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In the attempts to apply Finsler geometry to construct an extension of general relativity, the question
about a suitable generalization of the Einstein equations is still under debate. Since Finsler geometry is
based on a scalar function on the tangent bundle, the field equation which determines this function should
also be a scalar equation. In the literature two such equations have been suggested: the one by Rutz and the
one by one of the authors. Here we employ the method of canonical variational completion to show that
Rutz equation can not be obtained from a variation of an action and that its variational completion yields the
latter field equations. Moreover, to improve the mathematical rigor in the derivation of the Finsler gravity
field equation, we formulate the Finsler gravity action on the positive projective tangent bundle. This has
the advantage of allowing us to apply the classical variational principle, by choosing the domains of
integration to be compact and independent of the dynamical variable. In particular in the pseudo-
Riemannian case, the vacuum field equation becomes equivalent to the vanishing of the Ricci tensor.
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I. INTRODUCTION

A large source of information about the physical proper-
ties of spacetime is obtained by observing the motion of
point particles. The observed trajectories are identified
with the geodesics of the geometry of spacetime and thus,
by matching the observed curves with the predicted geo-
desics, the viability of a certain geometry can be tested.
Conversely, when a spacetime geometry is determined by
dynamical physical field equations, its geodesics can be
derived and observable effects can be predicted.
General relativity is based on pseudo-Riemannian geom-

etry, i.e., a spacetime manifold equipped with a metric
tensor of Lorentzian signature. The metric is determined by
the Einstein equations, its geodesics predict the motion of
point particles and geodesic deviation is sourced by the
curvature of its Levi-Civita connection. On a huge variety
of physical scales the predictions made on the basis of
general relativity are outstandingly correct and in agree-
ment with observation, however there are the well-known
shortcomings such as the rotational curves of galaxies and
the accelerated expansion of the universe, which led to the
introduction of the notions of dark matter and dark energy
[1–4]. The most common approach to understand and

explain dark matter and dark energy is to postulate the
existence of additional particles to the ones in the standard
model of particle physics, and the alternative is to look for
extensions and modifications in the description of gravity
[5]. In this article we follow the latter route and consider
Finsler geometry as extended geometry of spacetime,
which has been proposed as one possibility to shed light
onto the dark universe phenomenology [6–10].
Finsler spacetime geometry is the geometry of a mani-

fold equipped with a so called Finsler function, which is a
1-homogeneous function on the tangent bundle of space-
time and defines a length measure for curves. It thus is the
most general geometry with a geometric clock in the sense
of the clock postulate, namely that the time an observer
measures between two events is given by the length of its
worldline.
Finsler geometry, respectively the geodesics of a

Finslerian geometry, describe the motion of point particles
subject to a dispersion relation, which is nonquadratic in
the particle’s four momenta. Such modified dispersion
relations (MDRs) appear most naturally in effective field
theories in media. Examples are premetric electrodynamics
[11] describing among other systems the electromagnetic
field in crystals [12] or wave equations in solids [13] which
can be used to model earthquake waves [14]. Moreover
MDRs are used as an effective description of quantum
gravity effects [15–18], making spacetime effectively a
mediumwhose origin lies in the four momentum dependent
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scattering of elementary particles with the graviton. More
fundamentally MDRs emerge from field theories which
break local Lorentz invariance [19], as studied in the
standard model extension [20], very special and very
general relativity [21–23] or again in premetric resp. area
metric electrodynamics [24,25].
The appearance of Finsler geometry in physics, see [26]

for a review, raised two questions: the one about a suitable
general mathematical definition of Finsler spacetimes,
which covers the interesting instances appearing in the
literature and the one whether it is possible to find
dynamical equations which determine the Finslerian space-
time geometry in the same way as the Einstein equations
determine the pseudo-Riemannian geometry of spacetime.
Regarding the first issue there are several proposals in

the literature, see e.g., [27–31], which extend Beem’s
original suggestion [32]. However none of them captures
the whole variety of Finsler spacetime geometries under
investigation. As part of this work we suggest a definition
of Finsler spacetimes which distills the necessary features
from the existing definitions and includes large classes of
the Finsler spacetime geometries discussed in the literature.
Regarding the dynamical equations determining a

Finslerian spacetime geometry, also numerous attempts
have been made [9,27,33–40]. The difference in the
approaches lies in the choice of the fundamental variable:
the Finsler function or the Finsler metric tensor (accord-
ingly in the type of the dynamical equation, scalar or
tensorial) and in the way how the equation is obtained, by
variation from an action, by formal resemblance to the
Einstein equations or from further physical principles.
In this article we argue for physical dynamics for Finsler

spacetime geometries which have the following properties:
(i) the fundamental variable is the geometry defining

Finsler function, i.e., the field equation we are
looking for is a homogeneous scalar equation on
the tangent bundle, which determines a homo-
geneous function;

(ii) the homogeneity of the Finsler function, which can
be understood as equivariance with respect to certain
group actions, allows us to naturally treat Finsler
functions as sections of a certain fiber space sitting
over a compact manifold: the positive projective
tangent bundle. This way, we can apply the classi-
cal apparatus of the calculus of variations (see,
e.g., [41]);

(iii) the field equation is obtained by variational means,
starting from a well defined action integral;

(iv) the geometrical structures used are as simple as
possible and are constructed from the Finsler func-
tion alone;

(v) in the case when the Finslerian spacetime geometry
is pseudo-Riemannian, the dynamics become equiv-
alent to the dynamics determined by the Einstein
equations

Gij ¼
8πG
c4

Tij; ð1Þ

where Gij ¼ rij − 1
2
rgij are the components of the

Einstein tensor built from the components of the
Ricci tensor rij and the Ricci scalar r of the Levi-
Civita connection of the Lorentzian spacetime met-
ric with components gij.

1

We prove that the most promising conjectured Finsler
spacetime dynamics, the one by Rutz [37] and the one by
Pfeifer and Wohlfarth [38] (which was independently
also found by Chen and Shen in the context of positive
definite Finsler geometry [42]), are actually related in the
way that the latter is the variational completion of the
former. A similar property can be found in the emergence of
the Einstein equations. An early version of the Einstein
equations was simply stating that rij ∼ Tij. It has been
shown that the left-hand side of this equation cannot be
obtained by variational calculus, not even in the vacuum case
Tij ¼ 0, and its variational completion is given by the
Einstein tensor [43]. Hence by the demand of a variational
equation for the Finsler function as fundamental variable of a
Finslerian spacetime geometry, the simplest self consistent
action based field equations are the ones which were derived
in [38].
We establish this result in the following way. The

variational completion algorithm is based on the notion
of Vainberg-Tonti Lagrangian associated to a given system
of partial differential equations. This Lagrangian is deter-
mined solely by the PDE system and in the case when the
given PDE system is variational, it is the Lagrangian that
admits this PDE system as its Euler-Lagrange equations.
We find that the Vainberg-Tonti Lagrangian (regarded
as a differential form) corresponding to Rutz’s equation
is the product between the (canonical, 0-homogeneous)
Finslerian Ricci scalar and the canonical volume form built
from the Finsler metric on the projective tangent bundle.
Based on this Lagrangian we construct the action integral
for the Finsler function on compact subsets of the positive
projective tangent bundle, in order to correctly handle all
technical difficulties which appear due to the homogeneity
properties of the geometric objects involved. Variation of
the obtained action with respect to the Finsler function, then
yields the desired field equations. In the end it turns out that
they are identical to the ones found in [38], where the action
was formulated on the unit tangent bundle defined by the
Finsler function. We choose the positive projective tangent
bundle as manifold on which the action is defined here,
since, first, its fibers are compact (while the Finsler
spacetime unit tangent bundle does not have this property),

1In order to distinguish Riemannian curvature-related geo-
metric objects from Finslerian ones (as some of them have
different definitions), we denote the curvature tensor in a pseudo-
Riemannian space by r (small letter) and the Finslerian curvature-
related quantities by capital letters.
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and, second, it avoids an intertwining between the defi-
nition of the integration domain and the fundamental
dynamical variable, as it is present in the unit tangent
bundle approach. Thus we add the missing puzzle pieces
in mathematical rigor to action based dynamics for
Finsler gravity and confirm the closest Finsler generaliza-
tion of the Einstein–Hilbert action to be defined by the
0-homogenized canonical Finsler curvature scalar.
The article is structured as follows. We begin by giving

the basic definition of Finsler spacetimes and their geom-
etry in Sec. II. In Sec. III we review the Finsler gravity field
equation conjectured by Rutz and the one developed by
Pfeifer and Wohlfarth. Afterwards in Sec. IV we introduce
the positive projective tangent bundle as the stage where we
formulate the Finsler gravity action. The main result is then
presented in Sec. V where we show that the variational
completion of Rutz equation is given by the one developed
Pfeifer and Wohlfarth. We confirm the field equation by
variational calculus in Sec. VI, before we show its con-
sistency with the Einstein equations in the case that the
Finsler spacetime geometry is a pseudo-Riemannian geom-
etry in Sec. VII. Finally Sec. VIII is devoted to conclusions.
The main part of the article is supplemented by several
Appendixes. In Appendix A we prove the convexity of the
set of timelike vectors on Finsler spacetimes. Two particular
classes of Finsler spacetimes are discussed in Appendix B.
Two lengthy integrals are evaluated in Appendix C. The
proof of Lemma 3 is deferred to Appendix D.

II. FINSLER SPACETIMES

We begin by stating the basic notations and definitions of
Finsler geometry we use throughout this article. In Sec. II A
we provide the definition of Finsler spacetimes we employ
in this article. We review their geometry in Sec. II B.

