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Beginning with Hartle and Hawking’s no-boundary proposal, it has long been known that the pathology
of a big bang singularity can be suppressed if a transition into the Riemannian (Euclidean) metric signature
(the usual singularity theorems become invalid in this region) occurs when we track back along cosmic
time. Avital component of this type of models, which needs to be clarified, is the set of junction conditions
at the boundary between the two signature regimes. In the traditional approach, the signature change occurs
in the temporal sector through a switch of sign in the lapse-squared function. Motivated by more
straightforward connections with the big bang cosmology, we explore here an alternative whereby the
spatial metric eigenvalues change sign instead, so that the Riemannian side is purely timelike. We
investigate the junction conditions required in this case.
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I. INTRODUCTION

A. Standard approaches

Discussions on signature changing spacetimes were
arguably ignited by Hartle and Hawking’s no-boundary
proposal for the initial conditions of the Universe [1,2]. The
study of the semiclassical approximations [3] to the wave
function of the Universe, especially the dominating real
tunneling solutions (a real Riemannian spacetime joined
onto a real Lorentzian one, with the Riemannian part
determining the weighting in the path integral) [3,4], had
garnered some interest.
While studying the tunneling solutions, it immediately

became clear that it is impossible to transition a solution of
the Einstein equations into the Riemannian signature in an
uneventful manner because even a continuous metric will
necessarily become either degenerate or divergent. In other
words, General Relativity (GR), without any relaxations,
is not intrinsically capable of dealing with signature
changes (the transition surface is at best a mild singularity).
However, if one is only interested in semiclassical approx-
imations to quantum wave functions, the classical Einstein
equations only need to be “almost” satisfied, in the sense
that some pathologies on the transition surface are allowed
so long as they do not spoil the steepest descent consid-
erations by making a divergent contribution to the action
[3]. Furthermore, even if we throw away such leniency
afforded by quantum mechanics and consider, as in
Refs. [5,6], purely classical setups, arguments can be made
that suitably weaker versions of GR equations are not
outrageous, since, after all, there are many situations that

the standard GR formalism cannot handle, such as when it
comes to singularities inside black holes or impulsive
gravitational waves, which do not appear to be prohibited
by nature.
Broadly speaking, depending on the functional space

from which one draws solutions to the Einstein’s equations
that are formally ill defined (not just singular in a differ-
ential equation sense like when some higher-derivative
terms vanish; some quantities appearing in the equations
may become divergent and thus not defined) at a change-of-
signature boundary, two types of junction conditions have
been proposed in the literature (both for when a purely
spatial Riemannian side is reached via the temporal
eigenvalue of the metric switching sign):

(i) 1: A more flexible one (e.g., Refs. [3,5–9]) allowing
for discontinuous metrics with a continuous but not
necessarily vanishing extrinsic curvature of the
signature change surface Π, suitable for distribu-
tional solutions. The Einstein equations themselves
remain ill defined at Π, so by “the distribution is a
solution,” those authors mean that it satisfies the
equation at any point away from that surface, while
the equation is suspended on Π.

(ii) 2: A more restrictive one (e.g., Refs. [10–14])
requiring the metric to be continuous and the
extrinsic curvature to vanish when computed from
both sides. This set of conditions is suitable for
smoother solutions satisfying a regularized version
of the Einstein equations that are not suspended on
Π. Specifically, those offending ill-defined quan-
tities are in fact well defined off of Π, so their limits
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can possibly be obtained through a process asymp-
toting to Π, and the broken expressions are then
replaced by such limits (and strong junction con-
ditions are required for these limits to exist). One
must note that only the covariant form of the
equations is regularized, and the inverse metric still
diverges, so not everything is made regular in this
approach.
Since the extrinsic curvature is the time derivative

of the spatial metric (its trace is essentially the rate at
which spatial volume grows), its suppression is often
said to imply stationarity. Indeed, similar analysis on
other fields propagating on the signature-changing
background also analogously possess vanishing
velocities. This is easy to see from a naive limit-
taking analysis of a toy massless Klein-Gordon
equation,

φ;a
;a ¼

1ffiffiffiffiffijgjp ð
ffiffiffiffiffi
jgj

p
gabφ;bÞ;a ¼ 0; ð1Þ

where the semicolon denotes a covariant derivative
and the comma denotes a partial derivative. The
early part of the latin alphabet will denote spacetime
indices, and the middle part will denote the spatial
ones. Let gab be diagonalized in our choice of two-
dimensional (for illustration) coordinates ðt; xÞ into

�−λtðt; xÞ 0

0 λxðt; xÞ

�
; ð2Þ

then, the equation becomes

λxðλt;xÞ
λt

φ;x þ λt;tφ;t þ λt

�
2φ;tt −

λx;t
λx

φ;t

�

− λx;xφ;x − 2λxφ;xx ¼ 0: ð3Þ

When approaching the temporal signature-change
surface Π, we must have λt → ∞ (since it is an entry
in the inverse metric) and generically also λt;t → ∞
at an even faster pace, resulting in the requirements
of φ;t → 0 and φ;tt → 0 in order for the equation to
admit a well-defined limit on Π.

There are essentially two steps involved in deriving these
conditions. The first is to evoke more or less the generic
Darmois junction condition (denoted Cg below) that the
surface metric implied (through pullbacks of the embed-
ding maps) by either side must agree so there is a well-
defined 3-geometry for the boundary surface and also that
the extrinsic curvatures computed on either side must agree
to avoid having to confine a stress-energy tensor onto the
spacelike boundary (matter worldlines cannot be entirely
confined to a spacelike surface) [15–17]. Although these
conditions are derived in the constant signature case, they

essentially remain unchanged in the signature-changing
situation (note that with condition 1 the jump is in the time-
time component of the metric, while the spatial part
remains continuous, so the implied intrinsic spatial geo-
metries from the two sides still agree).
The second type of requirements (denoted Cs below) is

specific to the singular (with degenerate or discontinuous
metric) signature-changing situation. With condition 2, Cs
is the vanishing of the matching extrinsic curvatures, which
allows a version of the Einstein’s equations to be imposed
on the transition surface, but is unsurprisingly quite rigid
[18]. The condition 1 approach, on the other hand, aims for
more flexibility by not imposing any Cs at all, arguing that
the extra step of regularizing a singular equation is more a
matter of choice than necessity [19]. The price it pays is a
relaxation of the sense in which the resulting solutions are
unique [5,18]. The differences between the approaches
reflect alternative philosophies, perhaps of how universally
valid the standard form of the Einstein equations should
remain when their usual underlying assumptions are
tempered with.

B. Alternative

In this paper, we investigate an alternative mechanism by
which a signature change can be achieved, following more
closely the approach of condition 2, since we wish to see if
the restrictions imposed by the regularization procedure,
onto the initial conditions (for our Lorentzian universe) laid
down on our transition surface Σ, can help explain some
cosmological fine-tuning issues. So, the equations of
motion of metric and matter, for which the initial conditions
are meant, must not be suspended on Σ.
We begin by noting that, while having the temporal

metric eigenvalue [1=λt in the notation of Eq. (3), since λt is
an eigenvalue of the inverse metric] go through zero (we
shall call this approach route A in this paper), either
continuously or with a jump, is taken to be the default
in previous literature, it is not the only way for the metric
signature to change. Having it go through ∞ (equivalently
λt through zero) is also valid, since ∞ is just the antipodal
end of the stereographic projection circle of the real line.
However, with this approach (route A’) in its raw form, the
integration measure

ffiffiffiffiffiffi−gp
diverges on Σ, which has adverse

side effects with quantum path integrals (the logic of
steepest descent that makes our classical investigation
useful in a quantum context may be spoiled [3]). A related
approach that removes this problem is to have 1=λx go
through zero instead, so that the signature becomes
Riemannian not because time changes sign but because
the spatial signature reverses. This alternative (route B) is
related to route A’ since the 1=λ̃t ¼ λx=λt of the conformally
rescaled metric g̃ab ¼ gabλx (which shares the same causal
structure as gab, such as those depicted in the figures below)
goes through ∞. In other words, when the physical metric
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transitions via route B, the conformal metric changes via
route A’.
This route B has not been examined in any of the

