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The linear perturbation theory applied to the study of black holes is a traditional and powerful tool to
investigate some of the basic properties of these objects, such as the stability of the event horizon, the
spectra of quasinormal modes, the scattering and the production of waves in a process of gravitational
collapse. Since long ago, the physical interpretation of the linear fluctuations in the metric of spherically
symmetric black holes has been established. In a multipolar expansion, it is known that polar perturbations
of a monopole type (l ¼ 0) can only increase the black-hole mass, axial perturbations of a dipole type
(l ¼ 1) induce a slow rotation in the system, and perturbations with l ≥ 2 always lead to the production of
gravitational waves. However, in relation to the planar Schwarzschild anti–de Sitter black holes (or black
branes, for short), there is still no conclusive study on some aspects of the physical meaning of these
perturbations. In particular, there is some controversy concerning the polar sector of fluctuations with zero
wave numbers (k ¼ 0). Some authors claim that this kind of perturbation causes only a small variation in
the black-brane mass parameter, while others obtained also evidence for the existence of gravitational
waves associated to such modes. The present study aims to contribute to the resolution of this controversy
by revealing the physical meaning of the gravitational perturbations of anti–de Sitter black branes. In this
work we use the Chandrasekhar’s gauge formalism to evaluate the linear variations in the complex Weyl
scalars in terms of the Regge-Wheeler-Zerilli gauge-invariant quantities. Then we use the Szekeres’
proposal for the meaning of the Weyl scalars and the Pirani’s criterion for the existence of gravitational
radiation in order to give a physical interpretation of the black-brane perturbations with arbitrary wave
number values.
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I. INTRODUCTION

The perturbation theory is an important tool in studying
some of the properties of black holes, for instance, in
investigating the stability of event horizons under metric
fluctuations, as well as in the study of generation, absorp-
tion and scattering of gravitational waves by such objects
(see, e.g., Refs. [1–3]). Furthermore, from the perspective
of the AdS/CFT correspondence [4–7], black holes in
asymptotically anti–de Sitter (AdS) spacetimes are dual
to a thermal equilibrium state of a boundary conformal field
theory (CFT), and the first-order gravitational perturbations
of these black holes correspond to linear fluctuations in the
energy-momentum tensor of the dual thermal state [8].
There are two main methods to study gravitational

perturbations of black holes. The first one consists in
considering perturbations of the black-hole metric and then
by linearizing the Einstein equations around the given
background spacetime. The second method consists in the
linearization of the equations resulting from the use of the
Newman-Penrose formalism [9]. In both cases, a major

difficulty is writing the physically interesting variables in
terms of gauge-invariant quantities. The gauge freedom
arises from the identification of events in the background
with events in the physical (perturbed) spacetime. For this
reason, the gravitational perturbations are usually described
in terms of gauge-dependent variables,whosegauge freedom
may be explored to simplify the analysis, and only the final
results are written in terms of gauge-invariant quantities.
As far aswe know, the first work to present a complete and

clear formulation of the gravitational perturbation theorywas
published in 1974 by Stewart and Walker [10]. In the
meantime, important progress on the study of metric per-
turbations of black-hole spacetimes wasmade in thework by
Regge and Wheeler [11] published in 1957, where the
stability of a Schwarzschild black hole under axial pertur-
bations was studied. The gauge used in this paper is now
known as theRegge-Wheeler gauge.Based on the same idea,
Zerilli [12,13] analyzed the gravitational radiation that arises
when stars fall into a static black hole and extended the
Regge-Wheeler study for polar perturbations, completing the
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fundamental equations for the gravitational perturbations of
Schwarzschild black holes. Later on, Chandrasekhar [14]
obtained the same equations as Regge-Wheeler and
Zerilli by using a different gauge, that is currently known
as the Chandrasekhar gauge. Following different routes,
Teukolsky [15,16] and Moncrief [17,18] developed studies
on the gravitational perturbations of the Kerr and Reissner-
Nordström black holes, respectively, with the aim of inves-
tigate the stability of these black-hole spacetimes.
In more recent years, Kodama, Ishibashi, and Seto [19]

developed an interesting strategy to investigate the gravita-
tional perturbations in static higher-dimensional spacetimes
with some specified spatial symmetry. In such a strategy, the
spatial symmetry of the background spacetime is used from
the beginning to decompose the perturbations in three
independent sectors, namely, tensor, vector, and scalar
sectors, and to construct gauge-invariant quantities for each
one of the sectors. This construction has been used to study
several properties of gravitational perturbations in black-hole
and black-brane spacetimes, as for instance in the work by
Dias andReall [20], where the algebraically special modes of
higher dimensional black holes are investigated. The vector
and scalar sectors of the Kodama-Ishibashi-Seto gauge-
invariant formulation correspond, respectively, to the axial
and polar perturbations in the language of the Regge-
Wheeler-Zerilli formalism, while the tensor perturbations
are not present in 4-dimensional spacetimes.
An interesting approach regarding the physical interpre-

tation of a given background metric and its gravitational
perturbations is based on the effects of the curvature tensor
on the relative motion of free test particles through the
geodesic deviation equation. Using a tetrad of null vectors,
Szekeres [21] wrote the geodesic deviation equations for
empty spacetimes in terms of the Weyl scalars and obtained
a physical interpretation for these scalars. Motivated by this
technique, Podolský and Švarc [22] arrived at a similar
interpretation for the Weyl scalars in higher-dimensional
spacetimes. They went beyond the free part of the gravi-
tational field, and took into account the isotropic action of
the cosmological constant and the influence of matter in the
spacetime curvature. From the Szekeres’ and Podolský-
Švarc’s interpretation, it is possible to extract the effects of
gravitational perturbations on freely falling test particles. In
particular, it is possible to verify whether a given class of
metric perturbations are really associated to gravitational
waves or not. The aforementioned approaches allowed to
establish a classification and an interpretation of gravita-
tional perturbations of spherically symmetric black holes,
even in the presence of a cosmological constant. On the
other hand, in relation to the case of AdS black-brane
perturbations, there still exist some open questions regard-
ing the physical interpretation of the polar-sector perturba-
tions with zero wave numbers. For instance, Kodama and
Ishibashi [23] argue that these perturbations produce only a
small change in the mass parameter of the black brane, in

