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We consider the metrics of general relativity, whose energy-momentum tensor has bounded support
where it is continuous except for a finite step across the corresponding boundary surface. As a
consequence, the first derivative of the metric across this boundary could perhaps present a finite step
too. However, we can assume that the metric is C1 class everywhere. In such a case, although the partial
second derivatives of the metric exhibit finite (no Dirac δ functions) discontinuities, the Dirac δ functions
will still appear in the conservation equation of the energy-momentum tensor. As a consequence, strictly
speaking, the corresponding metric solutions of the Einstein field equations can only exist in the sense of
distributions. Then, we assume that the metric considered is C1 class everywhere and is a solution of the
Einstein field equations in this sense. We explore the consequences of these two assumptions, and in doing
so we derive the general conditions that constrain the jumps in the second partial derivatives across the
boundary. The example of the Oppenheimer-Snyder metric is considered and some new results are obtained
on it. Then, the formalism developed in this exploration is applied to a different situation, i.e., to a given
generalization of the Einstein field equations for the case where the partial second derivatives of the metric
exist but are not symmetric.
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I. INTRODUCTION: GENERAL
CONSIDERATIONS

In a well-known formalization of general relativity,
Lichnerowicz [1] assumes the following two postulates:
(1) The space-time manifold is C2 class, that is, in any two
overlapping charts, the corresponding coordinate trans-
formation functions and their first and second derivatives
are continuous. (2) In admissible coordinates, the metric is
required to be C1 class, and its first derivatives are required
to be piecewise C2 class.1 This C2 character means in
particular that, out of some discontinuity surface, the
second and third derivatives of the metric exist and are
continuous such that, out of this surface, the Einstein field
equations and the Bianchi identities, respectively, can be
written out. By definition, admissible coordinates are such
that the second derivatives of the above coordinate trans-
formation functions are piecewise C2 class; that is, their

third and fourth derivatives exist but could be discontinuous
through some 3-surfaces. This kind of coordinate definition
is consistent with the above postulate (2) for the metric.
Notice that, out of the boundary surface, the postulate
allows, in particular, for the existence of continuous second
and third derivatives of the metric. Then, this continuous
character remains preserved, irrespective of the coordinates
used, provided that we use admissible coordinates in the
sense just defined, since then the resultant Jacobian matrix
will be piecewise C3 class. See also [2].
There is a dubious justification for this postulated C1

character of the metric in the current literature [3]: In the
Newtonian limit, the ten gravitational potentials reduce to
the Newtonian potential satisfying the Poisson equation,
whose physical solution for a finite and bounded source is
well known to be C1 class. Later, however, Lichnerowicz
[4] required only the continuity of the metric when studying
shock gravitational waves.
In any case, if the metric is continuous but is not C1 class

everywhere, the second derivatives of the metric will be
somewhere Dirac δ functions, and then this metric could be
a solution of the Einstein field equations (EFEs) only in the
sense of distributions, or otherwise said, a weak solution of
these equations.
All this makes it interesting to clarify in which specific

circumstances we could state the C1 postulate for the metric
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1Here, the required piecewise C2 class character of the first

derivatives of the metric has the following specific sense: These
first derivatives are simply continuous everywhere instead of
being piecewise continuous. This is a consequence of having
assumed that the metric is C1 class.
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in an admissible coordinate system. One of the aims of the
present paper is to address such a clarification, but before
entering perfunctorily into it in this Introduction, let us
briefly comment on some references.
In Ref. [5], a given hypersurface Σ is considered where

the energy-momentum tensor has a part that behaves like a
Dirac δ function: a “thin shell” or “surface layer.” Then, in
the same reference, the corresponding weak metric solu-
tions of the EFEs, continuous across the Σ hypersurface, are
considered. In the particular case of a “boundary surface”
characterized by a finite step in the energy density, and thus
a case where this Dirac δ part vanishes, the metric solutions
lead to the Darmois-Israel matching conditions, that is, the
continuity of the intrinsic metric and the extrinsic curvature
across the boundary surface [6,7]. Some precedents on the
subject can be found in [8]. See more recently [9], where
some previous results on the subject of the matching
conditions and the field equations in the sense of distri-
butions are generalized.
It is easy to see that requiring these Darmois-Israel

conditions in Gauss coordinates leads to the C1 character of
the metric in these coordinates (see, for instance, [2]). This
does not mean that the above postulate (2) of Lichnerowicz
on this metric character will be necessarily satisfied, since
this postulate requires in particular that the coordinates
used be admissible ones (see again [2]). However, the
reciprocal is true: If this postulate (2) of Lichnerowicz was
satisfied, the metric would be C1 class in Gauss coordinates,
and these Gauss coordinates would be admissible too (see
p. 61 of [1]).
Let us go back to our clarification attempt mentioned

above: Under what specific circumstances could we postu-
late that a metric solution of EFEs is C1 class? As stated in
the Abstract, the metrics considered in the present paper
will be the ones with bounded support for the energy-
momentum tensor Tαβ, this tensor being everywhere
continuous except for a finite step across its boundary
surface. Despite the presence of the support boundary
surface, in the present paper we assume the metric to be C1

class across this boundary surface, and we explore the
consequences of such an assumption. Notice then that,
because of the EFEs, the second derivatives of such a
metric across the boundary surface will not present Dirac δ
functions but only finite jumps (Sec. II). However, some
Dirac δ functions will still appear in the equation express-
ing the conservation of the energy-momentum tensor
because of the finite discontinuities of this tensor. Thus,
in all, the assumed kind of metric could only be the solution
of the EFEs in the sense of distributions, that is, a weak
solution of these equations. Hence, in line with Ref. [5], we
require our metrics to satisfy EFEs in this sense. As we will
see, this will be compatible with our C1 class metric
assumption and will give us some specific information
about the discontinuities across the boundary surface of the
metric second derivatives in relation to the discontinuities

