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We present a theoretical analysis of an electron confined by a Penning trap, also known as geonium, that
is affected by gravity. In particular, we investigate the gravitational influence on the electron dynamics and
the electromagnetic field of the trap. We consider the special case of a homogeneous gravitational field,
which is represented by Rindler spacetime. In this spacetime the Hamiltonian of an electron with
anomalous magnetic moment is constructed. Based on this Hamiltonian and the exact solution to Maxwell
equations for the field of a Penning trap in Rindler spacetime, we derive the transition energies of geonium
up to the relativistic corrections of 1=c2. These transition energies are used to obtain an extension of the
well known gs-factor formula introduced by L. S. Brown and G. Gabrielse [Rev. Mod. Phys. 58, 233 1986].
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I. INTRODUCTION

One way to study the properties of a single electron is to
analyze the trapped electron in a well-known electromag-
netic field configuration. However, extracting character-
istics of a free particle from transitions of a trapped one
requires a deep understanding of the trapping conditions.
For this purpose, commonly a Penning trap is used in
modern high precision experiments [1–4]. Such a trap
weakly confines the particle under usage of an electric
quadrupole and a constant magnetic field. For the case of an
electron, this leads to bound states with discrete energy
levels [5,6]. The transitions in such an artificial atom,
called geonium, are used, for example, to determine the free
electron gs-factor. This quantity is a dimensionless measure
of the electron’s magnetic moment μ in the unit of Bohr
magnetons jμBj ¼ eℏ=ð2mÞ

μ ¼ gsμB: ð1Þ

While in Dirac’s theory [7] the gs-factor is gsDirac ¼ 2,
in practice QED effects lead to deviations from this value.
A few years ago, D. Hanneke et al. have reported high
accuracy Penning trap measurements, which determine
gs ¼ 2.002 319 304 361 46ð56Þ [1,2]. This experimental
result is in outstanding accordance with the calculations
of T. Aoyama et al. [8]. Such an interplay of theory and
experiment can help to test fundamental properties of
quantum field theory and to search for physics beyond
the standard model, see for example [9,10] and references
therein.

The gs-factor experiments in Penning traps, as they are
carried out by [1,2], are not performed in an isolated
environment, but in the presence of the gravitational field
of the Earth. This gravitational field distorts both, the
electron dynamics and the electromagnetic field configu-
ration of the trap. In this contribution, therefore, we
perform the theoretical analysis of the effects of gravity
on the result of Penning trap experiments. In particular,
we also take into account gravitational effects on the
electromagnetic field of the Penning trap, which in turn
affects the motion of the electron. While gravitational
effects on the bound electron gs-factor [11] and the
cyclotron motion of the electron [12] have been consid-
ered, to the best of our knowledge, an analysis of the
gravitational influence on Penning trap experiments have
not been reported before.
In order to understand, how gravity influences Penning

trap experiments, it is natural to describe both, the electron
and the electromagnetic field of the Penning trap, in curved
spacetime. In our study, we will consider the case of a
homogeneous gravitational field, which is a good approxi-
mation for gravity at the surface of the Earth, as we will
discuss in Sec. II A. The Dirac Hamiltonian, which
describes the dynamics of an electron with anomalous
magnetic moment in this spacetime, is obtained in Sec. II B.
While this Hamiltonian can be applied for any electron
velocities and gravitational field strengths, we aim to use it
to describe Penning trap experiments, which are performed
in the non-relativistic regime. Therefore, in Sec. II C we
perform a Foldy-Wouthuysen transformation to obtain the
non-relativistic Hamiltonian and its 1=c2-corrections. Of
course, this Hamiltonian accounts not only for gravitational
effects, but also for the coupling to the electromagnetic*sebastian.ulbricht@ptb.de
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field of a Penning trap. In Sec. III A this field is presented as
an exact solution to Maxwell equations in the spacetime of
homogeneous gravity. Using first order perturbation theory,
we determine the eigenenergies of geonium exposed to
gravity up to order 1=c2 in Sec. III B and Sec. III C. Finally,
these energies are used to derive an expression for the free
electron gs-factor, which generalizes the well-known
results of L. S. Brown and G. Gabrielse. The summary
of our results is given in Sec. IV.

II. ELECTRON IN HOMOGENEOUS
GRAVITATIONAL FIELD

A. The homogeneous gravitational field
in general relativity

On Earth the biggest empirical effect of gravity is the
acceleration of g ¼ 9.81 m=s2 pointing downwards. In
the Newtonian theory of gravity, a vector field of constant
acceleration g is a suitable approximation of the gravi-
tational field perceived by this observer. Higher order
effects, accounting for the Earth as a spherical body, can
be neglected in a small environment of the observers
position.
The approximation of a homogeneous acceleration g also

holds in general relativity in terms of the nongeodesic
motion of an observer; Bound to Earth’s surface, the
observer is not able to follow gravity in a free fall. In a
general relativistic framework, the Newtonian gravitational
field of the Earth is replaced by the famous Schwarzschild
spacetime [13]. At the surface of the Earth, this spacetime
can be approximated by so called Rindler spacetime
[14,15], which is merely flat Minkowski spacetime, but
seen by an accelerated observer. At this level of approxi-
mation, there is no spacetime curvature, but a distortion of
spacetime by acceleration.
In order to describe physics perceived by an accelerated

observer, we start with the line element ds2 of Minkowski
spacetime and perform a coordinate transformation towards
a coordinate system, that describes the reference frame of
the accelerated observer. The Minkowski line element,
expressed in terms of Cartesian coordinates r̃ ¼ ðx̃; ỹ; z̃Þ
and proper time τ, reads

ds2 ¼ ημνdxμdxν ¼ dðcτÞ2 − dx̃2 − dỹ2 − dz̃2; ð2Þ

where we introduced the metric tensor ðημνÞ ¼
diagð1;−1;−1;−1Þ. In this sign-convention timelike dis-
tances are described by positive values of the line element
ds2 > 0. Moreover, we use Einsteinian sum convention,
which means that a sum is performed from 0 to 4 when
paired Greek letters appear. The index 0 is set to be the
index of the timelike coordinate.
The coordinates of Rindler spacetime are related to the