previous literature that we found, and investigating it is
the subject of this paper. Aside from filling in a gap in the
literature to achieve pedagogical thoroughness, we note
that route B possesses some features that might help make it
physically relevant:
(1) As compared to route A, it is more straightforward to

make connections with our actual Universe when we
adopt route B because the Friedman-Lemaître-
Robertson-Walker (FLRW) metric

gabdxadxb ¼ aðtÞ2g̃abdxadxb
¼ −dt2 þ aðtÞ2γ̂ijdxidxj
≡ −dt2 þ aðtÞ2ðdχ2 þ ζ2κðχÞdΩ2Þ; ð4Þ

whereby

dΩ2 ¼ dθ2 þ sin2 θdϕ2 ð5Þ

and

ζκ ¼

8>><
>>:

sin χ; for κ ¼ 1

χ; for κ ¼ 0

sinh χ; for κ ¼ −1;
ð6Þ

is automatically a route B–compatible metric. This
means that, within route B, a transition into a
Riemannian region can occur at the beginning
[where aðtÞ ¼ 0 so the spatial metric becomes fully
degenerate and ready to be continued further into
negative definiteness] of the prevailing cosmological
model, extending it beyond the big bang,1 but
without needing significant alterations to the cur-
rently prescribed post–big bang evolution, which
would not have been economic since any such
alterations must be rereconciled with observations.
We will keep the subsequent discussion in this

paper general and not specialize to FLRW unless
specifically noted. Nevertheless, it is helpful to
always have this particularly well-studied and physi-
cally relevant special case in mind for intuition
building.

(2) Route B corresponds to the light cones opening up
as one approaches the change-of-signature surface Σ
from the Lorentzian side (see Fig. 1 for a visual
depiction), since equal temporal increments would

require increasingly greater spatial coordinate inter-
vals to compensate in the gabdxadxb ¼ 0 equation for
the null rays. As suggested by Fig. 1 and will be
discussed in more details in Sec. II A below, the null
cone structure is removed (it cannot exist in the
Riemannian side) in route B via the future and past
null cones opening up to collide with and annihilate
each other, so it is the spacelike region that is squeezed
out of existence, and the Riemannian side is purely
temporal, as the metric signature obviously confirms.
In contrast, the cones disappear in route A (condition
2) by separately closing up into a couple of half-lines,
which then vanish beyond Π. In other words, the
timelike regions are the ones taken out in that
approach, and the Riemannian side is purely spatial.
A complication of that latter method is then that it

takes constructive efforts (e.g., use different defini-
tions for the geodesic Lagrangian when in alternative
signature regimes [6]) to make timelike geodesics
thread through Π, since if left alone they would have
disappeared together with the timelike regions. In
contrast, such intervention is unnecessary with route
B, the Riemannian side of which is capable of hosting
timelike curves. That such a continuation of timelike
geodesics is required in the first place is due to the
desire to show that the signature-change scenario no
longer suffers geodesic incompleteness, so the big
bang singularity is indeed removed in that particular
sense, and one stays faithful to the original no-
boundary proposal of Ref. [1]. This amelioration is
possible because the usual singularity theorem
[20,21] needs some causal properties that are no
longer available in the Riemannian regime [5].

(3) Following a procedure closely mimicking that of
condition 2 but for route B, we obtain once again
strong Cs conditions, but now including an addi-
tional one (C2s of Sec. III A) enforcing the vanishing
of spatial derivatives on Σ, in addition to the

FIG. 1. As the base points C3, C2, and C1 incrementally
approach the signature change surface Σ, their null cones flatten
out (and return to rising more steeply once they are sufficiently far
away from Σ).

1Note that, contrary to common pictorial depictions, the big
bang is not necessarily a single point, just a codimension-1
surface with a degenerate intrinsic metric—much like how
distances along a null ray vanish, yet the null ray is not a single
point. See Sec. II B below for more details.
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temporal stationarity. Furthermore, the lapse func-
tion within route B can be set to a constant, so even
more components of the 4-metric’s derivatives
vanish as compared to route A. Because these metric
derivatives contribute to the curvature tensors, their
suppression is beneficial for realizing the uniformity
condition on the big bang, which is envisaged by the
Weyl curvature conjecture [22]2 to start the Universe
off on low entropy (see also Ref. [23]). A signature-
change universe via route B thus offers up an
intriguing new way to supplement inflation in its
quest to solve some cosmic puzzles.

In the rest of the paper, we turn to the details, beginning
by establishing some basic properties of a route B transition
in Sec. II, before finding the junction conditions in Sec. III.
We finally conclude in Sec. IV with a discussion on the
many studies required to more thoroughly explore the
viability and properties of route B. For the Lorentzian side,
we adopt signature ð−;þ;þ;þÞ, and the Riemannian side
subsequently has ð−;−;−;−Þ.

II. LARGE-SCALE FEATURES

A. Signature morphology

A complication that route A did not suffer but route B
must now face is that, since three dimensions now switch
signature, there is the possibility that the three switches
occur sequentially, instead of simultaneously as in the
FLRWexample. Specifically, consider the generic metric in
the 3þ 1-form [24]

gabdxadxb ¼ −α2dt2 þ γijðβidtþ dxiÞðβjdtþ dxjÞ; ð7Þ

where we fix the gauge freedoms by setting lapse α≡ 1 and
shift βi ≡ 0 so as to pick Gaussian normal (synchronous)
coordinates, the temporal coordinate curves of which are
timelike geodesics. Starting from an arbitrary coordinate
system xā, we can find the Gaussian normal coordinates by
solving the Hamilton-Jacobi equation

gāb̄S;āS;b̄ ¼ −1; ð8Þ

for which the real solution S (it is to be the new time
coordinate) exists even as the signature is allowed to vary,
because we always have at least one timelike dimension
within route B. A subtlety is that at places of signature
change, some spatial3 components in the inverse metric gāb̄

may diverge, but well-defined limits exist for these
locations if the spatial derivatives of S simply vanish

sufficiently quickly there. Once the solution is found,
the Gaussian normal coordinate system can be constructed
by following the standard textbook recipe. In this new
coordinate system, which we adopt for expositional clarity,
γij is positive definite in a usual Lorentzian region, but its
eigenvalues can transition, either one at a time or several
together, into negative values. We can understand what this
physically means by examining what happens to the null
cones when one or more eigenvalues turns to zero and then
negative through a transition point q. The situation is
depicted in Fig. 2, and the local tangent space geometry can
be intuited as future and past null cones colliding and
annihilating, allowing their timelike interiors to merge.
The possibilities of partial sign switches and thus more

diversified signature configurations are intriguing, but
physically problematic. For example, a scalar field in a
signature ð−;−;þ;þÞ spacetime region would propagate
via an ultrahyperbolic equation, which is generically
(unless nonlocal constrains are imposed [25]) ill posed
[26] when evolved off of any Cauchy surface (on the other
hand, an elliptic equation in a Riemannian region admits
well-posed boundary value problems). Beyond the scalar
field, Ref. [27] also showed that fields with finite spins
greater than zero cannot be defined in a signature
ð−;−;þ;þÞ spacetime region (they are, however, allowed
in a Riemannian region). This implies a rather strange
requirement in which a Dirac field describing, say, elec-
trons can exist in the Lorentzian region but must somehow
collude with spacetime in a fashion far beyond simply
warping it and stop existing (not just becoming zero in
amplitude) as soon as one spatial direction mutates.

FIG. 2. If a single eigenvalue of γij turns negative at q, then at a
later time qþ along a timelike path through q, the future and past
null cones remain separated as per usual with a Lorentzian metric
signature; at q, the twovery elongated cones touch along a (black in
the figure) line that is the eigenvector (eigenvectors are not
directional, so the black line is a full and not a half-line)
corresponding to the eigenvalue that now becomes zero, and thus
vectors along this direction now have zero norms; at some earlier
timeq−, the twocones partially “annihilate,” splitting the black line.
The timelike interiors of the cones join up through the opened-up
gap between the pair of black lines indicating the intersection lines
between the cones. When all three eigenvalues change sign at the
same point q (not plotted), the cones will open up towards each
other as we approach q from qþ, and the entireties of the two cones
collide and annihilate at q, so there are no null cones at q−, and all
directions are timelike—the spacetime becomes Riemannian.