of the energy-momentum tensor and its first derivatives
(Secs. III and IV). In all, one of our results here is that, for
the kind of energy-momentum tensor that we are consid-
ering, there is always a large family of metric solutions of
the EFE that satisfy the C1 class metric postulate in some
coordinates that could be admissible ones. This result is
compatible with the above-mentioned result (see, for
instance, [10]) of the theory of the gravitational potential,
that the standard solution of the Poisson equation for a
suitable source is C1 class. On the other hand, it can be
compared with the result we commented on above: For a
boundary surface (diferent of the above defined “surface
layer” or its equivalent “thin shell'”), the matching
Darmois-Israel conditions are satisfied. This comparison
needs to be made having in mind the relation between these
matching conditions and the Lichnerowicz ones (see [2]).
For the sake of completeness, we refer here to the items

considered in Secs. V and VI. In Sec. V, we consider the
example of the Oppenheimer-Snyder (OS) metric [11] in
the coordinates of Szekeres [12] where this metric exhibits
explicitly its C1 class character, and we prove that these
coordinates are admissible ones. Further, in Sec. VI,
leaving the question approached up to now, i.e., the one
related to the stated Lichnerowicz conditions, we apply
the formalism developed in this approach to a different
problem concerning the generalization of the EFEs for the
case where the second partial derivatives of the metric exist
but do not commute [13], that is, the case in which the
Schwartz theorem is no longer valid. Then, we find the
relatively simple equations to which the jumps of these
second partial derivatives obey and comment on its possible
interest. Finally, in Sec. VII we summarize our findings.
In the Appendix, we make explicit some calculations in
relation to the OS metric in Szekeres coordinates, and we
prove that the corresponding Jacobian is everywhere non-
vanishing, and further that the first derivatives of the metric
are piecewise C2 class—two results that are not present in
Ref. [12]. In all, the essential result obtained jointly in Sec. V
and the Appendix is that the OS metric in Szekeres
coordinates satisfies postulate (2) of Lichnerowicz.
We use signature þ2. Greek indices take values from

0 to 3 and latin indices from 1 to 3. The gravitational
constant and the speed of light are taken equal to 1. The
sign conventions adopted when defining the curvature and
Ricci tensors are the ones used in Ref. [14].

II. THE EFES AND ITS DISCONTINUOUS PART

Let it be the EFEs:

Rαβ ¼ 8π

�
Tαβ −

1

2
Tγ
γgαβ

�
≡ 8πSαβ; ð1Þ

where with the suitable global sign, the Ricci tensor
becomes
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Rαβ ¼
1

2
gμκð∂2

ακgμβ − ∂2
μκgαβ − ∂2

αβgμκ þ ∂2
μβgκαÞ

þ gλμgησðΓη
βλΓσ

αν − Γη
νλΓσ

αβÞ; ð2Þ

where ∂2
αβgμν ≡ ∂α∂βgμν. As stated in the Introduction, we

will consider a bounded energy-momentum tensor every-
where continuous except in the boundary surface, where it
can present finite discontinuities, i.e., steps. Despite this,
we will assume that the metric is C1 class and explore the
consequences of this assumption. Then, in the EFEs, we
will have discontinuous finite jump functions for the
second metric derivatives that will be present only in the
part of the Ricci tensor Rαβ containing these second
derivatives of the metric. We will write RD

αβ for this
discontinuous part. Then, in accordance with (2), we will
have

RD
αβ ¼

1

2
gμκð∂2

ακgμβ − ∂2
μκgαβ − ∂2

αβgμκ þ ∂2
μβgκαÞ: ð3Þ

Thus, across the boundary surface, the EFEs imply that
the RD

αβ discontinuity must be equal to 8π times the
discontinuity of the Sαβ tensor. Thus, we write

½RD
αβ� ¼ 8π½Sαβ�: ð4Þ

More precisely, ifΦðxαÞ ¼ 0 is the equation of the boundary
surface, we define ½RD

αβ�≡ RD
αβjΦ→0þ − RD

αβjΦ→0− and sim-
ilarly for ½Sαβ�.

III. ENERGY-MOMENTUM CONSERVATION IN
THE DISTRIBUTIONAL SENSE

In the preceding sections, we have assumed that the
metric is C1 class across the boundary surface of the energy-
momentum tensor. Consequently, the second derivatives of
the metric present finite discontinuities across it to deal
with the corresponding finite discontinuities of this tensor.
Then, Dirac δ functions will appear in the third derivatives
of the metric. This means that the divergence of the Einstein
tensor Gαβ ≡ Rαβ − 1

2
Rgαβ only vanishes identically in the

sense of distributions. Now, let us assume this kind of
vanishing and consider the corresponding vanishing of the
divergence of the energy-momentum tensor. We will have

∇αTα
β ¼ 0: ð5Þ

Here, Tα
β presents a finite discontinuity across the boundary

surface. Then, Dirac δ functions will appear in the ordinary
first derivatives of this tensor across this boundary, imply-
ing that (5) is only true in the sense of distributions.
Let us denote by ∇αTα

βðδÞ the part of ∇αTα
β containing

the δ and only the δ terms. Obviously, because of (5), this
part vanishes. On the other hand, since the metric is C1 class
and Tαβ only presents finite discontinuities, we will have in
an obvious notation ∇αTα