complete agreement with the case of a monopole-type
(l ¼ 0) perturbation of a Schwarzschild black hole.
However, in a more detailed study with the use of the
Chandrasekhar diagonal gauge, it was shown in Ref. [24]
that the zero wave number polar perturbations may also
represent gravitational waves along the radial direction, i.e.,
they describe also gravitational waves propagating in the
perpendicular direction to the black-brane horizon.
Therefore, motivated by the absence of a conclusive study

on this theme, the present paper aims to investigate the
physical meaning of the gravitational perturbations of black
branes in asymptotically anti–de Sitter spacetimes and,
consequently, to analyze the possibility of obtaining sol-
utions with gravitational waves for polar perturbations with
zero wave numbers. For this, the perturbations in the Weyl
scalars are calculated and, from the Szekeres [21] approach
for the analysis of the geodesic deviation equations, the
physical meaning of the perturbations shall be obtained in an
invariant way. As an additional investigation, the canonical
form of the Riemann tensor is calculated for the perturbed
black brane, and the Pirani’s criterion [25] is used to study
the physical meaning of the polar perturbation sector. In the
studies of themetric perturbations related to this problem, the
Chandrasekhar gauge is employed. Finally, let us stress that
the main interest here is in the physical interpretation of the
perturbation functions and, in particular, in the zero wave
number perturbations.Wewill not focus on the calculation of
the complete black-brane quasinormal mode spectrum
because it is a well studied subject in the literature. See,
e.g., Refs. [26–29] for more details.
The structure of this paper is as follows. We present in

Sec. II the black-brane spacetime and define the basic
quantities of the Newman-Penrose formalism for such a
background. Section III is devoted to review the gravita-
tional perturbation theory in the Chandrasekhar gauge, and
to present the fundamental equations for the axial and polar
metric variations. In Sec. IV we use the Szekeres’ proposal
to extract the physical meaning of the gravitational fluc-
tuations with both vanishing and nonvanishing wave
numbers. We use in Sec. V the Pirani’s criterion [25] as
an alternative way to interpret the polar-sector perturba-
tions, in particular the perturbations with zero wave
numbers. In Sec. VI we show how the gravitational waves
associated to the zero wave number polar fluctuations arise
in the Kodama-Ischibashi-Seto approach. We conclude in
Sec. VII by discussing the main results of this paper.
Geometric units are used throughout this text, so that the

speed of light c and the gravitational constant G are set to
unity, c ¼ 1 ¼ G. The signal convention for the Riemann,
Ricci, and Einstein tensors is that of Ref. [30]. For the
Newman-Penrose quantities, the signal convention of
Ref. [31] is adopted.

II. THE BACKGROUND SPACETIME

The Einstein equations with a negative cosmological
constant admit an asymptotically AdS solution, whose
associated metric can be written in the form [32–34]
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ds2¼−fðr;MÞdt2þf−1ðr;MÞdr2þ r2ðdφ2þdz2Þ; ð1Þ

with

fðr;MÞ ¼ r2

l2
−
2M
r

; ð2Þ

whereM represents the mass parameter, l2 ¼ −3=Λc is the
AdS radius, and Λc is the negative cosmological constant.
The local geometry of such a solution is Euclidean in the

sense that the surfaces of constant t and r are locally flat,
but the topology can be planar (φ; z ∈ R), cylindrical
(φ ∈ S1, z ∈ R), or toroidal (φ; z ∈ S1). In short, in this
text we stick to the geometry and refer to this solution as
an AdS plane-symmetric black hole, or simply as a
black brane.
The zeros of the function fðr;MÞ, given by Eq. (2),

determine the horizons of the background spacetime (1).
The only real root of the equation fðr;MÞ ¼ 0 gives the
location of the event horizon of the black brane,

rh ¼ ð2Ml2Þ1=3: ð3Þ

The present work is partly performed by using the
Newman-Penrose formalism [9]. For this, we consider a
null tetrad basis ðlμ; nμ; mμ; m�μÞ, where the real null
vectors lμ and nμ are, respectively, tangent to the ingoing
and outgoing radial null geodesics of the background
solution (1), i.e.,

lμ∂μ ¼
1

f
ð∂t þ f∂rÞ; nμ∂μ ¼

1

2
ð∂t − f∂rÞ; ð4Þ

while the complex null vector mμ is defined by

mμ∂μ ¼
1ffiffiffi
2

p
r
ð∂z þ i∂φÞ; ð5Þ

with the vector m�μ being the complex conjugate of mμ.
For the above null tetrad, the only nonvanishing Weyl

scalar of the background metric (1) is

Ψ2 ¼ Cρσμνlρmσm�μnν ¼ −
M
r3

: ð6Þ

Hence, the black-brane spacetime is type D in the Petrov
classification.

III. GRAVITATIONAL PERTURBATIONS
OF BLACK BRANES

A. General remarks

Let us review here the basic properties of the axial (odd)
and polar (even) sectors of the black-brane gravitational
perturbations, since both are important for the present
analysis. The perturbations of the black-brane metric (1)

and its quasinormal modes have been extensively inves-
tigated in the literature (see, e.g., Refs. [26–29]). However,
the interpretation of the resulting perturbation fields has
generated some controversy. In order to investigate this
problem in more detail, we start revisiting the gravitational
perturbation theory in the Chandrasekhar gauge formal-
ism [14,35].
We denote the components of the background metric (1)

by gð0Þμν . In a first-order theory, the gravitational perturba-
tions are defined as the linear variations δgμν ≡ hμν on the

background metric gð0Þμν , i.e., the perturbed metric is given

by gμν ¼ gð0Þμν þ hμν. In the present case, the nonzero
components of the perturbation hμν may be written as

htt ¼ −2fμ0; htφ ¼ r2q0;

hrr ¼ 2f−1μ2; hrφ ¼ r2q2;

hzz ¼ 2r2μ3; hzφ ¼ r2q3;

hφφ ¼ 2r2ψ ; ð7Þ

where the other components of hμν are set to zero by an
appropriate gauge choice as done by Chandrasekhar [14].
The functions μ0, μ2, μ3 q0, q2, and q3 are all small
quantities when compared to unity.
Under the substitution φ → −φ, the variables q0, q2, and

q3 induce odd-parity variations in the metric, and so they
are called axial (or odd) perturbations. On the other hand,
the variables μ0, μ2, μ3, and ψ induce even-parity variations
under sign change of φ, and so they represent polar (even)
metric perturbations.
In the Chandrasekhar gauge, the Einstein field equations

for the gravitational perturbations result in a set of coupled
differential equations. However, in the case of axially
symmetric perturbations, i.e., in the case the perturbation
functions do not depend on the variable φ, the system of
equations can be decoupled into two independent sets of
equations, one for each perturbation sector. In fact, due to
the plane-symmetric nature of the spacetime, it is always
possible to choose the orientation of the frame (in the φ; z
plane) in such a way that the perturbation functions result
independent of φ. Hence, without loss of generality, from
now on we consider only the axially symmetric perturba-
tions, since this choice allows us to study independently
each one of the perturbation sectors.
Since metric (1) does not depend on the coordinates t, z,

and φ, any perturbation function Fðt; r; z;φÞ in (7) can be
conveniently represented in terms of Fourier modes as