2Incidentally, it was noted in this paper that something along
the lines of the Hartle-Hawking no-boundary proposal may lead
to the required condition.

3Wewill slightly abuse terminology in the interest of brevity and
assign the label “spatial” to the other coordinates that are not t, even
though their associated dimension can become null or timelike.
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We therefore need at least two spatial directions to
switch simultaneously, leading to a time-space swapped
Lorentzian spacetime of signature ð−;−;−;þÞ. All mas-
sive particles must now become essentially long-lived
“tachyons” [28], since they now move outside of light
cones (centered on the remaining spatial direction) in order
to follow timelike worldlines. Because the mathematics for
a quantum field theory in this region is the same as in the
regular Lorentzian signature (in fact, the sign convention
adopted in particle physics is the opposite of that used by
relativists, and this paper, so no sign changes are even
needed when lifting formulas from books), one is then
faced with all the vacuum instability issues and other
pathologies that tachyons bring. We therefore assume,
from here onward, that sequential sign switches are for-
bidden and that all three spatial dimensions switch simu-
ltaneously, giving us ð−;−;−;−Þ straight away.

B. FLRW junction surface

Continuity of the metric requires that any curve linking
two points of different signatures must intersect the
bounding wall Σ at least once, so Σ should at most have
codimension 1 (the curve itself takes up one codimension,
and if there exists another, the curve’s intersection point
with Σ, as well as the surrounding sections to preserve
continuity, can be shifted in that direction to avoid Σ) but
does not need to be a constant t surface. The case of the
highly symmetric FLRW is much simpler, though, and, due
to its cosmological relevance, worthy of us taking a little
detour to clarify. We emphasize, though, that most of our
discussions on the junction conditions in Sec. III are not
confined to this case and are valid for generic Σs. They are
local considerations relating to limit-taking procedures
along an arbitrary single timelike curve threading through
Σ at a single point and are as such independent of the larger-
scale properties of Σ.
The first thing one notices is that the FLRW Σ is null,

since gabdxadxb vanishes at a ¼ 0 for any separations
confined to Σ (with dt ¼ 0 since a is a function of t only). It
should be noted, though, that points on Σ can be macro-
scopically separated yet null related just like two points
along a null ray, in which case Σ is not a single point as
often depicted for the big bang, just like a null ray is not a
single point. This situation arises because the Lorentzian
metric is rather pathological for the purpose of defining
open sets (metric balls are noncompact) and studying
topology (thus the frequent adoption of a positive definite
auxiliary metric in some topological studies; see, e.g.,
Refs. [29,30]). Baring any direct observational conse-
quences of the Riemannian side from which the topology
of Σ may become more obvious, the best hope we have to
ascertain its nature may be to assume global hyperbolicity
of the Lorentzian side, the topology of which should then
be a direct productR × Σ [3]. Since our Universe is not one
dimensional, Σ cannot be a zero-dimensional point.

More explicitly, the observational evidence is that the
spatial slices of our Universe appear to be flat [31] and thus
could well be infinite in extent.4 It would then be quite
strange for such an infinite noncompact plane to instanta-
neously collapse into a single point (a compact singleton)
as soon as the scale factor reaches precisely zero, when it
would still be noncompact for any infinitesimal value of
a > 0. In that scenario, the early Universe would not
resemble the collar neighborhood of Σ, which would
obviously adversely affect our ability to evolve initial
conditions off of Σ to uniquely determine the Lorentzian
side of the Universe.
Incidentally, in the case of the flat slicing of de Sitter

(see, e.g., Fig. 1 of Ref. [33]) serving as an isometry to an
inflationary FLRW, the finite comoving observers (those
labeled by finite spatial comoving coordinates) do in fact all
get packed into a single asymptotic point of the de Sitter
spacetime when traced back in time. The abrupt jump issue
in this case is resolved by pulling in points from comoving
spatial infinity to form an extended noncompact border
surface. This is fine for de Sitter, since points on this
surface are just regular points inside the actual de Sitter
spacetime. Their carrying infinite spatial coordinates is
simply due to the flat foliation coordinates being singular
(a symptom is that this coordinate system cannot be
extended beyond this border to cover the other half of
de Sitter). However, for the actual FLRW universe, there is
no reason to believe that the comoving coordinate system,
as preferred by the observed motion of matter, is ill chosen
and ill behaved, so similar infinity points would likely
genuinely reside on the spatial compactification boundary.
In other words, such infinity points are outside of the actual
spacetime (similar to how the future null infinity Iþ [34] is
outside of an asymptotically flat spacetime itself), and are
purely mathematical constructs. They are as such not in fact
physically available to help smooth out the aforementioned
“jump”, or as places to prescribe junction conditions on. In
short, while the inflationary FLRW and de Sitter are
isometric for the post–big bang segment, they likely differ
when it comes to the topological structure of the big bang
itself, which is not a radical prospect given that they already
differ on what lies beyond.
Finally, as an aside, it is also worthwhile noting that the

FLRW big bang is sometimes said to be spacelike, but this
characterization is under the conformal metric rather than
the physical metric, and the choice is not unique.
Specifically, there is a well-established field of study on
the “conformal gauge singularities” (regarding the big bang

4They could also be flat tori or other twisted alterations [32], but
a point would still have the wrong dimension for a boundary of the
four-dimensional Lorentzian universe and would instead be an
interior point, resulting in the big bang cosmology already being
“no boundary” even without introducing a Riemannian region,
depriving us of a place on which to prescribe initial conditions
(necessary for Cauchy evolution on the Lorentzian side).
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singularity as being due to the special “conformal gauge
choice” in a conformal class of mostly regular metrics)
[35–39]. Even the well-posed-ness of the Cauchy problem
for various matter content types has been proven for this
construct [36,40–44]. It is also useful for us to think about
the causal structure of the spacetime using the conformal
metric g̃ab, but we stop short of carrying out the additional
temporal transformation t → τ defined by

dτ
dt

¼ 1

aðtÞ : ð9Þ

After this extra layer of coordinate transformation, the
FLRW metric becomes conformally flat. However, Eq. (9)
is singular at a ¼ 0, and since t is the intrinsic clock carried
by physical comoving observers, results obtained under τ
must be fed through an additional singular transformation
before it can be translated back into predictions on physical
experimental outputs. The reward for this extra trouble is
flexibility. Specifically, since dt=dτ ¼ 0 at the big bang,
the condition of moving along the constant t surface, as
expressed by dt ¼ 0, can be satisfied by any finite dτ
choice. Instinctively, one picks dτ ¼ 0, which gives a
conformally spacelike (under the physical metric, it is still
null) big bang, but one could actually equally well choose
other dτ’s that make it conformally null or even timelike.
The arbitrariness is because that, essentially, via an infinite
stretching, the zero-thickness three-dimensional Σ got
stretched into a four-dimensional object. While people still
customarily pick out a three-dimensional surface in there
and call it the big bang, it perhaps should have been the
whole four-dimensional totality. Regardless, if one holds
the view that this newly inserted internal structure to the big
bang is physical, then its flexibility would allow for
establishing beautiful mathematical infrastructures. We will
remain more parsimonious in this paper, though, and
formulate the junction conditions under the physical metric.