βðδÞ ¼ ∂αTα
βðδÞ. Thus,

∂αTα
βðδÞ ¼ 0: ð6Þ

Then, because of the finite discontinuity of Tα
β in its

boundary, we can write

Tα
β ¼ Tα

βðΦ ≤ 0ÞHLðΦÞ þ Tα
βðΦ > 0ÞHRðΦÞ; ð7Þ

where HL and HR are the corresponding Heaviside
functions, that is,

HLðΦ ≤ 0Þ ¼ 1; HLðΦ > 0Þ ¼ 0 ð8Þ

and

HRðΦ ≤ 0Þ ¼ 0; HRðΦ > 0Þ ¼ 1: ð9Þ

Then, we have

∂αTα
β ¼ ∂αTα

βðΦ ≤ 0ÞHLðΦÞ þ ∂αTα
βðΦ > 0ÞHRðΦÞ

þ ½Tα
β�δðΦÞ∂αΦ; ð10Þ

where we have taken into account that dHL=dΦ ¼ −δðΦÞ
and dHR=dΦ ¼ δðΦÞ.
Hence, (6) becomes

½Tα
β�∂αΦδðΦÞ ¼ 0; ð11Þ

that is,

½Tα
β�nα ¼ 0; ð12Þ

with nα the unit vector nα ≡ ∂αΦ
j∂Φj assumed to be spacelike,

i.e., gαβnαnβ ¼ 1. The meaning of the notation ½Tα
β� and

other similar expressions henceforth is the same as the one
displayed in (4).

IV. THE HADAMARD DISCONTINUITIES OF THE
SECOND DERIVATIVES OF THE METRIC
AND THE LICHNEROWICZ POSTULATE

In [15], Hadamard proves the following well-known
result: Let it be a function fðxαÞ continuous everywhere
whose first partial derivative ∂αf is finite and discontinuous
across the boundary surface ΦðxαÞ ¼ 0. Then, it is easy to
see that

½∂αf� ¼ κnα; ð13Þ

where κ is a given function of xα defined on the boundary
surface Φ ¼ 0.
In our case, we have the functions ∂λgαβ that we have

assumed to be continuous everywhere, while the second
partial derivatives of the metric become piecewise con-
tinuous; that is, these second partial derivatives will have in
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general finite discontinuities across the boundary surface
Φ ¼ 0. Then, because of this Hadamard result, we will
have

½∂2
λμgαβ� ¼ κμαβnλ; ð14Þ

with κμαβ some given functions of xα defined on Φ ¼ 0

symmetric in the ðα; βÞ indices. But, assuming the
Schwartz theorem about the mixed partial derivatives,
½∂2

λμgαβ� is, in particular, symmetric in both indices λ, μ.
Hence, (14) becomes

½∂2
λμgαβ� ¼ καβnλnμ; ð15Þ

where καβ stand for suitable functions of xα defined on
Φ ¼ 0, symmetric in the ðα; βÞ indices.
Then, substituting (15) in (4), taking into account (3), we

obtain

κλμ − κνμnνnλ − κνλnνnμ þ κnλnμ ¼ −16π½Sλμ�; ð16Þ

where κ ≡ gμνκμν.
Now, the first question to consider is to check if Eqs. (16)

and (12) are compatible: We are going to see that the
answer is positive. To begin with, in an obvious notation,
(12) can be written as ½Sαβ�nα − 1

2
½S�nβ ¼ 0. Consequently,

it should be ½Gα
β�nα ¼ 0, withGα

β the Einstein tensor; that is,
it should be

½Rα
β�nα −

1

2
½R�nβ ¼ 0: ð17Þ

But, having in mind the left-hand side of (16), it is
straightforward to verify that (17) is actually an identity.
This completes the proof of the claimed compatibility.
Notice, by the way, that the algebraic Eq. (16) actually
allows for solutions. Thus, for instance, κλμ ¼ −16π½Sλμ�, is
a particular one. Another particular solution is considered
in the next section.
In all, in the present case of a finite energy-momentum

tensor with bounded support, allowing for a jump across
the corresponding bounding surface, we have assumed the
existence of local C1 class solutions of the EFEs. Then, we
have been able to separate from the corresponding general
integration of these equations the particular calculation of
the second metric derivatives’ jumps on the boundary
surface as linear functions of the corresponding steps in
the energy-momentum tensor, in accordance with the
algebraic relation (16) (notice that, although in general,
in the EFEs, the second derivatives of the metric depend in
particular on the first derivatives, it is not the case for the
corresponding jumps).
This result becomes consistent with the above

assumption, that is, with the assumed existence of C1

metric solutions. Actually, Eq. (16) comes from Eq. (4),

both equations being defined across Φ ¼ 0. The remaining
EFEs across Φ ¼ 0 are ðRαβÞ ¼ 8πðSαβÞ with the notation
ðRαβÞ ¼ RαβjΦ→0þ þ RαβjΦ→0− and similarly for (Sαβ).
However, these equations do not involve the ½∂2

λμgαβ�
jumps, but using the just defined notation, they only
involve the counterparts (∂2

λμgαβ) that are independent of
½∂2

λμgαβ�. In all, the complete EFEs across Φ ¼ 0 do not
require any new conditions that could enter in contradiction
with the above-required ones, that is, with Eqs. (16) and
(12) plus the definition (15). Then, since Eqs. (16) and (12)
are mutually compatible [actually, (12) is identically
satisfied if (16) is satisfied] and (16) allows actually for
solutions, Eq. (16) becomes a necessary condition for
having, in our case, C1 class metric solutions. But whether
the coordinates, in which this C1 character is displayed, are
or not admissible coordinates will have to be tested aside
for every space-time considered. Similarly, the C2 character
of the first derivatives of the metric [remember postulate
(2)] should be tested too. See the particular case of the OS
metric in Szekeres coordinates [12] at the end of the next
section and in the Appendix, where the verification of
postulate (2) is finally completed.