Fðt; r; z;φÞ ∼ F̃ðrÞeiðmφþkz−ωtÞ; ð8Þ

with F̃ðrÞ being a function of r only, andm and k being real
numbers. The wave numbers m and k may be quantized on
not, depending on the topology of the t; r ¼ constant
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subspace. Notice that, since we are interested in axis-
symmetric perturbations, we put m to zero.

B. Fundamental perturbation equations

1. Axial perturbations

For nonvanishing wave numbers, it is possible to
describe the axial perturbations by a single gauge-invariant
quantity Zð−Þ, defined in terms of the quantities q̃2 and q̃3
(see, e.g., Ref. [26]). In the Fourier space, this master
variable satisfies the differential equation

Λ2Z̃ð−Þ ¼ Vð−ÞZ̃ð−Þ; ð9Þ

where the function Z̃ð−Þ ¼ Z̃ð−ÞðrÞ is defined by

Z̃ð−Þ ¼ −rf
�
d
dr

q̃3ðrÞ − ikq̃2ðrÞ
�
; ð10Þ

the effective potential Vð−Þ is given by

Vð−Þ ¼ f
r2

�
k2 −

6M
r

�
; ð11Þ

and Λ2 represents the differential operator

Λ2 ¼ d2

dr2�
þ ω2; ð12Þ

with r� being the Regge-Wheeler tortoise coordinate,
defined in such a way that dr� ¼ f−1dr.
For future reference, we introduce here the operators

Λ� ¼ d
dr�

� iω; ð13Þ

which satisfy the relations Λ2 ¼ ΛþΛ− ¼ Λ−Λþ.

2. Polar perturbations

Similarly to the axial sector, the polar metric perturba-
tions may be combined to construct a gauge-invariant
function ZðþÞ, which satisfy the Fourier-transformed differ-
ential equation

Λ2Z̃ðþÞ ¼ VðþÞZ̃ðþÞ; ð14Þ

where, for nonvanishing wave numbers, Z̃ðþÞ ¼ Z̃ðþÞðrÞ is
defined in terms of the quantities ψ̃ and μ̃3 by

Z̃ðþÞ ¼ 3Mr
rk2 þ 6M

��
1þ rk2

3M

�
ψ̃ðrÞ − μ̃3ðrÞ

�
; ð15Þ

and the effective potential VðþÞ is given by

VðþÞ ¼ f
r2

�
k2 þ 72M2ðMl2 þ r3Þ − 6k4Ml2r

rl2ðrk2 þ 6MÞ2
�
: ð16Þ

In what follows, we consider the particular case of
perturbations with zero wave numbers.

C. Perturbations with zero wave numbers

1. General remarks

The perturbations characterized by zero wave numbers
ðm; kÞ ¼ ð0; 0Þ do not propagate along the directions
parallel to the brane. However, they could be associated
to waves propagating along the radial direction. In fact, in
this case there are additional gauge degrees of freedom and
the physical interpretation of the metric perturbations is not
straightforward. Using the Chandrasekhar gauge formal-
ism, the authors of Ref. [24] have presented a set of
solutions for black-brane perturbations with zero wave
numbers. For completeness, and for future reference, we
rewrite those solutions here.

2. Axial perturbations

There exists extra gauge freedom that arises in the zero
wave number case, i.e., there is no relation among q0, q2
and q3, and so q0 cannot be eliminated. Therefore, it is
possible to reduce the metric perturbations of the axial
sector to a single nonzero component, namely,

htφ ¼ q0r2 ¼ −
J
r
; ð17Þ

where J is a constant. As a consequence, the line element of
the perturbed spacetime reads

ds2¼−fðr;MÞdt2þ dr2

fðr;MÞ−
2J
r
dφdtþ r2ðdφ2þdz2Þ:

ð18Þ
Depending on the compactness of φ and z, the foregoing
metric may represent a slowly (J is small) rotating black
string or black torus [32,33]. In the case of a planar
topology (R2), a further coordinate transformation (an
infinitesimal Lorentz boost) in the t;φ plane puts the
metric back to the unperturbed form (1), and so the black
brane does not rotate. For the cylindrical and toroidal
topologies, this Lorentz boost is a globally “forbidden”
transformation, and then it results in a slowly rotating
geometry, as just mentioned.

3. Polar perturbations

There is a larger variety of phenomena associated to the
zero wave number polar perturbations than the ones
associated to the axial modes. In particular, the gauge
freedom of the zero wave number case can be used to write
the perturbed metric in the form [24]
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ds2 ¼ −fðr;M þ δMÞdt2 þ f−1ðr;M þ δMÞdr2
þ r2ðe2ψdφ2 þ e−2ψdz2Þ; ð19Þ

where δM stands for an increment in the mass parameter,
and ψðt; rÞ ¼ ψ̃ðrÞe−iωt is a perturbation function, whose
Fourier transform satisfies a wave equation of the same
form as Eq. (14), with Z̃ðþÞ ¼ rψ̃ and the effective potential

VðþÞ ¼ 2f
l2r2

�
r2 þMl2

r

�
: ð20Þ

For the sake of comparison, it is important at this point to
investigate the limit k → 0 of the results presented in
Sec. III B 2. In such a limit, Eq. (15) results in Z̃ðþÞ ¼
rðψ̃ − μ̃3Þ=2. On the other hand, by comparing metric (19)
with the corresponding relations in (7), we obtain μ3 ¼ −ψ
at first order in a perturbative expansion. Hence, Eq. (15)
reduces to