III. JUNCTION CONDITIONS

A singular differential equation can be well defined at its
singular set, e.g., xβ;xx þ β ¼ 0 at x ¼ 0. However, with
our toy Eq. (3) or Einstein’s equations, the coefficient
functions appearing in the equation or the curvature
expressions become divergent or otherwise ill defined
(e.g., 0=0) on Σ. So, strictly speaking, the equations are
not merely singular; they are not formally defined there.
Nevertheless, we could follow the approach of Ref. [12]
and regularize the offending divergences by imposing strict
junction conditions so that the equations admit well-
defined limits on Σ. Solutions satisfying such conditions
can then be sought such that the Σ limits of the left- and
right-hand sides of the equations match. This distills a set of
equations of motion to be satisfied on Σ, so physics will not
be left completely arbitrary there, but as already alluded to
in Sec. I A, Σ cannot be rendered completely regular. At the

very least, the inverse metric still diverges, and some of the
Carminati-McLenaghan curvature invariants [45] might do
so as well. Our present endeavor is a modest attempt at
partially resolving the big bang singularity in order to glean
some information on the likely behavior of the important
classical saddle-point solutions; it is not aimed at removing
the singularity altogether, a task for which an understanding
of quantum gravity is probably required (but the intriguing
possibility of accomplishing it even at a classical level,
perhaps through the adoption of more topology-friendly
auxiliary metrics, should not be dismissed out of hand; for
such an investigation, our study would serve as a first step
to demonstrate how far one can go without bringing in
additional infrastructures and to identify the remaining
problems they must solve, thereby cluing us in on where
new physics/mathematics might come in as well as what
they might look like).

A. Einstein’s equations

1. Method

We begin with the left-hand side of the Einstein
equations. Following standard literature [17], under
Gaussian normal coordinates, the Einstein tensor can be
written in the 3þ 1-form as

Gtt ¼
1

2
ð3ÞRþ 1

2
½K2 − trðK · KÞ�; ð10Þ

Gti ¼ −Ki
mjm þ Kji; ð11Þ

Gij ¼ ð3ÞGij −
�
ðKij − KγijÞ;t þ 2KikKk

j − 3KKij

þ 1

2
K2γij þ

1

2
trðK · KÞγij

�
; ð12Þ

where Kij ¼ −γij;t=2 is the extrinsic curvature of the
constant t slice (not necessarily coincident with Σ) and
the vertical bar denotes a three-dimensional covariant
derivative. The first two equations do not contain temporal
derivatives and are the Hamiltonian and momentum con-
straints, respectively. The third equation tells us how to
evolve the metric in time. Note that these expressions are
valid on both sides of Σ, since, unlike with route A, there is
no change to the norm of the normal vector ∂t of the spatial
slices within route B; thus, none of the explicit signs in
Eqs. (10)–(12) needs to change; the signature changes are
all hidden inside the symbolic spatial quantities, just as they
are all hidden inside the γij in the metric (see Eq. (7). We
therefore will not explicitly distinguish between the
Lorentzian and Riemannian sides in the derivations below,
since all expressions are identical.
Because γij is the source of divergences at Σ, the terms

K ≡ γijKij; trðK · KÞ≡ γijγklKikKjl;

as well as Ki
mjm and KikKk

j, could all obviously diverge.
Furthermore, since (also due to other contractions with the
inverse metric in trace-taking computations)

FAN ZHANG PHYS. REV. D 100, 064043 (2019)

064043-6



ð3ÞΓi
jk ¼

1

2
γilðγkl;j − γjk;l þ γlj;kÞ; ð13Þ

the terms ð3ÞR and ð3ÞGij could diverge there as well. The
goal, following the arguments of Ref. [12], is to see what
conditions arise from demanding thatGab remains bounded
in the Σ limit. It should be noted that this approach demands
componentwise regularity for the Einstein tensor (because
the Einstein equations are in component form), but being
explicit tensor components, the expressions (10)–(12)
depend on the underlying coordinate basis onto which the
tensor is decomposed, and this basis could be ill behaved
even when the underlying geometry is perfectly fine (e.g., if
caustics develop for the congruence of timelike geodesics
underlying the Gaussian normal coordinate system, due to a
bad choice of initial velocities). This coordinate singularity
issue is familiar and not specific to the problem at hand, but it
is nevertheless worth emphasizing that it implies the con-
ditions C1=2s we obtain in the next section are (unfortunately
unavoidably) sufficient but not necessary.
They are also quite strong in another way, as they will

demand that all the terms inGab that could possibly diverge
would instead remain finite, in an individual termwise
fashion. There is, of course, also the possibility that
divergences cancel across terms. To find these cases, one
needs to solve differential regularity equations derived from
the condition that the divergent terms in Eqs. (10)–(12) are
curbed, which is technically difficult without assuming
symmetries to simplify expressions, but doing so would
defeat the purpose of trying to find out what kind of
constraints that regularity at Σ would place on our
Universe. Instead, we deploy generic considerations to
argue that such solutions would unlikely be numerous (or
indeed exist at all), so at the very least, the solutions given
by C1=2s would not be unlikely as physically relevant
junction conditions from a statistical point of view.
We begin by noting that Eqs. (11) and (12) contain terms

involving both one and two factors of the inverse spatial
metric γij, which diverge at different rates and have to be
treated separately. Schematically, write γij ∼ 1=ζ with
ζ → 0 when approaching Σ; then, Eq. (11) or (12) could
be stylized as

AðζÞ
ζ

þ BðζÞ
ζ2

¼ 1

ζ

�
Aþ B

ζ

�
; ð14Þ

where A and B are nondivergent at ζ ¼ 0 since we have
collected all the problematic terms into powers of 1=ζ.
Regularity then requires that

A ¼ −
B
ζ
þOðζÞ; ð15Þ

and since A cannot diverge (but can be nonvanishing) when
ζ → 0, we also need

B ¼ OðζÞ: ð16Þ

The cross-cancellations thus allow for more relaxed A and B
than what termwise regularity would demand, which is A ¼
OðζÞ and B ¼ Oðζ2Þ [these select a subset of solutions to
Eqs. (15) and (16) and are not alternatives to them].
The catch is that for each original Eq. (14) we end up with

twice as many regularity conditions (15) and (16). This
means that Eqs. (11) and (12)would demand2 × 3 and 2 × 6
regularity equations, respectively, while Eq. (10) adds
another few. Furthermore, the three eigenvalues γeι could
all vanish at different rates, so instead of just two powers as
in our stylized example, Eq. (14), there are in fact more
distinct divergence rates, spawning a great many regularity
equations. On the other hand, there are only 12 independent
components in the variables γij and Kij,

5 so the coupled set
of regularity equations is heavily overdetermined, thus
generically not admitting solutions beyond the trivial ones
identified by C1=2s . By triviality,6 we mean that individual
terms in each equation are all pushed below the “error

5Here, we are taking the Hamiltonian approach of Arnowitt-
Deser-Misner [24], in which γij and Kij are regarded as
independent variables, each marching forward according to a
first-derivative-in-time evolution equation. One can, of course,
also take the Lagrangian view and see γij as the only fundamental
variable, governed by a second-derivative-in-time evolution
equation. By definition, the regularity equations are there to
limit what initial conditions one can place on Σ (they are allowed
to be underdetermining), and for these initial conditions, one can
either lay down 6 initial values for γij and Kij each or 12 for γij
alone (since it is then governed by a second-order equation, one
should give both Dirichlet and Neumann conditions). The
number of required initial values is always 12, and they must
satisfy the Σ limit of the regularity equations, which is generically
impossible if there are more than 12 such equations.