V. EXAMPLE OF THE OPPENHEIMER-SNYDER
METRIC

Let us consider the well-known solution of the EFEs, the
OS metric [11]. In [12], coordinate systems are derived
where this metric is globally C1 class, but it is not shown to
verify postulate (2). In this section, we will apply to
this particular case the previous general results obtained.
But, beforehand, let us obtain a suitable family of explicit
solutions of the algebraic Eq. (16). In order to do this, we
will use the following five symmetric tensors, ½Tαβ�, nαnβ,
gαβðΦ ¼ 0Þ, nαvβ þ nβvα, and vαvβ, all of them defined
over the boundary surface Φ ¼ 0, where vα is a unit four-
vector orthogonal to nα. Then, we will write for such
solutions

καβ ¼ X½Tαβ� þ Ynαnβ þ ZgαβðΦ ¼ 0Þ
þ Pðnαvβ þ nβvαÞ þQvαvβ; ð18Þ

where X, Y, Z, P, and Q are five functions defined on
Φ ¼ 0 to be determined by Eq. (16). Substituting (18)
in (16), we obtain

X½Tλμ� þ ZgλμðΦ ¼ 0Þ þQvλvμ

þðX½Tα
α� þ 2Z þ ϵQÞnλnμ ¼ −16π½Sλμ�; ð19Þ

with ϵ≡ gαβvαvβ ¼ �1, where we see that the Y and P
functions do not appear. In other words, the two functions
are arbitrary, expressing a remaining freedom in the use
of the chosen coordinates. Furthermore, by contracting
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Eq. (19) with nλ and having in mind the condition (12),
we find

ðX − 8πÞ½Tγ
γ� þ 3Z þ ϵQ ¼ 0: ð20Þ

On the other hand, and according to [12], the internal OS
metric can be written

ds21 ¼ −dτ2 þ τ4=3ðdρ2 þ ρ2dΩ2Þ; ð21Þ

that is, the well-known Einstein–de Sitter metric, while the
external metric, the Schwarzschild one, in suitable ðT; RÞ
coordinates [16], becomes

ds22 ¼ −dT2 þ 4

9

ρ20
ðT þ RÞ2=3 dR

2 þ ρ20ðT þ RÞ4=3dΩ2;

ð22Þ

with 2
9
ρ30 ¼ m, m being the total mass, and R ¼ 0 the

boundary surface (see [12]). That is, the boundary equation
Φ ¼ 0 reduces now to R ¼ 0. Following [12] let us
consider the coordinate transformation in the internal case:

τ ¼ T −
2

9

ρ20
T5=3 R

2; ρ ¼ ρ0

�
1þ 2

3

R
T
−
1

9

R2

T2

�
: ð23Þ

Then, after some calculation, it can be seen that the entire
metric, the internal and the external, in the coordinates
ðT; RÞ is as announced a C1 class metric.
On the other hand, in the coordinates ðτ; ρÞ, the only

nonvanishing component of the energy-momentum tensor
is obviously the (00) component, that is, the matter density
μðτÞ. Then, from the coordinate transformation (23), it is
easy to see that the same holds for the coordinates ðT; RÞ on
the boundary surface R ¼ 0. That is, in these coordinates,

TαβjR¼0 ¼ δ0αδ
0
βT00jR¼0; ð24Þ

such that T00jR¼0 ¼ T00jR¼0 ¼ μjR¼0 ≡ μj0. For the step at
R ¼ 0, we have

½Tαβ� ¼ δ0αδ
0
β½μ�: ð25Þ

Further, the unit vector nα becomes in the present case

nα ¼
ð0; 1; 0; 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gβγj0∂βR∂γR

q ¼
ffiffiffiffiffiffiffiffiffiffi
g11j0

p
ð0; 1; 0; 0Þ; ð26Þ

with g11j0 the corresponding metric component of (22)
calculated for R ¼ 0, that is

g11j0 ¼
4

9

ρ20
T2=3 : ð27Þ

Equation (26) means in particular that, since the vector vα is
by definition orthogonal to nα, it is necessarily v1 ¼ 0.
Then, let us consider the ten equations of (19). Having in

mind (25) and (26) and the fact that v1 ¼ 0, it is easy to
verify that, of these ten equations, the only equations that
do not reduce themselves to mere identities are the
four diagonal ones (λ, μ ¼ λ). These four equations
λ ¼ ð0; 1; 2; 3Þ become, respectively,

X½μ� − Z þQv20 ¼ −8π½μ�; ð28Þ

−X½μ� þ 3Z þ ϵQ ¼ −8π½μ�; ð29Þ

Zg22j0 þQv22b ¼ −8π½μ�g22j0; ð30Þ

Zg33j0 þQv23 ¼ −8π½μ�g33j0; ð31Þ

a particular solution being

X ¼ −16π; Z ¼ −8π½μ�; Q ¼ 0; ð32Þ

that is, in accordance with (19), and having in mind that the
functions Y and P of (18) are arbitrary, we finally find for
the corresponding κλμ:

κλμ ¼ −16π½Sλμ� þ Ynλnμ þ Pðnλvμ þ nμvλÞ: ð33Þ

Wewill see next that from these κλμ values, in accordance
with the relation (15), we can obtain the corresponding
jumps of the second derivatives of the OS metric in
coordinates of Szekeres. Thus, since in this case the only
nonvanishing component of nα is n1 ¼

ffiffiffiffiffiffiffiffiffiffi
g11j0

p
, the only

nonvanishing jumps of these second derivatives will be the
jumps of the R second derivatives. That is,