coordinates of Minkowski spacetime by

x0 ¼ x̃;

y0 ¼ ỹ;

z0 ¼ −
g
2
τ2 þ z̃

�
1þ gz̃

2c2

�
;

ct ¼ c2

2g
log

�
c2 þ gðcτ þ z̃Þ
c2 − gðcτ − z̃Þ

�
; ð3Þ

as discussed in [14]. Here t is the proper time of the
observer, located in the center of the accelerated frame.
This frame is denoted by the primed coordinates
r0 ¼ ðx0; y0; z0Þ.
In order to describe physical processes in the accelerated

frame, we use the transformation (3) to derive the line
element of Rindler spacetime

ds2 ¼
�
1þ 2gz0

c2

�
dðctÞ2

− dx02 − dy02 −
�
1þ 2gz0

c2

�
−1
dz02: ð4Þ

From now on, we will call t the time and only perform
spatial coordinate transformations, if required by the
geometry of the problem under consideration. For our
further investigation, it is useful to introduce the auxiliary
coordinate uðz0Þ ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2gz0=c2

p
− 1Þ c2=g, as described

in [15], such that the spatial part of the line element is
isotropic

ds2 ¼
�
1þ gu

c2

�
2

dðctÞ2 − dx02 − dy02 − du2

¼ gμ0ν0 ðuÞdxμ0dxν0 ; ð5Þ

As seen from Eq. (5), the line element in the accelerated
frame is coordinate dependent. Therefore, the measure of
time is different at different heights and the factor
ð1þ gu=c2Þ in front of the infinitesimal time step dðctÞ
gives rise to the gravitational redshift [14,15]. For vanish-
ing acceleration the Rindler line element (5) reduces to the
Minkowski line element. The same holds in the ðx0; y0Þ-
plane, where we reach flat Minkowski spacetime asymp-
totically for u → 0. Therefore, it is legitimate to apply
methods of quantum mechanics in Minkowski spacetime in
a small area around the coordinate center and treat the
modifications, caused by deviation from Minkowski space-
time, as corrections later. In our case this assumption is
valid, since we are interested in quantum objects bound
close to r0 ¼ 0, where typical length scales z0 are in the
micrometer domain and, therefore, much smaller than
c2=g ∼ ly, which is the typical length scale for the consid-
ered gravitational effects.
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B. Electron with anomalous magnetic moment
in Rindler spacetime

In the previous section, we introduced the spacetime of a
homogeneously accelerated observer, known as Rindler
spacetime. Now we want to pay particular attention to the
dynamics of an electron in this spacetime. Again we start
our analysis in Minkowski spacetime, where the electron
motion is described by the Dirac equation [7]

ðiℏγμ∂μ −mcÞψðxνÞ ¼ 0: ð6Þ
Here ψðxνÞ is the Dirac spinor, whose four components
represent not only the electron, but also the positron in their
two spin states. The Dirac matrices γμ are chosen such, that
their anticommutator generates the metric tensor of the line
element (2) of Minkowski spacetime

fγμ; γνg ¼ 2ημν; ð7Þ

where the upper index of the Dirac matrices in Eq. (6) is
raised by the inverse metric tensor γμ ¼ ημνγν.
In the following, we transform the Dirac equation (6) to

the frame of an accelerated observer. For this purpose, it is
convenient to start with the Dirac action in Minkowski
spacetime

S½ψ̄ ;ψ � ¼
Z

ψ̄ðxνÞðiℏγμ∂μ −mcÞψðxνÞdx4; ð8Þ

where ψ̄ðxνÞ ¼ ψ†ðxνÞγ0 is the Dirac adjoint of ψðxνÞ andR
dx4 is the integral over all four spacetime coordi-

nates ðxμÞ ¼ ðcτ; x̃; ỹ; z̃Þ.
From action (8) the Dirac equation (6) can be obtained

by the principle of stationary action. The next step is to
express the Dirac action in the coordinates ðxμ0 Þ ¼
ðct; x0; y0; uÞ of the accelerated frame, in order to obtain
Dirac equation in Rindler spacetime. This coordinate
transformation of the action requires some attention
[16–18] and, therefore, is discussed in Appendix A.
After the coordinate transformation (3), the action (8) reads

S½ψ̄ 0;ψ 0� ¼
Z

ψ̄ 0ðxν0 Þðiℏγμ0 ðuÞ∂μ0 −mcÞψ 0ðxν0 Þ

×

�
1þ gu

c2

�
dx04; ð9Þ

where the infinitesimal spacetime volume dx4 in now
replaced by ð1þ gu=c2Þdx04. In addition the primed
Dirac matrices in Eq. (9) are spacetime dependent and
have to obey the relation

fγμ0 ðuÞ; γν0 ðuÞg ¼ 2gμ0ν0 ðuÞ; ð10Þ
instead of the relation (7). Here gμ0ν0 ðuÞ is the metric tensor
of Rindler spacetime, defined in Eq. (5). The Dirac adjoint
spinor now reads ψ̄ 0ðxν0 Þ ¼ ðψ 0ðxν0 ÞÞ†γ00 ðuÞ.