A. The definition

Let M be a connected, oriented, C∞-smooth manifold of
dimension 4 and (TM; πTM;M), its tangent bundle. Let
fðUα;φαÞg be an oriented atlas on M. We denote by
ðxiÞi¼0;3 the coordinates of a point x ∈ M in a local chart
(Uα, φα); denoting, for any vector _x ∈ TxM, by (_xi) the
coordinates in the local natural basis f∂i ¼ ∂=∂xig of TxM,
we obtain, for a point ðx; _xÞ ∈ π−1TMðUαÞ ⊂ TM, the coor-
dinates ðxi; _xiÞi¼0;3; then, fðπ−1TMðUαÞ; dφαÞg is an oriented
atlas on TM. We will denote by ;i and ·i partial differ-
entiation with respect with xi and _xi respectively.
By F ðTMÞ, we will mean the set of C∞-smooth

functions on TM. For any fibered manifold (π∶ Y → X),
we will denote by ΓðYÞ the module of sections of Y and by
ΩðYÞ, the set of differential forms on Y.
A conic subbundle of TM is, [30], a nonempty open

submanifold Q ⊂ TMnf0g, with the following properties:
(i) πTMðQÞ ¼ M;

(ii) conic property: if ðx; _xÞ ∈ Q, then, for any λ > 0∶
ðx; λ_xÞ ∈ Q.

The first condition above ensures that (Q; πTMjQ;M) has a
fibered manifold structure.
We formulate and employ a definition of Finsler space-

times which is distilled from previous generalizations
[28–30] of Beem’s original definition [32], to include a
most complete variety of indefinite Finsler length measures
discussed in the literature.
Definition 1: By a Finsler spacetime, we understand a

pair ðM;LÞ, where L∶ TM → R is a continuous function,
called the Finsler-Lagrange function, which satisfies:

(i) L is positively homogeneous of degree two with
respect to y∶ Lðx; λ_xÞ ¼ λ2Lðx; _xÞ;

(ii) L is smooth and the vertical Hessian of L (called
L-metric gL)

gLij ¼
1

2

∂2L
∂ _xi∂ _xj ¼

1

2
L·i·j ð2Þ

is nondegenerate on a conic subbundle A of TM
such that TMnA is of measure zero;

(iii) there exists a connected component T of the
preimage L−1ðð0;∞ÞÞ ⊂ TM, such that on T the
L-metric gL exists, is smooth and has Lorentzian
signature ðþ;−;−;−Þ2

(iv) the Euler-Lagrange equations

d
dτ

_∂iL − ∂iL ¼ 0: ð3Þ

have a unique local solution for every initial con-
dition ðx; _xÞ ∈ T ∪ N , where N is the kernel of L.
At points of N where the L-metric degenerates the
solution must be constructed by continuous exten-
sion. This means that the geodesic equation coef-
ficients admit a C1 extension at those points.

The difficulty in the definition of Finsler spacetimes
emerges from the existence of four conic subbundles of
TMnf0g which characterize the properties of the indefinite
Finsler geometry:

(i) A: the subbundle where L is smooth and gL is
nondegenerate, with fiber Ax ¼ A ∩ TxM, called
the set of admissible vectors,

(ii) N : the subbundle where L is zero, with fi-
ber N x ¼ N ∩ TxM,

(iii) A0 ¼ AnN : the subbundle where L can be used for
normalization, with fiber A0x ¼ A0 ∩ TxM,

(iv) T : a maximally connected conic subbundle where
L > 0, the L-metric exists and has Lorentzian
signature ðþ;−;−;−Þ, with fiber T x ¼ T ∩ TxM.

2It is possible to equivalently formulate this property with
opposite sign of L and metric gL of signature ð−;þ;þ;þÞ. We
fixed the signature and sign of L here to simplify the discussion.
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The most important part of the definition is the existence of
the subbundle T which ensures the existence of a convex
cone T x in each tangent space TxM. A detailed proof of the
convexity of T x can be found in Appendix A. The set T x
can be interpreted as set of future pointing timelike
directions, which are allowed as tangent vectors to the
trajectories of physical observers; see [38 Sec. V] for
illustrative examples.
The relation of the subbundles A;N ;A0 and T is

basically what distinguishes the earlier definitions of
Finsler spacetimes [28–30] and our new one. Here we
obviously have that T ⊂ A0 and A0 ⊂ A, but require
nothing else. Thus, in particular L is smooth and gL is
nondegenerate on all of T , which ensures the existence of
all geometric objects, introduced in the next section, on T .
We do not demand any relation betweenN andA, hence L
may be not differentiable both along directions where
Lðx; _xÞ ≠ 0 and where Lðx; _xÞ ¼ 0.
Our definition includes large classes of Finsler space-

times according to the older definitions.3 It allows for
example Finsler spacetime geometries of

(i) Randers type F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgab _xa _xbj

p
þ Ac _xc,

(ii) Bogoslovsky/Kropina type F ¼ ðjgab _xa _xbjÞ
1−q
2 ×

ðAcðxÞ_xcÞq,
(iii) polynomial mth root type F ¼ jGa1���amðxÞ_xa1…

_xam j1m.
Surely, the tensor fields g, A and G cannot be arbitrary to
obtain a viable Finsler spacetime. In Appendix B we briefly
discuss conditions they have to satisfy so that the resulting
L fits into our definition. From the viewpoint of physics the
Randers class describes the motion of a charged particle in
an electromagnetic potential, the Bogoslovsky class is
considered under the term very special or very general
relativity [21–23,46] and the polynomial class, for m ¼ 4,
describes the propagation of light in premetric electrody-
namics [11,24,47,48]. An extensive discussion on exam-
ples of our definition of Finsler spacetimes will be the topic
of a forthcoming paper, and is not the main subject of this
work, which deals with dynamical equations for Finsler
spacetime geometries.
The Finsler function F, usually employed in standard

textbooks about Finsler geometry [36,49], is defined as
F ¼ ffiffiffiffiffiffijLjp

and the length measure for curves γ∶ ½a; b� ↦
M on M is given by

l½γ� ¼
Z

b

a
Fðγ; _γÞdτ: ð4Þ

B. The geometry

The geometry of Finsler spacetimes is constructed from
objects obtained from derivatives acting on L. All details on
geometry based on nonlinear connections and of Finsler
spacetimes can be found in the books [36,50,51]. Here we
recall the notions we need throughout this article. On the
basis of our definition of Finsler spacetimes all objects are
defined on the bundle A and not on all of TM.
In any local chart of A the first derivative of L with

respect to _x defines the momenta, or lower index velocities,

pðx;_xÞ ¼ _xidxi; _xi ¼
1

2
L·i; ð5Þ

the second derivatives of L define the L-metric and its
inverse

gLðx;_xÞ ¼ gLijðx; _xÞdxi ⊗ dxj; gLij ¼
1

2
L·i·j; ð6Þ

and the third derivatives, the so called Cartan tensor

Cðx;_xÞ ¼ Cijkðx; _xÞdxi ⊗ dxj ⊗ dxk;

Cijk ¼
1

2
gLij·k ¼

1

4
L·i·j·k: ð7Þ

By the homogeneity of L the following equalities hold in
every local coordinate chart on A

Lðx; _xÞ ¼ gLijðx; _xÞ_xi _xj; L·iðx:_xÞ ¼ 2_xi ¼ 2gLijðx; _xÞ_xj;
_xi·j ¼ gLijðx; _xÞ; _xiCijkðx; _xÞ ¼ 0: ð8Þ

The fundamental ingredient of the geometry of a Finsler
spacetime is the geodesic spray, from which one obtains the
canonical nonlinear connection, defining parallel transport.
The geodesic equation of (4) in arclength parametrization
can be written as

̈γi þ 2Giðγ; _γÞ ¼ 0; ð9Þ
where the geodesic spray coefficients are given by

2Gi ¼ 1

2
gLijð_xkL;k·j − L;jÞ: ð10Þ

They define the coefficients Gi
j of the canonical Cartan

nonlinear connection, which will be understood as defining
a splitting of the tangent bundle (TA; πA;A) of A into a
vertical subbundle VA ¼ kerðdπjAÞ and a horizontal sub-
bundle HA such that TA ¼ HA ⊕ VA. The local adapted
basis will be denoted by ðδi; _∂iÞ, where δi ¼ ∂i − Gj

i
_∂j and

_∂i ¼ ∂ _xi . The connection coefficients are defined as

3The ones considered in [44,45] do not fit in our definition.
We do not consider these Finsler spacetimes since for them
the curvature tensor, which defines the dynamics of Finsler
spacetimes, is not necessarily defined for all physical observer
directions, which in our definition is given by the conic
subbundle T . The definition could be relaxed so as to include
the possibility of having an observer direction where curvature is
not defined, but in this case, a thorough analysis of whether the
evolution of spacetime is causal, as seen by the respective
observer, is needed. This is the subject for future work.
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Gi
j ¼ Gi

·j: ð11Þ

Besides the fundamental nonlinear connection it is possible
to define several linear connections on Finsler spacetimes.
We do not regard these linear connections as fundamental
but rather as tools to define tensorial quantities. For the
purposes of this article we will use the so called Chern-
Rund linear connection D on TM restricted to A. It is
locally defined by

Dδkδj ¼ Γi
jkδi; Dδk

_∂j ¼ Γi
jk
_∂i; D _∂kδj ¼ D _∂k

_∂j ¼ 0;

ð12Þ

where Γi
jk ≔ 1

2
gLihðδkgLhj þ δjgLhk − δhgLjkÞ. We denote by

ji D-covariant differentiation with respect to δi. The
difference between the derivative of the nonlinear con-
nection coefficients Gi

jk ¼ Gi
j·k and the Chern-Rund

connection coefficients Γi
jk defines the Landsberg tensor

P ¼ Pi
jkδi ⊗ dxj ⊗ dxk, with

Pi
jk ¼ Gi

jk − Γi
jk; _xjPi

jkðx; _xÞ ¼ 0: ð13Þ

The geometric objects introduced so far satisfy some
important identities regarding their differentiation with
respect to the Chern Rund connection and the dynamical
covariant derivative ∇∶ ΓðTAÞ → ΓðTAÞ, which is atta-
ched to the nonlinear connection [36]:

δiL ¼ Lji ¼ 0; ∇L ¼ 0 ð14Þ

_xijj ¼ 0; ∇_xi ¼ 0 ð15Þ

gLijjk ¼ 0; ∇gLij ¼ 0 ð16Þ

∇Ci
jk ¼ Pi

jk: ð17Þ

The derivative operators are related by the identity
∇ ¼ _xiDδi .
To understand the motivation of the Finsler gravity

equation suggested by Rutz it is necessary to recall the
geodesic deviation equation. Let γ be a Finsler geodesic and
γ̂ ¼ ðγ; _γÞ be its lift to the tangent bundle. Tangent vectors
of γ̂ are horizontal, i.e., _̂γ ¼ _γiδi. Moreover let V be a devia-
tion vector field on spacetime with canonical horizontal lift
V̂ ¼ Viδi. Then the geodesic deviation equation is

ð∇∇V̂Þjðγ;_γÞ ¼ Rð _̂γ; V̂Þ: ð18Þ

The geodesic derivation operator R ¼ Ri
jdxj ⊗ δi is

derived from the curvature of the nonlinear connection as

Ri
j ¼ Ri

jk _xk; Ri
jk
_∂i ¼ ½δj; δk� ¼ ðδkGi

j − δjGi
kÞ _∂i:

ð19Þ

The nonhomogenized Finsler Ricci scalar R is given by its
trace

R ¼ Ri
i ¼ Ri

ik _xk: ð20Þ

It is important to observe that the curvature tensors
appearing here are defined solely in terms of the canonical
Cartan nonlinear connection. The Finsler linear connec-
tions, which one may define, are not entering here.
In case the Finsler-Lagrange function takes the form

L ¼ gijðxÞ_xi _xj, where gijðxÞ are the components of a
Lorentzian metric, the geometry of a Finsler spacetime
ðM;LÞ becomes essentially the geometry of the pseudo
Riemannian spacetime manifold ðM; gÞ. The L-metric
becomes the Lorentzian metric, the Cartan tensor vanishes,
the nonlinear connection coefficients and the nonlinear
curvature tensor become the Christoffel symbols and the
Riemann curvature tensor of the Levi-Civita connection of
g, up to a contraction with a velocity _x. Observe that the
Finsler Ricci scalar becomes Rðx; _xÞ ¼ −rjkðxÞ_xj _xk and is
not equal to the Riemannian Ricci scalar r ¼ rijgij in
this case.
When we construct an action for Finsler gravity in

Sec. VI we will work on the positive projective tangent
bundle with 0-homogeneous objects. On A0 we can
introduce the 0-homogenized Ricci scalar4

R0 ¼
1

L
R; ð21Þ

which will be the key ingredient to the Lagrangian density
defining the gravity action. Additionally we need a canoni-
cal invariant 0-homogeneous volume form on A0, which is
given by

Vol0 ¼
1

L2
j detðgLÞjVol ¼ 1

L2
j detðgLÞjdx0 ∧ …

∧ dx3 ∧ d_x0 ∧ … ∧ d_x3; ð22Þ

where we use the abbreviation Vol ¼ dx0 ∧ … ∧ dx3 ∧
d_x0 ∧ … ∧ d_x3 for the local Euclidean volume form. This
volume form is indeed 0-homogeneous with respect to _x,
which can be seen from the fact that

LCVol0 ¼ 0; ð23Þ

where the Liouville vector field C ¼ _xi _∂i is the generator
of the homotheties ðx; _xÞ ↦ ðx; λ_xÞ. During the derivation

4R0 is commonly denoted by Ric in the literature. We choose
the subscript 0 here to indicate it is an object on the set A0.
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of the Finsler gravity field equation the following
divergence formulas for horizontal and vertical vector
fields, X ¼ Xiδi and Y ¼ Yi _∂i, on A0, turn out to be very
useful:

divðXÞVol0 ¼ LXðVol0Þ ⇔ divðXÞ ¼ ðXiji − PiXiÞ;
with Pi ¼ Pj

ji; ð24Þ

divðYÞVol0 ¼ LYðVol0Þ⇔ divðYÞ

¼
�
Yi

·i þ 2CiYi −
4

L
Yi _xi

�
; with Ci ¼ Cj

ji;

ð25Þ

which imply for any f∶ A0 → R,

divðf _xiδiÞ ¼ ∇f: ð26Þ

These equations were obtained by direct calculation from
the volume form Vol0.

III. FINSLER SPACETIME DYNAMICS

The demand that Finsler spacetime dynamics shall use
the Finsler function as fundamental variable selects among
the conjectured Finsler spacetime dynamics to the ones
suggested in [37,38,42]. The first field equation which took
the Finsler function as fundamental variable and was itself a
scalar equation on the tangent bundle on the manifold was
obtained by Rutz [37]. It was argued that from the geodesic
deviation equation, one finds the relevant curvature struc-
ture of spacetime which causes tidal forces between
neighboring trajectories, and that its trace is a suitable
approach as gravitational vacuum field equation. The same
argument was applied in the pseudo-Riemannian case by
Pirani to obtain the Einstein vacuum field equations [52].
Rutz’s equation simply states that the canonical nonlinear
Finsler curvature scalar (20) vanishes

R ¼ 0: ð27Þ

It measures the trace of the geodesic deviation operator
(18), understood as a function of the Finsler-Lagrange
function L and its derivatives.
Action based Finsler field equations using the Finsler

function as fundamental variable have been obtained by
calculus of variations in [38,42] independently, in the first
case Finsler spacetimes, in the later case for positive
definite Finsler spaces. The action employed is

S½L� ¼
Z
Σ⊂TM

volðΣÞRjΣ; ð28Þ

where Σ ¼ fðx; _xÞ ∈ TMjFðx; _xÞ ¼ 1g is the unit tangent
bundle and volðΣÞ the volume form on Σ defined from the

Finsler metric. Variation with respect to L yields the Finsler
spacetime vacuum dynamics5

2R −
L
3
gLijR·i·j þ

2L
3
gLijðð∇PiÞ·j þ Pijj − PiPjÞ ¼ 0:

ð29Þ

In the particular case of a pseudo-Riemannian Finsler-
Lagrange function determined by a Lorentzian metric g,
Rutz’s equation as well as the action based Finsler
spacetime dynamics are equivalent to the Einstein vacuum
equations rab ¼ 0. For the action based spacetime dynam-
ics it is possible to add a matter field action so that the
resulting gravitational dynamics reduce to the Einstein
equations (1) [38].
We will see in Sec. V in detail that Rutz’s equation has

the disadvantage that it cannot be obtained as an Euler-
Lagrange equation. However, applying the variational
completion algorithm developed in [43] to (27) yields
the field equations (29). The analogue statement holds
for the field equations rij ¼ 0 and Gij ¼ 0 in general
relativity: the former have the disadvantage that they cannot
be obtained as Euler-Lagrange equations, while the latter
are the result of the variational completion algorithm
applied to the former. Thus only the latter can be completed
consistently to nonvacuum dynamics.

IV. THE STAGE FOR A FINSLER
GRAVITY ACTION

As we have seen in the previous sections, all geo-
metric objects in Finsler geometry possess homogeneity
properties with respect to their dependence in _x. This means
that they are equivariant under the action of a Lie group,
which makes it more appropriate to describe them on a
bundle that takes this equivariance into account. In the
previous approaches to action based Finsler gravity equa-
tions [38,42] this fact was taken care of by constructing
an action on the unit tangent bundle Σ ¼ fðx; _xÞ ∈
TMjFðx; _xÞ ¼ 1g. However this construction has the draw-
back, that the domain of integration depends on the
dynamical variable one is interested in, and, in the case
of a Lorentzian signature of the Finsler metric, is non-
compact. As consequence action integrals, formulated as
integrals over all of Σ are generically infinite.
To avoid these problems we construct the action integral

for Finsler gravity on compact subsets of the projective
tangent bundle PTMþ in Sec. VI. The advantage is that
PTMþ can be defined without any further structure on TM,
and so is in particular independent of the Finsler function.
Here we introduce the positive projective tangent bundle
and how one can understand the Finsler function as section

5Observe that in [38], the Landsberg tensor, called Sijk there, is
defined with a different sign, Sijk ¼ −Pi

jk.
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of an associated vector bundle over PTMþ. This con-
struction allows a mathematically rigorous formulation of
the Finsler gravity action as well as a technically precise
derivation of the Euler-Lagrange equations from the action.

A. The positive, or oriented, projective
tangent bundle

The positive projective tangent bundle PTMþ, also
called oriented tangent bundle in the literature [53], can

be constructed from the slit tangent bundle TM
∘

≔ TMnf0g
by identifying a ray fðx; λ_xÞjλ > 0g as a single point. In
other words it is defined by the equivalence relation

ðx; _xÞ ∼ ðx; wÞ ⇔ w ¼ λ_x for some λ > 0 ð30Þ

between elements (x, _x) and (x, w) in TM
∘
. To be precise

PTMþ ≔ f½ðx; _xÞ�∼jðx; _xÞ ∈ TM
∘ g: ð31Þ

For a 4-dimensional base manifold M, the positive pro-
jective tangent bundle is itself a 7-dimensional manifold,
with manifold structure given by an atlas fðUþ

i ;φ
þ
i Þ;

ðU−
i ;φ

−
i Þg, where, e.g., Uþ

i ¼ f½ðx0;…; x3; _x0;…; _xi;…;
_x3Þ�j_xi > 0g, U−

i ¼ f½ðx0;…; x3; _x0;…; _xi;…; _x3Þ�j_xi < 0g
and we will denote collectively φþ

i and φ−
i as ðxj; uαÞ,

α ¼ 1, 2, 3:

ðxi; uαÞ ¼
�
x0;…; x3;

_x0

_xi
;…;

_xi−1

_xi
;
_xiþ1

_xi
;…;

_x3

_xi

�
: ð32Þ

Alternatively, one can locally describe PTMþ in homo-
geneous coordinates ðxi; _xiÞ in which one can perform
calculations basically as on TM. To do so one has to ensure
that the objects one is dealing with on TM can be identified
with well defined objects on PTMþ, in particular they must
be 0-homogeneous with respect to _x [51].
The manifold PTMþ is compact and orientable. This can

be seen easily, e.g., as PTMþ is diffeomorphic to the unit
sphere bundle of an arbitrarily chosen (positive definite)
Riemannian metric on M.
The positive projective tangent bundle is defined without

any reference to additional geometric structure on TM
∘
.