�∂2gαβ
∂R2

�
¼ n21καβ ¼ g11j0καβ; ð34Þ

that, in accordance with the metric (22), becomes

�∂2gαβ
∂R2

�
¼ 4

9

ρ20
T2=3 καβ; ð35Þ

or more explicitly [see (33)],

�∂2gαβ
∂R2

�
¼ 4

9

ρ20
T2=3 ð−16π½Sαβ� þ Ynαnβ þPðnαvβ þ nβvαÞÞ:

ð36Þ

Then, by consistency, we must be able to choose [μ], Y,
P, and vα such that v · n ¼ 0, v2 ¼ ϵ, in order to satisfy
(36). But, according to Ref. [12], the internal OS metric in

the ðT; R < 0Þ coordinates gð1Þαβ has the form
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gð1Þαβ ¼ gð2Þαβ þ hαβ; ð37Þ

where gð2Þαβ has the form of the external metric [see (22), but
now with R < 0], and hαβ is a metric deformation such that
hαβ and their first derivatives vanish at R ¼ 0 for all T > 0.

Because of this form of gð1Þαβ , the jump ½∂2gαβ=∂R2� becomes

�∂2gαβ
∂R2

�
¼ −

∂2hαβ
∂R2

����
R¼0

: ð38Þ

In the Appendix, we give the explicit expressions of these
hαβ components. Thus, the equation that must be consis-
tently satisfied is

∂2hαβ
∂R2

����
R¼0

¼ −
4

9

ρ20
T2=3 ð−16π½Tαβ� þ 8π½Tγ

γ�gαβ
þ Ynαnβ þ Pðnαvβ þ nβvαÞÞ: ð39Þ

Then, let us see in detail that this is the case. To begin with,
the three equations corresponding to the ðα; βÞ values (0,2),
(0,3), and (2,3) become identically equal to zero. Then, the
equation (0,1) gives Pv0 ≠ 0 on account that

∂2h01
∂R2

����
R¼0

¼ Pv0n1 ¼ Pv0
ffiffiffiffiffiffiffiffiffiffi
g11j0

p
; ð40Þ

while the equations (1,2), (1,3), give, respectively Pv2 ¼ 0
and Pv3 ¼ 0. Hence, we obtain v2 ¼ v3 ¼ 0. This means
that ϵ ¼ v2 ≡ gαβvαvβ ¼ g00j0v20 ¼ −v20 ¼ −1. It still
remains the equations (0,0), (2,2), and (3,3), that is,
respectively,

∂2h00
∂R2

����
R¼0

¼ 8π½μ�g11j0; ð41Þ

∂2h22
∂R2

����
R¼0

¼ 8π½μ�g11j0g22j0; ð42Þ

∂2h33
∂R2

����
R¼0

¼ 8π½μ�g11j0g33j0: ð43Þ

It is easy to see that Eqs. (42) and (43) are equivalent. Then,
we are left with Eqs. (41) and (42). In order to make them
compatible, we must have

∂2h22
∂R2

����
R¼0

¼ ∂2h00
∂R2

����
R¼0

g22j0; ð44Þ

which becomes true according to the values of ∂2h22=∂R2j0
and ∂2h00=∂R2j0 (see the Appendix). From (40) and
(A12), taking into account (27), one obtains that Pv0 ¼
ð8=9Þρ0T−7=3. In all, it remains Eq. (41) which gives

½μ� ¼ −μ, the minus matter density, as a function of the
time T; then, from (27), (41), and (A10) we have

μ ¼ 1

6πT2
; ð45Þ

as required by the Einstein–de Sitter solution [notice that,
according to (23), T ¼ τ on the boundary surface R ¼ 0].
Finally, we still have to consider the (1,1) component of

Eq. (39). This component will be satisfied fitting the T
function Y.
The conclusion of all this is that the OS metric in

Szekeres coordinates is a particular case of our assumed
family of metrics satisfying the Lichnerowicz postulate (2).
But, in order to actually conclude this, we need to arrive at
three previous partial conclusions which do not appear in
Ref. [12]. The first of these three conclusions is that an atlas
has to exist where the coordinates used ðT; RÞ are admis-
sible coordinates. Notice that the used polar Szekeres
coordinates need at least two charts to form this atlas.
These two charts could be, for instance, the ones tied to two
given polar axes, respectively. But, in the region where
these two charts intersect the Jacobian of the corresponding
polar coordinates, transformation is completely smooth,
and so the coordinates considered ðT; RÞ are admissible as
we wanted to prove.
The second previous conclusion to achieve is that, in the

ðT; RÞ coordinates, the first derivatives of the metric are C2

class. Finally, the third one is to show that the Jacobian
matrix of the coordinate transformation T ¼ Tðτ; ρÞ,
R ¼ Rðτ; ρÞ does not vanish as it must be required. Both
partial conclusions are reached in the Appendix, where two
typographical mistakes in Ref. [12] are also corrected.

VI. THE CASE OF THE NONCOMMUTATIVE
SECOND PARTIAL DERIVATIVES

OF THE METRIC

In [13], an interesting generalization of general relativity
is presented where the second partial derivatives of the
metric do not commute in some regions of the total space-
time: Here and for the sake of simplicity, in some boundary
surface Φ ¼ 0. That is, along this boundary, the Schwartz
theorem does not necessarily hold. More specifically, the
second partial derivatives of the metric exist everywhere but
are not continuous along Φ ¼ 0. Further, the metric is
assumed to be C1 class everywhere.
In this theory, the definition of the Riemann curvature

tensor Rμ
νρσ remains the same; that is, for any smooth

enough vector field vν, the noncommutativity of the
covariant partial second derivatives writes down as

∇σ∇ρvν −∇ρ∇σvν ¼ vμR
μ
νρσ: ð46Þ

From this definition, we obtain for the discontinuous part
of the curvature tensor RD

μνρσ,
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RD
μνρσ ¼

1

2
ð∂2

σμgνρ − ∂2
σνgμρ − ∂2

ρμgνσ þ ∂2
ρνgμσÞ þ

1

2
∂2
½ρσ�gμν;

ð47Þ

where ½·� denotes index antisymmetrization or, more
specifically, ∂2

½σρ�gμν ≡ 1
2
ð∂σ∂ρ − ∂ρ∂σÞgμν.