Z̃ðþÞðrÞ ¼ rψ̃ðrÞ: ð21Þ

This is the same relation between the wave function ZðþÞ
and the metric perturbation ψðt; rÞ, as it was found in
Ref. [24] for the metric (19). It is also straightforward
verifying that, for a vanishing value of k, the potential VðþÞ
given by Eq. (16) reduces to the expression given in
Eq. (20). Therefore, we conclude that the set of equa-
tions (14), (15) and (16) describes the polar perturbations
for all wave number values, and hence the zero wave
number polar perturbations represent also gravitational
waves.
Here it is interesting to compare the zero wave number

polar perturbations of planar geometries to the special
modes of polar perturbations of spherically symmetric
geometries. For spherically symmetric black holes, the
physical interpretation of the special polar perturbations
with azimuthal number l ¼ 0 and l ¼ 1 cannot be obtained
from the equations of motion for perturbations with l ≥ 2.
In comparison, positive result here introduces a new way to
investigate the polar perturbations of black branes with zero
wave numbers, just by taking k ¼ 0 directly into the
general equations (14), (15) and (16).
To conclude this section let us mention once again that

there is a dispute regarding the physical interpretation of the
resulting perturbations in the plane symmetric case, since
some authors conclude that there exist no waves in the zero
wave number case of the gravitational perturbations of
plane-symmetric AdS black holes (see Refs. [19,23]). In
order to investigate this problem more closely, we shall
analyze other geometric quantities from which the physical
interpretation of the perturbations can be obtained. The
Weyl curvature scalars appearing in the Newman-Penrose
formalism are the best candidates for such an analysis, and
so we calculate them below.

IV. THE PHYSICAL MEANING OF THE
BLACK-BRANE PERTURBATIONS ACCORDING

TO THE SZEKERES’ PROPOSAL

A. The physical interpretation
of the spacetime curvature

Here we follow the strategy suggested by Szekeres [21],
according to which the physical meaning of the Weyl
scalars is derived from the geodesic deviation equations. In
this proposal, the geodesic deviation equations is projected
onto an orthonormal basis ðuμ; sμ; eμð2Þ; eμð3ÞÞ, where uμ is

the four-velocity of the observer and sμ, eμð2Þ and eμð3Þ are
orthogonal spacelike four-vectors. The null tetrad defined
in Eqs. (4) and (5) are related to this new tetrad by

lμ ¼ ðuμ þ sμÞ; mμ ¼ 1ffiffiffi
2

p ðeμð2Þ þ ieμð3ÞÞ;

nμ ¼ 1

2
ðuμ − sμÞ; m�μ ¼ 1ffiffiffi

2
p ðeμð2Þ − ieμð3ÞÞ: ð22Þ

On the basis of these relations, Szekeres wrote the
geodesic deviation equation in terms of the Weyl scalars
and showed that the scalar Ψ4ðΨ0Þ describes a gravitational
wave propagating in the direction of sμ (−sμ). In turn, the
scalar Ψ3 (Ψ1) corresponds to a longitudinal component of
the gravitational field in the direction of sμ (−sμ). Finally,
the real part of the scalar Ψ2 is associated with Newton-
Coulombian effects of the gravitational field with a
principal direction sμ.
It is worth emphasizing that the real and imaginary parts

of the Weyl scalar Ψ4 are associated, respectively, with the
“þ” and “×” polarization modes of the gravitational waves
propagating in the sμ direction (see Fig. 1). The two parts of
the Weyl scalarΨ0 produce the same effect thatΨ4 but with
gravitational waves propagating in the −sμ direction.
Besides that, just the real part of Ψ2 appears in the geodesic
deviation equations. This part of Ψ2 is associated with a
force that deforms a sphere of free particles around an
observer, turning it into an ellipsoid with principal axis in
the sμ direction (see Fig. 2), which is typical of bodies in a
central field.

B. Perturbations in a Petrov type-D spacetime

For a general Petrov type-D spacetime, a perturbation
δΨj in an arbitrary Weyl scalar can be written as

FIG. 1. The two polarization modes of gravitational waves and
the Weyl scalar Ψ4.
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δΨj ¼ δΨP
j þ iδΨA

j ; j ¼ 0;…; 4; ð23Þ

where δΨP
j is the part of the Weyl scalar given in terms of

the polar metric perturbations, while δΨA
j is the part of the

Weyl scalar given in terms of the axial metric perturbations.
Moreover, it is important to emphasize that perturbations

in the Weyl scalars are subject to two different kinds of
gauge freedom. The first gauge freedom is connected with
the infinitesimal transformations on the tetrad vectors.
When a scalar is invariant under these tetrad transforma-
tions, it is said to be tetrad-gauge invariant. The second
gauge freedom is associated to infinitesimal coordinate
transformations, xμ → xμ þ ξμ, and a quantity that is
invariant under this kind of transformation is said to be
coordinate-gauge invariant.
In the case of gravitational perturbations on a Petrov

type-D spacetime, it is possible to show that the perturba-
tions δΨ0 and δΨ4 are both coordinate and tetrad-gauge
invariant quantities. However, the perturbations δΨ1 and
δΨ3 are only coordinate-gauge invariant quantities and,
therefore, we can choose a tetrad orientation such that δΨ1

and δΨ3 vanish (see, e.g., [36] for more details). Finally, for
a Petrov type-D background, δΨ2 is tetrad-gauge invariant,
but just the imaginary part δΨA

2 is also coordinate-gauge
invariant. For this reason, we are allowed to choose a
particular gauge such that δΨP

2 ¼ 0.

C. Axial sector

1. Perturbations with nonzero wave numbers

The aim of this subsection is to write the linear variations
in the Weyl scalars in terms of the wave function Z̃ð−Þ and,
from the physical interpretation of the Weyl scalars, to
extract the meaning of the axial gravitational fluctuations of
the black branes. In order to obtain an expression for the
Weyl-scalar perturbations in terms of the metric variations,
it is necessary to know the relations between the perturba-
tions in the Weyl scalars and the components of the Weyl
tensor (see, e.g., [37] for details on such relationships). For
the axial perturbations, we write the linear variations of the
Weyl scalar δΨ̃A

j in terms of the metric perturbations (7)
and, after that, we use Eq. (10) to express the result in terms

of the master variable Z̃ð−Þ. After some algebra, we can then
cast the perturbation δΨ̃A

0 into the form

2iωδΨ̃A
0 ¼ f−2

r
½Vð−Þ þ ðWð−Þ − 2iωÞΛ−�Z̃ð−Þ; ð24Þ

where the potential Vð−Þ and the operator Λ− are defined
respectively by Eqs. (11) and (13), and the functionWð−Þ is
given by