Indeed, in the case of Penning trap experiments, the
electron is not only exposed to gravity, but is located in an
electromagnetic field. Therefore, we go the common way to
introduce a minimal coupling to the electromagnetic field
by the replacement of the partial derivative ∂μ0→∂μ0 þieℏAμ0 ,
which brings in the four potential Aμ0 ¼ ðΦ=c;−AÞ, which
contains the electric scalar potential Φ and the magnetic
vector potential A. In our considerations, we will treat these
potentials as classical. With these alterations, the Dirac
action (9) becomes

S½ψ̄ 0;ψ 0� ¼
Z
ψ̄ 0ðxν0 Þ

�
iℏγμ

0 ðuÞ
�
∂μ0 þ i

e
ℏ
Aμ0

�
−mc

�
ψ 0ðxν0 Þ

×

�
1þ gu

c2

�
dx04; ð11Þ

which now is the action for a Dirac electron, in the presence
of an electromagnetic field and seen by a homogeneously
accelerated observer. However, an important feature of
the system is still missing in Eq. (11): the anomalous
contribution to the magnetic moment of the electron.
Therefore, we introduce the anomaly a, which accounts
for the discrepancy between the gyromagnetic ratio
gsDirac ¼ 2 of Dirac theory and the measured value
gs ¼ 2ð1þ aÞ, caused by interactions between the electron
and the quantum vacuum. In order to account for this
anomaly, we introduce a nonminimal coupling of the
electron to the electromagnetic field strength tensor
Fμ0ν0 ¼ ∂μ0Aν0 − ∂ν0Aμ0 . With this additional term the action
reads

S½ψ̄ 0;ψ 0� ¼
Z

ψ̄ 0ðxν0 Þ
�
iℏγμ

0 ðuÞ
�
∂μ0 þ i

e
ℏ
Aμ0

�

þ a
eℏ
2mc

i
4
½γμ0 ðuÞ; γν0 ðuÞ�Fμ0ν0 −mc

�
ψ 0ðxν0 Þ

×

�
1þ gu

c2

�
dx04; ð12Þ

where the commutators of the coordinate dependent Dirac
matrices are the generators of local Lorentz transforma-
tions. The structure of the additional term in the action can
be motivated by QED considerations [19]. The action (12)
is discussed in detail for an electron in an inertial system in
[5,20,21] and references therein. Naturally, we recover their
cases in the limit of vanishing acceleration g.
As we discussed above, these steps were performed

in order to derive Dirac equation in Rindler spacetime.
Since we want to give this equation in the Hamiltonian
representation, we separate the spacetime coordinates
ðxν0 Þ ¼ ðct; x0; y0; uÞ into the time parameter t and the
spatial coordinates ðxi0 Þ ¼ ðx0; y0; uÞ, where i0 ¼ 10;…; 30.
Furthermore we redefine the Dirac matrices to be
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γ0
0 ðuÞ ¼

�
1þ gu

c2

�
−1
β; γi

0 ¼ βαi
0
; ð13Þ

where the constant matrices β and αi
0
obey the following

relations:

fαi0 ; αj0 g ¼ 2δi
0j0 ; βαi

0 þ αi
0
β ¼ 0: ð14Þ

With these definitions (13) and (14) the relation (10) for the
u-dependent Dirac matrices is satisfied.
We combine the αi

0
to be a vector α ¼ ðαx0 ;αy0 ; αuÞ and

define the canonical momentum π ¼ p − eA, where p ¼
−iℏ∇ is the momentum operator and ∇ ¼ ð∂x0 ; ∂y0 ; ∂uÞ is
the gradient in the ðx0; y0; uÞ-coordinate system. After these
steps we rewrite the action

S½ψ 0†;ψ 0� ¼
Z

ðhψ 0jiℏ∂tψ
0i − hψ 0jHψ 0iÞdt: ð15Þ

By variation of this action we directly obtain the Dirac
equation in Schrödinger form

iℏ∂tjψ 0i ¼ Hjψ 0i: ð16Þ

Moreover, the structure of Eq. (15) helps us to construct the
scalar product

hψ 0
1jψ 0

2i ¼
Z

ψ 0
1
†ψ 0

2

�
1þ gu

c2

�
−1
dx0dy0du: ð17Þ

and the corresponding Hermitian Hamiltonian.

H ¼
�
1þ gu

c2

��
cα · π þmc2β −

ae
m

βB · s

�

þ eΦþ iaeℏ
2mc

βα · E: ð18Þ

Here the electric and magnetic fields are defined by E ¼
−∇Φ − ∂tA and B ¼ ∇ × A. Moreover, s ¼ − i

4
ℏα × α is

the four-spin operator. It is easy to check, that the
Hamiltonian (18) is Hermitian with respect to the scalar
product (17).

C. Nonrelativistic reduction of the Hamiltonian

In the last section, we derived the Hamiltonian of a
relativistic spin 1=2 particle, that moves in Rindler space-
time in the presence of an electromagnetic field. In addition
we introduced the anomalous magnetic moment of this
particle, which accounts for the interaction of the electron
with the quantum vacuum. The Hamiltonian (18), in its
general form, can be applied for any velocities (v < c) of an
electron. In this work, however, we concentrate on a
scenario, where the electron is stored in a Penning trap
in a laboratory on Earth. In this case, the velocity v ≪ c is

nonrelativistic and the quantity gL=c2 ≪ 1 is a small
parameter, where L is a typical length scale of the experi-
ment. Therefore, we can simplify (18) to be the
Hamiltonian of a nonrelativistic particle and take into
account correctional 1=c2 effects only. All higher orders
in 1=c are collected in the Landau symbol Oð1=c3Þ and will
be neglected later.
In what follows, we derive the nonrelativistic reduction

of the Hamiltonian (18). There are many approaches to
construct a nonrelativistic Hamiltonian and its post-
Newtonian corrections, see for example [22] and references
therein. In this work, we derive these corrections by a
Foldy-Wouthuysen transformation [21,23], which is used
to decouple the electronic and positronic sector of H. The
starting point of a Foldy-Wouthuysen transformation is to
rewrite the Hamiltonian in the form

H ¼ mc2β þ E þO; ð19Þ
where the part of the Hamiltonian, which acts on the
electronic and positronic degrees of freedom (d.o.f.) sep-
arately, is called the even part of H:

E ¼ mguβ −
�
1þ gu

c2

�
ae
m

βB · sþ eΦ ð20Þ

and the part of the Hamiltonian, which couples the
electronic and positronic sector is denoted as its odd part:

O ¼
�
1þ gu

c2

�
cα · π þ iaeℏ

2mc
βα · E: ð21Þ

In the next step, we minimize the contribution of the odd
part by an unitary transformation