However, if the slit tangent bundle is equipped with a
classical, smooth and positive definite Finsler function,
PTMþ (then also called projective sphere bundle [49]) is
diffeomorphic to the unit tangent (or unit sphere) bundle Σ.
For Finsler spacetimes, and in general for Finsler functions
with associated metric of indefinite signature, such a global
diffeomorphism does not exist. What however does exist is
a diffeomorphism between certain compact subsets Dþ of
PTMþ and specific compact subsets D of the unit tangent

bundle Σ ⊂ TM
∘
. We will now construct such diffeomor-

phisms and relate the integration over admissible and

non lightlike domains Dþ ⊂ PTMþ to the integration over
D ⊂ Σ.
The first step toward this goal is to observe that TM

∘
with

the action of the multiplicative group R�þ

·∶ TM
∘

×R�þ → TM
∘
; ðx; _xÞ · λ ¼ ðx; λ_xÞ; ð33Þ

is a principal bundle overPTMþ. This can be seen easily, as

R�þ acts freely and transitively on the fibers of TM
∘

relative
to the projection:

πþ∶TM
∘

→ PTMþ; ðx; _xÞ ↦ ½x; _x�: ð34Þ

The local fibers of (TM
∘
; πþ; PTMþ;R�þ) are diffeomorphic

to the 1-dimensional Lie group R�þ, whose action is
generated by the Liouville vector field C ¼ _xi _∂i. That is,

C is a πþ-vertical vector field on TM
∘
.

Second, the projection πþ allows us to treat differential
forms on PTMþ as certain particular differential forms on

TM
∘

via pullback. Let ρþ be a differential form on PTMþ,
then ρ ≔ ðπþÞ�ρþ is a basic form with respect to πþ, i.e., it
satisfies:

(i) equivariance with respect to the action of the
Lie group (R�þ; ·), or, in other words, it is
0-homogeneous in _x

LCρ ¼ 0; ð35Þ
(ii) horizontality with respect to the projection πþ,

which means that contracted with C it satisfies

iCρ ¼ 0: ð36Þ
Exterior differentiation of forms ρþ ∈ ΩðPTMþÞ can be
carried out identically to exterior differentiation of the

corresponding form ρ ∈ ΩðTM∘ Þ as d ∘ ðπþÞ� ¼ ðπþÞ� ∘ d.
The third step is to realize that πþ is a diffeomorphism

between a compact admissible subset

D ⊂ fðx; _xÞ ∈ A0jFðx; _xÞ ¼ 1g ð37Þ

of the level hypersurface of the 1-homogeneous smooth
map F on A0 and its image πþðDÞ ⊂ PTMþ. This is easy
to see. The mapping πþ∶ D → πþðDÞ, πþðx; _xÞ ¼ ½x; _x� is
obviously bijective. Differentiability is also immediate.
Since, on D, F ¼ 1 ≠ 0, the inverse map α∶ πþðDÞ→D,
αð½x; _x�Þ ¼ ðx; _x

Fðx;_xÞÞ of πþ is also differentiable.

Consequently we can state
Lemma 2: For any compact domainDþ on PTMþ such

that FððπþÞ−1ðDþÞÞ ≠ 0 and any 7-form ρþ on PTMþ:
Z
Dþ

ρþ ¼
Z
D

ρ; ð38Þ
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where ρ ¼ ðπþÞ�ρþ is a 0-homogeneous differential form

on TM
∘

and D ¼ ðπþÞ−1ðDþÞ ∩ Σ.
Hence we related integrals on PTMþ to integrals on Σ.

From the point of view of local computations, pulling back

forms to D ⊂ Σ ⊂ TM
∘

or working on Dþ in homogeneous
coordinates are the same.
Observe that vector fields Xþ on Dþ ⊂ PTMþ can be

identified with zero homogeneous vector fields X on
ðπþÞ−1ðDþÞ, i.e., vector fields satisfying ½X;C� ¼ 0, via
the tangent map dðπþÞ−1.

B. Finsler spacetime action integrals on PTM +

On a Finsler spacetime (M, L) integrals on PTMþ can be
understood as follows.
Any 7-form ρþ can be decomposed into a product of the

canonical volume form dVþ
0 on PTMþ and a function. The

canonical volume form can be obtained via the canonical
Hilbert form as follows. Consider the set

Aþ
0 ¼ πþðA0Þ ⊂ PTMþ: ð39Þ

An equivalent characterisation of Aþ
0 is Aþ

0 ¼ πþðΣ ∩ AÞ.
The functions li ¼ _∂iF are well defined on A0 and, by

their 0-homogeneity with respect to _x, also on Aþ
0 . This

implies that the Hilbert form

ω ¼ lidxi; ð40Þ

is a well-defined coordinate invariant 1-form on Aþ
0 and

ω ∧ dω ∧ dω ∧ dω ≠ 0 ð41Þ

is a well-defined 7-form on Aþ
0 [51]. Hence, a coordinate

invariant, well-defined volume form on Aþ
0 is given by

dVþ
0 ¼ 1

3!
ω ∧ dω ∧ dω ∧ dω: ð42Þ

In local homogeneous coordinates on Aþ
0 it can be

expanded as

dVþ
0 ¼ j det gLj

L2
iCðdx0 ∧ … ∧ dx3 ∧ d_x0 ∧ … ∧ d_x3Þ:

ð43Þ
The pullback of dVþ

0 by πþ yields a 7-form on A0, which
can be expressed in terms of the 0-homogeneous volume
form Vol0, see (22),

dV0 ≔ ðπþÞ�dVþ
0 ¼ iCVol0 ¼

j det gLj
L2

ðiCVolÞ: ð44Þ

Thus in local homogeneous coordinates the coordinate
expressions of dV0 and dV

þ
0 are identical [51] and by abuse

of notation we do not display the pullback explicitly in each
expression.
Note that for 0-homogeneous vector fields X on TM

∘
,

their divergence with respect to the volume form dVþ
0 resp.

dV0 is given by the same expressions as the divergences
with respect to the volume form Vol0 displayed in (24)
and (25).
Integrals on compact domains Dþ ⊂ Aþ

0 can be written
as integrals on D ⊂ ðΣ ∩ AÞ

Z
Dþ

fdVþ
0 ¼

Z
D

f ∘ πþdV0; ð45Þ

where f is a function on PTMþ. In local homogeneous
coordinates the expressions of f and f ∘ πþ, which is a
0-homogenous function on TM, are identical. For us f will
be the Lagrange function which we will obtain from
variational completion of Rutz’s equation in Sec. V.
The last technical construction to write down the Finsler

gravity action in Sec. VI, is to understand our dynamical
variable L as a section of a fibered manifold [41]. It turns
out that the most natural such choice is an associated

bundle to the principal bundle (TM
∘
; πþ; PTMþ), which we

have already discussed. By the definition of the following

equivalence relation on TM
∘

×R�þ

ðx; _x; yÞ ∼ ðx; λ_x; λ2yÞ ð46Þ

for all (λ > 0) we can construct the associated bundle
(Y; πY; PTMþ), with

Y ≔ ðTM∘ ×R�þÞ=∼; πYð½x; _x; y�Þ ¼ ½x; _x� ð47Þ

and fiber R�þ. Homogeneous coordinates corresponding to
a fibered chart on this manifold then are (xi, _xi, y). It is now
easy to see that there is a one-to-one correspondence
between 2-homogeneous maps L∶ TM → R and sections
γ of Y

L ↦ γ∶ PTMþ → Y; γð½x; _x�Þ ¼ ½x; _x; Lðx; _xÞ�: ð48Þ

This can be checked as follows. Themapping is well defined,
as, for any ðx;λ_xÞ ∈ ½x; _x�, we have ½x;λ_x;Lðx;λ_xÞ� ¼
½x; _x;Lðx; _xÞ� by virtue of (46). Its injectivity and surjectivity
are immediate.
An important Lemma, inspired by a similar statement on

Finsler spaces found in [42], which allows us to evaluate
and manipulate the action integral later is
Lemma 3: Let (M, L) be a general Finsler spacetime

and let f be a 0-homogeneous function onA0. Moreover let
X be the vertical vector field X ¼ ðLgLijf·iÞ _∂j, then the
following identities on Aþ

0 hold:
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½gLijðLfÞ·i·j − 8f�dVþ
0 ¼ dðiXdVþ

0 Þ; ð49Þ

½L−1gLijðL2fÞ·i·j − 24f�dVþ
0 ¼ dðiXdVþ

0 Þ ð50Þ

and

ðgLij − 4L−1 _xi _xjÞðLfÞ·i·jdVþ
0 ¼ dðiXdVþ

0 Þ: ð51Þ

The proof of the Lemma can be found in Appendix D.
An important consequence of this Lemma is that, for

functions ϕij ¼ ϕijðxÞ, integrating 4ϕijðxÞ_xi _xjL−1 is iden-
tical to integration of ϕijgLijðx; _xÞ up to a boundary term.
To see this simply consider functions f ¼ 1

2
_xi _xjϕijðxÞL−1

in (51) to equate

ðgLij − 4L−1 _xi _xjÞϕijdV
þ
0 ¼ dðiXdVþ

0 Þ: ð52Þ

This consequence of Lemma 3 will be useful to analyze the
matter coupling to gravity in the Language of Finsler
geometry in the future.
This completes the discussion of the technical ingre-

dients to apply the variational completion algorithm to
Rutz’s equation and to analyze the resulting field equations.