Wð−Þ ¼ −
6M
r2

: ð25Þ

Similarly, we can express the perturbation δΨ̃A
4 as

2iωδΨ̃A
4 ¼ −

1

4r
½Vð−Þ þ ðWð−Þ þ 2iωÞΛþ�Z̃ð−Þ; ð26Þ

where the notation here is the same as in Eq. (24) and the
operator Λþ is defined by Eq. (13).
A necessary and important further step is to write

Eqs. (24) and (26) in terms of the fundamental variables
Y�2, which arise in the study of the black-brane gravita-
tional perturbations via the Newman-Penrose formalism
(see, e.g., Ref. [27]). We have that Yþ2 ¼ rf2δΨ0 and
Y−2 ¼ 4rδΨ4, and hence, combining these relations to
Eqs. (24) and (26), we obtain

2iωỸA
þ2 ¼ ½Vð−Þ þ ðWð−Þ − 2iωÞΛ−�Z̃ð−Þ;

−2iωỸA
−2 ¼ ½Vð−Þ þ ðWð−Þ þ 2iωÞΛþ�Z̃ð−Þ: ð27Þ

From the Szekeres interpretation, we know that the Weyl
scalars shown in Eqs. (24) and (26) are associated with
gravitational waves propagating in opposite directions.
Therefore, we conclude that axial perturbations with
k > 0 generate ingoing and outgoing gravitational waves.
Lastly, it is possible to write the perturbation δΨ̃A

2 ðrÞ in
terms of the variable Z̃ð−Þ as

δΨ̃A
2 ¼ −

k2

4r3
Z̃ð−Þ: ð28Þ

2. Perturbations with zero wave numbers

In the case of zero wave numbers, Eq. (27) does not hold.
Because of extra gauge freedom, the master variable Zð−Þ

can be set to zero. Moreover the scalarsΨA
0 and ΨA

4 are zero
and no gravitational wave is detected. As discussed in
Sec. III C 2, the axial perturbations with k ¼ 0 generate at
most a slow rotation on the topologically compact black
brane spacetimes. The result is the perturbed metric (18). In
fact, for this metric the Weyl scalars δΨ1 and δΨ3 are
proportional to the angular momentum J, but as discussed
in Sec. IV B the tetrad-gauge freedom may be used to set
them to zero. Therefore, axial perturbations with zero wave
numbers preserve the type D structure of the background.

FIG. 2. Newton-Coulombian effect of Ψ2.
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D. Polar sector

1. Perturbations with nonzero wave numbers

In the case of polar perturbations with k ≠ 0, the Weyl
scalar δΨ̃P

0 can be cast into the following form

δΨ̃P
0 ¼ −

f−2

r
½VðþÞ þ ðWðþÞ − 2iωÞΛ−�Z̃ðþÞ; ð29Þ

while the scalar δΨ̃P
4 can be written as

δΨ̃P
4 ¼ −

1

4r
½VðþÞ þ ðWðþÞ þ 2iωÞΛþ�Z̃ðþÞ: ð30Þ

The function WðþÞ that appears in Eqs. (29) and (30) is
given by

WðþÞ ¼ −
6Mð2r3 þ k2l2rþ 2Ml2Þ

l2r2ðk2rþ 6MÞ ; ð31Þ

and the operators Λ� are defined in Eq. (13).
The polar perturbation variables Ỹ�2 can be written in

terms of the master variable Z̃ðþÞ as

ỸP
þ2 ¼ −½VðþÞ þ ðWðþÞ − 2iωÞΛ−�Z̃ðþÞ;

ỸP
−2 ¼ −½VðþÞ þ ðWðþÞ þ 2iωÞΛþ�Z̃ðþÞ: ð32Þ

Equations (27) and (32) are identical to the results found in
Ref. [27]. It worth mentioning that the authors of Ref. [27]
followed a different approach, by using the Newman-
Penrose formalism [9] and the Chandrasekhar transforma-
tion theory [36], so to get the fundamental Eqs. (9) and
(14). Here, however, relations (27) and (32) were obtained
straightforwardly from the perturbations of the Weyl
scalars. This fact indicates that both approaches are con-
sistent in the case of a planar geometry, just as it happens
with gravitational perturbations of spherically symmetric
black-hole spacetimes.
At last, we conclude from the Szekeres approach that the

zero wave number polar perturbations of black branes
represent gravitational waves that propagate in two differ-
ent null directions.

2. Perturbations with zero wave numbers

In the case of polar perturbations with k ¼ 0, the linear
variations δΨ̃P

0 and δΨ̃P
4 may be reduced to the same

general expressions as given by Eqs. (29) and (30), now
with VðþÞ and Z̃ðþÞ given, respectively, by Eqs. (20) and
(21), while the WðþÞ function now reads

WðþÞ ¼ −
2

r

�
r2

l2
þM

r

�
: ð33Þ

Therefore, as δΨ̃P
0 and δΨ̃P

4 are nonvanishing, from
the Szekeres interpretation we conclude that polar

perturbations with zero wave numbers are also associated
with radial gravitational waves.
It is worth noticing that the wave character of the

complete functions Y�2ðt; rÞ may be more easily exhibited
through their behavior close to the event horizon
r → rh ¼ ð2Ml2Þ1=3ðr� → −∞Þ. In such a region, the
potential VðþÞ vanishes [cf. Eq. (20)] and then the wave
equation (14) leads to a solution (in the physical space) of
the form ZðþÞðt; rÞ → eiωð�r�−tÞ. Moreover, considering the
condition of having just ingoing waves at the horizon, the
only allowed solution is ZðþÞ → e−iωðr�þtÞ. As a conse-
quence, we get

ΛþZðþÞ → 0; Λ−ZðþÞ → −2iωe−iωðr�þtÞ;

WðþÞ → −
6M

ð2Ml2Þ2=3 : ð34Þ

Hence, by using the relations (32), it is possible to express
the asymptotic form of the functions Y�2ðt; rÞ close to the
horizon (for k ¼ 0) as

Yþ2 → 4ω

�
ω −

3Mi

ð2Ml2Þ2=3
�
e−iωðr�þtÞ;