H0 ¼ eWHe−W

¼ H þ ½W; H� þ 1

2!
½W; ½W; H�� þ � � � ; ð22Þ

where the anti-Hermitian operator W ¼ βO=ð2mc2Þ is
chosen, such that ½W; βmc2� ¼ −O. Because of this choice,
the odd part O is canceled out in the first two terms in the
right-hand side of Eq. (22). Considering all terms in (22),
which enter H0 up to order Oð1=c3Þ, the new Hamiltonian
can be written as

H0 ¼ mc2β þ E0 þO0; ð23Þ

in similarity to Eq. (19). The new even and odd parts read

E0 ¼ E þ 1

2
½W;O� þ 1

2
½W; ½W; E��

þ 1

8
½W; ½W; ½W; E��� þ Oð1=c3Þ; ð24Þ

O0 ¼ ½W; E� þ 1

3
½W; ½W;O�� þ Oð1=c3Þ: ð25Þ

S. ULBRICHT, R. A. MÜLLER, and A. SURZHYKOV PHYS. REV. D 100, 064029 (2019)

064029-4



We see, that the former odd part O appears in the
commutators with W only, while the new odd part O0 is
proportional to 1=c in the leading order. To further mini-
mize the order of O0, we can iterate the Foldy-Wouthuysen
transformation until O000 ¼ Oð1=c3Þ is reached, such that

H000 ¼ mc2β þ E000 þ Oð1=c3Þ; ð26Þ

where the further iterations do not affect E000¼E0þOð1=c3Þ.
Therefore, by calculating (24), we find the HamiltonianH000
of the electron with anomalous magnetic moment and its
antiparticle in an accelerated frame and an arbitrary
electromagnetic field with all its corrections in 1=c2:

H000 ¼ mc2β þ umgβ þ eΦ ðiÞ

−
1

2m2c2
s ·

�
ð1þ 2aÞeE −mgβ

�
× π ðiiÞ

þ β

�
1þ gu

c2

��
1

2m
π2 − ð1þ aÞ e

m
B · s

�
ðiiiÞ

−
1

8c2m3
βðπ2 − 2eB · sÞ2 þ ð1þ 2aÞ eℏ2

8c2m2
ΔΦ

þ ae
8m3c2

βð2fs · π;B · πg þ ½π2;B · s�Þ

þ aeℏ2

8m3c2
βð∇ × BÞ · π

þ iaeℏ
4m3c2

β½∇ðB · sÞ� · π þ Oð1=c3Þ; ð27Þ

where we defined the acceleration vector g ¼ ð0; 0; gÞ. In
the absence of gravity, i.e., for g ¼ 0, all terms in H000 are
well known and have been studied extensively, first and
foremost [5,20] and references therein. The presence of
gravity, however, gives rise to additional parts, which have
to be discussed in more detail. As seen from Eq. (27),
gravity enters this Hamiltonian at three points. (i) It gives
the usual Newtonian potential, as it is known from classical
mechanics, (ii) it acts as a correction to the spin orbit
coupling therm and (iii) it induces a redshift of the non-
relativistic kinetic energy and the coupling term between B
and s, which is important for our investigation of gravi-
tational effects on free electron gs-factor measurements.
The Hamiltonian (27) acts separately on the electronic

and positronic d.o.f. Therefore, these two sectors are
decoupled up to the desired order Oð1=c3Þ. The choice
of sector is made by selecting the positive or negative
eigenvalue of β. In our case we restrict ourselves to the
discussion of the electron only, whose dynamics is
described by H000 after the replacement β ¼ þ1.
The Hamiltonian H000 now contains all effects on the

electron caused by the homogeneous acceleration and the
anomalous magnetic moment and all relativistic effects, up
to the order of 1=c2. It provides two particular limits, which
are well known, either in the theory of Fermions in

nongeodesic motion [16,24–26], or in the physics of traps
[5,20]. In the case of vanishing electromagnetic fields, for
example, we get the Hamiltonian of a free electron in
accelerated motion:

lim
E;B→0

H000 ¼ mc2 þ umgþ
�
1þ gu

c2

�
1

2m
p2

−
1

8c2m3
p4 þ 1

2mc2
s · ðg × pÞ þ Oð1=c3Þ:

ð28Þ

Here, the relativistic correction of the kinetic energy ∼p4,
the gravitational redshift ð1þ gu=c2Þ and the spin-gravity
coupling ∼s · ðg × pÞ show up clearly. A detailed discus-
sion of (28) and the physical consequences of the single
terms can be found in [16,24–26]. On the other hand, in the
absence of gravity the Hamiltonian (27) reduces to

lim
g→0

H000 ¼ mc2 þ eΦþ
�

1

2m
π2 − ð1þ aÞ e

m
B · s

�

−
1

8c2m3
ðπ2 − 2eB · sÞ2

− ð1þ 2aÞ e
2m2c2

s · ðE × πÞ

þ ae
2m3c2

ðs · πÞðB · πÞ þ Oð1=c3Þ; ð29Þ

where we, moreover, assumed a constant magnetic and a
source free electric field. Expression (29) recovers [20] and
has been the starting point for the investigation of relativ-
istic corrections in geonium by Brown and Gabrielse [5]
and Dehmelt [6], whose work we aim to extend by the
consideration of a gravitational field.