V. RUTZ’S EQUATION AND ITS
VAINBERG-TONTI LAGRANGIAN

Canonical variational completion [43] is a powerful
algorithm to assess whether a certain set of field equations
can be obtained by variation of an action functional or
not. In case it can locally be obtained by variation, the
algorithm determines the action, and, in the contrary case,
the algorithm determines a standard term to be added to
the equations to make them variational. Before we apply
the technique to Rutz’s equation (27), we recall its
main steps.
Consider a set of m partial differential equations (PDEs)

of order r in the independent variables xA ∈ RN (regarded
as coordinates in a local chart U on some manifold X) and
the dependent variables yμ ¼ yμðxAÞ

εσðxA; yμ; yμA1
;…; yμA1���Ar

Þ ¼ 0; ð53Þ

where A ¼ 1;…; N and μ; σ ¼ 1;…; m. The subscripts on
yμ denote partial differentiation, i.e., yμA ¼ ∂xAy

μ and so on.
Note that the number m of equations coincides with the
number of dependent variables.
From Eqs. (53), we can build, on a given coordinate

chart, the so-called Vainberg-Tonti Lagrangian density

L ¼ yσ
Z

1

0

εσðxA; tyμ; tyμA1
;…; tyμA1���Ar

Þdt: ð54Þ

The Vainberg-Tonti Lagrangian density L is the “closest”
Lagrangian density to our PDE system, in the sense that, if

Eqs. (53) are locally variational, i.e., if they can be locally
written as the Euler-Lagrange equations attached to some
Lagrangian density, then, this Lagrangian density is, up to a
total derivative term, L.
The quantities which measure the departure of the

original PDE system of interest from being variational
are the components of the so called Helmholtz form

Hσ ≔ Eσ − εσ; ð55Þ

where

Eσ ¼
∂L
∂yσ − dA1

∂L
∂yσA1

þ…þ ð−1ÞrdA1
…dAr

∂L
∂yσA1���Ar

ð56Þ

are the Euler-Lagrange expressions of L formulated in
terms of total derivative operators dA with respect to xA.
The following result is the key to examine if the original
PDEs we started with were variational, see [43]:
Proposition 4: The PDE system (53) is locally varia-

tional if and only if, in any local chart the Helmholtz
conditions

Hσ ¼ 0; σ ¼ 1;…; m; ð57Þ

hold.
The canonical variational completion, see again [43], of

the PDE system εσ ¼ 0 are the PDEs

Eσ ¼ 0: ð58Þ

The term canonical comes from the fact that, adding to the
left-hand sides of Eq. (58) any locally variational term will
still result in a variational PDE system. But (58) are the
closest variational equations to the initial ones, as indicated
by (55) and (57). In particular, they are completely deter-
mined by the functions εσ alone.
To illustrate the framework notice that a typical

example of variational completion is the derivation of
the completion of the Einstein vacuum equations. On a
Lorentzian manifold (M, g), the canonical variational
completion of the equations rij ¼ 0 are the full equations
rij − 1

2
rgij ¼ 0 [43].

Finally let us apply the canonical variational completion
to Rutz’s equation (27). The setup is

X ¼ Dþ ⊂ PTMþ; xA ¼ ðxi; _xiÞ;
y ¼ y1 ¼ L ði:e: μ ¼ 1Þ; ð59Þ

where the coordinates xA are again homogeneous coor-
dinates [51].
In order to get a correct scalar density, let us multiply

Rutz’s equation by jdet gLj. In addition we multiply it by L
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to an arbitrary power α, in order to be able to adjust the
homogeneity of the desired Lagrange density later. Thus,
Rutz’s equation becomes:

ε ≔ LαRjdet gLj ¼ 0: ð60Þ

Taking into account the local expression of R ¼ Ri
ij _xj, we

see that ε ¼ εð_xi; L; L;i; L·i;…; L·i·j·k·lÞ depends on L and
its partial derivatives up to order four.
For each coordinate neighborhood on Dþ, we find the

local Vainberg-Tonti Lagrangian as:

L ¼ L
Z

1

0

εð_xi; tL; tL;i; tL·i;…; tL·i·j·k·lÞdt: ð61Þ

To evaluate the integral in the Lagrangian we note that, with
respect to the fiber homotheties L ↦ L̃ ≔ tL, the metric
tensor components gLij and the inverse metric transform as

g̃L̃ij ¼ tgLij; g̃L̃ij ¼ t−1gLij: ð62Þ

The geodesic spray (10) behaves thus as

G̃iðL̃; L̃;i; L̃;i·j; L̃·i·jÞ ¼ GiðL;L;i; L;i·j; L·i·jÞ; ð63Þ

which implies the same behavior for the curvature and most
importantly for the Finsler Ricci scalar

R̃i
jk ¼ Ri

jk; R̃ ¼ R: ð64Þ

The last missing ingredient in the Vainberg-Tonti
Lagrangian is the volume form factor which, by the fact
that we are considering a four dimensional manifold M,
transforms as

j det g̃L̃j ¼ t4j det gLj: ð65Þ
Employing the scaling behaviors just discussed we find the
desired Lagrangian density

L ¼ Lαþ1Rj det gLj
Z

1

0

tαþ4dt ¼ 1

αþ 5
Lαþ1Rj det gLj:

ð66Þ
In order to correctly define a Lagrangian on PTMþ, we
must construct a 4-form of the type ρ ¼ fdVþ

0 , with a zero
homogeneous f, as discussed in (45). To achieve this the
above expression for L must be (−4)-homogeneous and so
α must be chosen to be −4, since R is 2-homogeneous and
det gL is 0-homogeneous.
Thus we conclude that the Lagrange density which

yields the variationally completed field equations to
Rutz’s equation is

L ¼ L−3Rj det gLj ¼ R0L−2j det gLj: ð67Þ

This Lagrange density coincides with the ones suggested in
[38,42] (for positive definite Finsler spaces), here derived
by the means of variational completion.
Following the canonical variational completion algo-

rithm we found that if Rutz’s equation (27) is variational,
then the Lagrangian from which it shall be obtained by
variation is given by (67). What we will find in the next
section is that the Euler-Lagrange equation of (67) does not
coincide with Rutz’s equation, so Rutz’s equation cannot be
variational but must be variationally completed by the
terms we will find next.

VI. FINSLER GRAVITY ACTION
AND ITS FIRST VARIATION

The last step in the variational completion algorithm is to
check whether the seed equation (53) can be obtained by
variational calculus from the action defined by its Vainberg-
Tonti Lagrangian (61). If so, the seed equation itself is
variational, if not we find the closest variational completion
of the seed equation.
The classical variational principle, [41], requires the

existence of a fibered manifold ðY; π; XÞ, dimX ¼ n,
dimY ¼ mþ n. The manifold Y is called the configuration
manifold and X, the base (typically—but not necessarily—
spacetime) manifold. Sections γ ∈ ΓðYÞ will be interpreted
as fields. Deformations of a field (section) are given by
1-parameter groups of fibered automorphisms, generated
by projectable vector fields on Y.
In this setting, a Lagrangian of order r is regarded as a

horizontal differential form on the jet bundle JrY. Denoting
by (xA; yσ; yσA;…; yσA1���An

) the fibered coordinates on JrY,
a Lagrangian is locally expressed as Λ ¼ LdnxA, where the
Lagrangian density L ¼ LðxA; yσ; yσA;…; yσA1���An

Þ is a
real-valued function on some open subset of JrY.

A. The Finsler gravity action on PTM +

Consider an arbitrary connected compact subset Dþ ⊂
PTMþ. Without loss of generality, we are looking for
functions L that are smooth and positive on ðπþÞ−1ðDþÞ.
Moreover consider the Vainberg-Tonti Lagrangian (67) we
constructed in the previous section. Then, the action
associated to the Lagrangian L and to the compact domain
Dþ is the mapping SDþ∶ ΓðYÞ → R, γ ↦ SDþðγÞ [recall
the definition of Y in (47)], given by

SDþðγÞ ¼
Z
Dþ

J4γ�Λ; ð68Þ

where J4γ�Λis the pullback of Λ to PTMþ, along the jet
prolongation J4γ of γ to the jet bundle J4Y.
In local homogeneous coordinates onPTMþ, γ∶ ½x; _x� ↦

½x; _x; Lðx; _xÞ� can be expressed as ðx; _xÞ ↦ ðx; _x; Lðx; _xÞÞ
and the action becomes
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SDþðγÞ ¼
Z
Dþ

R0dV
þ
0 ¼

Z
Dþ

R
L3

j det gLjiCðdx0 ∧ …

∧ dx3 ∧ d_x0 ∧ … ∧ d_x3Þ: ð69Þ

Equivalently, according to Lemma 2, this integral can be
formulated on D ⊂ ðΣ ∩ AÞ.

