¼ 3

L2
þ Z2G

r4
: ð32Þ

By substraction, we see that aþ b ¼ 0, and consequently

ðre−2bÞ0 ¼ 1 −
3

L2
r2 −

Z2G
r2

:

The metric functions are thus given by

e2a ¼ e−2b ¼ 1 −
2GM
r

þ Z2G
r2

−
r2

L2
: ð33Þ

The other components of the Einstein equations are also
satisfied. Hence, in a general sense, the D-dimensional
Einstein vacuum equations (2) induce a four-dimensional
Reissner-Nordström-de Sitter (RNdS) space-time, where
the induced charge is a consequence of a noncompact
spacelike extra dimensions and an induced cosmological
constant Λind ¼ 3

L2 is a consequence of the extrinsic shape
of the black hole.
As is largely known, according to the Einstein field

equations, the distribution of matter determines the intrinsic
geometric properties. On the other hand, in a geometry
of embeddings with the corresponding field equations,
Eqs. (17) and (21) determine both intrinsic ðGμνÞ and
extrinsic ðQμνÞ geometric properties of the space-time.
Consequently, in the absence of any matter fields, the
embedded space-time will be a trivial flat space-time (with
both intrinsic and extrinsic features). As a result, the extrinsic
radii of the embedded space-time will be globally infinite.

IV. AN EMERGENT COSMOLOGICAL
CONSTANT

The minimum measurable length over which the masses
can be localized is about of the order of their Compton
wavelengths. Hence, let us assume that the width of the
four-dimensional embedded space-time has the same order
of the Compton wavelength of the black hole, which we set
as l ¼ M−1. Therefore, the curvature radii defined in
Eq. (25) become

L ¼ 1

4

M2
pl

M3
Z2: ð34Þ

Hence, taking Eqs. (33) and (34), we find an emergent
cosmological constant Λe as
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Λe ¼ 48G2
M6

Z4
: ð35Þ

Interestingly, the “cosmological constant” as a mass-
dependent quantity was previously conjectured by
Zeldovich [46,47].
Eventually, the horizons can be found using the algebraic

equation e2a ¼ 0, which has three positive roots. The outer
horizon is located at rþþ, the black hole horizon at rþ, and
the Cauchy horizon at ri. If we set M2G ¼ Z2, then the
RNdS space-time is called a lukewarm black hole [48,49].
In the naive picture of black hole evaporation, in the
lukewarm solution, the cosmological constant Λ comes
from the background universe, and consequently this
solution is thermodynamically stable and is the endpoint
of the evaporation process: if M=Mpl > jZj then the black
hole is hotter than the de Sitter horizon and will evaporate
until it reaches M=Mpl ¼ jZj. If M=Mpl < jZj then the de
Sitter horizon is hotter, and the black hole will accrete
radiation until it reaches M=Mpl ¼ jZj. A similar process
applies to our model since the black hole will evaporate
until it reaches M=Mpl ¼ jZj. Then, an emergent Λe will
rise in the black hole with a value

Λe ¼ 48Z2M2
pl; ð36Þ

and the three related horizons will have the form

ri ¼
1

8MpljZj
�
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16Z2

p �
; ð37Þ

rþ ¼ 1

8MpljZj
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16Z2

p �
; ð38Þ

rþþ ¼ 1

8MpljZj
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16Z2

p �
; ð39Þ

which shows that the lukewarm black holes are possible if
jZj < 1

4
or M < 1

4
Mpl. In this case, both event and outer

horizons have the same surface gravity,

κþ ¼ κþþ ¼ 4jZjMpl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16Z2

p
; ð40Þ

which means they have the same temperature, T ¼ jκþj
2π .

Hence, for Z ¼ Oð1Þ there will be an unstable black hole.
Therefore, the lukewarm black holes in this model will
reach a maximum temperature at

Z ¼ 1

2
ffiffiffi
2

p ; ð41Þ

M ¼ 1

2
ffiffiffi
2

p Mpl; ð42Þ

Λe ¼ 6M2
pl ∼ ΛQFT; ð43Þ

T ¼ Mpl

2π
∼ Tpl ¼ 3.5 × 1032K: ð44Þ

The emergent Λe is of the order of the vacuum energy of
quantum field theory; consequently, it is hotter than the
cosmological horizon, and these solutions are not thermo-
dynamically stable. Since the total gravitational entropy is
given by the sum of the area of the black holes and
cosmological event horizons, the entropy is extremized for
κbh ¼ −κuniverse, which coincides with the condition that the
black hole and de Sitter temperature must be equal. Thus,
the final stable state of the black hole will be determined by
the following quantities:

Z ¼ 1

4Mpl

ffiffiffiffi
Λ
3

r
∼ 10−60; ð45Þ

M ¼ 1

4

ffiffiffiffi
Λ
3

r
∼ 1.5 × 10−66g; ð46Þ

Λe ¼ Λuniverse ∼ 3 × 10−56 cm−2; ð47Þ

T ¼ 2

π
M ¼ 1

2π

ffiffiffiffi
Λ
3

r
∼ 10−60; ð48Þ

with the following horizons: ri ∼ rþ ∼ 1
4Mpl

ffiffiffi
Λ
3

q
∼ 10−93 cm

and rþþ ∼
ffiffiffi
3
Λ

q
∼ 1028 cm.

Hence, this means that the black hole reaches the
universal lower bound of mass M ∼ 10−66 g and minimum
charge q ∼ 10−60e. This bound for the mass has been
verified by several authors [50–52].

V. REMARKS

In this paper, we have discussed the embedding of a four-
dimensional symmetric metric in a bulk of six dimensions.
Applying the Nash-Greene embedding theorem to a static
spherical symmetric metric, we have found a modification
induced by the extrinsic curvature using a dynamical
embedding with the appearance of the torsion vector
Aμab as a gauge group of rotations SOð2Þ in the extra
dimensions. The conserved quantity Qμν is a new compo-
nent of curvature that may be interpreted, in a cosmological
sense, as a component of some mechanical energy respon-
sible for the observed acceleration of the Universe.
However, from the point of view of geometry, it may also
be interpreted as a necessary observational quantity, rein-
troducing some topological qualities to a theory of gravi-
tation. This latter interpretation gives full support to the
Gauss and Riemann views that geometry is determined
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essentially by the observations, regardless of how small and
near or how large and distant they may be.
Since a spherically symmetric metric, just like

Schwarzschild geometry, is completely embedded in a
six-dimensional bulk, we have calculated the related
horizons for a charged nonrotating black hole, and we
have found a lukewarm black hole plus the appearance of
new elements like an emergent cosmological constant Λe,
which has turned this model into a worthy framework to
investigate further. It is important to mention that even in
the vacuum case, this is not a solution of the Einstein-
Maxwell equations in four dimensions due to the presence
of the tensor Qμν representing the conserved energy of the
extrinsic part of the gravitational field at the TeV energy
scale. These results are quite different from those we
obtained in a five-dimensional bulk, where the restrictions
to embedding induced a serious constraint on the classical
black hole thermodynamic stability [17]. The present

results may suggest a new way of thinking about the
cosmological constant problem and its variants [53–55].
Hopefully, the understanding of an emergent Λe will
explain why the measured cosmological constant is not
precisely zero and has a nonzero but very small value.
Future prospects include the study of the related quasi-
normal modes applied to the same framework in the
analysis of the signal-to-noise ratio, which will be reported
elsewhere.
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