III. THE ELECTRON IN A PENNING TRAP

A. The electromagnetic field of a Penning trap
in Rindler spacetime

In the previous section, we derived the Hamiltonian (27)
of an electron with anomalous magnetic moment, affected
by a homogeneous gravitational and an arbitrary electro-
magnetic field. Although, this Hamiltonian can be applied
to any kind of electric and magnetic fields, we want to
apply it to the particular case of the electromagnetic field of
a Penning trap. Therefore we assume an ideal trap potential,
without any imperfections, consisting of a static homo-
geneous magnetic field and a static electric quadrupole
field. Moreover, the Penning trap is placed in the spacetime
of an accelerated observer. Therefore, the electromagnetic
field of the trap is distorted. In order to account for this
distortion, we need to formulate Maxwell equations in
Rindler spacetime. These equations for a sourcefree elec-
tromagnetic field in their covariant form read
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∂μ0Fμ0ν0 þ Γμ0
μ0ρ0F

ρ0ν0 ¼ 0; ð30Þ

in terms of the electromagnetic field strength tensor
Fμ0ν0 ¼ ∂μ0Aν0 − ∂ν0Aμ0 and the Christoffel symbols Γμ0

μ0ρ0 ¼
1
2
gμ

0σ0∂ρ0gμ0σ0 ¼ g
c2 ð1þ gu

c2Þ−1δ3ρ0 . For more details and the
definition of the Christoffel symbols, see Appendix B.
Equation (30) allows us to calculate the vector potential

A and the scalar potential Φ, needed in the Hamiltonian
(27). These potentials enter into the four-potential ðAμ0 Þ ¼
ðΦ=c;−AÞ, which we assume to be static, i.e., ∂tAμ0 ¼ 0

and, moreover, to satisfy the gauge condition

∂μ0Aμ0 þ Γμ0
μ0ρ0A

ρ0 ¼ 0: ð31Þ

Under these assumptions, we can rewrite the spatial part of
Eq. (30) in the form

∇ ·

��
1þ gu

c2

�
∇A

�
¼ g

c4

�
1þ gu

c2

�
−1
gA3; ð32Þ

which determines the vector potential A ¼ ðA1; A2; A3Þ. In
this expression, moreover, ∇ ¼ ð∂x0 ; ∂y0 ; ∂uÞ is the gradient
in the coordinate system ðx0; y0; uÞ. In order to solve
Eq. (32), one has to define explicit boundary conditions.
In the case of a Penning trap configuration, for example, we
demand that A is the vector potential of a constant magnetic
field Bð0Þ ¼ ðB1; B2; B3Þ in the center of the trap. For this
requirement, the solution of (32) is given by

A ¼ −
1

2

0
B@

x0

y0

wðuÞ

1
CA ×

0
B@

B1ð1þ gu
c2Þ−1

B2ð1þ gu
c2Þ−1

B3

1
CA; ð33Þ

where

wðuÞ ¼ c2

g

�
1þ gu

c2

�
log

�
1þ gu

c2

�
: ð34Þ

For vanishing acceleration g ¼ 0, Eq. (33) reduces to the
well known vector potential of a constant magnetic field
− 1

2
r0 × Bð0Þ globally. However, the presence of gravity

leads to a distortion of the magnetic field, which is
characterized by the factor ð1þ gu=c2Þ.
In the same way, we can find the scalar quadrupole

potentialΦ of the trap. This potential has to be a solution to
the time-component of Eq. (32), which under gauge
condition (31) becomes

∇ ·

��
1þ gu

c2

�
−1∇Φ

�
¼ 0: ð35Þ

Again the physically relevant boundary conditions have to
be set here. They are chosen such that the potential Φ is

determined by a constant, traceless quadrupole matrix Q̂ in
the coordinate center. The corresponding solution to
Eq. (35) is given by

Φ ¼ ðx0; y0; fðuÞÞ · Q̂ ·

0
B@

x0

y0

fðuÞ

1
CAþQ33hðuÞ; ð36Þ

where

fðuÞ ¼
�
1þ gu

2c2

�
u ð37Þ

and

hðuÞ ¼
�
c2

g

�
2
��

1þ gu
c2

�
2

log

�
1þ gu

c2

�

−
gu
c2

�
1þ gu

2c2

��
1þ gu

c2

�
1þ gu

2c2

���
: ð38Þ

For vanishing acceleration g ¼ 0, the potential (36) reduces
to the ideal quadrupole potential r0 · ðQ̂ · r0Þ.
Having found the solutions (33) and (36) for the vector

and scalar potential, we are ready now to set up the Penning
trap field configuration. For this purpose, we need to
specify the geometry of the trap. We adopt the coordinate
system such that B2 ¼ 0 and introduce the angle θ between
Bð0Þ and g. For this choice, the constants Bð0Þ and Q̂ are
given by

Bð0Þ ¼ ð−B sin θ; 0; B cos θÞ ð39Þ

and

Q̂ ¼ −
V
4L2

0
B@

1
2
ð3 cosð2θÞ− 1Þ 0 3 cos θ sin θ

0 1 0

3 cos θ sin θ 0 − 1
2
ð3 cosð2θÞ þ 1Þ

1
CA;

ð40Þ

where B is the absolute value of Bð0Þ and the quantities V
and L are the typical voltage and spatial length scale of the
Penning trap. Having found the vector and scalar potentials
A and Φ, we can use them in the exact Dirac Hamiltonian
(18), or in its expanded form (27), as we will do in the next
section.

B. The electron in a Penning trap in Newtonian gravity

We derived the Hamiltonian H000 of an electron with
anomalous magnetic moment in an accelerated frame and
an arbitrary electromagnetic field in Sec. II C. Below, we
want to use this Hamiltonian to describe the electron
dynamics in a Penning trap, distorted by acceleration.
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Therefore, we insert the vector and scalar potentials (33)
and (36) into Eq. (27). For the sake of brevity, we will not
present this lengthy expression here, that contains all
relativistic effects on both, the electron and the trap, up
to the order of 1=c2. In this section, we derive the exact
solution of the eigenvalue problem of the Hamiltonian in
the Newtonian limit of low velocities and weak gravita-
tional fields. Treating 1=c2-effects as first order perturba-
tions, we find the solution of the whole eigenvalue problem
of H000, afterwards. Within the Newtonian limit, the non-
relativistic Hamiltonian H0 is obtained by considering the
zeroth order in an 1=c-expansion of H000, only:

H000 ¼ H0 þ Oð1=cÞ; ð41Þ

where

H0 ¼ mc2 þmg · r0 þ er0 · ðQ̂ · r0Þ

þ 1

2m
π2 −

egs
2m

Bð0Þ · s: ð42Þ

In this expression we dropped the auxiliary coordinate u in
favour of the coordinate system r0 ¼ ðx0; y0; z0Þ, given by
Eq. (4). Since u ¼ z0 þ Oð1=cÞ, this coordinate transfor-
mation allowed us to replace the canonical momentum by
π ¼ p0 þ 1

2
er0 × Bð0Þ and the electromagnetic potentials by

Φ ¼ r0 · ðQ̂ · r0Þ and A ¼ − 1
2
r0 × Bð0Þ.

