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Cross-correlating two different types of galaxy gives rise to parity breaking in the correlation function
that derives from differences in the galaxies’ properties and environments. This is typically associated with
a difference in galaxy bias, describing the relation between galaxy number density and dark matter density,
although observational effects such as magnification bias also play a role. In this paper we show that the
presence of a screened fifth force adds additional degrees of freedom to the correlation function, describing
the effective coupling of the force to the two galaxy populations. These are also properties of the galaxies’
environments, but with different dependence in general to galaxy bias. We show that the parity-breaking
correlation function can be calculated analytically, under simplifying approximations, as a function of fifth-
force strength and the two populations’ fifth-force charges, and explore the result numerically using
Hu-Sawicki fðRÞ as a toy model of chameleon screening. We find that screening gives rise to an octopole,
which, in the absence of magnification bias, is not present in any gravity theory without screening and is
thus a qualitatively distinct signature. The modification to the dipole and octopole can be Oð10%Þ and
Oð100%Þ respectively at redshift z≳ 0.5 due to screening, but decreases towards lower redshift. The
change in the background power spectrum in fðRÞ theories induces a change in the dipole of roughly
the same size, but dominant to the effect of screening at low z. While current data is insufficient to measure
the parity-breaking dipole or octopole to the precision required to test these models, future surveys such as
dark energy spectroscopic survey, Euclid and square kilometre array have the potential to probe screened
fifth forces through the parity breaking correlation function.
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I. INTRODUCTION

The standard cosmological model, Λ cold dark matter
(ΛCDM), relies on the assumption that gravity is described
by a rank 2 symmetric tensor on large scales. The
cosmological parameters fitted to observations such as
the cosmic microwave background [1,2] and large scale
structure [3–5] assume general relativity (GR) as the theory
of gravity. However, fundamental puzzles in the ΛCDM
model such as the nature of dark energy and dark matter
have encouraged research into the cosmological implica-
tions of modifications to GR, dubbed modified gravity.
There are a plethora of modified gravity models, ranging
from the addition or alteration of terms in the Einstein-
Hilbert action to the explicit coupling of additional scalar,
vector or tensor fields (see e.g., [6] for a review). This
motivates expanding the parameter space of traditional
cosmological inferences, as well as designing novel probes
with maximum sensitivity to new gravitational degrees of
freedom.
The diversity of modified gravity models makes it

inconvenient to test them individually. This has led to

the development of generalized frameworks within which
many theories may be tested simultaneously, for example
the effective field theory of dark energy [7] and para-
metrized post-Friedmannian framework [8]. Modified
gravity theories may also be characterized by the screening
mechanisms they incorporate to hide the effects of new
interactions at small scales. As almost all viable theories
employ one of just a handful of screening mechanisms,
probing such a mechanism is tantamount to probing a
potentially broad class of theories. These theories may
often be cast as screened scalar–tensor theories (see [9–11]
and references therein), in which a long-range dynamical
field couples universally to matter, generating a new
(“fifth”) force between masses. The Lagrangian is designed
so that the strength or range of the force depends on the
local gravitational environment: the fifth force is sup-
pressed in high-density regions (such as within the Solar
System where the most stringent constraints exist; see [12]
and references therein) but emerges at the lower densities of
the Universe at large. This leads to differences in both
intergalaxy clustering and intragalaxy morphology and
dynamics between galaxies in stronger vs. weaker gravi-
tational fields. The latter class of signal has been the subject
of a range of tests in recent years [13–20]; our purpose here
is to explore the former.
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This paper investigates the galaxy correlation function
(CF) as a probe of screened fifth forces. It is well known
that standard general relativistic effects in large scale
structure give rise to odd CF multiples [21,22] (or, in
Fourier space, an imaginary part of the power spectrum
[23,24]). These CFs break two distinct symmetries, at
different scales and with different physical causes:
(1) In a cluster environment, the CF is asymmetric under

a swapping of spatial locations of galaxies along the
line of sight. This is because galaxies behind the
center of a deep potential well appear closer in
redshift space (and therefore more strongly corre-
lated) than galaxies in front, due to the redshift
induced by the gravitational potential.1 This con-
stitutes a breaking of the spatial isotropy symmetry
group SO(3) into an SO(2) perpendicular to the line
of sight, and is present for a single population of
galaxies on cluster scales ∼1–10 Mpc [25,26].

(2) The second type of symmetry breaking is present
only in the cross-correlation of two different
populations of galaxies: hΔBðx⃗1ÞΔFðx⃗2Þi ≠
hΔFðx⃗1ÞΔBðx⃗2Þi. Here B and F denote “bright”
and “faint” galaxies, meaning that they trace the
underlying matter field in different ways or other-
wise have different properties pertinent to their
clustering. For example, even if the galaxies form
within the same dark matter density field and hence
gravitational potential, they may form at different
rates and hence end up with different final number
densities. This is manifest in a difference in their
bias. These differences in their spatial statistics
correlate most strongly with their z ¼ 0 halo masses
[27–29], with secondary effects deriving from other
galaxy and halo properties (“assembly bias”; e.g.,
[30–32]). Thus galaxy subsamples that differ in any
observable that correlates with halo mass, e.g.,
luminosity or type, will manifest a parity-breaking
CF. The formation of these different types of galaxy
may be driven by the tidal field or other features of
the cosmic web, making the effect a function of
large-scale environment. This effect is present on
larger scales than isotropy violation, ∼100 Mpc, and
breaks the qualitatively different symmetry group
Z2, which is parity under swapping the discrete
B and F labels.
Although bias is the galaxy property convention-

ally responsible for giving the two populations
different clustering, another possibility is sensitivity
to a screened fifth force. Screened theories of gravity
produce modifications to the gravitational force that
depend on galaxies’ internal properties and envi-
ronments (Sec. II), in such a way that lower mass
galaxies in lower density regions effectively feel

stronger gravity. As we describe in detail in Sec. III,
this alters the Euler equation and hence the number
densities predicted by relativistic perturbation
theory.We illustrate the effect schematically in Fig. 1
where we show two galaxies at different spatial
locations x1 and x2 in the same gravitational poten-
tial, but with different biases and screening param-
eters due to their different environments. The
environment is represented by the tree, which
experiences wind at x2 but not at x1, delineating
the fact that the environments are different at the two
locations.

Both of these effects are proportional to the gradient of
the gravitational potential and hence receive contributions
from fifth forces. In particular, as noted in [21,33], in GR
the gravitational redshift term of the parity-breaking CF is
precisely canceled by the light-cone term and part of the
Doppler term. This apparent coincidence is a result of the
equivalence principle, whereby both light and matter feel
the same potential. In contrast, theories that are confor-
mally equivalent to GR yet include fifth forces effectively
violate the equivalence principle due to the effect of the
fifth force on timelike but not null geodesics. This
reintroduces the redshift term, enabling relativistic effects
to provide a consistency check on the validity of the Euler
equation. While this effect would also be present under an
unscreened fifth force, the additional effect of screening
is that the two types of galaxy that enter the CF may feel
different fifth-force strengths due to their different
gravitational environments endowing them with different

FIG. 1. Schematic of the effect of parity breaking in the CF. The
two galaxies are located in regions of identical external dark
matter density and hence gravitational potential (i.e., excluding
the potential due to the galaxies’ halos themselves, which are
responsible for their self-screening), but the larger-scale envi-
ronments are different. This is illustrated by the surroundings of
the trees, which are windy at x2 but not x1. This difference in
environment affects various properties of the galaxy that impact
its clustering, including its bias, magnification bias and, of
particular interest here, sensitivity to a fifth force (quantified
by δG≡ ΔG=GN). Swapping these parameters between the
galaxy overdensities at x1 and x2 alters the CF, so that it is
not symmetric in the galaxy labels.