Y−2 → 0: ð35Þ

It is then seen that the function Yþ2 reduces to a plane wave
traveling radially inwards the black-brane horizon.
Additionally, the function Y−2, which is related to the
δΨ4 scalar, tends to zero in such a region. This behavior is
expected since, as it was first discussed in Ref. [21], the
scalar Ψ4 represents an outgoing wave and, because of the
imposed boundary condition, it is not possible to observe
such a wave close to the horizon. Moreover, for stationary
waves (ω ¼ 0), it also follows that Yþ2 ¼ 0, showing no
gravitational radiation at all (as expected). Furthermore,
following the same procedure and considering the outgoing
solution ZðþÞ → eiωðr�−tÞ, it is possible to show that this
solution corresponds to a plane wave traveling radially
outwards.
In short, the conclusion of the analysis presented in this

section is that the zero wave number polar perturbations
correspond to gravitational waves traveling in the radial
direction. This, in turn, answers affirmatively the original
question on whether the zero wave number gravitational
perturbations of black branes can be associated to the
production of gravitational waves, or not.
At last, the computation of the scalar δΨ2 results in

δΨ2 ¼ −
δM
r3

; ð36Þ

which describes a perturbation in the “Coulomb” gravita-
tional field of the black brane. Such a result is expected
from the discussion presented in Sec. III C 3. From
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Eq. (19), δM is a small variation in the mass parameter
of the black brane and, therefore, it corresponds only
to a perturbation in the Coulomb-type term of the Weyl
scalar Ψ2.

V. THE PHYSICAL INTERPRETATION
OF THE POLAR PERTURBATIONS

FROM PIRANI’S CRITERION

A. General remarks

In accordance with Pirani [25]: “At any event in empty
spacetime, gravitational radiation is present if the Riemann
tensor is of Type II or Type III, but not if it is of Type I.”
In the current nomenclature of the Petrov classification, a

Riemann tensor of type I represents a spacetime of type I
(non-degenerated Riemann tensor of type I) or a spacetime
of type D (degenerated Riemann tensor of type I), while a
Riemann tensor of type II represents a spacetime of type II
(non-degenerated Riemann tensor of type II) or a spacetime
of type N (degenerated Riemann tensor of type II). Finally,
a Riemann tensor of type III corresponds to a spacetime of
type III in the Petrov classification.
Another important point to be mentioned here concerns

the application of the Pirani’s criterion in asymptotically
(anti-)de Sitter spacetimes. Although proposed for asymp-
totically flat spacetimes, such a criterion is based in the
Petrov classification scheme [38] for the canonical form of
the Riemann tensor. In this classification, an Einstein
manifold is assumed, i.e., the corresponding Ricci and
metric tensors satisfy the equation Rμν ¼ κgμν with constant
κ. This means that the Pirani’s criterion can be used to
certify the existence of gravitation waves also in the case of
asymptotically (anti–)de Sitter spacetimes.

B. The canonical form of the Riemann tensor
for the background spacetime

Using the Petrov technique of Ref. [38], it is possible to
put the Riemann tensor for the background metric (1) in the
following canonical matrix form

RAB ¼

0
BBBBBBBBB@

α1 · · · · ·

· α2 · · · ·

· · α3 · · ·

· · · −α1 · ·

· · · · −α2 ·

· · · · · −α3

1
CCCCCCCCCA
; ð37Þ

where the components of the Riemann tensor are repre-
sented in a 6-dimensional pseudo-Euclidean space and the
capital indices A and B assume values from 1 to 6. The
scalar quantities αi are given by

α1 ¼
Λc

3
− 2Ψ2; α2 ¼ α3 ¼

Λc

3
þ Ψ2; ð38Þ

where Λc is the cosmological constant and Ψ2 is only
nonzero Weyl scalar given by Eq. (6). Since the black
brane is an asymptotically AdS spacetime, it follows thatP

iαi ¼ Λc. As expected, the canonical form (37) repre-
sents a Petrov type-D spacetime and, according to the
Pirani’s criterion, there are no gravitational waves in such a
background.

C. Riemann canonical form for nonzero wave
number polar perturbations

In this section we write the canonical Riemann tensor for
the polar perturbations of the metric (1) with an arbitrary
wave number. Again, the tetrad-gauge freedom is used to
make δΨ1 ¼ δΨ3 ¼ 0. In this case, the canonical form of
the Riemann tensor is

RAB ¼

0
BBBBBBBBB@

α1 · · · · ·

· α2 · · · ·

· · α3 · · ·

· · · −α1 · ·

· · · · −α2 ·

· · · · · −α3

1
CCCCCCCCCA
; ð39Þ

where the eigenvalues α1, α2, and α3 can be written as

α1 ¼
Λc

3
− 2Ψ2 − 2δΨ2;

α2 ¼
Λc

3
þ Ψ2 þ δΨ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δΨ0δΨ4

p
;

α3 ¼
Λc

3
þ Ψ2 þ δΨ2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δΨ0δΨ4

p
: ð40Þ

The Fourier transforms of the perturbations δΨ0 and δΨ4

are given respectively by Eqs. (29) and (30), and δΨ2 can be
made zero by an appropriate coordinate-gauge choice.
The canonical matrix form (39) represents a Petrov type-

I spacetime and, from the Pirani’s criterion, there is no
gravitational-wave propagation in this spacetime. This
finding seems to be in opposition to the results of the
analysis presented in Sec. IV D 2. However, as discussed
in Ref. [39], any kind of gravitational perturbation in a
Petrov type-D background leads, in general, to a type-I
spacetime. It was also shown in the same work that
metric perturbations of a Schwarzschild black hole (with
multipole index l ≥ 2) also lead to a Petrov type-I space-
time. Such a result contradicts the Pirani’s criterion, in view
of the well-established fact that gravitational perturbations
of a Schwarzschild black hole with multipole number
higher than unity describe the propagation of gravitational
waves.
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The origin of the contradiction is the Pirani’s assumption
that the gravitational radiation propagates along a single
direction. Nevertheless, in a spacetime with nonvanishing
scalarsΨ4 andΨ0, both the ingoing and outgoing waves are
present. In this case, the spacetime is more general than the
ones described by the canonical forms of type II (or type N)
and type III. Therefore, the only option in the Petrov
classification scheme that the problem fits in is the type I. In
the next section the Pirani’s criterion for polar perturbations
with k ¼ 0 is discussed and, by imposing the ingoing-wave
condition at the event horizon, it is shown that the Riemann
tensor reduces to the typical form characterizing a type-II
Petrov spacetime.