Equation (42) closely resembles the well-known
Hamiltonian of a nonrelativistic electron in a Penning trap
[5]. The essential difference is the presence of the
Newtonian potential mg · r0. The Hamiltonian H0 can be
further simplified by performing two additional transfor-
mations. First, we rotate the coordinate system, such that
the z-axis is aligned with the direction of the magnetic field
Bð0Þ, see Fig. 1. This is conventional in the analysis of
Penning trap experiments [5,6]. As a second step, we shift
the coordinate center by a constant vector, such that it
coincides with the new equilibrium position of the electron

motion, see Fig. 2. Moreover, we apply an unitary trans-
formation H̃0 ¼ U†H0U in order to shift the momentum in
y-direction by a constant value. While a detailed discussion
of these transformations is given in Appendix C, here we
just present the obtained Hamiltonian

H̃0 ¼ mc2 þm
2
ω2
zζ

2 þm
8
ðω2

c − 2ω2
zÞρ2 þ

1

2m
P2

−
ωc

2
ðL3 þ gss3Þ þ

mg2

ω2
z

�
1 −

3

2
cos2θ

�
: ð43Þ

Here, due to the axial symmetry of a Penning trap, it is
convenient to use cylindrical coordinates R ¼ ðρ;φ; ζÞ.
The momentum operator in this coordinate system is
denoted as P. In Eq. (43), moreover,

ωc ¼ eB=m; ð44Þ

ωz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eV=ðmL2Þ

q
: ð45Þ

are the cyclotron frequency ωc and the axial frequency ωz.
The operator H̃0 now is the well known Hamiltonian of

an electron in a Penning trap [5], except for the very last
term in Eq. (43). This term describes the effect of
Newtonian gravity on the electron and depends on the
orientation of the Penning trap with respect to the accele-
ration g. Since this term is constant, we are able to solve the
eigenvalue problem

H̃0ϕ
k;n;l;s
0 ¼ Ek;n;l;sϕ

k;n;l;s
0 ð46Þ

analytically. As the result, we get the well established
energies of the eigenvalue problem of geonium [5], shifted
by this constant gravitational term:

Ek;n;l;s ¼ mc2

þ ℏωz

�
kþ 1

2

�
þ ℏωc0

�
nþ 1

2

�
− ℏωm

�
lþ 1

2

�

þ gs
2
ℏωcsþ

mg2

ω2
z

�
1 −

3

2
cos2 θ

�
: ð47Þ

FIG. 1. From left to right: Change from laboratory frame with
coordinates ðx0; y0; z0Þ, where g points into z0-direction, to the
frame of trap geometry with ðx; y; zÞ, where the z-axis and Bð0Þ
are aligned. The angle θ is determined by the relation
g · Bð0Þ ¼ gB cos θ.

FIG. 2. After the rotation, shown in Fig. 1, the coordinate center
is shifted into the new equilibrium position of the electron
motion.
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Here, following [5], k and n are the non-negative integer
quantum numbers of axial and cyclotron oscillation, while
l ¼ 0; 1; 2;… and s ¼ �1=2 account for the angular
momentum and spin projection of the electron onto the
direction of the magnetic field. Moreover, the corrected
or reduced cyclotron frequency ωc0 and the magnetron
frequency ωm are defined by

ωc0 ¼
	
ωc þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
c − 2ω2

z

q 
.
2; ð48Þ

ωm ¼
	
ωc −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
c − 2ω2

z

q 
.
2: ð49Þ

Together with the axial frequency ωz, these are standard
observables in Penning trap experiments.
As seen from (47), Newtonian gravity leads to a constant

shift of energy levels, only. This shift is independent of the
quantum numbers of the electron in the trap and, therefore,
does not effect frequencies of bound-bound transitions in
geonium. In the next section we will see, that this is not the
case if we take into account relativistic effects.

C. Relativistic energy correction for a gravitationally
influenced electron in a Penning trap

In the previous section we considered the Hamiltonian of
a nonrelativistic electron in a Penning trap in the presence
of a homogeneous Newtonian gravitational field. The
eigenvalues of this Hamiltonian are given by (47), while
the explicit form of corresponding eigenfunctions is given
in Appendix C. In this section we will use these eigen-
functions as a basis for a perturbation analysis in order to
account for relativistic effects. The perturbation H̃I of the
Hamiltonian H̃0 can be formally written as

H̃I ¼ H̃000 − H̃0 þ Oð1=c3Þ: ð50Þ

Within first order perturbation theory, the energy correc-
tions can be expressed by

δEk;n;l;s ¼ hϕk;n;l;sjðH̃000 − H̃0Þjϕk;n;l;si þ Oð1=c3Þ; ð51Þ

where similar to the steps, leading to Eq. (43), we apply a
transformation to cylindrical coordinates R ¼ ðρ;φ; ζÞ
and perform the unitary transformation H̃000 ¼ H̃000ðR;PÞ ¼
U†H000ðr0; p0ÞU, afterwards. However, in contrast to the last
section, the auxiliary coordinate u ¼ z0 − gz02=ð2c2Þ þ
Oð1=c3Þ is now replaced by z0, taking into account the
relativistic corrections of order 1=c2.
While the energy correction (51) can be applied for any

set of quantum numbers n, k, l, s, in the following we want
to use these energy corrections in order to investigate the
relativistic effects on gs-factor measurements, as they are
discussed in [1]. In these experiments the transitions
between the lowest energy levels in geonium are driven

under the change of quantum numbers n and s, while
k ¼ l ¼ 0. For this scenario the energy correction reads