1See Fig. 2 of [21].
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scalar charges.2 Thus timelike geodesics are affected differ-
entially by the fifth force as a function of their trajectory, in
further violation of the strong as well as weak equivalence
principle. We show in Sec. III that this introduces interest-
ing novel behavior into the parity-breaking CF. We
emphasise that this is not a fundamental breaking of either
parity or the equivalence principle at the level of the
Lagrangian. Rather, it is an effective violation stemming
from differences in galaxy properties.
The structure of this paper is as follows. In Sec. II we

provide theoretical background on screened fifth forces,
and in Sec. III we lay out the formalism for calculating the
CF in their presence, paying particular attention to the
relativistic parity-breaking part. Sec. V presents our results
for the dipole and octopole, specializing to a specific
chameleon-screened theory, Hu-Sawicki fðRÞ, when
numerical results are required. Section VI provides a
summary of our results and a brief discussion of future
work, including prospects for testing the effects observa-
tionally. Appendix A presents the full calculation of the CF,
and Appendix B shows how our work could be made more
general within the chameleon paradigm by casting the
chameleon action in Horndeski form.

II. SCREENED FIFTH FORCES

To see the need for screening in theories with new
dynamical degrees of freedom, consider the behavior of a
free light scalar ϕ. The Klein-Gordon equation for the
scalar field in the quasi-static limit is

∇2ϕ ¼ 8πρGα; ð1Þ
where ρ is the energy density and α the coupling coefficient
of the scalar field to matter. This is solved by ϕ ¼ 2αGM=r,
which produces the fifth force

F5 ¼ −α∇ϕ ¼ −2α2GM=r2 ¼ 2α2FN: ð2Þ
This modifies the spatial part of the weak-field metric but
not the temporal part, making it sensitive to tests of the
parametrized post-Newtonian light-bending parameter γ.
The most stringent constraint derives from the radio link to
the Cassini spacecraft, which requires γ < Oð10−5Þ and
hence α ≤ Oð10−3Þ [34]. In a Friedman-Robertson-Walker
(FRW) metric, the cosmological effect of the scalar field is
given by

ϕ00 þ 3Hϕ0 þ αGρ ¼ 0; ð3Þ
where H is the Hubble parameter and prime denotes
derivative with respect to cosmic time. For values of α
this small, the final term is negligible and hence the fifth
force is a tiny perturbation to GR dynamics.

The operation of screening may be seen from the most
general equation of motion the scalar field could obey:

Σijðϕ0Þ∂iϕ∂jϕþm2
effðϕ0Þϕ ¼ 8πGαðϕ0Þρ; ð4Þ

where Σij is a matrix that allows for general nonlinear and
nondiagonal kinetic terms. The effective mass is given by
the second derivative of the potential term in the
Lagrangian, and α is in general a function of the back-
ground field value ϕ0. The solution to this equation is

ϕ ¼ 2αðϕ0ÞG
M

jΣðϕ0Þjr
e−meffðϕ0Þr; ð5Þ

which illustrates the three qualitatively different mecha-
nisms for removing the influence of the scalar field in high-
density regions:
(1) The field can be made short range by giving it a large

effective mass at high density, i.e., meff ≫ 1=R
where R is the size of the system. This is called
chameleon screening [35].

(2) The amplitude of the force can be decreased by
reducing the coupling to matter αðϕ0Þ. This is most
commonly done via spontaneous breaking of a Z2

symmetry in the field configuration, in which case it
is known as symmetron screening [36,37].

(3) The amplitude of the nonlinear kinetic terms can be
increased, Σij ≫ 1, effectively decoupling the scalar
field from matter. Depending on the precise imple-
mentation this is called kinetic [38] or Vainshtein
screening [39].

Under any one of these mechanisms, the scalar charge of an
object depends on its density and, in the case of chameleon
or symmetron screening, also on its gravitational environ-
ment [40–42]. Low mass unscreened objects feel the full
fifth force, which, in case the scalar field is light relative to
their size, effectively causes them to feel an enhanced
Newton’s constant G ¼ GN þ ΔG. Conversely, high mass
screened objects have no scalar charge and hence decouple
from the fifth force and feel regular gravity. We describe
this with a parameter δG≡ ΔG=GN, which takes the value
2α2 for fully unscreened objects and 0 for fully screened
objects. For partial screening δG may take any value
between these limits. We show in the following section
how this behavior is manifest in cross-correlation functions
when the galaxy subpopulations have different degrees of
screening. In this case we will label δG with a subscript to
indicate which type of galaxy it refers to.

III. CORRELATION FUNCTIONS UNDER
SCREENED FIFTH FORCES

The number density of galaxies traces the underlying
density field in the universe on the largest scales. The
overdensity in the number of galaxies at position x is

defined by ΔðxÞ≡ NðxÞ−N̄
N̄ , where N is the galaxy number

2The screened fifth force that we invoke does not have to be
mediated by a scalar field, but we will assume so for simplicity.
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density and N̄ is the mean number density overall. These
overdensities contain a wealth of information about both
the initial conditions of the universe and the distribution
and properties of matter on cosmological scales [43]. The
derivation of the main effects contributing to galaxy over-
densities at linear order, including observational effects,
can be found in [21,43–45]. We summarize them here. At a
given redshift z, the overdensity of galaxies at an angular
position n̂ on the sky is given by

Δðz; n̂Þ¼Δstðz; n̂ÞþΔrelðz; n̂ÞþΔlensðz; n̂ÞþΔAPðz; n̂Þ
Δstðz; n̂Þ¼ bδðz; n̂Þ−H−1∂rðv · n̂Þ ð6Þ

Δrelðz; n̂Þ ¼ H−1∂rΨþH−1 _v · n̂ ð7Þ

−
�
_H
H2

þ 2

rH
− 1þ 5s

�
1 −

1

rH

��
v · n̂ ð8Þ

Δlensðz; n̂Þ ¼ ð5s − 2Þ
Z

r

0

dr0r0
�
r − r0

2r

�
∇2⊥ðΦþ ΨÞ ð9Þ

ΔAPðz; n̂Þ ¼ ð∂r − ∂ηÞ½Δst þ Δrel þ Δlens�drðz; n̂Þ∂Θ⃗ δΘ⃗:

ð10Þ

Θ⃗ is the cosmological parameter vector and b is the linear
bias between the galaxy density and the dark matter density
δ: ΔðxÞ ¼ bδðxÞ. H is the conformal Hubble parameter
and Ψ and Φ are the weak-field metric potentials in the
conformal Newtonian gauge:

ds2 ¼ a2ðηÞ½−ð1þ 2ΨÞdη2 þ ð1 − 2ΦÞdxidxjδij�: ð11Þ

s describes the magnification bias that derives from the
slope of the luminosity function:

s≡ 2

5

�Z
dfϵðfÞN0ðfÞ

�
−1 Z

df
dϵ
df

fN0ðfÞ: ð12Þ

N0ðfÞdf is the number density of sources with flux f � df
2

and ϵðfÞ is the detection efficiency of those sources. r is the
comoving radial coordinate in the direction n̂.
The terms have been separated according to the physical

effects that they embody. Δst contains the standard terms
that relate the galaxy overdensity to the dark matter
overdensity and the anisotropy caused by redshift space
distortions. This term is always accounted for in CF
analyses. Δrel contains the relativistic contributions such
as the Doppler and integrated Sachs-Wolfe effects. This is
the term which modified gravity effects alter: the accel-
eration terms are sourced by the Poisson equation and are
therefore affected by the presence of a fifth force. Δlens

derives from the conversion of observed solid angle to

physical solid angle given lensing along the line of sight.
The final term describes the Alcock-Paczinski effect. We
will only be interested here in the standard and relativistic
terms, as it is their correlation that gives rise to the parity-
breaking signal.
The expressions for the overdensities in Eqs. (6)–(10) are

the same in all metric theories of gravity where photons
travel along null geodesics. This includes all theories
conformally identical to GR, which includes most screened
theories. Galaxies on the other hand are nonrelativistic
tracers of timelike geodesics, and are therefore directly
affected by fifth forces. Their motion is governed by the
Euler equation, which, in a perturbed FRW background can
be written as