6The regularity equations are stronger than just implicit initial
conditions confined to Σ, since they also constrain the variables at
small but nonvanishing ζ values (for well-defined limits to exist
for Gab, just having the coefficients to the various powers of 1=ζ
vanishing on Σ is not enough; they also need to vanish sufficiently
quickly as Σ is approached). Yet they are more relaxed than the
usual exact equations in the interior, since small errors are
allowed [e.g., stray ζ2 terms are allowed for Eq. (15) due to
the OðζÞ provision]. For interior equations, the relevant number
of free variables drops to 6 (the number of physical freedoms in a
metric; the six freedoms inKij are removed by its definition as the
time derivative of γij, which gives a set of six constraint
equations) from the 12 as for the initial conditions, exacerbating
the overdeterminacy. Alternatively, one may stay with the
boundary view and note that each of the regularity equations
is stronger than just one initial condition, since one could expand
it into powers of ζ (as a surrogate for t) around ζ ¼ 0 (i.e., the
expansion coefficients are evaluated on Σ), and observe that
coefficients to all powers lower than that inside O must vanish
(there is always at least one such coefficient, that of ζ0, but there
could be more), translating into multiple initial conditions. Thus,
the severity of overdeterminacy is underestimated in the main
text, although already sufficient for our purpose. The triviality
discussed here is in regard to these relaxed interior equations, and
a more familiar notion of trivial solutions to overdetermined exact
equation systems can be recovered by confining the discussion to
Σ itself, as we have also done in this footnote.
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budget” of that equation [e.g.,OðζÞ for Eq. (15)] by C1=2s , so
no strict equalities need to be actually enforced (to precisely
balance/cancel out between quantities above the error
tolerance threshold), resulting in the overabundance of
equations all being rendered inert, left with no chance to
conflict with one another.
For an illustrative example of how the error budget

bestows flexibility, take the case A ∝ Bp with some fixed p
prescribed by physics [i.e., there is only one free variable B,
and Eqs. (15) and (16) are overdetermined], and let B ∝ ζq

be an ansatz solution of which the q is up to us to pick.
Then, if we take up the more relaxed q ¼ 1 as allowed by
Eq. (16), we would have a chance of balancing Eq. (15)
only in the fine-tuned case of p ¼ 0. However, if q ¼ n ≥ 2

as required by C1=2s , then any p ≥ 1=n is comfortably
accommodated. This is because, in the latter case, the
B=ζ term does not rise above the error toleranceOðζÞ of the
overall equation and thus does not require careful cancel-
lation from A (as a result, p does not have to be of any
particular value), which is not freely variable and thus is
defective for fulfilling this role. Note that, although we have
used cancellation across different powers of ζ for our
example, analogous considerations as well as the triviality
discussion of the last paragraph in general also apply to
cancellations between terms contributing to the same power
(i.e., A, and/or B, alone could further subdivide into a small
number of contributors), which C1=2s also excludes.

2. Conditions

Near a temporal coordinate geodesic ξ of our Gaussian
normal coordinate system xa that threads through Σ, we can
construct a principal coordinate system xǎ under which γ ǐ ǰ
is diagonalized on ξ, by first applying an Oð3Þ trans-
formation within the spatial tangent space to diagonalize γij
there (this is always possible according to the spectral
theorem since γij is nonsingular real symmetric; we do not
need xǎ to be unique), and then lay down the spatial
coordinates in an open tube surrounding ξ via the expo-
nential map. Note that we do not normalize γ ǐǰ to unity (the
coordinate basis f∂xǎg is not orthonormal), so the Jacobian
transforming between the two coordinate systems remains
well behaved along ξ, even as we approach Σ (always just a
block-diagonal matrix with a regular orthogonal matrix for
the spatial sector and unity for the temporal sector). Along ξ
(where the spatial tangent spaces according to xa and xǎ

coincide), the spatial tensors on the right-hand sides of
Eqs. (10)–(12) can be computed as their counterparts in the
xǐ coordinate system multiplied for an appropriate number
of times by the Oð3Þ spatial Jacobian, which is never
divergent nor degenerate (always full ranked); thus, it
suffices to examine the divergences under xǐ in which
the algebraic matrix operations reduce to those between the
three eigenvalues γeι ; ι ∈ f1; 2; 3g shared by γij and γ ǐǰ,

which are positive on the Lorentzian side and negative on
the Riemannian side.
Essentially, we have here a Fermi normal coordinate

construction [46,47] with the addition of a rescaling step
(on the parallelly transported spatial basis vectors) to
recover the eigenvalues, thus ensuring that the divergences
are not appropriated by the coordinates and are captured by
γ ǐǰ. Just like the Fermi coordinates, our principal coordi-
nates cover the entire open tube, but the nice properties
such as the metric γ ǐǰ being diagonal are only true on the
geodesic ξ itself (a [ξ] prefix below signifies expressions
valid only on ξ). This is fine for us, though, since we are
studying the limiting behaviors of quantities as we
approach Σ along ξ, so we only ever need to evaluate such
quantities on ξ. Therefore, in our computations, γ ǐǰ, γ

ǐǰ, and
their temporal partial derivatives (measuring changes along
ξ) to any order (including Kǐǰ in particular) are diagonal,

½ξ�∶ γ ǐ ǰ ¼ ½diagιγeι �ǐ ǰ; ½ξ�∶ γ ǐ ǰ ¼
�
diagι

1

γeι

�
ǐ ǰ
;

½ξ�∶ Kǐ ǰ ¼
�
−
1

2
diagιγeι;ť

�
ǐ ǰ
;

½ξ�∶ K ¼ −
1

2

X
ι

γeι;ť
γeι

;

½ξ�∶ K;ť ¼ −
1

2

X
ι

�
γeι;ť ť
γeι

−
�
γeι;ť
γeι

�
2
�
;

½ξ�∶ trðK · KÞ ¼ 1

4

X
ι

�
γeι;ť
γeι

�
2

;

½ξ�∶ Kǐ
m̌ ¼

�
−
1

2
diagι

γeι;ť
γeι

�
ǐ

m̌

;

½ξ�∶ Kǐ ǩK
ǩ
ǰ ¼

1

4

�
diagι

ðγeι;ťÞ2
γeι

�
ǐ ǰ
: ð17Þ

We then immediately see that the necessary and sufficient
requirement for the following terms

K2; trðK ⋅ KÞ; ðKǐ ǰ −Kγ ǐ ǰÞ;ť; Kǐ ǩK
ǩ
ǰ; KKǐ ǰ ð18Þ

inside Gǎ b̌ to individually remain bounded is the following
(c.f., Ref. [12] for route A): for C1s, temporal derivatives of
the spatial metric vanish at least as quickly as the spatial
metric itself as Σ is approached, in the sense that
γeι;ť ¼ Oðγeι Þ , γeι;ť ť ¼ Oðγeι Þ; ∀ ι.
Note that, although Kǐǰ vanishes on Σ, its trace K does

not need to, since C1s allows for γeι;ť ¼ Θðγeι Þ; i.e., it allows
the numerator and denominator in the K expression in
Eq. (17) to vanish equally quickly when approaching Σ, so
the limit of the ratio can be finite but nonvanishing.
The other terms in Gǎb̌ not appearing in Eq. (19) involve

spatial derivatives. In general, spatial derivatives of even the
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off-diagonal entries in the tensorial quantities appearing in
Eq. (17) do not necessarily vanish, since these quantities
can be nondiagonal off ξ. Nonetheless, because the
principal coordinate system is constructed via the expo-
nential map, we must have a vanishing connection,

½ξ�∶ ð3ÞΓǐ
ǰ ǩ

¼ 0; ð19Þ

and subsequently

½ξ�∶ γ ǐ ǰ;ǩ ¼ γ ǐ ľ
ð3ÞΓľ

ǰ ǩ
þ γǰ ľ

ð3ÞΓľ
ǐ ǩ

¼ 0: ð20Þ

Since

0 ¼ δǐ
ǰ
;ǩ ¼ ðγ ǐ ľγ ľ ǰÞ;ǩ ¼ γ ǐ ľ;ǩγ

ľ ǰ þ γ ǐ ľγ
ľ ǰ
;ǩ; ð21Þ

Eq. (20) further yields

½ξ�∶ γm̌ ǐγ ǐ ľγ
ľ ǰ
;ǩ ¼ δm̌ľγ

ľ ǰ
;ǩ ¼ γm̌ ǰ

;ǩ ¼ 0: ð22Þ

Furthermore, since Eqs. (20) and (22) are true everywhere
along ξ, temporal derivatives can be added to yield

½ξ�∶ γ ǐ ǰ;ǩ ť ¼ 0 ¼ γ ǐ ǰ ;ǩ ť: ð23Þ

Equipped with these tools, we are now ready to tackle the
first derivative terms in Gťǐ. Equation (19) reduces the
covariant derivative to a partial derivative, and then by
Eqs. (22) and (23), we have

½ξ�∶ Kǐ
m̌
jm̌ ¼ −

1

2
ðγm̌ ǰγ ǐ ǰ;m̌ ť þ γm̌ ǰ

;m̌γ ǐ ǰ;ťÞ ¼ 0;