δE0;n;0;s=ℏ ¼ −
1

8
ð1þ 2nþ 2sÞ2δ

−
1

2
ð1þ 2nþ gssÞσ1ðθÞ þ ð1þ nÞσ2ðθÞ;

ð52Þ
where δ is the special relativistic correction due to cyclotron
motion:

δ ¼ ℏω2
c

mc2
: ð53Þ

Moreover, the frequencies

σ1ðθÞ ¼ −2
g2ωc

c2ω2
z
cos2 θ

�
1 −

3

2
cos2 θ

�
ð54Þ

and

σ2ðθÞ ¼
g2

2c2ωc
sin2 θ

�
1 −

9

4
sin2ð2θÞ

�
ð55Þ

are related to the first order nonvanishing gravitational
effects. In these expressions we assumed ωc ¼ ω0

c and
neglected all higher orders of ωz=ωc. In order to investigate
the corrections to the gs-factor formula introduced by [5]
we will use the energy correction (52) in the next section.

D. Gravitational effect on free
electron gs-factor measurements

Having derived the energy (47) of an electron in a
Penning trap and its relativistic correction (52), we are
prepared to discuss the effect of gravity on the result of
free electron gs-factor measurements. Therefore, we follow
the steps, performed by L. S. Brown and G. Gabrielse in
order to obtain the gs-factor formula, presented in [5],
which in our case will contain additional corrections. In
their analysis, the gs-factor is extracted by the measurement
of two frequencies of transitions in geonium, namely the
anomalous frequency and the reduced cyclotron frequency.
The first one we obtain from the spin-flip transition
between the energy levels (n ¼ 1, s¼−1=2) and (n ¼ 0,
s ¼ þ1=2), see Fig. 3. By employing Eq. (47) and Eq. (52),
this frequency can be calculated as

ω̄a0 ¼ ðEþ δEÞ0;0;0;þ1=2=ℏ − ðEþ δEÞ0;1;0;−1=2=ℏ
¼ gsωc=2 − ωc0 − ðgs=2 − 1Þσ1ðθÞ − σ2ðθÞ: ð56Þ

In contrast to previous investigations [1,2,5], this expres-
sion now also contains the gravitational correction fre-
quencies σ1ðθÞ and σ2ðθÞ. In order to extract the free
electron gs-factor from Eq. (56), we can rearrange it
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gs=2 ¼ 1þ ω̄a0 − ðωc − ωc0 Þ þ σ2ðθÞ
ωc − σ1ðθÞ

ð57Þ

and further simplify it, using

ωc − ωc0 ¼ ωm ¼ ω2
z

2ωc0
; ð58Þ

which can be obtained from the definitions of the frequen-
cies (44), (45) and (48), (49). With the help of Eq. (58), we
obtain

gs=2 ¼ 1þ
ω̄a0 −

ω2
z

2ωc0
þ σ2ðθÞ

ωc0 þ ω2
z

2ωc0
− σ1ðθÞ

: ð59Þ

As seen from this expression, the gs-factor formula depends
not only on ω̄a0 , but also on ωc0 and ωz. Since the latter is
obtained by tracking the mirror charge of the electron [5],
we assume ωz to be known and focus on the discussion
of ωc0 .
In the nonrelativistic limit, ωc0 is the frequency of

transitions between the energy levels (n ¼ 0, s ¼ 1=2)
and (n ¼ 1, s ¼ 1=2). In practice, the frequency of this
transition is affected by relativistic effects, see Fig. 3. This
actually measured frequency will be denoted as ω̄c0 . Using
Eq. (47) and Eq. (52), we can express this frequency as

ω̄c0 ¼ ðEþ δEÞ0;1;0;1=2=ℏ − ðEþ δEÞ0;0;0;1=2=ℏ

¼ ωc0 −
3

2
δ − σ1ðθÞ þ σ2ðθÞ: ð60Þ

By this relation, we can express ωc0 in Eq. (59) in terms of
ω̄c0 and the correction frequencies. In order to further
simplify the gs-factor formula, we make a Taylor
expansion of

ω2
z

2ωc0
¼ ω2

z

2ðω̄c0 þ 3δ=2þ σ1ðθÞ − σ2ðθÞÞ

≈
ω2
z

2ω̄c
0 −

1

2

�
ωz

ωc

�
2
�
3

2
δþ σ1ðθÞ − σ2ðθÞ

�
: ð61Þ

In the last step, we insert this expansion in Eq. (59), where
we consider only the leading contributions of δ, σ1ðθÞ and
σ2ðθÞ. We finally obtain

gs=2 ¼ 1þ ω̄a0 þ σðθÞ − ω2
z=ð2ω̄c0 Þ

ω̄c0 þ 3
2
δ − σðθÞ þ ω2

z=ð2ω̄c0 Þ
; ð62Þ

where all gravitational correction frequencies enter the
expression

σðθÞ ¼ 1

2

�
ωz

ωc

�
2

σ1ðθÞ þ σ2ðθÞ: ð63Þ

In the case of vanishing acceleration, i.e., g ¼ 0, this
equation recovers the known gs-factor formula by L. S.
Brown and G. Gabrielse from [5], while the presence of
gravity leads to additional contributions to this formula. In
order to illustrate this, we can expand Eq. (62) into

gs=2 ¼ gð0Þs =2þ δσgs=2; ð64Þ

where gð0Þs is the known expression for the free electron
gs-factor from [5], while the relative shift of gs-factor due to
gravity is of the order

δσgs
gs

∼
1

2

ðg=cÞ2
ω2
c

: ð65Þ

In the recent Penning trap experiments of [1], a cyclotron
frequency of ωc ¼ 2π · 149 GHz is used. For such an
experiment performed in a laboratory on Earth, i.e.,
g ¼ 9.81 m=s2, we obtain δσgs=gs ∼ 6.1 × 10−40.