_v · n̂þHv · n̂þ ∂rΨ ¼ 0: ð13Þ

Here we are using the conformal Hubble parameterH. This
can be used in Eq. (7) to give

Δrelðz; n̂Þ ¼ −
�
_H
H2

þ 2

rH
þ 5s

�
1 −

1

rH

��
v · n̂: ð14Þ

We see that the gravitational effects in the Euler equation
cancel some of the terms, which is a manifestation of the
equivalence principle. As noted in [33], this is no longer
true in the presence of a fifth force. According to Eq. (2) a
long-range fifth force behaves identically to Newtonian
gravity, enabling us to capture its effect with the trans-
formation

∂rΨ → ð1þ δGÞ∂rΨ; ð15Þ

which describes a fractional increase in the strength of
gravity by an amount δG. As discussed in Sec. II, the logic
of screening implies that this is different for different
galaxies as a function of their mass distributions and
environments. We make the simplifying assumption that
δG is a constant for each galaxy population, thereby
ignoring the effect of partial screening. As we consider
one population to be fully screened and the other fully
unscreened, this provides an upper bound on the magnitude
of their asymmetric cross-correlation. The simple modifi-
cation of Eq. (15) provides a clear intuitive picture of the
physical origin of fifth force effects in the correlation
function, and will also show clearly why these generate an
octopole in the presence of screening, a key result of our
paper. Deriving the exact degree of screening of each object
would require solving the equation of motion of the scalar
field numerically in the presence of a given density field
(e.g., [46]), which is beyond the scope of this work.
With this modification, the new expression for the

relativistic part of the overdensity ΔrelðF Þ is the sum of
the usual relativistic term in Eq. (7) and an additional term
ΔF due to the fifth force:
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ΔrelðF Þðz; n̂Þ≡ Δrelðz; n̂Þ þ ΔF ðz; n̂Þ

ΔF ðz; n̂Þ ¼ ζ

�
_v · n̂
H

þ v · n̂

�
ð16Þ

where ζ ≡ ð δG
1þδGÞ. This replaces Δrel in the total expression

for Δ.3 ζ ¼ 0 in the case of complete screening (fifth force
fully suppressed) and ζ ¼ ζmax for objects that are fully
unscreened. ζmax is set by the coupling coefficient of the
scalar field to matter; for example it is 1=4 in fðRÞ where
δG ¼ 1=3. As ζ for a given galaxy depends on its mass

distribution and gravitational environment via its degree of
screening, we assign the two galaxy populations (which we
denote “bright”, B, and “faint”, F, as in Sec. I) different
average values ζB and ζF. We can now compute the parity-
breaking CF. The cross-correlation between the B and F
populations is given by hΔBðx1ÞΔFðx2Þi, which we write,
with the geometry of Fig. 2, as

ξðz; z0; θÞBF ¼ hΔBðz; n̂ÞΔFðz0; n̂0Þi: ð17Þ

Due to the assumption of statistical isotropy this depends
only on the angle θ between the galaxies as they are
projected on the sky. Furthermore, it is important to
remember that z, z0 and θ are observed redshifts and
angular sizes. Converting these to physical quantities
depends on the background cosmology, although to linear
order the corrections from this are already accounted for in
the expressions for the overdensities.
In principle there is a CF for each term in Δ, although we

are only interested here in the relativistic part ξrelðF Þ which
is sensitive to the fifth force

ξrelðF Þðz; z0; n̂Þ ¼ hΔst
B ðz; n̂ÞΔrelðF Þ

F ðz0; n̂0Þi
þ hΔst

F ðz0; n̂0ÞΔrelðF Þ
B ðz; n̂Þi: ð18Þ

The individual CFs are calculated in Appendix A; here
we show the final result, expanded to leading order in
d=r ≪ 1:

ξrelðF Þðr; d; βÞ ¼ ξrelðr; d; βÞ þ ξðF Þðr; d; βÞ

ξrelðr; d; βÞ ¼ 2As

9π2Ω2
m

HD2f
H0

�
P1ðcos βÞν1ðdÞ

�
ðbB − bFÞ

�
_H
H2

þ 2

rH

�
−
�
1 −

1

rH

�
ð5ðsBbF − sFbBÞ þ 3fðsB − sFÞÞ

�

þ2P3ðcos βÞν3ðdÞ
�
1 −

1

rH

�
fðsB − sFÞ

�

ξðF Þðr; d; βÞ ¼ 2AsM
9π2Ω2

m

�
P1ðcos βÞν1ðdÞ

�
ðbFζB − bBζFÞ −

3

5
fðζB − ζFÞ

�
þ P3ðcos βÞν3ðdÞ

�
2f
5
ðζB − ζFÞ

��
: ð19Þ

We have defined f ≡ d lnD
d ln a , where D is the linear growth factor. Throughout our calculations we have assumed these are

scale-independent, following [33].4 Pn is the Legendre polynomials of order n, bB and bF are the biases for the bright and
faint galaxies respectively, and

νlðdÞ≡
Z

d ln kðkηÞns−1
�

k
H0

�
3

jlðkdÞT2ðkÞ; MðaÞ≡ D2

H0H
ð _Hf þH _f þ f2H2 þ fH2Þ: ð20Þ

We have dropped all terms in ξrel that involve the correlation of two relativistic terms (hΔrelΔreli) as these are suppressed by
factors of H

k .

FIG. 2. Geometry of the CF. The observer is at the origin. B and
F denote “bright” and “faint” galaxies; we are interested in their
cross-correlation.

3Our parametrization of modified gravity is related to that of [33] by Γ ¼ δG, Θ ¼ 0; thus, although somewhat more general, their
model does not account for screening as it effectively assigns the same δG to all galaxies.

4In principle this can generalized and the growth factor made scale dependent. We plan on exploring this for more generic modified
gravity theories in the modified Boltzmann code HiClass [47] in future works. We take the first steps in this direction by writing our
screening model in Horndeski form in Appendix B.
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As anticipated in Sec. I, besides modifying the cosmo-
logical background the fifth force affects the CF in two
distinct ways. The first is the reintroduction of redshift terms
due to the difference induced between null and timelike
geodesics (first term in ξðF Þ). This would also be present
under a universally-coupled (i.e., nonscreened) fifth force
and is the type of modified gravity considered by [33]. The
second is the relative effect on theB andF populations due to
their different sensitivities to fifth forces under a screening
mechanism. This is shown by the remaining terms in ξðF Þ
which are proportional to ζB − ζF. We see that the fifth force
introduces both a dipole (the term proportional to P1ν1) and
an octopole (the term proportional toP3ν3).While the dipole
is increased by both screened and universal fifth-force terms,
in the absence of screening the octopole is only present if
sB ≠ sF. Thus, as discussed in more detail below, the
octopolemayprovide a particularly clean probe of screening.

IV. CORRELATION FUNCTION
PARAMETER SPACE

The CF of Eq. (19) depends on several parameters of
standard ΛCDM, as well as those of modified gravity. The
aim of this section is to explain and quantify the effects of
these parameters.We begin by classifying them into two sets:
(1) Those that affect the background cosmology andhence all
CFs, and (2) Those that are specific to the parity-breakingCF
and describe the environmental dependences of galaxy
formation. We term the first set global and the second set,
whose members carry a B or F index, local. The parameters
are listed in Table I, alongwith their fiducial valueswhichwe
use throughout our analysis unless otherwise stated.
On a practical note, the global parameters take longer to

evaluate as they affect background quantities such as the
matter power spectrum: thus each point in parameter space
corresponds to a run of a Boltzmann code. The local
parameters are simply multiplicative factors in front of the
functions of global parameters, making their parameter
space in principle much quicker to explore.