B. Derivation of the field equations

Take an arbitrary vertical vector field on Y, with support
strictly contained inDþ and denote by fΦtg its 1-parameter
group of fibered automorphisms of Y. The deformed
sections:

γ̄ ≔ ΦtðγÞ ∶ ½x; _x� → ½x; _x; L̄ðx; _xÞ� ð70Þ

automatically correspond to equivariant (i.e., 2-
homogeneous) functions L̄ on nonlightlike, admissible
domains of TM. To perform the variation we define

δL ¼ dL̄
dt

����
t¼0

≔ 2v: ð71Þ

This also implies the fact that the functions v have to be
2-homogeneous in _x, as well as that v and its partial
derivatives will vanish on the boundary ∂Dþ. Moreover, for
small enough t, the signature of the corresponding Hessian
remains the same, i.e., L̄ is a spacetime Finsler function.
The first variation of the action SDþðγÞ is

δSDþðγÞ ≔ d
dt

����
t¼0

ðSDþðγ̄ÞÞ: ð72Þ

Critical points, or extremals, [41], are defined by the
condition that, for any admissible, nonlightlike compact
domain Dþ ⊂ PTMþ and any v with support contained in
Dþ, δSDþðγÞ ¼ 0.
The expression δSDþðγÞ will be split into three integrals

δSDþðγÞ ¼ ðI1 þ I2 þ I3Þ; ð73Þ

which one obtains from differentiation in turns of the last
expression of (69). The integrals are

I1 ¼
Z
Dþ

L2
d
dt

1

L̄3

����
t¼0

RdVþ
0 ; ð74Þ

I2 ¼
Z
Dþ

1

L
dR̄
dt

����
t¼0

dVþ
0 ; ð75Þ

I3 ¼
Z
Dþ

R
L

1

j det gLj
dj det ḡL̄j

dt

����
t¼0

dVþ
0 : ð76Þ

The first integral is easily evaluated to be

I1 ¼ −
Z
Dþ

6
R
L
v
L
dVþ

0 : ð77Þ

The other two integrals involve rather lengthy calculation
which we will display in detail in Appendix C and yield

I2 ¼ −
Z
Dþ

2gLijðPijj − PiPj þ ð∇PiÞ·jÞ
v
L
dVþ

0 ; ð78Þ

I3 ¼
Z
Dþ

gLijR·i·j
v
L
dVþ

0 : ð79Þ

Thus finally we obtain that the extremal points of the
Finsler gravity vacuum action (69), formulated on the
bundle Y with positive projective tangent bundle as base
manifold, must satisfy

δSDþðγÞ ¼
Z
Dþ

�
1

2
gLijR·i·j − 3

R
L

− gLijðPijj − PiPj þ ð∇PiÞ·jÞ
�
2v
L
dVþ

0 ¼ 0;

ð80Þ

which leads us to formulate
Theorem 5: Critical points of the Finsler gravity action

(69) formulated on subsets of the positive projective
tangent bundle PTMþ are given by the equation:

1

2
gLijR·i·j −

3

L
R − gLijðPijj − PiPj þ ð∇PiÞ·jÞ ¼ 0: ð81Þ

Once a solution L of this equation is found, it holds on
the set of admissible nonlightlike vectors of L, which we
denoted by Aþ

0 . This equation is identical to the one found
in [38] on the unit tangent bundle and in [42] for positive
definite Finsler spaces. The important new ingredients here
are that the integration domains on PTMþ are compact and
do not depend on the Finsler-Lagrange function as well as
that the Lagrange density used in the action (69) was
obtained by variational completion in Sec. V.

VII. THE PSEUDO-RIEMANNIAN CASE

Before concluding, we exemplify our findings for
pseudo-Riemannian Finsler geometries Lðx; _xÞ ¼
gijðxÞ_xi _xj, which are defined by a metric g ¼ gijðxÞdxi ⊗
dxj with Lorentzian signature.
For such Finsler-Lagrange functions the Landsberg tensor

vanishes Pi ¼ 0, the components of the Finsler metric
become identical to the components of the Lorentzian metric
gLijðx; _xÞ ¼ gijðxÞ, the Finsler Ricci scalar is the contracted
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Ricci tensorR ¼ −rijðxÞ_xi _xj and thus, multiplying by L, the
Finsler gravity equation becomes

0 ¼ 3R −
L
2
gLijR·i·j ¼ −3rijðxÞ_xi _xj þ ðgijðxÞ_xi _xjÞrðxÞ;

ð82Þ

where rðxÞ ¼ rijðxÞgijðxÞ is the Riemannian Ricci scalar.
Taking a second derivative with respect to _x the equation
leads to

3rij − gijr ¼ 0; ð83Þ

which implies r ¼ 0. Hence we find equivalence to the
Einstein vacuum equations rij ¼ 0.
After having found that the field equations have the

correct pseudo-Riemannian limit we now demonstrate two
further properties, which ensure consistency of the Finsler
gravity action in the pseudo-Riemannian limit with the
Einstein–Hilbert action of general relativity. First we will
provide a clear relation between them, second, we show
consistency with the Bianchi identities. Hence, when matter
is coupled, no contradiction with the usual Bianchi iden-
tities will appear, as one might worry when looking at
the factor of 3 appearing where one might have expected
a 2 in (83).
Proposition 6: For the class of quadratic Finsler space-

time Lagrange functions, L ¼ gijðxÞ_xi _xj the Finsler gravity
Lagrangian Λ ¼ R0ðx; _xÞdVþ

0 is identical to the Einstein–
Hilbert Lagrangian of general relativity up to a boundary
term and a volume factor.
Proof. For quadratic Finsler spacetime Lagrange func-

tions, L ¼ gijðxÞ_xi _xj the Finsler gravity Lagrangian is

Λ ¼ R0ðx; _xÞdVþ
0 ¼ −rijðxÞ

_xi _xj

L
dVþ

0 : ð84Þ

Applying Lemma 3, with f ¼ −rijðxÞ_xi _xjL−1 and X ¼
Lgijf·j _∂i yields

Λ ¼ R0ðx; _xÞdVþ
0 ¼ −

1

4
rðxÞdVþ

0 −
1

8
dðiXdVþ

0 Þ: ð85Þ

When integrating over Dþ and performing the fiber
integration in the first term on the r.h.s., it becomes the
Einstein-Hilbert action multiplied by a finite volume term,
while the second term is a pure boundary term, hence
irrelevant for the derivation of the Euler-Lagrange equa-
tions. This derivation displays the relation between the
Finsler gravity action and the Einstein-Hilbert action of
general relativity. ▪
Proposition 7: Let g be a Lorentzian metric and

L ¼ gijðxÞ_xi _xj. On a pseudo-Riemannian Finsler space-
time (M, L), diffeomorphism invariance of the Finsler

gravity action yields the contracted Bianchi identities up to
a boundary term.
Proof. Infinitesimal diffeomorphisms on M are gener-

ated by vector fields ξ ¼ ξiðxÞ∂i. Their action on the
Finsler-Lagrange function L is generated by a trivial lift
of ξC ¼ ξiðxÞ∂i þ _xjξi;j _∂i to the configuration manifold Y.
That is the quantity v in (80) is given by 2v ¼ ξCðLÞ ¼
2ξijj _xi _xj, and the Euler Lagrange form EðLÞ is

EðLÞ ¼ −
�
rðxÞ − 3

_xm _xnrmnðxÞ
L

�
4ξijj _xi _xj

L
dVþ

0 : ð86Þ

Here the appearing Chern-Rund covariant derivative is
identical to the Levi-Civita covariant derivative of the
metric defining the Finsler-Lagrange function. We now
prove that EðLÞ is a total derivative expression up to the
covariant divergence of the Einstein tensor, i.e., up to the
contracted Bianchi identities.
Applying Eq. (52) to the first term of EðLÞ yields

−4rL−1ξijj _xi _xjdVþ
0 ¼ −rξijidV

þ
0 þ dΞ; ð87Þ

where Ξ stands for total derivative terms appearing in
Lemma 3. Next apply first Eq. (50) and then (51) to the
second term to obtain

12L−2 _xm _xnrmnξijj _xi _xjdVþ
0 ¼ ðrξijj þ 2rimðξmjj þ ξljng

nmgljÞ
þ rijξmjmÞL−1 _xi _xjdVþ

0 þ dϒ

¼
�
1

2
rξmjm þ rijξijj

�
dVþ

0 þ dζ;

ð88Þ

where dϒ and dζ stand for total derivative terms appearing
in Lemma 3. Adding (87) and (88) finally combines to

EðLÞ ¼
�
−
1

2
gijrþ rij

�
ξijjdVþ

0 þ dðΞþ ζÞ; ð89Þ

which finally proves that EðLÞ is a total derivative up to the
contracted Bianchi identities. ▪
In an upcoming article we will investigate matter

coupling and diffeomorphism invariance of the general
Finsler gravity action in detail.

VIII. CONCLUSION

To enrich and focus the discussion about a proper viable
Finsler generalization of the Einstein equations we pre-
sented strong arguments which identify the Eq. (81) as the
simplest, mathematically consistent, action based gravita-
tional field equation, determining the Finsler function of a
Finsler spacetime.
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Starting from the physical argument that gravity causes
the tidal forces in geodesic deviation, Rutz identified the
Cartan nonlinear curvature tensor as the relevant math-
ematical object which encodes the gravitational interaction
on the basis of Finsler geometry. Here we proved, by using
canonical variational completion, that the field equation
suggested by her in [37] cannot be obtained by the means of
calculus of variations, and that the field equations sug-
gested in [38] are the variational completion of the former
ones. In order to rigorously apply this formalism, we
formulate the Finsler gravity action on a configuration
space sitting over the positive projective tangent bundle of
the spacetime manifold. The positive projective tangent
bundle is compact and does not depend on the Finsler
function to be determined. Further, we showed that for
pseudo-Riemannian metrics, the gravity action conjectured
in [38] and found by variational completion here becomes
the Einstein–Hilbert action up to a boundary term. This
result may be understood as an additional argument
supporting the action we constructed. Accordingly, con-
sistency of equation (81) with Bianchi identities is estab-
lished as a result of the invariance of the action to
diffeomorphisms of the spacetime manifold.
Our results open the possibility for different further

directions of research. One natural question is what gen-
eralizes the contracted Bianchi identities from the pseudo-
Riemannian setting in general Finsler spacetime. This
question is closely connected to the conservation equation
for matter actions and the construction of a consistent
matter coupling. The latter may be expressed either in terms
of certain tensor or spinor fields, or as a kinetic fluid.
Finally, to understand the predictivity of a Finsler gravity
theory it is necessary to understand the initial value
problem of the Finsler gravity equation. The correct initial
value formulation for field equation on the projective
tangent bundle must be constructed and the Finsler gravity
equation shall be cast into an initial value form.
Regarding the matter coupling, one possibility is recon-

sider the tangent bundle matter actions suggested in [38]
and reformulate them on the projective tangent bundle, in
the same fashion as we did with the gravitational action.
A new approach to matter couplings, which shall be
investigated in the future, is offered by Lemma 3. It allows
us to rewrite contractions with a metric into an integral over
contractions with velocities and hence, to rewrite kinetic
terms in the usual matter field actions on spacetime into
matter field actions on the projective tangent bundle in a
canonical way. The most promising outlook for a coupling
between matter and a Finslerian tangent bundle geometry is
the direct coupling of a kinetic gas to the geometry of
spacetime. A kinetic gas is directly described on the tangent
bundle in terms of one-particle distribution functions [54],
which can naturally be described in the Finsler language
[55]. In its standard formulation the gas backreacts to
gravity via averaging, since its energy momentum-tensor,

which couples to gravity via the Einstein equations, is
obtained by averaging over the velocities of the constituents
of the gas. The reformulation of the dynamics of the kinetic
gas on the positive projective tangent bundle allows us to
directly couple it to the Finsler gravity and omit the
averaging procedure. This offers the perspective of a more
precise description of gravitating kinetic gases and its
applications to cosmology for possible insight to dark
energy as averaging effect.