But now the majority of the symmetries of Rμνρσ are
broken with the exception of the skew symmetry of the last
two indices Rμνρσ ¼ −Rμνσρ. This implies the existence of
two different Ricci tensors, but only the one defined as

Rνσ ≡ gμρRμνρσ ð48Þ

has a nonvanishing associated contracting scalar R ≡
gρσRρσ.
Nevertheless, we can still define the dual curvature

tensor

�Rμνρσ ≡ 1

2
ημν

αβ Rαβρσ; ð49Þ

where η is the Levi-Civita tensor, and from it we can define
the dual Ricci tensor

R̃νσ ≡ gμρð�RμνρσÞ; ð50Þ

and the dual Ricci scalar

R̃≡ gνσR̃νσ: ð51Þ

From the two scalars R and R̃ plus the corresponding
matter Lagrangian density, a suitable action is built in [13],
whose standard variations lead to the following dynamical
equations generalizing the EFEs

RðμνÞ −
1

2
Rgμν ¼

1

M2
p
Tμν; ð52Þ

R½μν� þ
M2

M2
p
R̃½μν� ¼

1

M2
p
∇αSαμν; ð53Þ

where ð·Þ denotes index symmetrization, that is, RðμνÞ ≡
1
2
ðRμν þ RνμÞ, and ½·� has been defined above, Mp is the

Planck mass, and M is a mass parameter to be determined
by observations. Finally, Tαβ is the standard energy-
momentum tensor that is related to the canonical one
Θαβ by the usual assumption [cf. Eq. (42) in Ref. [17] ]:

Tμν ¼ Θμν þ 1

2
∇αðSαμν þ Sμνα − SναμÞ; ð54Þ

where Sαμν ¼ −Sανμ denotes the spin current. In searching
for the failure of parity symmetry in certain extensions of
general relativity theory, a gravitational action term similar

to the one considered in [13] has been introduced (see, for
instance, Ref. [18]) in the past.
Notice that, out of the boundary surface, these general-

ized EFEs become the standard EFEs, that is, (52) with
RðμνÞ identified with Rμν.
Now, it is interesting to remark that the discontinuous

part of RðμνÞ that we denote here by RD
ðμνÞ contains both

anticommutators ∂2
ðαβÞgγδ and commutators ∂2

½αβ�gγδ, while

R½μν� only contains commutators. Furthermore, R̃½μν� only
contains commutators too. More precisely, having in mind
that gλκ is symmetric in the indices λ, κ, we easily obtain

RD
ðμνÞ ¼

1

2
gλκð∂2

ðνλÞgμκ þ ∂2
ðμλÞgνκ − ∂2

ðνμÞgλκ − ∂2
ðλκÞgμνÞ

þ 1

2
gλκ∂2

½κν�gλμ þ
1

2
gλκ∂2

½κμ�gλν; ð55Þ

R½μν� ¼
1

2
gλκð∂2

½μν�gλκ þ ∂2
½νλ�gμκ þ ∂2

½κμ�gλνÞ

þ 1

2
gλκ∂2

½κν�gλμ −
1

2
gλκ∂2

½κμ�gλν: ð56Þ

Finally, having in mind that the Levi-Civita tensor is
completely antisymmetric, we easily obtain

R̃½μν� ¼
1

8
ησμ

αβð∂2
½σβ�gαν − ∂2

½σα�gβνÞ

−
1

8
ησν

αβð∂2
½σβ�gαμ − ∂2

½σα�gβμÞ: ð57Þ

Equations (55)–(57) are neither obtained nor commented
on in the cited Ref. [13], but they have the interest of
showing some decoupling of the dynamical equations (52)
and (53): The first of these equations involves both the
anticommutators and the commutators of the second partial
derivatives of the metric, while the second one involves
exclusively the corresponding commutators. But the struc-
ture of these two dynamical equations is very different:
In the first one, the nonlinear terms in the first partial
derivatives of the metric appear, while in the second one
only the second partial derivatives appear (linearly).
However, if in some given physical situation, these com-
mutators or anticommutators, or both, in the two sides of
the boundary surface, had any physical significance, the
same or even more could be said of the occasional finite
jumps of the second partial derivatives of the metric. These
jumps have been studied in the preceding sections in the
frame of general relativity for C1 class metrics: the same
class that has been assumed in the present section. For
these jumps, the dynamical equations (52) and (53) would
give

½RðμνÞ� −
1

2
½R�gμν ¼

1

M2
p
½Tμν�; ð58Þ
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½R½μν�� þ
M2

M2
p
½R̃½μν�� ¼

1

M2
p
½∇αSαμν�; ð59Þ

where the big bracket ½·� not involving indices stands for the
corresponding jump.
The new second equation (59) does not introduce

any simplification to the initial second equation (53), but
contrarily, the new first equation (58) is appreciably simpler
than the initial equation (52) since the nonlinear terms
containing first partial derivatives of the metric have
disappeared. In all, the new dynamical equations general-
izing Einstein field equations, when reduced to the corre-
sponding equations for the jumps of the second partial
metric derivatives, that is to say, when reduced to Eqs. (58)
and (59), become dramatically simplified: The first partial
metric derivatives disappear everywhere, and, as a conse-
quence, these equations become linear in the remaining
partial metric derivatives, the second ones. This could be
relevant when trying to compare the new theory to the
observation for strong gravitational fields beyond the
particular linearized case.
Before ending the paper, let us come back to the

Hadamard discontinuities in Sec. IV and more specifically
to Eq. (14). In the case of the present section, this equation
remains true, but we cannot conclude the following
Eq. (15) anymore, since now the jumps ½∂2

λμgνκ� are no
longer symmetric in the indices λ and μ.