A. Global parameters

There are three groups of global parameters. The first
contains the standard ΛCDM parameters. As the effects of
these on CFs have already been extensively studied
[48–53], we do not investigate them further here. The
second set quantifies the effects of “galaxy formation”
physics, which generates nonlinear corrections to the
transfer function. We check the importance of this by
using the Halofit fitting function [54] to obtain the non-
linear matter power spectrum, and show its effect on the
dipole in Fig. 3. We see that on scales below ∼10 Mpc
nonlinearities lead to an Oð1Þ modification, but the differ-
ence decays away rapidly on larger scales. From now on we
will only use the transfer functions and power spectra with
these nonlinearities included.
The final set of global parameters describes the effect of

modified gravity on the background perturbations, specifi-
cally the transfer function and power spectrum. To compute
this effect we specialize to the case of Hu-Sawicki fðRÞ
[55], an archetypal and well-studied chameleon-screened
theory known to be stable to instabilities, propagate
gravitational waves at the speed of light and be capable
of screening the Milky Way to pass local fifth-force tests.
Although representative of the chameleon mechanism, Hu-
Sawicki occupies only a small part of the full chameleon
parameter space. A general chameleon model introduces
three new degrees of freedom. At the level of the
Lagrangian these are, for example, the fn;Λ;Mg of [56]
Eq. (2.5) (see also Appendix B). Phenomenologically they
are the strength of the fifth force between unscreened
objects [related to α in Eq. (1)], the range of the fifth force
(Compton wavelength of the scalar field) and the self-
screening parameter χ [e.g., [56] Eq. (3.2)] that determines
the threshold Newtonian potential at which screening kicks
in. In fðRÞ the coupling coefficient of the scalar field to

TABLE I. Global (upper) and local (lower) parameters, along
with their fiducial values. The bias values used in the fðRÞ plots
are different from GR and are denoted by the fðRÞ superscript
index.

As 2.1 × 10−9

h 0.7
Ωbh2 0.0224
Ωch2 0.112
k� 0.05 Mpc−1

ns 0.96
fR0 0

ðbB; bFÞz¼0 (1.7, 0.84)

ðbfðRÞB bfðRÞF Þz¼0
(1.64, 0.8)

ðsB; sFÞ (0.1, 0)
ðδGB; δGFÞ (0, 1=3)

FIG. 3. The change to the z ¼ 0.3 ΛCDM dipole when a linear
or nonlinear power spectrum/transfer function (from Halofit) is
used, relative to the linear case.
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matter is fixed at α ¼ 1=
ffiffiffi
6

p
(δG ¼ 1=3) while the param-

eters n and Λ describing the field’s potential are related.
In the Jordan frame, the Hu-Sawicki action is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
ðRþ fðRÞÞ þ Lm

�
; ð21Þ

where

fðRÞ ¼ −m2
c1ðR=m2Þk

c2ðR=m2Þk þ 1
ð22Þ

and Lm is the matter Lagrangian. The mass scale is set by
the average density of the Universe, m2 ¼ ρm=ð3M2

plÞ, and
c1, c2 and k are dimensionless free parameters. It is shown
in [57] that only k and c1

c2
2

affect the matter power spectrum

and thus the model only contains two relevant degrees of
freedom. k ¼ 1 is a standard choice that we adopt here. In
the Einstein frame this is a scalar–tensor theory in which
the scalar field is fR ≡ df=dR, the present value of which
is also completely determined by c1

c2
2

. The field at the

cosmological background value of R, fR0, determines
the structure formation history of the Universe as well as
the range and screening properties of the fifth force at a
given epoch, and is effectively the theory’s only degree of
freedom. GR is recovered in the limit fR0 → 0, and values
in the range ∼10−4 − 10−6 have observable consequences
in galaxy clustering, redshift space distortions, cluster
abundance, intensity mapping and the matter bispectrum
(see e.g., [58–61] and references therein). For the Solar
System to be screened requires fR0 ≲ 10−6. Smaller values
may be probed by galaxy-scale tests [15–17,19,20], which
now rule out fR0 > few × 10−8 [18].
For one of our galaxy types to self-screen and the other not,

the screening parameter χ must be between their character-
istic Newtonian potentials. This can bewritten in terms of the
background scalar field value as χ ≃ 3=2fR0. The halo
masses calculated in Sec. IV B imply jΦFj ≃ 1 × 10−6 and
jΦBj ≃ 6 × 10−6 (c≡ 1). The galaxies may however be
partly environmentally screened, increasing the required
value of χ.5 10−6 ≲ fR0 ≲ 10−5 is therefore likely to separate
the galaxies by screening properties, and also causes the
scalar field tomediate an astrophysical-range fifth force [55].
This is therefore the range that we consider.
We compute the matter power spectrum using a modified

version of Camb calibrated with N-body simulations in the
k ¼ 1 model [63], and plot this for different fR0 values at

various redshifts in Fig. 4. We see that the power spectrum
changes by ∼20% on scales smaller than ∼1 Mpc for
fR0 ¼ 10−5, while for fR0 ¼ 10−6 the change is only a few
percent. This is propagated into the CF in Sec. V.

B. Local parameters

We consider three local parameters: galaxy bias b,
magnification bias s and fifth-force sensitivity δG. The first
two are present inΛCDMand give rise to the standard parity-
breakingCF,while the latter is the specific focus of our study.
We describe our choices for these parameters below.

(i) ðbB; bFÞ: As our fiducial case we take the B galaxies
to be luminous red galaxies and the F galaxies to be
emission line galaxies, with biases in ΛCDM of 1.7
and 0.84 respectively at z ¼ 0 [5]. These are typical
populations that will be measured by the forth-
coming dark energy spectroscopic survey (DESI)
survey, which will provide the next significant
improvement in measurement of the parity-breaking
CF.6 Under the Sheth–Tormen model [64] these
biases correspond to halo masses ∼1013 h−1M⊙ and
∼1014 h−1M⊙ respectively. When showing results
for z > 0 we model the redshift dependence of the
bias as [21,65–67]

bB=FðzÞ ¼ 1þ ðbB=Fðz ¼ 0Þ − 1ÞDðz ¼ 0Þ
DðzÞ ð23Þ

with D the regular growth factor. We check how the
dipole is affected by a change in the bias and as a
function of redshift in Fig. 5. To account for the fact

FIG. 4. The matter power spectrum evaluated in ΛCDM and
fðRÞ for a range of redshift and fR0 values. The percentage
difference is plotted with respect to the ΛCDM values with the
fiducial parameters of Table I.

5To determine the screening properties of both galaxy pop-
ulations one would ideally solve the equation of motion for the
scalar field given the mass distribution around the galaxies, or at
least a proxy for the field such as the Newtonian potential [62].
However, as we are interested here in the general effects of a
screened fifth force we leave this more detailed investigation for
future work.

6Forecasts for testing gravity with the parity-breaking CF for
nonscreened theories can be found in [33].
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that the bias is reduced in fðRÞ due to the action of

the fifth force (e.g., [68]), we take bfðRÞB ðz ¼ 0Þ ¼
1.62, bfðRÞF ðz¼0Þ¼0.8 when we study fR0 ¼ 10−5.7

We also use the growth function in fðRÞ theory to
compute the change in bias at different redshifts.
This leads to a Oð10%Þ change in the bias at z ¼ 1.
These bias values are used for the fðRÞ cases of
Figs. 6 and 7.

(ii) ðsB; sFÞ: If the magnification bias is the same for
both galaxy populations then the octopole in ΛCDM
is zero. Under this common assumption the octopole
is a unique signature of screened fifth forces: as

shown in Eq. (19), even modified gravity without
screening does not produce it. However, in order to
gauge the relative importance of magnification
bias and fifth force, we consider a plausible value
of sB − sF ¼ 0.1 [50,70,71].