ACKNOWLEDGMENTS

The authors aregrateful toBinChen,Miguel SánchezCaja,
Miguel Angel Javaloyes, Demeter Krupka andVolker Perlick
for useful discussion about thematter of this article.Moreover
the authors like to thank the anonymous referee for the very
good and detailed comments and suggestions, which helped
to improve the article. M. H. and C. P. were supported by the
Eesti Teadusagentuur through the Institutional Research
Support Project IUT02-27 and Personal Research Funding
Grants No. PUT790 and No. PRG356, as well as the
European Regional Development Fund through the Center
of Excellence TK133 “The Dark Side of the Universe”. N. V.
was supported by a local grant of Transilvania University of
Brasov, Romania ("Bursa Universitatii Transilvania 2018").
This article is based upon work from COST Action
CANTATA (CA 15117), supported by COST (European
Cooperation in Science and Technology).

APPENDIX A: CONVEXITY OF T x

We claimed that our definition of Finsler spacetimes,
Definition 1, ensures the existence of a convex set T x ⊂
TxM for all x ∈ M. Here we give a proof of this statement.
First we note that ∂T ⊂ N . Since TM is a manifold, it

behaves locally like R2n. In particular it is locally con-
nected. As the function L is assumed to be everywhere
continuous and, on T , we have by definition L > 0, it
follows that on the boundary ∂T we can only have L ≥ 0.
Assume that there exists a point ðx; _xÞ ∈ ∂T such that
Lðx; _xÞ > 0. It is sufficient to notice that there exists an
open connected neighborhood B of (x, _x) contained in
L−1ðð0;∞ÞÞ. As (x, _x) is a boundary point of T , B
intersects T and the complement TMnT . But then, the
union B ∪ T is connected, contained in L−1ðð0;∞ÞÞ and
strictly contains T , which is in contradiction with the
maximal connectedness of T as a subset of L−1ðð0;∞ÞÞ.
Second we find that set S≔T x ∩f_x∈TxMjLðx; _xÞ≥1g

is convex, which follows from the fact that it is closed,
connected and (strongly) locally convex, as we will
show now.
(1) Proof that S is closed: As the set f_x ∈

TxMjLðx; _xÞ ≥ 1g does not intersect N ¼ kerL
and ∂T ⊂ N , it follows that we can as well write:

S ¼ T̄ x ∩ f_x ∈ TxMjLðx; _xÞ ≥ 1g:
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But, both the closure T̄ x and the continuous pre-
image f_x ∈ TxMjLðx; _xÞ ≥ 1g ¼ L−1ð½1;∞ÞÞ are
closed sets, i.e., S is closed.

(2) Proof that S is connected: By the 2-homogeneity of
L and the fact that T x is conic it is clear that we can
write T x as T x ¼ ð0;∞Þ · S, i.e., every element Y ∈
T x can be written as y ¼ λz; z ∈ S for some
λ ∈ ð0;∞Þ. A straightforward argument shows that,
if S would not be connected then T x would not be
connected. However T x is connected by assumption
and hence S must be connected.

(3) Proof that S is strongly locally convex: S is
locally strongly convex since the pull-back of gL

is negative definite and L > 0, similar to the
arguments of Beem [32 Lemma 1]. As a remark,
T x contains an entire connected component of
the indicatrix at x, i.e., of the set f_x ∈
TxMjLðx; _xÞ ¼ 1g.

Having established the closedness, connectedness and
the strong local convexity of S it follows that S is
convex, see [56] for the theorem. Eventually the

convexity of T x follows from its conicity and the convexity
of S.

APPENDIX B: RANDERS, KROPINA/
BOGOSLOWSKI, AND MTH ROOT

FINSLER SPACETIMES

Below our definition of Finsler spacetimes, Definition 1,
we claimed certain type of Finsler spacetimes are included
by our definition. Here we provide some details how this
can be seen. An extensive analysis of these examples will
be the subject of an upcoming publication.
Randers and Bogoslovsky/Kropina metrics are defined

in terms of a Lorentzian metric g and a 1-form A from
which we can build the functions Að_xÞ ¼ AaðxÞ_xa and
gð_x; _xÞ ¼ gabðxÞ_xa _xb on TM.
Let us start with Randers Finsler spacetimes whose

Finsler Lagrange function is

L ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgð_x; _xÞj

p
þ Að_xÞÞ2: ðB1Þ

Calculating the corresponding L-metric yields

gLab ¼
gð_x; _xÞ
jgð_x; _xÞj

�
gab

�
1þ Að_xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgð_x; _xÞjp

�
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgð_x; _xÞjp ðAa _xb þ Ab _xaÞ

�
þ AaAb −

Að_xÞ_xa _xbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgð_x; _xÞjp
3

ðB2Þ

and, calculating its determinant with help of the Levi-Civita ε-symbol6 and the Mathematica tensor algebra extension xAct
[57,58], yields for g-timelike vectors (gð_x; _xÞ > 0)

detðgLabÞ ¼ detðgabÞ
ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

gð_x; _xÞp þ Að_xÞÞ5ffiffiffiffiffiffiffiffiffiffiffiffiffi
gð_x; _xÞp

5
: ðB3Þ

This result coincides with the one derived in [49 p. 284] for the case of a positive definite metric g. For g-spacelike vectors
(gð_x; _xÞ < 0) the determinant becomes

detðgLabÞ ¼ detðgabÞ
�
1þ 5Að_xÞ2

gð_x; _xÞ2 ðAð_xÞ
2 − 2gð_x; _xÞÞ þ Að_xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gð_x; _xÞp
5
ððAð_xÞ2 − 5gð_x; _xÞÞ2 − 20gð_x; _xÞ2Þ

�
: ðB4Þ

For 0 < g−1ðA; AÞ < 1, in particular A being g-timelike
and with bounded norm, L ¼ 0 yields a nontrivial null
cone, which is the same as the null cone of the metric

g̃ð_x; _xÞ ¼ gð_x; _xÞ − Að_xÞAð_xÞ ¼ 0: ðB5Þ

For A as above, this cone is sharper than the cone of g.
Hence the connected component containing A# ¼ g−1ðA; ·Þ
is bounded by L ¼ 0 and not intersected by the cone
gð_x; _xÞ ¼ 0. On this connected component the signature of
gL is identical to the one of g: the determinant of gL, given
by (B3) on the set of consideration, does not vanish and its

eigenvalues can thus not change sign compared to the ones
of g, since certainly for ϵ > Að_xÞ > 0 for any infinitesimal
ϵ > 0 the eigenvalues of g and gL have identical signs.
Hence we choose the connected component containing A#

as our future pointing timelike directions T x for a Randers
Finsler spacetime. Details about an analogue argument
about the signature of the Finsler metric in Randers spaces,
which are built from a positive definite metric, can be found
in [49 p.284].
Let us turn now to Bogoslovsky and Kropina Finsler

spacetimes, which are special cases of Finsler Lagrangians
of the type

L ¼ jgð_x; _xÞj1−qAð_xÞ2q: ðB6Þ
Again we can calculate the determinant of the L-metric
with help of the ε-symbol and the computer algebra

6The determinant of a metric derived with help of the com-
ponents of the totally antisymmetric Levi-Civita tensor density as
ε-symbol detðgLabÞ ¼ 1

4!
εa1a2a3a4εb1b2b3b4gLa1b1g

L
a2b2

gLa3b3g
L
a4b4

.
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program xAct [57,58]. On the set for g-timelike vectors
(gð_x; _xÞ > 0) it is given by

detðgLabÞ ¼ detðgabÞð1 − qÞ3½ð1þ qÞAð_xÞ2
− qg−1ðA; AÞgð_x; _xÞ�gð_x; _xÞ−4qðAð_xÞÞ−2ð1−4qÞ:

ðB7Þ
The conditions on A to yield a viable Finsler spacetime
geometry depend on the value of q. For q ¼ 0 this
expression is identical to detðgabÞ, for q ¼ 1 the L-metric
is always degenerate. The more interesting cases are
(1) q > 1∶ detðgLabÞ is negative if and only if

ð1þ qÞAð_xÞ2 − qg−1ðA; AÞgð_x; _xÞ < 0,
(2) q ¼ −1∶ detðgLabÞ is negative if and only if

g−1ðA; AÞgð_x; _xÞ > 0,
(3) q < 1 and q ≠ −1; q ≠ 0: detðgLabÞ is negative if and

only if ð1þ qÞAð_xÞ2 − qg−1ðA; AÞgð_x; _xÞ > 0.
As in the Randers case, it depends on the causal character
of A on which connected subsets of TxM these conditions
are satisfied. Now choose A for instance to be g-timelike. In
the q > 1 case this implies that det gL is always positive,
since ð1þ qÞAð_xÞ2 − qg−1ðA; AÞgð_x; _xÞ > 0 by the reverse
Cauchy-Schwartz inequality, and hence (B6) is not a
Finsler spacetime. For −1 < q < 1, we find that T x is
the component where gð_x; _xÞ > 0, i.e., the set of g-timelike
vectors, which also satisfy Að_xÞ ≠ 0. The signature of gL is
again identical to the one of g, since it can not change as
long as detðgLabÞ does not vanish. Without going into further
details here we conclude that there exist Bogoslovsky and
Kropina Finsler spacetimes for the right choice of A.
Last but not least we mentioned the mth root Finsler

Lagrangians

L ¼ jGa1���amðxÞ_xa1…_xam j2m: ðB8Þ
A necessary condition for them to define a Finsler
spacetime according to our definition is that the polynomial
Ga1���amðxÞ_xa1…_xam is hyperbolic. Hyperbolic polynomials
possess by definition so called hyperbolicity cones whose
interior is the connected component T x. Hyperbolic poly-
nomials are often discussed in the context of hyperbolic
partial differential equations [59 Sec. 12.4] and the causal
structure of physical field theories [19].