VII. SUMMARY OF FINDINGS

In this section, the main findings of the paper are
summarized. Two different topics have been considered.
The first one is approached in Secs. II–IV and the second
one in Sec. VI, while Sec. V is devoted to presenting a
notorious example of the first topic.
This topic deals with the solutions of the EFEs whose

energy-momentum tensor has bounded support, where the
tensor is everywhere continuous except for a finite step
across the boundary surface Φ ¼ 0 of the support. Because
of this step, the second partial derivatives of these metric
solutions show necessarily a finite jump across the boun-
dary. Then, we have considered the family of these
solutions whose metrics are continuous everywhere. The
subfamily of this family of metrics, whose first partial
derivatives are also continuous everywhere, is certainly
nonempty, since the Newtonian potential solution of the
Poisson equation for a finite bounded source is well known
to be C1 class. Even more, another metric of this subfamily
is also presented in Sec. V. Hence, in Secs. II–V we have
considered the set of this nonempty subfamily of metrics,
that is, the set of all the above solutions of the EFE assumed
to be C1 class, and we have explored the necessary
condition for the existence of such a kind of metrics.
More specifically, using a well-known theorem from
Hadamard [15], we have derived the necessary conditions

that the jumps of the second partial derivatives of the metric
across the boundary surface must satisfy in order to
guarantee the C1 class character of the corresponding
metrics. These necessary conditions are the Eq. (16) whose
different actual solutions have been considered in the paper.
It is to be remarked that the stated necessary condition

does not refer properly to Lichnerowicz’s postulate
(2) introduced just at the beginning of the Introduction,
since this postulate aside the C1 class character of the metric
requires the use of admissible coordinates and also the C2

class character of the first derivatives of the metric.
Nevertheless, in Sec. V (see the Appendix also) we have
revisited the particular case of the OS metric referred to as a
global Szekeres coordinate system [12], where the metric
shows its everywhere C1 class character. Consequently, in
this particular case, our necessary condition for it, Eq. (16),
has to be satisfied. Then, we have verified this condition by
building for the case the corresponding solution of Eq. (16).
Further, we have proved that these coordinates are admis-
sible ones (Sec. V) and also the C2 class character of the
first derivatives of the metric (Appendix), thus, proving that
this particular case is an example of a metric satisfying the
entire Lichnerowicz postulate (2). Also, we have taken
advantage of this renewed visit to the OS metric to prove
that the Jacobian of the coordinate transformation leading
from the original Gaussian coordinates of this metric to the
Szekeres ones never vanishes as due. Finally, we have given
the explicit expression of the OS metric in the new
coordinates, and we have pointed out two minor misprints
in the referred paper [12].
The last findings of the present paper are contained in

Sec. VI. In this section, we have considered a recent
generalization of the EFEs [13] to a case where the mixed
second partial derivatives of the metric at the boundary
surface Φ ¼ 0 exist but are not symmetric; i.e., the
Schwartz theorem is no longer valid. In other words, the
existing second derivatives of the metric are not continuous,
at least at one of the two sides of Φ ¼ 0. In this
generalization of the EFEs, the metric is assumed to be
C1 class.
The new field equations that generalize the EFE are (52)

and (53) in Sec. VI. Then, in this section, we have shown
that Eqs. (52) and (53) decouple in the following sense:
While Eq. (52) depends on both the commutators and the
anticommutators of the second derivatives of the metric,
Eq. (53) depends only on the commutators. This can be
seen from Eqs. (56) and (57), giving the explicit expres-
sions for R½μν� and R̃½μν�, respectively. Further, we have
pointed out that the structures of Eqs. (52) and (53) are very
different: While Eq. (52) include the presence of the first
derivatives of the metric, Eq. (53) do not. So, Eq. (53) are
simpler than Eq. (52). Then, following formally what we
have done in the sections before Sec. VI, in this section we
have focused our attention not on the generalized field
equations but on their jumps, that is, on Eqs. (58) and (59),
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which become algebraic equations for the jumps of the
above metric commutators and anticommutators. These
equations are defined across the boundary surface Φ ¼ 0
and become particularly simple since they do not depend on
the first derivatives of the metric: Eq. (59) preserves this
non-dependence property already present in its antecedent
Eq. (53), while Eq. (58) gains this simplicity from to their
jumping character. Notice that the reduction of the original
generalized field equations to their jumping counterpart is
not a mere artifact to accede to simpler field equations,
since generally speaking the jumps of the second deriva-
tives of the metric, by themselves, could become particu-
larly interesting.
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APPENDIX: THE OPPENHEIMER-SNYDER
METRIC IN COORDINATES OF SZEKERES

In this Appendix, we summarize the intermediate steps
of the Ref. [12] computations allowing us to obtain the
announced compatibility relation (44). In relation to this
reference, we also take advantage of the occasion to point
out two misprints and also to verify, as due, that the
Jacobian of the coordinate transformation going from
ðT; RÞ coordinates to the Gaussian ones ðτ; ρÞ never
vanishes, and finally to show that the first derivatives of
the OS metric in ðT; RÞ coordinates are piecewise C2 class.
In Ref. [12], Szekeres obtained a coordinate system