(iii) ðδGB; δGFÞ: There are various considerations for
setting the values of δGB and δGF. δGB should be
no larger than δGF because brighter galaxies
should be more massive (and occupy denser
environments), and hence more screened. Our
requirement that jΦFj≲ χ ≲ jΦBj, and assumption
of fðRÞ in the background, implies δGB ¼ 0,
δGF ¼ 1=3 as our fiducial choice. It is worth
noting, however, that one can construct theories
in which the change to the transfer function
and growth rate is small but the unscreened δG
is Oð1Þ or larger, in which case the predicted
signal simply scales the ΛCDM result linearly

(a) (b)

(c) (d)

FIG. 5. CF dipole for various values of local parameters in a ΛCDM background, as listed in the legend of subfigure (a) and the same
in all cases. Changes are defined with respect to the fiducial values listed in Table I. Each subfigure corresponds to a particular redshift,
as indicated. The lower panels show the magnitudes of the percentage changes with respect to the fiducial ΛCDM dipole (grey line).

7Taken from Fig. 14 of [69] for galaxies of mass 1013 M⊙=h
and 1014 M⊙=h for bFðz ¼ 0Þ and bBðz ¼ 0Þ. We take the mean
value from both box sizes and thus change the bias by ∼ − 4% for
both types of galaxies.
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with δG. The parity-breaking CF would provide
maximal sensitivity to screening per se in such a
scenario, due to the insignificance of modified
gravity in the background.

V. RESULTS

In this section we calculate the dipole and octopole
numerically in our model. We use the Boltzmann
code Camb [72] to compute the transfer functions in
ΛCDM, along with the modification presented in [63] for
fðRÞ. Throughout the computations we use the fiducial

parameters presented in Table I and a range of red-
shifts, z ∈ f0.1; 0.3; 0.5; 0.8g.
First we check the sensitivity of the dipole to local

parameters. Figure 5 shows the dipole at various redshifts
for a range of galaxy bias, magnification bias and δG
values. We assume throughout that the B galaxies are
completely screened while varying the screening felt by the
F galaxies; conversely, when investigating bias we fix bF
and sF. We see that δGF ¼ 1=3, which corresponds to
complete unscreening in fðRÞ, changes the dipole by
∼few × 0.1% for z ¼ 0.1, 0.3, whereas at z ¼ 0.5, 0.8
the change is ∼few × 1% − 10%. A ∼ 10% change in the

(a) (b)

FIG. 6. Dipole and octopole components of the parity-breaking CF in ΛCDM and fðRÞ for 0.1 < z < 0.8.

(a) (b)

FIG. 7. Absolute values of percentage change in the dipole and octopole under local screening and/or background modification as a
function of redshift at a scale of 30Mpc. The percentage difference is defined relative toΛCDMwith the fiducial parameters of Table I. The
points, connected by straight lines, indicate the specific redshifts atwhichweperform the calculation.The legend is the same in the twopanels.
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galaxy bias changes the dipole by the same amount.
Decreasing the magnification bias by a factor of (2, 5)
decreases the dipole by ∼ð10; 15Þ% at all redshifts except
z ¼ 0.8 where the effect is slightly smaller. Interestingly, at
z ¼ 0.8 the percentage change due to screening is roughly
the same as the effect of varying the bias in the range we
consider. This shows that to be able to detect the modi-
fication due to screening it will be necessary to know or
model the galaxy bias to∼0.1–1% for z ¼ 0.1, 0.3, but only
∼5; 10% for z ¼ 0.5, 0.8. It is also worth noting that the
galaxy bias is typically measured in combination with σ8 in
clustering analyses, while breaking the degeneracy with σ8
requires information from weak lensing. The magnification
bias would need to be known to a within a factor ∼10 to
constrain screening parameters at low redshift, while at
higher redshift it must be known to within a factor ∼2.
Nextwe show inFig. 6(a) thedipole forfR0 ¼ 10−5, which

generates a cosmological-range fifth force. We see that the
dipole changes byOð1Þ on scales≲10 Mpc, but less at higher
redshift. For z ¼ 0.5 and below the change is Oð0.1 − 1%Þ
on scales ≳20 Mpc. Thus the effect from the change in
background in fðRÞ theories appears to dominate the effect
of realistic screening values by an order of magnitude for
z≲ 0.5, while at higher z the screening effect can be twice as
important as the change in background. Thus the most
promising regime in which to search for signs of screening
in the dipole is z > 0.5, while at lower redshift one should
hope instead to detect the change due to the effect of modified
gravity on the growth rate and transfer function.
In Fig. 6(b) the octopoles for both ΛCDM (with and

without screening) and fðRÞ background with fR0 ¼ 10−5

are computed. We see that in the case of fR0 ¼ 0 (i.e., a
local screened fifth force in a ΛCDM background), the
octopole changes by few ×1% for z ¼ 0.1, 0.3, whereas for
z ¼ ð0.5; 0.8Þ it changes by ∼ð10%; 25%Þ. This always
dominates over the effect of background modification only
(no local screening). It is worth bearing in mind that in
ΛCDM (and nonscreened modified gravity), an octopole
only arises due to the difference in magnification bias
between the two galaxy populations, which is typically
assumed to be zero. In this case any octopole would be a
sign of screening. The results for any local parameter
choices can be readily constructed as they simply multiply
the curves in Fig. 6(b).
To summarize the effects of modified gravity, we show in

Fig. 7 the variation of the percentage change with redshift
in the range 0.1 < z < 0.8, at a fiducial scale of 30 Mpc. It
is worth remembering that the octopole is always negative
for our parameter choices, and the effect of screening is to
reduce the dipole [hence the red line lying below the green
in Fig. 7(a)]. We see that the octopole is very sensitive to
screening parameters at high redshift even with sB ¼ 0.1
(which determines the size of the octopole in our ΛCDM
model). The change in dipole due to local screening is at
most Oð10%Þ at high z, while the effect of background

modification in nonscreened modified gravity is roughly
independent of redshift.
Current measurements of the dipole, for example from

the LOWz and CMASS samples of the BOSS survey (e.g.,
[48] Fig. 7), have a signal to noise ratio (SN) of <1 in the
dipole. In addition to the relativistic effects considered here,
there are other terms that contribute to this and are in fact
larger, including the wide angle and large angle effects. It is
shown in [48] that the current data from BOSS is only able
to detect (at ∼2σ) the large angle effect, which is a
geometrical combination of the monopole and quadruple
and hence contains no additional physical information.
Thus the detection of relativistic effects in the dipole will
require data from future surveys such as DESI and square
kilometre array (SKA). As the modifications due to screen-
ing are Oð10%Þ in the dipole at high redshift one would
need SN≳ 10 to detect them, while the detection of local
screening at low redshift would require an additional order
of magnitude improvement (along with more precise
modeling of the bias parameters). While it will be chal-
lenging for future surveys to detect the dipole at SN ¼ 100
(e.g., it is forecast in [48] that DESI will reach SN ≈ 7), it is
shown in [49] that a combination of SKA intensity maps
and galaxy number counts can reach this sensitivity.
Therefore it may be feasible for future surveys to probe
both modified gravity in general, and screening in particu-
lar, through the dipole. To quantify the exact sensitivity to
screening parameters, folding in uncertainties in growth
rate and bias as well as cosmological variables such as mν,
Ωm and σ8, one could perform a Fisher forecast for next-
generation experiments with cross-correlations of tracers.
Any measurement of the octopole may provide information
on modified gravity.
Finally, it is worth noting that while we have computed

the effect of the fifth force on the CF across a wide range of
scales, in general we expect the force to be suppressed
beyond the Compton wavelength of the field responsible
for it. Given a Compton wavelength one can simply read off
the change in the CF from Fig. 6 up to that scale, and
assume a rapid transition back to ΛCDM beyond that. This
applies only to the local fifth-force modification, however,
and not the background. A completely self-consistent
model would require solving the equation of motion for
the field numerically given the mass distribution of the
volume under consideration, while ensuring that the same
fundamental theory parameters source both local screening
and cosmic structure formation.