½ξ�∶ Kjǐ ¼ −
1

2
ðγǰ ǩγǰ ǩ;ǐ ť þ γǰ ǩ;ǐγǰ ǩ;ťÞ ¼ 0; ð24Þ

which are automatically regular without requiring any
additional conditions.
The spatial curvatures are then the only ones left, with

the Ricci tensor given by

½ξ�∶ ð3ÞRǰ ľ ¼ ð3ÞRǐ
ǰ ǐ ľ ¼

X
ǐ

ð3ÞRǐ ǰ ǐ ľ

γe
ι¼̂ ǐ

; ð25Þ

where the correspondence relation like ι ¼̂ ǐ means that the
principal coordinate base ∂ ǐ should be along the eigenvec-
tor direction corresponding to γeι . There is also a further
contraction with the problematic γ ǐǰ to get to

½ξ�∶ ð3ÞR ¼
X
ǐ ǰ

ð3ÞRǐ ǰ ǐ ǰ

γe
ι¼̂ ǐ

γe
ι0¼̂ ǰ

; ð26Þ

and subsequently ð3ÞGǐ ǰ. Because the three γeι s generically
decline at different rates, we need the Riemann tensor

components in each term of the summations in Eqs. (25)
and (26) to separately decline sufficiently quickly. In fact,
even if all the eigenvalues share the same rate of decline,
there will still be seven regularity equations between
Eqs. (25) and (26) but only six independent components
in the three-dimensional Riemann tensor; thus, the equation
set is overdetermining and generically only admits trivial
solutions in which each variable individually “vanishes”
(sinks below the error budget). In either case, we have
explicitly

½ξ�∶ ð3ÞRǐ ǰ ǐ ľ ¼ Oðγe
ι¼̂ ǐ

Þ;
½ξ�∶ ð3ÞRǐ ǰ ǐ ǰ ¼ Oðγe

ι¼̂ ǐ
γe
ι0¼̂ ǰ

Þ; ð27Þ

where ǐ, ǰ, and ľ all take different values. Through index
symmetries, Eq. (27) accounts for all six freedoms in
the spatial Riemann tensor (explicitly, the ǐ ¼ 1, 2, or
3 possibilities for the first line and the three inequivalent
pairs ðǐ; ǰÞ ¼ ð1; 2Þ; ð1; 3Þ, or (2,3) for the second line).
These conditions can be further transcribed onto the

second spatial derivatives of γ ǐǰ. To this end, note that our
principal coordinates are just rescalings of the Fermi
coordinates, so the coordinate transformations between
them are achieved via the Jacobian, and some simple
Jacobian gymnastics allow us to import the standard
Fermi result [48] to produce (note the sign difference with
Ref. [47], stemming from the different conventions in the
definition of the Riemann tensor)

γ ǐǰ ¼ ½diagιγeι �ǐǰjξ −
1

3
Rǐľǰm̌jξxľxm̌ þOððxÞ3Þ; ð28Þ

which extends Eq. (17) off ξ (the expansion coefficients
labeled with jξ are to be evaluated on ξ). Applying the
Gauss-Codazzi equation, Eq. (28) then implies

½ξ�∶γ ǐ ǰ;p̌ q̌ ¼
2

3
Rǐðp̌ q̌Þǰ

¼ 2

3
ðð3ÞRǐðp̌ q̌Þǰ þ Kǐðp̌Kq̌Þǰ − Kǐ ǰKp̌ q̌Þ: ð29Þ

We note that there are four indices in the second derivatives
of the metric, yet only three spatial dimensions to choose
from, so at least one of the four indices repeats. On the
other hand, if any index repeats three times or more,
the four-dimensional Riemann tensor in the first line of
the right-hand side of Eq. (29) vanishes due to its index
antisymmetry properties. Applying these properties to the
rest and using the fact that the extrinsic curvature is
diagonal on ξ, we obtain that all of the components in
these second derivatives that are not automatically precisely
zero are
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½ξ�∶ γ ǐ ǰ;ǐ ǰ ¼
1

3
ðð3ÞRǐ ǰ ǐ ǰ þ Kǐ ǐKǰ ǰÞ ¼ Oðγe

ι¼̂ ǐ
γe
ι0¼̂ ǰ

Þ;

½ξ�∶ γ ǐ ǐ;ǰ ǰ ¼ −
2

3
ðð3ÞRǐ ǰ ǐ ǰ þ Kǐ ǐKǰ ǰÞ ¼ Oðγe

ι¼̂ ǐ
γe
ι0¼̂ ǰ

Þ;

½ξ�∶ γ ǐ ǰ;ǐ ľ ¼
1

3
ð3ÞRǐ ǰ ǐ ľ ¼ Oðγe

ι¼̂ ǐ
Þ;

½ξ�∶ γ ǐ ǐ;ǰ ľ ¼ −
2

3
ð3ÞRǐ ǰ ǐ ľ ¼ Oðγe

ι¼̂ ǐ
Þ; ð30Þ

where we have used Eq. (27) and C1s , and once again no two
of ǐ, ǰ, and ľ can equal each other. The conditions in
Eq. (30) can be summarized as follows: for C2s, spatial
derivatives of the spatial metric vanish at least as quickly as
the spatial metric itself as Σ is approached, in the sense of
letting p̌ be the doubly repeated index appearing in the
second spatial derivative of the spatial metric and then that
second derivative must belong to Oðγeι¼̂p̌Þ, and when there
are two doubly repeated indices (say, p̌ and q̌), the
derivative belongs to Oðγeι¼̂p̌γ

e
ι0¼̂q̌Þ. The first spatial deriv-

atives of γ ǐǰ already vanish according to Eq. (20), and these
conditions on the second derivatives enforce a constraint on
inhomogeneity in the early Universe. Importantly, C2s is to
be satisfied along every, and not just one, temporal
coordinate curve of the Gaussian normal system. Just like
β;x ¼ 0 for some function βðxÞ at one particular x ¼ x0
value would be a mere boundary condition that is not very
constraining, having it satisfied everywhere will force β to
be a constant. In our case, there is a complication that the
first derivatives are made to vanish due to the choice of the
principal coordinate system, which is schematically akin to
going into local coordinate patches ðx0; y0Þq individually
rotated to adapt to the slope of β (the x0 axis is chosen to be
parallel to this slope) at each point q ∈ β, so β;x0 jq ¼ 0

is guaranteed whatever the shape of β is (besides
being sufficiently smooth to allow derivatives). Now, the
vanishing of the second derivative β;x0x0 jq ¼ 0 carries the
weight instead. It is a nontrivial condition that ensures
the infinitesimally close neighboring local patches
ðx0; y0Þq�δq do not need to be rotated against ðx0; y0Þq
(the Jacobian is simply the identity matrix). The same
argument continues on and propagates out further away
from q if the vanishing of the second derivative is to be
satisfied everywhere, so β is forced to be a straight line
again, which can be made into a constant if a boundary
condition,

β;x̂jx̂0 ¼ 0; ð31Þ

is supplied at any single point x̂0 in some global coordinate
system ðx̂; ŷÞ.
This last step amounts to judiciously choosing the

global/finite-regional coordinate system, which is neces-
sary in our case also, since the metric is not spatially

constant under arbitrary coordinate systems even for the
FLRW spacetime. In particular, the metrics as they are
written under polar coordinates in Eq. (4) are spatially
variable (the basis vectors for this coordinate system are not
parallelly transported; thus, there are many nonvanishing
spin coefficients even in a flat spacetime) and cannot be
directly plugged into C2s that is instead stated under the
more physical principal coordinates (geodetically con-
structed, somewhat like Cartesian coordinates in flat
spacetime). With the toy example, Eq. (31) can be achieved
by simply extending the local ðx0; y0Þq for an arbitrary q into
a global coordinate system ðx̂; ŷÞ, which in our context is
mimicked by using the principal coordinates associated
with an arbitrary ξ within entire finite regions surrounding
that geodesic.
When homogeneity is coupled with an initial K > 0