APPENDIX C: EVALUATION OF THE
INTEGRALS I2 AND I3

In Sec. VI we encountered the two integrals

I2 ¼
Z
Dþ

1

L
dR̄
dt

����
t¼0

dVþ
0 and

I3 ¼
Z
Dþ

R
L

1

j det gLj
dj det ḡL̄j

dt

����
t¼0

dVþ
0 ; ðC1Þ

which we will evaluate here in detail.

1. The integral I2
The first step is to investigate the variation of the

geodesic spray coefficients (10), since they are the building
blocks of the curvature scalar (20). Denoting the derivatives
of the variation by vi ¼ v·i and vij ¼ v·i·j we have

L̄·i ≃
t1
L·i þ 2tvi; ḡLij ≃

t1
gLij þ tvij; ḡLij ≃t

1

gLij − tvij;

ðC2Þ

where vij ¼ gLmigLnjvmn and the symbol ≃t
1

means equality
modulo higher than the first power in t. As a consequence
the variation of the geodesic spray coefficients becomes

2Ḡi ¼ 1

2
ḡLijð_xkL̄·j;k − L̄;jÞ≃t

1

2Gi

þ tgLijð_xkvj;k − v;j − 2GkvjkÞ: ðC3Þ
Since _x-differentiation preserves the tensor character, vi are
covector components and it makes sense to speak about
covariant derivatives thereof with respect to the Chern
connection (12): vijj ¼ vi;j −Gk

jvik − Γk
ijvk. Contracting

the last index with _xj and taking into account the identities
Γk

ij _xj ¼ Gk
i and Gk

j _xj ¼ 2Gk yields

vi;j _xj ¼ vijj _xj þ 2Gkvik þGk
ivk; and v;i ¼ vji þGk

ivk:

ðC4Þ
Substituting these equalities into (C3) yields

2Ḡi ≃t
1

2Gi þ 2tAi; with Ai ¼ 1

2
gLijð∇vj − vjjÞ; ðC5Þ

which agrees with the expression found in [42].
The second step is the variation of the Finsler Ricci

scalar. By definition, we find the variation of the nonlinear
connection coefficients (11) to be

Ḡi
j ≃
t1
Gi

j þ tAi
j; where Ai

j ¼ Ai
·j: ðC6Þ

Further, using the Landsberg tensor (13) Gi
jk ¼ Gi

j·k ¼
Γi

jk þ Pi
jk and the definition of the Chern-Rund covariant

derivative (12), we may write the variation of the nonlinear
curvature tensor (19) as

R̄i
jk ¼ δ̄kḠi

j − δ̄jḠi
k ¼ Ḡi

j;k − Ḡi
k;j − Ḡl

kḠi
j·l þ Ḡl

jḠi
k·l

≃t
1

Gi
j;k − Gi

k;j −Gl
kGi

j·l þGl
jGi

k·l

þ tðAi
j;k − Ai

k;j − Al
kGi

j·l −Gl
kAi

j·l

þ Al
jGi

k·l þGl
jAi

k·lÞ
¼ Ri

jk þ tðδkAi
j − δjAi

k − Al
kGi

j·l þ Al
jGi

k·lÞ
¼ Ri

jk þ tðAi
jjk − Ai

kjj − Γi
klAl

j þ Γi
jlAl

k

− Al
kGi

j·l þ Al
jGi

k·lÞ
¼ Ri

jk þ tðAi
jjk − Ai

kjj þ Al
jPi

kl − Al
kPi

jlÞ: ðC7Þ
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Contracting this equation with _xk and taking into account
Pi

jk _xk ¼ 0 as well as Al
k _xk ¼ 2Al we get

R̄i
j ≃
t1
Ri

j þ tð∇Ai
j − 2Aijj − 2AlPi

jlÞ; ðC8Þ

which finally leads us to R̄≃t
1

Rþ tð∇Ai
i − 2Aiji − 2AlPlÞ.

The third and final step is the isolation of the variation 2v
in the integral. To do so we substitute our findings into the
integral and use the identity (38) to equate

I2 ¼
Z
Dþ

1

L
ð∇Ai

i − 2Aiji − 2AlPlÞdVþ
0 : ðC9Þ

Observe that the first term gives a boundary term which we

can neglect. This is so since ∇L ¼ 0 and thus ∇ðAi
i

L Þ is a
divergence of a 0-homogeneous vector field according to
(26). It remains to write L−1Aiji¼divðL−1AiδiÞþL−1AiPi,
see (24), to find

I2 ¼ −
Z
Dþ

4

L
AlPl dV

þ
0 : ðC10Þ

Using the definition of Ai we can expand the integrand as

−4L−1AiPi ¼ 2½ðL−1vPiÞji − L−1vPiji

−∇ðL−1viPiÞ þ L−1vi∇Pi�; ðC11Þ
and observe that ∇ðL−1viPiÞ is a total divergence of a
0-homogeneous vector field again and that ðL−1vPiÞji ¼
divðL−1vPiδiÞ þ L−1vPiPi, which implies

−4L−1AiPi¼divð…Þþ2L−1ðPiPi−PijiÞvþ2L−1vm∇Pm:

ðC12Þ
Hence, the last we need to investigate is 2L−1vm∇Pm. By
the Leibniz rule we have

L−1vm∇Pm ¼ ðL−1v∇PiÞ·i − L−1
·iv∇Pi − L−1vð∇PiÞ·i:

ðC13Þ
The second term on the right-hand side vanishes since
_xi∇Pi ¼ ∇ð_xiPiÞ ¼ 0. The first term can be written into
a divergence of a vertical vector field according to (25)
as ðL−1v∇PiÞ·i ¼ divðL−1v∇Pi _∂iÞ − 2CiL−1v∇Pi þ 0.
Summing up yields

L−1vm∇Pm ¼ divð…Þ − vL−1ð2Ci∇Pi þ ð∇PiÞ·iÞ
ðC14Þ

It is now straightforward to see that 2Ci∇Pi þ ð∇PiÞ·i ¼
gLijð∇PiÞ·j and so altogether

−4L−1AiPi ¼ divð…Þ þ 2L−1ðPiPi − Piji − gLijð∇PiÞ·jÞv:
ðC15Þ

Finally the integral I2 becomes, neglecting the boundary
terms,

I2 ¼
Z
Dþ

2

L
ðPiPi − Piji − gLijð∇PiÞ·jÞv dVþ

0 ; ðC16Þ

which is the desired expression (78).

2. The integral I3
For the integral I3 observe that

j det ḡLj≃t
1

j det gLj þ tgLijvijj det gLj; ðC17Þ

where we used the derivative formula for the determinant

d
dt

det ḡL ¼ det ḡLḡLij
d
dt

ḡLij: ðC18Þ

The integral thus becomes

I3 ¼
Z
Dþ

R
L
gLijvij dV

þ
0 : ðC19Þ

The Leibniz rule, together with (25) implies

L−1RgLijvij ¼ divðL−1RgLijvj _∂iÞ − 2L−1RCivi

þ 8L−2Rv − ðL−1RgLijÞ·ivj ðC20Þ

¼ divðL−1RgLijvj _∂iÞ þ 12L−2Rv − L−1R·ivi ðC21Þ

¼ divðL−1RgLijvj _∂iÞ− divðL−1R·jgLijv _∂iÞ þL−1vgLijR·i·j:

ðC22Þ

Hence the integral turns out to be, neglecting again the
boundary terms,

I3 ¼
Z
Dþ

1

L
gLijR·i·jv dV

þ
0 ; ðC23Þ

which again is the result presented in (79).

APPENDIX D: PROOF OF LEMMA 3

In Lemma 3 we displayed useful formulas to understand
the Finsler gravity action in the case of pseudo-Riemannian
geometry. Here we provide the proof of the Eqs. (49), (50)
and (51).
For the first equation we expand

gLijðLfÞ·i·jdVþ
0 ¼ gLijð2gLijf þ 2L·if·j þ Lf·i·jÞdVþ

0 :

ðD1Þ
The 0-homogeneity of f with respect to _x and dimðMÞ ¼ 4
implies

gLijðLfÞ·i·jdVþ
0 ¼ 8fdVþ

0 þ LgLijf·i·jdV
þ
0 : ðD2Þ
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The last step is to show that the last term in this sum is a
total derivative term. This can be seen from

LgLijf·i·jdV
þ
0 ¼ LgLijf·i·j

j det gLj
L2

iCVol

¼
�
gLijf·i

j det gLj
L

�
·j
iCVol ¼ dðiXdVþ

0 Þ;

ðD3Þ

where X ¼ LgLijf·i _∂i.

The second equation can be proven by expanding

L−1gLijðL2fÞ·i·j ¼ L−1gLijð2gLijðLfÞ þ 2L·iðLfÞ·j
þ LðLfÞ·i·jÞ ¼ 16f þ gLijðLfÞ·i·j:

ðD4Þ

Using the first equation in the last term we obtain the
desired result.
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