VI. SUMMARY AND FUTURE WORK

We have calculated the effect of a screened fifth force on
the parity-breaking correlation function (CF) obtained by
cross-correlating two populations of galaxies that differ in
properties relevant to their clustering. We show that this
generates new terms in the dipole and octopole that are
not present in ΛCDM, and in some cases neither in

DARSH KODWANI and HARRY DESMOND PHYS. REV. D 100, 064030 (2019)

064030-10



nonscreened modified gravity theories. In particular, pro-
vided the magnification bias is the same between the two
galaxy populations the octopole is only present under
screening. Should the octopole be detected it could provide
a relatively clean probe of a screened fifth force.
The CF is also affected by cosmological modified

gravity in the background, which alters the transfer
function and growth rate. To model this we use a version
of Camb that has been modified [63] to implement Hu-
Sawicki fðRÞ, a canonical chameleon-screened theory.
We find that Hu-Sawicki models with a fifth force on the
scales in which we are interested (10−6 ≲ fR0 ≲ 10−5)
lead to deviations of Oð10%Þ in the dipole. To model the
effect of screening we assume bright galaxies are com-
pletely screened in the Euler equation (i.e., feel GR),
whereas faint galaxies feel the full fifth force. This is, of
course, an approximation that is unlikely to be true in a
cosmological setting, however it allows us to estimate the
strength of the signal to screening. For fifth-force
strengths ∼10% − 100% of Newtonian gravity this leads
to further changes in the dipole and octopole of a few
percent at redshifts below z ¼ 0.3, while for higher
redshifts, e.g., z ¼ 0.8, the dipole and octopole can
change by ∼10% − 20%. We also show that uncertainties
in the magnification and galaxy bias affect the dipole at
the ∼10% level across the redshift range we consider, and
therefore need to be known or modeled to this precision
in order to extract information about screening.
Current state-of-the-art data from BOSS has signal to

noise <1 in the dipole, and is not therefore able to detect
these effects [48]. However, upcoming DESI data will
increase the signal to noise to ∼7, which will provide
sensitivity to interesting modified gravity modifications to
the cosmological background and local screening param-
eters at z ≈ 0.8. The effect of screening at lower redshift
may also be detectable using cross-correlations of multi-
ple tracers, for example SKA intensity maps with galaxy
number counts from Euclid or DESI [49]. Another
interesting prospect is the cross-correlation of galaxies
with voids, which have negative bias and hence maximize
the bias difference with the bright galaxy sample. This
would however render the effect of screening further
subdominant to the ΛCDM dipole. As the magnification
and galaxy bias affect even multipoles of the CF as well,
the best way to constrain the combination of bias
parameters and screening (which affects the odd multi-
poles) will be to do a joint inference on all multipoles
simultaneously.
We have quantified modified gravity at the background

level for the chameleon-screened Hu-Sawicki model of
fðRÞ only. Our analytic result in Eq. (19), however, holds
for all screened theories, including those that employ
qualitatively different mechanisms such as Vainshtein.
Even within the chameleon paradigm Hu-Sawicki fðRÞ
covers only a small fraction of the parameter space.

In Appendix B we cast the general action for chameleon
screening into Horndeski form. Therefore, a natural follow
up would be to investigate the parity-breaking CF across
the full chameleon (or more general) parameter space in the
background, which could be achieved by implementing the
general action in a modified gravity Boltzmann code such
as HiClass [47].
It is worth recalling here the assumptions that go into our

analytic calculation of the correlation function, which may
limit its scope:

(i) Our main assumption is that the effect of screening
can be accounted for by a simple modification to the
acceleration of the form Eq. (15), with constant δG.
This amounts to the approximation that the two sets
of galaxies we are correlating are either completely
screened or completely unscreened. In reality gal-
axies may be partly screened, and the fifth force may
be sourced by only a fraction of the matter that
sources the Newtonian force. This generically re-
duces δG below 1=3 in fðRÞ, and hence reduces the
magnitude of ξðF Þ. To account for this fully one
would need to solve the scalar field equations
numerically given the density field surrounding
the galaxies (e.g., [46]).

(ii) We have shown that the halo/galaxy bias is degen-
erate with the strength of screening in the dipole. It is
therefore important for the bias to be known or
modeled accurately in order to extract the screening
signal. An order Oð10%Þ change in the bias at high
redshifts8 (which is expected in fðRÞ theory, e.g.,
[68]) will lead to a change in the dipole of a similar
magnitude. Thus we must be able to model the
galaxy bias to percent level precision in modified
gravity in order to isolate the screening signal. We
have attempted to account for this by taking the bias,
as a function of mass, from fðRÞ simulations [69],
and accounting for the change in bias self-
consistently as a function of redshift by using the
using the fðRÞ growth factor. The octopole however
is independent of halo/galaxy bias, making it a
particularly robust probe of screened fifth forces.

(iii) Assembly bias will generically lead to differences in
the bias of the two galaxy populations at fixed halo
mass, and more generally to deviations from the
Sheth–Tormen prediction. It is also a function of
modified gravity, as halos tend to form earlier in
cosmologies with larger fR0. A more precise under-
standing of this phenomenon will aid in distinguish-
ing bias differences from effects related to screening.

The effect of the environment in which the galaxies form
(represented by the trees in Fig. 1), could also contribute to
the breaking of parity. For example, as bright galaxies are
likely to have more dust around them than faint galaxies,

8This also depends on mass.
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a faint galaxy in front of a bright one will appear brighter
than an identical one behind [21,73].
The fully self-consistent way to account for all of these

effects is to run numerical simulation of structure formation
under screened modified gravity (e.g., [74–78]) and then
compute the parity-breaking correlation function directly
from the resultant galaxy density field. The advantage of
our analytic approach is that it brings out the physical
processes underlying such parity breaking and hence
reveals novel features such as the presence of an octopole,
which is not typically calculated in simulations. More
detailed numerical modeling than we have performed will
in any case likely be necessary to extract, validate and
interpret a signal from data.
In summary, the effects of modified gravity in the parity-

breaking CF could be probed in the near future with surveys
such as DESI and SKA, with the best hope for constraining
screening parameters coming from cross-correlation of
tracers at multiple wavelengths. These analyses, augmented
by numerical simulations, should be included in the
fundamental physics agenda of large scale structure surveys
in the coming decade.
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APPENDIX A: DERIVATION OF SCREENED CF

In this section we calculate the relativistic component of
the two-point CF, ξrelðF Þ, in a theory with a screened fifth
force:

ξrelðF Þðz; z0; θÞ ¼ hΔst
B ðz; n̂ÞΔrelðF Þ

F ðz0; n̂0Þi
þ hΔst

F ðz0; n̂0ÞΔrelðF Þ
B ðz; n̂Þi: ðA1Þ

We can substitute the expressions in Eqs. (6), (7) into
Eq. (A1). We work in Fourier space and use the following
convention for the Fourier transform of some function f:

FT½fðx; ηÞ�≡ 1

ð2πÞ3
Z

d3ke−ik·xFðk; ηÞ: ðA2Þ

We describe the Fourier transform of the density and
velocity as

FT½δðx; ηÞ� ¼ Dðk; ηÞ
FT½vðx; ηÞ� ¼ Vðk; ηÞ: ðA3Þ

These can be directly related to the transfer functions for
the metric potential and the underlying initial metric
perturbations Ψi.