(growing spatial volumes) allowed by C1s, we have the basic
ingredients underlying Wald’s theorem [49], as a concrete
realization of the more general cosmological “no-hair”
conjecture [50,51], which shows isotropy and spatial flat-
ness (local resemblance to de Sitter) can possibly be
achieved later through accelerated expansion, due to infla-
tion (with any vestiges plausibly manifesting as the low
multipole temperature anomalies of the cosmic microwave
background [52], provided those are not simply statistical
fluctuations accentuated by cosmic variance). Within the
proof of Wald’s theorem, homogeneity is required to
maintain ð3ÞR ≤ 0 but can be slightly relaxed to allow small
perturbations on top of a homogeneous background
[53–56]. Furthermore, if one is only interested in isotropy,
then it has long been known [57,58] that anisotropy drops
off rapidly with the effective spatial scale factor in a
homogeneous universe, even without inflation. In this
sense, isotropy may be seen as a secondary consequence
of C2s , provided that the universe subsequently expands.
Finally, we note that the conditions C1=2s are to be applied

in conjunction with the generic condition Cg. Namely, the
spatial metrics induced on Σ from the two sides match up,
and the extrinsic curvature of the two sides should also
suitably agree. For the latter condition, it is worth noting
that, in principle, Cg allows a surface layer of radiation or
gravitational impulsive wave [17,59–61] to reside on the
null surface Σ, permitting the extrinsic curvature to jump
and the curvature tensors to become distributional at Σ [62].
However, the specific condition C1s removes such scenarios.
In other words, the discontinuities and mild “zero-width
blowup” [63] of a Dirac delta–type distribution become
collateral casualties of our attempt to avoid more severe
divergences.

B. Klein-Gordon equation

1. Conditions

We have regularized the left-hand side of the Einstein
equations in the last section and now turn to the right-hand
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side, the matter stress energy. We also need to make sure
that the equation of motion for the matter itself is well
behaved. As a tractable representative case (particularly
relevant for those single-field inflation scenarios without
other fields before reheating), we concentrate on the scalar
field, which satisfies the Klein-Gordon equation

gǎb̌φ;ǎb̌ − gǎb̌Γč
ǎb̌
φ;č ¼ V 0ðφÞ; ð32Þ

where the prime denotes a derivative against φ. On ξ, the
four-dimensional metric is block diagonal, so the equation
becomes

½ξ�∶ − φ;ť ť þ γ ǐ ǰφ;ǐ ǰ þ Γč
ť ťφ;č − γ ǐ ǰΓč

ǐ ǰ
φ;č ¼ V 0ðφÞ: ð33Þ

Since ξ is a geodesic always at the origin of the xǎ

coordinate system, and ť in this coordinate system is its
affine parameter, we have by the geodesic equation that
Γč
ťť ¼ 0. Furthermore, from the same procedure that yielded

Eq. (28), we see that, just as within the Fermi coordinates,
the first spatial derivatives of gǎb̌ vanishes on ξ (but
different from the Fermi case, the temporal derivatives
do not vanish, since our γ ǐǰ is not constant along ξ), so

½ξ�∶ Γť
ǐ ǰ
¼ 1

2
γ ǐ ǰ;ť ¼ −Kǐ ǰ; Γǩ

ǐ ǰ
¼ 0: ð34Þ

Therefore, the Klein-Gordon equation reduces to

½ξ�∶ V 0ðφÞ ¼ −φ;ť ť þ γ ǐ ǰφ;ǐ ǰ −
1

2
γ ǐ ǰγ ǐ ǰ;ťφ;ť

¼ −φ;ť ť þ
X
ǐ

φ;ǐ ǐ

γe
ι¼̂ ǐ

þ Kφ;ť; ð35Þ

where the condition C1s ensures that the coefficient to the φ;ť

term is regular, so the temporal derivatives of φ do not need
to vanish. Only the spatial derivative needs to decline
sufficiently quickly to ensure that the equation of motion
admits a well-defined limit on Σ.
The other condition for φ is that the stress-energy tensor

Tǎb̌ that equates to Gǎb̌ in Eqs. (10)–(12) should not
diverge. Explicitly (including the contribution from a
cosmological constant Λ),

½ξ�∶ Tť ť ¼
1

2
φ2
;ť þ

1

2
γ ǐ ǰφ;ǐφ;ǰ þ VðφÞ þ Λ

8π
;

½ξ�∶ Tǐ ǰ ¼ γ ǐ ǰ

�
1

2
φ2
;ť −

1

2
γǩ ľφ;ǩφ;ľ − VðφÞ − Λ

8π

�
þ φ;ǐφ;ǰ;

½ξ�∶ Tť ǐ ¼ φ;ťφ;ǐ; ð36Þ

and the only dangerous term is

½ξ�∶ γǩ ľφ;ǩφ;ľ ¼
X
ǩ

ðφ;ǩÞ2
γe
ι¼̂ ǩ

: ð37Þ

Combining with our earlier discussion on the Klein-Gordon
equation and noting that the γeι s can decline at different
rates [or that there are still two regularity equations arising
from Eqs. (35) and (37) even if they do share the same
rate]—but there is only one variable φ—we obtain the
following conditions: for C3s, the first and second spatial
derivatives of φ must vanish sufficiently quickly as com-
pared to the spatial metric, in the sense that φ;ǐ ¼
Oððγe

ι¼̂ǐ
Þ1=2Þ and φ;ǐǐ ¼ Oðγe

ι¼̂ǐ
Þ. These spatial homogeneity

conditions ensure that Tǐǰ and Tťǰ vanish on Σ, but none of
the terms in Tťť needs to. Unfortunately then, C3s alone is not
sufficient to ensure potential energy dominance to launch
inflation if φ is the inflaton.

2. Inflationary universe

Nevertheless, additional supplementary junction condi-
tions Csup can be obtained through physical considerations.
Such conditions are not needed by the mathematical
regularity of the various equations of motion and so are
not strictly the subject of the present paper. Nevertheless,
they owe their appearance to Cs and are thus interesting to
investigate.
It is to be noted that the energy density Tťť as given by

Eq. (36) is a special (scalar field) case of the matter density
ρ that appears in FLRW derivations (the FLRW comoving
coordinates are Gaussian normal, so ξ is automatically the
worldline of a comoving observer) and will scale as
ρ ∝ a−3ð1þwÞ, when the equation of state is P ¼ wρ. So,
if ρ is finite at a ¼ 0, it will vanish at later times unless
w ≤ −1. Looking at the same issue in reverse, if instead
ρ ≠ 0 when a > 0 with a w > −1, the FLRW will have a
diverging Hubble’s parameter H ¼ a;t=a on Σ, defying C1s ,
which requires it to be regular. We can see this quite readily
from the Friedmann equation

3H2 ¼ 8πρ −
ð3ÞR
2

þ Λ: ð38Þ

Since we have required ð3ÞR to remain regular on Σ (for
FLRW, this requires flatness κ ¼ 0; thus, ð3ÞRjΣ ¼ 0) and Λ
is just a constant, there is nothing to cancel with the
divergence from ρ. Furthermore, adding anisotropy would
unlikely be helpful, because, while it adds a shear scalar
term [49]