ðT; RÞ in which the OS metric exhibits its C1 class character
everywhere and, in particular, through the junction surface
R ¼ 0. The OS metric represents a homogeneous cloud of
dust matter radially collapsing. The Jacobian determinant
JðT; RÞ of the coordinate transformation (23) from ðT; RÞ
coordinates to comoving Gaussian coordinates ðτ; ρÞ is
given by

JðT; RÞ ¼ 2

3
ρ0

1

T

�
1 −

1

3

R
T

��
1 −

2

27
ρ20

R2

T8=3

�
; ðA1Þ

which does not vanish on the space-time region

−3ð
ffiffiffi
2

p
− 1ÞT ≤ R ≤ 0; 3T4=3 > −

ffiffiffi
2

p
ρ0R ðA2Þ

defining the whole coordinate domain. For the sake of
conciseness, angular coordinates θ and ϕ adapted to the
spherical symmetry are omitted. Using ðT; RÞ coordinates,
the interior Einstein–de Sitter metric (21) ds21 of the colla-
psing OS scenario can be written as a C1 class metric de-
formation of the Schwarzschild metric (22) ds22 expressed
in terms of Lemaître coordinates. These coordinates are

adapted to a congruence of free-falling radial observers,
which are asymptotically at rest at spatial infinity. Using the
notation

ds21 ¼ ds22 þ ρ20dσ
2; ðA3Þ

the line element deformation dσ2 providing the inside OS
solution in the referred ðT; RÞ coordinates takes the
expression

dσ2 ¼ R2T−8=3AdT2 þ BdR2 þ 2RT−5=3CdTdRþDdΩ2;

ðA4Þ

where A, B, C, and D are functions of T and R given by

AðT; RÞ≡ −
2

9

�
10

3

�
1þ 25

9
F2

�
− 2ð1 − F2Þ4=3H2

�
;

ðA5Þ

BðT; RÞ≡ −
4

9
fT−2=3½2F2 − ð1 − F2Þ4=3H2�

þ ðT þ RÞ−2=3g; ðA6Þ

CðT; RÞ≡ 4

9

�
1þ 5

3
F2 − ð1 − F2Þ4=3H2

�
; ðA7Þ

DðT; RÞ≡ T4=3ð1 − F2Þ4=3
�
1þ 2

3

R
T
−
1

9

R2

T2

�
2

− ðT þ RÞ4=3; ðA8Þ

with

F2 ≡ 2

9
ρ20R

2T−8=3; H2 ≡
�
1 −

1

3

R
T

�
2

: ðA9Þ

Now, as stated, let us show that the first derivatives of the
OS metric in ðT; RÞ coordinates are piecewise C2 class.
In other words, out of the boundary surface R ¼ 0, that is to
say, for R ≠ 0, we must show that the corresponding second
and third derivatives of this metric are continuous. More
specifically, we must show this continuity both for R > 0
and for R < 0: In the first region R > 0, the corresponding
metric is the outer Schwarzschild metric in the ðT; RÞ
coordinates, i.e., the metric (22); in the second region
R < 0, the metric (A4)–(A9). In both regions, an apparent
discontinuity of these second and third derivatives at
T þ R ¼ 0 is present, but this coordinate condition
describes the collapsing singularity that does not belong
to the present differentiable manifold. We can directly
see that there are no more apparent or actual discontinuities
of the second and third derivatives of the metric (22). We
are then left with the region R < 0. The simple examination
of Eqs. (A5)–(A9) seems to show two possible cases of
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discontinuity in those derivatives and only two cases: for
T ¼ 0 and F2 ¼ 1, respectively.
Let us first try the case T ¼ 0. Let us consider then the

defining coordinate domain (A2). More specifically, the
second of these inequalities, that is, the strict inequality
3T4=3 > −

ffiffiffi
2

p
ρ0R. Since we are now in the region R < 0,

this strict inequality says that this time value T ¼ 0 is
unattainable. Now, let us go to the case F2 ¼ 1. Because of
the F2 definition in the first equation of (A9), F2 ¼ 1

becomes 3T4=3 ¼ −
ffiffiffi
2

p
ρ0R, that again becomes unattain-

able because of the above strict inequality.
In all, out of R ¼ 0, the second and third derivatives of

the OS metric in ðT; RÞ coordinates are continuous, as we
wanted to prove.
Then, before ending this Appendix, let us come back to

the pending compatibility relation (44). From the metric
(A4), and using the latter definitions, the second radial
derivatives of the nonvanishing hμν components of the
metric deformation ρ20dσ

2 can be straightaway evaluated on
the junction boundary R ¼ 0, giving the result

∂2h00
∂R2

����
R¼0

¼ −
16

27
ρ20T

−8=3; ðA10Þ

∂2h11
∂R2

����
R¼0

¼ −
32

81
ρ20T

−8=3
�
1þ 5

3
ρ20T

−2=3
�
; ðA11Þ

∂2h01
∂R2

����
R¼0

¼ 16

27
ρ20T

−8=3; ðA12Þ

∂2h22
∂R2

����
R¼0

¼ −
16

27
ρ40T

−4=3; ðA13Þ

and ∂2h33
∂R2 jR¼0 ¼ sin2θ ∂2h22∂R2 jR¼0, indeed, where T; R; θ;ϕ

coordinates are referred to by the indices 0,1,2,3, respec-
tively. Then, the required compatibility relation (44) is
identically satisfied by virtue of (A10) and (A13).
Finally, the first of the two mentioned misprints in

Ref. [12] refers to Eq. (6) of this reference, in whose
left-hand side we must put ρ instead of r. The second
misprint refers to the equation giving ds2 on page 189 of
[12], where we must change R < 0 by R > 0, and
reciprocally.
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