D. Riemann canonical forms for zero wave
number polar perturbations

For the polar gravitational perturbations with zero wave
numbers, the canonical form of the Riemann tensor and its
eigenvalues are the same as presented, respectively, in
Eqs. (39) and (40). However, adopting the coordinate gauge
of Ref [24], the perturbation δΨ2 is now given by Eq. (36),
and it is necessary to take k ¼ 0 in the expressions for the
Fourier transforms of δΨ0 and δΨ4 given by Eqs. (29) and
(30), respectively.
As discussed in Sec. IV D 2, it is interesting to consider

an ingoing-wave condition in the region close to the
horizon and to investigate the canonical form of the
Riemann tensor in that limit, i.e., for r� → −∞. Once
again, it is more convenient to work with the variables Yþ2

and Y−2, instead of the correspondingWeyl scalars δΨ0 and
δΨ4, respectively. As shown above, Y−2 vanishes at the
horizon while Yþ2 is given by Eq. (35). So, the canonical
form of the Riemann tensor for r� → −∞ is given by

RAB ¼

0
BBBBBBBBB@

α1 · · · · ·

· α2− σ · · · −σ
· · α2þ σ · −σ ·

· · · −α1 · ·

· · −σ · −α2þ σ ·

· −σ · · · −α2 − σ

1
CCCCCCCCCA
;

ð41Þ
where the eigenvalues are

α1 ¼
Λc

3
− 2Ψ2 − 2δΨ2;

α2 ¼ α3 ¼
Λc

3
þΨ2 þ δΨ2; ð42Þ

and

σ ¼ f−1

4r
Yþ2 ð43Þ

is the contribution of the ingoing gravitational wave.
Hence, close to the horizon, the Riemann tensor assumes
the canonical form of a type-II gravitational field, which,
according to the Pirani’s criterion, characterizes the pres-
ence of the gravitational radiation.
Thus, the conclusion here is that gravitational perturba-

tions whose modes describe simultaneously ingoing and
outgoing gravitational radiation, i.e., perturbations with
both δΨ0 and δΨ4 different from zero, generate a Riemann
tensor of type I in the Petrov classification. In this case, the
Pirani criterion fails to identify the gravitational waves. On
the other hand, as we have just shown, for the particular
case when δΨ4 ¼ 0, the Riemann tensor takes the type II
form and then one concludes from the Pirani criterion that it
describes ingoing gravitational waves. This result suggests
that such a criterion is conclusive as long as the radiation
propagates along a specific direction in the spacetime.

VI. ZERO WAVE NUMBER POLAR
GRAVITATIONAL PERTURBATIONS IN THE
KODAMA-ISHIBASHI-SETO FORMALISM

As a final analysis, we explore here the formalism of
Kodama, Ishibashi, and Seto [19] to show explicitly that
zero wave number polar perturbations represent gravita-
tional waves propagating in the radial direction. We start by
setting up notation. The metric is split into the form

ds2 ¼ gμνdzμdzν ¼ gabðyÞdyadyb þ r2ðyÞdΩ2
2; ð44Þ

where ya ¼ ft; rg and dΩ2
2 ¼ γijðxÞdxidxj is the metric of

the two-dimensional maximally symmetric space with
coordinates xi ¼ fφ; zg. The background metric is given
by gab ¼ diagð−f; 1=fÞ and γij ¼ δij with δij being the
Kronecker delta.
For the case of polar gravitational perturbations, the

metric perturbations hμν may be decomposed in terms of
the scalar harmonic function S as [19]

hab ¼ fabS;

hai ¼ rfaSi;

hij ¼ 2r2ðHLγijSþHTSijÞ; ð45Þ

where S represents the solutions of the harmonic equation
ðD̂iD̂

i þ k2ÞS ¼ 0, and quantities Si and Sij introduced
above are respectively the vectorial and tensorial harmonic
functions defined by

Si ¼ −
1

k
D̂iS;

Sij ¼
1

k2
D̂iD̂jSþ 1

2
γijS; ð46Þ

with D̂i standing for the covariant derivative with
respect to the metric γij. Again, for black-brane
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perturbations, the wave number k may assume any real
non-negative value.
The coefficients of the decompositions (45) are not

invariant under the infinitesimal gauge transformation
xμ → xμ þ ξμ, i.e., they are dependent on the identification
map between points of the background spacetime and
the physical spacetime. As well as the perturbations in the
metric, the vector ξμ can be decomposed in terms of the
harmonic functions as

ξa ¼ TaS; ξi ¼ rLSi: ð47Þ

As discussed in Refs. [19,23] for k2 > 0, it is possible to
combine the coefficients in Eqs. (45) to build the following
gauge-invariant quantities:

F ¼ HL þ 1

2
HT þ 1

r
DarXa;

Fab ¼ fab þDaXb þDbXa; ð48Þ

where Xa ¼ r
k fa þDaHT and Da is the covariant deriva-

tive with respect to the metric gab. However, these relations
do not hold for k2 ¼ 0 and, moreover, as shown in
Ref. [40], in such a case the functions F and Fab are no
longer gauge-invariant quantities. Thus, once again a
detailed study of the gauge freedom of the polar perturba-
tions with zero wave numbers is mandatory.
The first step is then to write the transformations of the

quantities HT , HL, fa, and fab, defined in (45) under the
infinitesimal coordinate transformation xμ → xμ þ ξμ, with
ξμ given by (47). For a vanishing wave number k ¼ 0
(besides having put m ¼ 0 since the beginning), it follows

fab → fab −DaTb −DbTa; HT → HT;

fa → fa − rDa

�
L
r

�
; HL → HL −

Dar
r

Ta: ð49Þ

It is promptly seen that the function HT is now gauge
invariant. Additionally, convenient choices of L in two
successive gauge transformations can lead fa to zero, i.e.,
ft ¼ fr ¼ 0. Another gauge degree of freedom is fixed by
choosing Tr so as to get rid of the perturbation HL, i.e., we
also may choose HL ¼ 0. At last, the function Tt helps to
take the 2 × 2 matrix fab into a diagonal form, i.e., with
frt ¼ ftr ¼ 0. These choices fix all the gauge degrees of
freedom, reducing the perturbed metric to

ds2 ¼ ðgab þ fabSÞdyadyb
þ r2ðγij þ 2HTSijÞdxidxj; ð50Þ

where gab and γij stand for the background values of the
metric, cf. Eq. (44).
Now let us examine the harmonic functions. According

to Kodama and Ishibashi [23], for k ¼ 0 the scalar

harmonic S is a constant and the vectorial and tensorial
harmonic functions in (46) are not defined. On the other
hand, Dias and Reall assume in Ref. [20] that, for vanishing
wave numbers, Si and Sij are zero by definition. Therefore,
in both papers, Sij is neglected and it is argued that the
metric (50) preserves the symmetry of the background and,
on the basis of the Birkhoff theorem, the perturbation fab
represents just a variation in the mass parameter of the
black brane. This is clearly true for spherically symmetric
black-hole spacetimes, but it contradicts the results pre-
sented in the preceding section regarding the zero wave
number polar perturbations of black branes.
To solve this seeming inconsistency, we first notice that

the harmonic functions Si and Sij in Eq. (46) are not
defined for k ¼ 0. In order to raise the indeterminacy, we
follow the standard procedure by calculating explicitly such
functions for arbitrary k and by taking the limit of each
function as k goes to zero. The scalar harmonic S for a
black-brane spacetime is of the following form