σ2 ≡ 1

2

�
Kǐǰ −

1

3
Kγ ǐǰ

��
Kǩľ −

1

3
Kγǩľ

�
γ ǐǩγǰľ

¼ 1

2
trðK · KÞ − 1

6
K2 ð39Þ
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into the right-hand side of Eq. (38), this term is regulated by
C1s to be nondivergent.
In summary, C1s and the fact that our Universe has a

nonvanishing matter energy density today, together, force a
scalar inflaton field φ to be the only matter near Σ (cf.,
Ref. [33]), which must also behave like a perfect cosmo-
logical constant with w ¼ −1 (we ignore the w < −1 case
since there are no accepted matter models with that kind of
equation of state). This makes physical sense, since tradi-
tional particles of constant finite spatial metric sizes (the
standard assumption is that the sizes of particles like
electrons are determined by local physics and will not
scale with the cosmic size a) should not already exist all the
way back at Σ, or else they will each engulf the entire
spatial slice and overlap with one another thus at the very
least significantly deviate from our normal intuition of how
they behave. A potential energy–dominated inflaton field
or cosmological constant does not need to possess any
finite spatial–size features, on the other hand, and can be
accommodated quite easily. They will also not dilute or
concentrate and so will not produce diverging stress-energy
tensors when a ¼ 0. We therefore impose the following
condition: for Csup, φ;ǎ → 0 sufficiently quickly, so TťťjΣ
as given by Eq. (36) is contributed only by the potential V
and the cosmological constant. This condition translates
directly into the Cartesian coordinates for FLRW (recall
κ ¼ 0), which coincide with the principal coordinates
associated with the timelike geodesic at the arbitrarily
chosen spatial origin. As a consequence, the Lorentzian
universe will be born directly into an inflationary period
with [solving Eq. (38) for the FLRW case]

aðtÞ ≈ Beλt; λ ¼ H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πVjΣ þ Λ

3

r
; ð40Þ

where B is a constant, and the approximation is valid
regardless of the shape of the potential V because Csup sets
inflation off with an instantaneous no-rolling configuration
φ;tjΣ ¼ 0. However, since [cf. Eq. (35)]

φ;tt ¼ −3Hφ;t − V 0 ð41Þ

does not need to vanish initially, the φ field will eventually
begin to roll. A flattish V could significantly prolong
inflation, though, depending on the location of the flat
region in relation to φjΣ, either by reducing initial φ;ttjΣ ¼
−V 0jΣ to delay rolling [if V 0jΣ ¼ 0 precisely, the
Klein-Gordon equation (41) is satisfied at all times without
φ ever changing] or/and to allow the φ field to settle into a
standard slow-roll regime of φ;t ≈ −V 0=ð3HÞ at a later time.
Regardless, the constraints on regularity within route B,
through Csup (as a consequence of C1s) specifically, compel
inflation to start without delay (in reverse, such an infla-
tionary homogeneous early Universe is in compliance with
all the conditions in this paper). In other words, there is not

a preinflationary radiation- or kinetic-dominated deceler-
ation phase, the signatures of which have been searched
for but indeed not found in observational data [64].
Furthermore, the conditions C2s , C3s , and Csup are beneficial
to the inflation paradigm in another sense: that they could
conceivably take us to the required initial homogeneity
[58,65,66] (a more precise quantitative and nonperturbative
statement of this requirement would facilitate further
analysis).

IV. CONCLUSION

In this paper, we have examined what classical junction
conditions would be required for a transition of our
Universe into a purely timelike Riemannian regime through
the big bang. So far, the restrictions they impose do not
appear to raise immediate contradictions that would spoil
the viability of the signature change scenario in terms of
describing our physical Universe. Instead, useful con-
straints seem to arise. For example, the conditions C1s
and C2s [particularly in the form of Eq. (27)] enforce that as
we approach Σ along a timelike geodesic ξ the geodetically
developed spatial slices in the principal coordinate system
associated with ξ become intrinsically and extrinsically flat.
Because the direction of ξ can be chosen freely (ξ is any
temporal coordinate curve of any Gaussian normal system,
which can be built out of arbitrary timelike congruences),
this means that, via the Gauss-Codazzi equation, the
projection of the four-dimensional covariant Riemann
curvature tensor onto any spatial tangent plane at a point
near Σ must be small (when written in sensible coordinates
of which the Jacobian against the principal coordinates
associated with the timelike geodesic orthogonal to that
plane does not diverge). Although the spatial projection
operator is rank deficient, its kernel is only one dimensional
(specifically, the tangential direction to ξ; the projection
will yield zero for nonvanishing vectors only if the vector is
precisely along this direction), so if the projection is
vanishingly small for any arbitrary ξ, the full four-
dimensional covariant Riemann tensor should be nearly
zero (because any large component hidden inside the kernel
of one projection operator would have been exposed by a
different operator). In this sense, a strong version of the low
gravitational entropy condition for the early Universe,
mentioned in item 3 of Sec. I B, is realized. In particular,
the inflationary FLRW discussed in Sec. III B 2, which
is compatible with C1=2s , not only has a vanishing
four-dimensional Weyl curvature as FLRW metrics always
do due to their symmetries, but the entire four-dimensional
Riemann curvature vanishes when a → 0. In contrast, this
is not the case with dust- or radiation-dominated FLRWs
that do not satisfy C1s.
Our conditions C1=2=3s and Csup are, however, not yet as

strong as they can be. While they ensure the existence of
one-sided limits such as ∓GabjΣ, so that the equations of
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motion for metric and matter can be extended onto the big
bang Σ from either side, they do not require that the ∓
limits match up, which would force the two signature
regimes to connect up in a smoother manner. This omission
is intentional (besides trying to be conservative, given our
ignorance of whether the matching is absolutely necessary)
because then the one-sided conditions enumerated in this
paper would admit physical interpretations independent of
signature change. Namely, they need to be satisfied if the
equations of motion are to be extended onto the big bang
itself. Without including the big bang in the domain of
validity for these equations, the Lorentzian universe will
become an open set, without a suitable boundary on which
to impose boundary (initial) conditions. In other words,
regardless of one’s view on what happens beyond the big
bang, the main result of this paper can be read as necessary
conditions for our Lorentzian universe to admit a Cauchy
description. The utility of this paper thus does not fully
diminish even if the signature change scenario is not
physically realized in nature.
There are many important issues that we have not been

able to tackle. In particular, unlike in Refs. [5,6], in which
the genuinely classical transition into a spacelike
Riemannian region occurs prior to the Planck time, it
seems more difficult for us to circumvent the issue of
quantum gravity because the scale factor does need to
vanish in our case. The theory of quantum gravity is as yet
unavailable; thus, our discussion merely aims to shed some
light on the possible behavior of the classical saddle-point
solutions that hopefully would dominate the full quantum
path integral. Having said that, it must be noted, though,
that whether such a semiclassical approach even makes
sense in the gravitational context is presently subject to
debate [67,68]. Furthermore, one could also note that the
criteria for the onset of quantum gravity, based on dimen-
sional analysis, are not Lorentz invariant unless one
demands macroscopically separated events connected by
null rays also to be treated quantum gravitationally [69], a
prospect that has not been shown to be necessary. Taken to
the extreme, this appears to indicate that the distances
computed with the Lorentzian metric may not be the sole
determining factor regarding the onset of quantum gravity,
and one should perhaps be more circumspect when stating
that quantum gravity must be evoked near the transition

surface, which in our case could just be another macro-
scopic null surface. In other words, the trans-Plankian
problem [70] of inflation might not necessarily arise.
Finally, even staying at the purely classical level, the

junction conditions examined in this paper are minimal, in
that, while they ensure initial conditions can be imposed on
the big bang, they do not tell us whether the evolution off of
such compliant (with the junction conditions) initial data
sets can be a well-posed initial value problem. In other
words, they do not guarantee that physically interesting
solutions (not plagued by wild exponentially growing
perturbations, which inevitably lead to an extreme preva-
lence of singularities that appear to arise spontaneously)
exist (the inflationary FLRW does satisfy the junction
conditions, but its stability may need further scrutiny within
our context). For different purposes, the required level of
well-posed-ness is different. When trying to simulate the
Universe on a computer, initial conditions even off of
the constraint surface (i.e., do not strictly satisfy the
Hamiltonian and momentum constraints) are relevant, since
numerical errors are inevitable, not least because computers
cannot store numbers to infinite digits (i.e., we always have
truncation error). There is, of course, the possibility that our
physical Universe is not amenable to being studied this
way, and the well-posed-ness condition can presumably be
relaxed to considerations on only a neighborhood of the
constraint-satisfying initial conditions space, surrounding
that of our actual Universe. Regardless, answering this
well-posed-ness question demands substantial technical
dexterity (as attested by the already strenuous work that
went into proving the well-posed-ness of specific formu-
lations of Einstein’s equations off more familiar spacelike
Cauchy surfaces) and will have to be addressed in future
works.
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