Dðk; ηÞ ¼ TDðk; ηÞΨiðkÞ
Vðk; ηÞ ¼ TVðk; ηÞΨiðkÞ

TΨ ¼ TΦ ¼ DðaÞ
a

TðkÞ

TD ¼ −
2a
3Ωm

�
k
H0

�
2

TΨ ¼ −
2

3Ω

�
k
H0

�
2

DðaÞTðkÞ

TV ¼ −
_TD

k
¼ 2aH

3ΩmH0

k
H0

½TΨ þH−1 _TΨ�

¼ 2

3Ωm

H
H0

k
H0

fðaÞDðaÞTðkÞ ðA4Þ

where in the last line we have followed the standard
convention, following [33], of splitting the time-dependent
component of the transfer function into the linear growth
factor DðaÞ and the scale-dependent component into a
time-dependent transfer function TðkÞ. In general modified
gravity theories, this type of separation may not be possible
as the growth can be scale dependent however we do not
include that in this analysis and leave that to future works.
We need only calculate one of the terms in Eq. (A1) as the
other will be related to this under B ↔ F, z ↔ z0, n̂ ↔ n̂0.

hΔst
B ðz; n̂ÞΔrelðF Þ

F ðz0; n̂0Þi
¼ hΔst

B ðz; n̂ÞΔrel
F ðz0; n̂0Þ þ hΔst

B ðz; n̂ÞΔF
F ðz0; n̂0Þi: ðA5Þ

We compute each of these terms individually.

hΔst
B ðz; n̂ÞΔrel

F ðz0; n̂0Þi ¼ T ð1Þ − T ð2Þ ðA6Þ

T ð1Þ ¼
Z

d ln k
ð2πÞ3 ðkη0Þ

ns−1Gðr0ÞTVðk; r0ÞbBTDðk; rÞI ð1Þ

ðA7Þ

I ð1Þ ¼
Z

dΩkeikðx−x
0Þðik̂ · n̂0Þ ðA8Þ

T ð2Þ ¼
Z

d ln k
ð2πÞ3 ðkη0Þ

ns−1Gðr0ÞTVðk; r0Þ
k

HðrÞTVðk; rÞI ð2Þ

ðA9Þ

I ð2Þ
Z

dΩkeikðx−x
0Þðik̂ · n̂0Þðk̂ · n̂Þ2 ðA10Þ

where we have defined

FðrÞ≡ _H
H2

þ 2

rHðrÞ þ 5sBðrÞ
�
1 −

1

rHðrÞ
�
: ðA11Þ
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To compute the angular integrals we use the following identities

eikðx0−xÞ ¼ eidk·n̂ ¼ 4π
X
LM

jLðkdÞY�
LMðk̂ÞYLMðn̂Þ k̂ · n̂¼ 4π

3

X1
m¼−1

Y�
1mðk̂ÞY1mðn̂Þ ðk̂ · n̂Þ2 ¼ 8π

15

X2
m¼−2

Y�
2mðn̂ÞY2mðk̂Þþ

1

3
;

ðA12Þ

and we also make use of the Gaunt integral formula

Gl1;l2;l3
m1;m2;m3

≡
Z

dΩYl1;m1
ðn̂ÞYl2;m2

ðn̂ÞYl3;m3
ðn̂Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r �
l1 l2 l3
0 0 0

��
l1 l2 l3
m1 m2 m3

�
ðA13Þ

where we have defined the usual Wigner 3j symbol. Now we compute the angular integrals as

I ð1Þ ¼ −4π cos αj1ðkdÞ

I ð2Þ ¼ 4π

�
−
2

5
sin α sin β cos β½j1ðkdÞ þ j3ðkdÞ� þ

3

5
cos α cosð2βÞ

�
j3
2
−
j1
3

�
þ 1

10
cos α½j3ðkdÞ − j1ðkdÞ�

�
: ðA14Þ

Using these we can now compute the k integrals

T ð1Þ ¼ 2As

9Ω2π2
Gðr0ÞDðrÞDðr0ÞbBðrÞ cos αν1ðdÞfðr0Þ

T ð2Þ ¼ 2As

9π2Ω2
m
Gðr0ÞDðrÞDðr0ÞfðrÞfðr0Þ

�
2

5
sin α sin β cos β½ν1ðdÞ þ ν3ðdÞ� þ

3

5
cos α cosð2βÞ

�
ν3ðdÞ
2

−
ν1ðdÞ
3

�

þ 1

10
cos α½ν3ðdÞ − 4ν1ðdÞ�

�
: ðA15Þ

Thus the final answer for the two-point CF is

hΔst
B ðz; n̂ÞΔrel

F ðz0; n̂0Þi ¼ 2AsGðr0ÞDðrÞDðr0Þfðr0Þ
9π2Ω2

m

�
2

5
sin α sin β cos β½ν1ðdÞ þ ν3ðdÞ� þ

3

5
cos α cosð2βÞ

�
ν3ðdÞ
2

−
ν1ðdÞ
3

�

þ 1

10
cos α½ν3ðdÞ − 4ν1ðdÞ� þ bBν1ðdÞ cos α

�
: ðA16Þ

hΔst
F ðz0; n̂0ÞΔrel

B ðz; n̂Þi is simply given by the relabeling of the indices and angles (which gives an rise to a sign difference in
this term),

hΔst
F ðz0; n̂0ÞΔrel

B ðz; n̂Þi ¼ −
2AsGðrÞDðr0ÞDðrÞfðrÞ

9π2Ω2
m

�
2

5
sin β sin α cos α½ν1ðdÞ þ ν3ðdÞ� þ

3

5
cos β cosð2αÞ

�
ν3ðdÞ
2

−
ν1ðdÞ
3

�

þ 1

10
cos β½ν3ðdÞ − 4ν1ðdÞ� þ bFν1ðdÞ cos β

�
: ðA17Þ

Next we compute the CF between the standard term for B galaxies and the fifth-force term for F galaxies.

hΔst
B ðz; n̂ÞΔF

F ðz0; n̂0Þi ¼ A
Z

d3k
ð2πÞ3 e

ik·ðx0−xÞ ðkη0Þns−1
k3

�
bBTDðk; rÞ −

k
HðrÞ ðk̂ · n̂Þ2TVðk; rÞ

�

× ½ζFðr0Þiðk̂ · n0ÞðH−1ðr0Þ _Tvðk; rÞ þ Tvðk; r0ÞÞ�
≡ T ð3Þ − T ð4Þ; ðA18Þ
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where ζF ≡ δGF
1þδGF

is the fifth-force sensitivity for faint galaxies. Here we define

T ð3Þ ¼ A
Z

d ln k
ð2πÞ3 ζFðr

0Þ½H−1ðr0Þ _TVðk; r0Þ þ TVðk; r0Þ�bBTDðk; rÞI ð1Þ I ð1Þ ≡
Z

dΩkeikðx
0−xÞðik̂ · n̂0Þ

T ð4Þ ¼ A
Z

d ln k
ð2πÞ3 ζFðr

0Þ½H−1ðr0Þ _TVðk; r0Þ þ TVðk; r0Þ�H−1ðrÞkTVðk; rÞI ð2Þ

I ð2Þ ≡
Z

dΩke−ikðx
0−xÞðik̂ · n̂0Þðk̂ · n̂Þ2: ðA19Þ

The other ingredients we need are the transfer functions

_TV ¼ 2

3ΩmH0

�
k
H0

�
½äTΨ þ _TΨ½äH−1 þ _a − _a _HH−2� þ _aH−1T̈Ψ�

¼ 2

3Ωm

�
k
H0

�
TðkÞ

�
_H
H0

fðaÞDðaÞ þHðaÞ
H0

ð _fðaÞDðaÞ þ fðaÞ2DðaÞHÞ
�
; ðA20Þ

where fðaÞ≡ d lnDðaÞ
d ln a . Further we can use _D ¼ fDH. We then put these into T ð3Þ and T ð4Þ:

T ð3Þ ¼ 2AbBζF cosα
9π2Ω2

m
DðrÞDðr0Þ

Z
d lnk
ð2πÞ3

ðkη0Þns−1
k3

�
k
H0

�
3

TðkÞ2
�
Hðr0Þ
H0

fðr0Þþ
_Hðr0Þ
H0

fþHðr0Þ
H0

_fðr0ÞþH2ðr0Þ
H0ðr0Þ

f2
�
j1ðkdÞ

¼ 2cosαAbBζF
9π2Ω2

m
Mðr0Þν1ðdÞ; ðA21Þ

where we have defined

νlðdÞ≡
Z

dk
k
ðkηÞns−1

�
k
H0

�
3

jlðkdÞT2ðkÞ

Mðr0Þ≡D2ðr0Þ
H0H

ð _Hðr0Þfðr0Þ þHðr0Þ _fðr0Þ þ fðr0Þ2Hðr0Þ2 þ fðr0ÞHðr0Þ2Þ: ðA22Þ

Now we compute T ð4Þ as

T ð4Þ ¼ A
Z

d ln k
ð2πÞ3 ζFðr

0Þ
�

2

3Ωm

�
k
H0

TðkÞ
�
_Hðr0Þ
H0

fðr0ÞDðr0Þ þHðr0Þ
H0

ð _fðr0ÞDðr0Þ þ fðr0Þ2Dðr0ÞHðr0ÞÞ
���

× bB

�
k
H0

��
k

HðrÞ
��

2

3Ωm

HðrÞ
H0

fðrÞDðrÞTðkÞ
�

× 4π

�
−
2

5
sin α sin β cos β½j1ðkdÞ þ j3ðkdÞ� þ

3

5
cos α cosð2βÞ

�
j3ðkdÞ

2
−
j1ðkdÞ

3

�
þ 1

10
cos α½j3ðkdÞ − j1ðkdÞ�

�

¼ 2AζFfðr0ÞMðr0Þ
9π2Ω2

mHðr0Þ
�
−
2

5
sin α sin β cos βðν1ðdÞ þ ν3ðdÞÞ þ

3

5
cos α cosð2βÞ

�
ν3ðdÞ
2

−
ν1ðdÞ
3

�

þ 1

10
cos αðν3ðdÞ − ν1ðdÞÞ

�
: ðA23Þ

Putting these pieces together, we find

hΔst
B ðz; n̂ÞΔðFÞ

F ðz0; n̂0Þi ¼ 2AsMðr0ÞζF
9π2Ω2

m

�
bB cos αν1ðdÞ þ

fðr0Þ
Hðr0Þ

�
2

5
sin α sin β cos βðν1ðdÞ þ ν3ðdÞÞ

−
3

5
cos α cosð2βÞ

�
ν3ðdÞ
2

−
ν1ðdÞ
3

�
−

1

10
cos αðν3ðdÞ − ν1ðdÞÞ

��
: ðA24Þ

hΔst
F ðz0; n̂0ÞΔðFÞ

B ðz; n̂Þi is given by the appropriate relabeling of the indices and angles:
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hΔst
F ðz0; n̂0ÞΔðFÞ

B ðz; n̂Þi ¼ −
2AsMðrÞζB
9π2Ω2

m

�
bF cos βν1ðdÞ þ

fðrÞ
HðrÞ

�
2

5
sin β sin α cos αðν1ðdÞ þ ν3ðdÞÞ

−
3

5
cos β cosð2αÞ

�
ν3ðdÞ
2

−
ν1ðdÞ
3

�
−

1

10
cos βðν3ðdÞ − ν1ðdÞÞ

��
: ðA25Þ

By expanding [Eqs. (A24), (A25)] and [Eqs. (A16), (A17)]
to leading order in d=r we obtain the expressions in
Eq. (19) for ξrel and ξðF Þ respectively.

APPENDIX B: GENERAL CHAMELEON
SCREENING IN HORNDESKI THEORY

This section casts generic chameleon-screened scalar–
tensor theories to Horndeski form. We anticipate that this
will be useful for implementing a more general theory than
fðRÞ in the background.
The general action for a scalar–tensor theory that is

immune to instabilities and has second order equations of
motion is the Horndeski action, given by [79,80]:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �X5
i¼2

Li þ Lm½gμν�
�

L2 ¼ G2ðϕ; XÞ
L3 ¼ −G3ðϕ; XÞ□ϕ

L4 ¼ G4ðϕ; XÞRþ G4Xðϕ; XÞ½ð□ϕÞ2 − ϕ;μνϕ
;μν�

L5 ¼ G5ðϕ; XÞGμνϕ
;μν −

1

6
G5Xðϕ; XÞ

× ½ð□ϕÞ3 þ 2ϕν
;μϕ

α
;νϕ

μ
;α − 3ϕ;μνϕ

;μν
□ϕ�: ðB1Þ

This is written in the Jordan frame, in which the Lagrangian
components Li determine the dynamics of the metric and
the scalar field ϕ. X is the canonical kinetic term of a scalar
field − 1

2
gμν∂μϕ∂νϕ. The Gi are free functions of the scalar

and its kinetic term, and we denote their derivatives
by GiX ≡ ∂XGi.
Any scalar field minimally coupled to gravity has the

action

S̃¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
M2

pl

2
R̃− g̃μν

1

2
∂μϕ∂νϕ−VðϕÞ−LmðgμνÞ

�
;

ðB2Þ

where variables are in the Jordan frame unless denoted by a
tilde, in which case they are in the Einstein frame. In the
Einstein frame, the scalar is decoupled from the metric and
hence the gravitational part of the action is the same as in
GR. Working in Planck units, we transform this action to
the Jordan frame with the conformal transformation [81]

g̃μν ¼ e−2αϕgμν

g̃ ¼ e−8αϕg

R̃ ¼ e2αϕ½R − 6α2gμν∂μϕ∂νϕ − 6α□ϕ� ðB3Þ

This yields the Jordan-frame action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
exp ð−2αϕÞ

×

�
1

2
Rþ 3α□ϕ −

�
1

2
þ 3α2

�
gμν∂μϕ∂νϕ

− expð−2αϕÞVðϕÞ − LmðgμνÞ
�
: ðB4Þ

In this frame the scalar field has the Poisson equation
□ϕ ¼ ∂ϕVðϕÞ þ αρ. The effective potential is then
VeffðϕÞ ¼ VðϕÞ þ expðαϕÞρ. To implement the chameleon
mechanism VðϕÞ is chosen such that Veff has a sharp
minimum, corresponding to high mass, in regions of high
density, and a shallow minimum, corresponding to low
mass, in regions of low density. A canonical example is
VðϕÞ ¼ Λ4þn=ϕn with Λ an energy scale and n an as-yet
undetermined exponent [56,82].9

Comparing to the Horndeski form [Eq. (B1)] we find:

G2 ¼ − exp ð−4αϕÞVðϕÞ þ exp ð−2αϕÞXð1þ 6α2Þ
G3 ¼ −3α exp ð−2αϕÞ

G4 ¼
1

2
exp ð−2αϕÞ

G4X ¼ G5 ¼ G5X ¼ 0 ðB5Þ
We note that the recent neutron star merger that constrains
the speed of gravitational waves to be the same of the speed
of light implies G5, G4X ¼ 0 [83] and thus our action is
almost as general as possible given this constraint. The
fðRÞ Hu-Sawicki model corresponds to the range −1 <
n < −1=2 [56], with k ¼ 1 corresponding to n ¼ −1=2.
Future work could explore the full parameter space of
chameleon screening by implementing this action in a
Boltzmann code such as HiClass [47].

9Note however that only some choices for n result in
chameleon screening. The mass is an increasing function of
density, as required, if n > 0, −1 < n < 0 or n is an even negative
integer. n ¼ 0 is simply a cosmological constant, n ¼ −1;−2
does not make mass a function of density, and there is no
minimum of Veff when n ¼ −3;−5;−7;….
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