S ¼ e�ikjxj ; ð51Þ

with xi ¼ ðφ; zÞ and ki ¼ ð0; kÞ, and where we have taken
kφ ¼ 0 because we are dealing with axisymmetric pertur-
bations. For the planar geometry of the black-brane space-
times, the covariant derivatives in Eqs. (46) reduce to partial
derivatives, and we get

Szz ¼
1

k2
∂̂z∂̂zðe�ikzÞ þ 1

2
γzze�ikz ¼ −

1

2
e�ikz;

Sφφ ¼ 1

2
γφφe�ikz ¼ 1

2
e�ikz;

Szφ ¼ Sφz ¼ 0: ð52Þ

Notice that we have neglected the vectorial harmonic
functions Si because they do not appear in the final
perturbed metric (50). Finally, the conclusion is that the
limit k → 0 of Eqs. (52) is well defined and gives

S → 1; Sφφ →
1

2
; Szz → −

1

2
: ð53Þ

Collecting the foregoing results and substituting into the
metric (50), it follows

ds2¼ðgabþfabÞdyadybþ r2ðeHTdφ2þe−HTdz2Þ; ð54Þ

where we have used the identity e�HT ¼ 1�HT, which
holds for first-order perturbations. Furthermore, using the
Einstein equations we find that

−ðgtt þ fttÞ ¼ ðgrr þ frrÞ−1 ¼ fðr;M þ δMÞ ð55Þ

Comparing the present approach to the formulation of
Sec. III C 3, we find the relation HT ¼ 2ψ . This shows that
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metric (54) is identical to that shown in Eq. (19) and
obtained in Ref. [24] by means of the Chandrasekhar
gauge formalism. This result confirms that zero wave
number polar metric perturbations represent also gravita-
tional waves.

VII. DISCUSSION

We have reviewed the physical interpretation of the
gravitational perturbations of AdS black branes. The focus
was on the identification of a given metric variation with
the presence of gravitational waves. The chief motivation is
the conflict on the interpretation of the zero wave number
polar perturbations of black branes (cf. Refs. [23,24]). In
particular, we have just shown that such perturbations in
fact represent gravitational waves propagating in the radial
direction, a situation that happens for black branes but not
for spherically symmetric black holes.
We started by setting up the necessary basic formulation

and by showing that the equations in the Chandrasekhar
gauge formalism accommodate both the nonzero and the
zero wave number gravitational fluctuations. The explicit
form of the perturbation equations for the zero wave
number cases has been needed for such an analysis. For
the polar sector, this task was accomplished by writing the
curvature perturbations in terms of the quantities VðþÞ,
WðþÞ and Z̃ðþÞ [cf. Eqs. (16), (15), (31)], and then by taking
the limit of vanishing wave numbers. This approach for
polar perturbations of planar black holes with k ¼ 0 is quite
different from the approach for spherically symmetric black
holes, since it is not possible to investigate the special
modes l ¼ 0 and l ¼ 1 from the general equations of
perturbations with l ≥ 2 in the spherically symmetric case.
In the analysis of the gravitational perturbations we

performed a direct evaluation of the complex Weyl scalars
in terms of the perturbations in the metric. The resulting
expressions are in complete accord with those obtained for
the vanishing wave number case in Ref. [27] via the
Newman-Penrose formalism and the Chandrasekhar trans-
formation theory. Thereby, the equivalence between both
procedures, which was known to hold for spherical
Schwarzschild black holes, was extended for black branes.
As an additional technique, we relied on the work

by Pirani [25] to study the physical meaning of the
polar-sector fluctuations. Using this technique, we showed
that perturbations with both vanishing and nonvanishing
wave numbers lead to Petrov type-I spacetimes. However,
according to the Pirani’s criterion, this type of spacetime
would not be associated to the propagation of gravitational
waves. Obviously, this criterion presents problems in
some cases. For instance, the ondulatory character of
nonvanishing wave number perturbations of black branes
is well established in the literature. Moreover, as shown in
Ref. [39], non-stationary black-hole perturbations of the

Kerr-Newman family lead to Petrov type-I spacetimes, a
result which confirms that Pirani’s criterion is not con-
clusive when dealing with Petrov type-I spacetimes.
In the analysis of perturbations with vanishing wave

numbers by using the approach by Pirani, we performed an
additional investigation. Our results show that such per-
turbations correspond to type-II gravitational fields in the
region very close to the horizon just after imposing the
condition of no outgoing waves in that neighborhood.
According to the Pirani’s criterion, this kind of gravitational
field characterizes the presence of gravitational waves.
Again, this outcome is in agreement with the study of
Ref. [39], where it was shown that in the particular case of
vanishing δΨ0 or δΨ4, gravitational perturbations in a type-
D background lead to type-II spacetimes. From the analysis
of these results we conclude that the Pirani criterion is not
conclusive for general perturbations of black branes. The
reason is that such a criterion neglects the possibility of
coexisting ingoing and outgoing waves and, therefore, the
Szerekes proposal is a more efficient invariant technique to
investigate the existence of gravitational waves that propa-
gate in different principal null directions.
In regard to the Kodama-Ishibashi-Seto [19] gauge-

invariant formalism, we have verified that polar gravita-
tional perturbations of the black branes have a well-defined
behavior in the limit of vanishing wave numbers, also in
complete agreement with the presence of gravitational
waves propagating along the radial direction. It is worth
mentioning here that the main aim of the work of Ref. [23]
was to investigate the metric linear fluctuations in higher-
dimensional spacetimes and the analysis of the vanishing
wave number perturbations of black branes was made en
passant, in a short comment within a long paper presenting
many interesting results.
As a possible extension of the present work, it would be

interesting to use the physical interpretation of the higher-
dimensional Weyl scalars [22] to extract the meaning of
the gravitational perturbations of a black brane in a general
d–dimensional spacetime. This is a work in progress by
ourselves.
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