IV. SUMMARY AND CONCLUSION

In this work we presented a theoretical investigation of
an electron in a Penning trap in the presence of a
gravitational field. In this system we analyzed how the
presence of gravity may affect the result of free electron
gs-factor measurements. Therefore, we considered a single
electron with anomalous magnetic moment in the presence
of electromagnetic fields in the spacetime of homogeneous
acceleration. For this scenario we derived the Hamiltonian
(27), which accounts for the relativistic effects up to order
1=c2. This Hamiltonian has been applied to the electron
dynamics in a gravitational distorted Penning trap, whose
electromagnetic field (33), (36) is given as an exact solution
of Maxwell equations in Rindler spacetime. Making use
of first order perturbation theory, we derived analytical

FIG. 3. Level scheme for spin states and the lowest cyclotron
oscillator states of an electron in a Penning trap. Here, n is the
quantum number of cyclotron oscillation and s ¼ �1=2 refers to
the two spin states of the electron in the Penning trap. The spin-
flip transition ω̄a0 (56) and the cyclotron transition ω̄c0 (61), used
to determine the free electron gs-factor are marked in red. Due to
the n,s-dependence of the relativistic corrections (52), the energy
levels are not equidistant.
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expressions for the energy eigenvalues (47), (52) of that
Hamiltonian up to order 1=c2.
A detailed analysis of these energies has shown, that

Newtonian gravity only leads to constant shifts of the
energy levels of geonium. Thus, Newtonian gravity has no
effect on measured transition frequencies. In contrast, the
relativistic effects of order 1=c2 lead to relative shifts of the
energy levels. We, therefore, argue that these relativistic
corrections may affect the gs-factor measurements, which
rely on transitions in geonium. In order to quantify the
gravitational effects, we derived the expression (62), which
for g ¼ 0 recovers the known gs-factor formula introduced
by L. S. Brown and G. Gabrielse, while for g ≠ 0 it predicts
a shift of the measured gs-factor of δσgs=gs ∼ 6.1 × 10−40.
While this can not be measured in experiments of current
accuracy, it can be enhanced in the case of lower frequen-
cies and higher accelerations and, therefore, may be
important for future studies.

APPENDIX A: COORDINATE
TRANSFORMATION OF DIRAC ACTION

TOWARD RINDLER SPACETIME

In Sec. II B we pointed out, that some attention has to be
drawn to the transformation of the Dirac action toward
Rindler spacetime. The generalization of Dirac equation to
curved spacetime or spacetime of non-geodesic motion is
discussed in a wide range of publications, see for instance
[16–18]. Indeed there are many degrees of freedom—
especially the freedom of an additional spin base trans-
formation of the spinor and/or the Dirac matrices. In this
Appendix, we show the way we have chosen to get the
Dirac action in the form of (9), where the spin base of the
spinor and the Dirac matrices transforms under the spin
representation of the coordinate transformation (3). We
want to emphasize, that this is a choice, that is of advantage
in our case, and by no means an advice how to perform
such a transformation in general.
Starting with the Dirac action (8), we perform the

coordinate transformation (3) in the form of xμ ¼ ∂xμ
∂xμ0 x

μ0 ,
where spacetime indices transform under the common
properties of coordinate differentials. For the derivative
and the volume of the spacetime integral, this means

∂μ ¼
∂xμ0
∂xμ ∂μ0 ; dx4 ¼

�
1þ gu

c2

�
dx04: ðA1Þ

In addition we want to allow, that the spinor and the
Dirac matrices are affected by a spin base transformation
S ¼ Sðxμ0 Þ, which has to be specified later:

ψðxμÞ ¼ Sψ 0ðxμ0 Þ; γμ ¼ ∂xμ
∂xμ0 Sγ

μ0 ðuÞS−1: ðA2Þ

Under these assumptions, the Dirac adjoint spinor reads

ψ̄ðxμÞ ¼ ðψðxμÞÞ†γ0

¼ ðψ 0ðxμ0 ÞÞ†S† ∂x0
∂xμ0 Sγ

μ0 ðuÞS−1: ðA3Þ

Applying the transformations (A1)–(A3) to the Dirac
action, we obtain

S½ψ̄ 0;ψ 0� ¼
Z

ðψ 0ðxν0 ÞÞ†S†S
∂x0
∂xμ0 γ

μ0 ðuÞ

× ½iℏγμ0 ðuÞð∂μ0 þ S−1∂μ0SÞ −mc�ψ 0ðxν0 Þ

×

�
1þ gu

c2

�
dx04; ðA4Þ

where we used ∂xμ
∂xμ0

∂xν0
∂xμ ¼ δν

0
μ0 and SS

−1 ¼ 1. In similarity to

ψ̄ðxμÞ ¼ ðψðxμÞÞ†γ0, we want the Dirac adjoint spinor to
have the form ψ̄ 0ðxν0 Þ ¼ ðψ 0ðxμ0 ÞÞ†γ00 ðuÞ in the new coor-
dinate system. This leads to the condition

S†S
∂x0
∂xμ0 γ

μ0 ðuÞ ¼! γ00 ðuÞ; ðA5Þ

which is suitable to determine S†S, fixing S up to an
unitary transformation. The used spin base transformation,
which satisfies (A5) is

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gu

c2

r
cosh

�
gt
2c

�
γ0

0 ðuÞ

þ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ gu

c2

q sinh

�
gt
2c

�
γ3

0
: ðA6Þ

In terms of the matrices α and β, defined in (13) we get

S ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ gu

c2

q β exp

�
g · αt
2c

�
: ðA7Þ

where g ¼ ð0; 0; gÞ. The action (A3) now reads

S½ψ̄ 0;ψ 0� ¼
Z

ψ̄ 0ðxν0 Þ

× ½iℏγμ0 ðuÞð∂μ0 þ S−1∂μ0SÞ −mc�ψ 0ðxν0 Þ

×

�
1þ gu

c2

�
dx04: ðA8Þ

Finally the additional term γμ
0 ðuÞS−1∂μ0S ¼ 0 turns out to

be zero and, thus, Eq. (A7) results in Eq. (9).

APPENDIX B: REMINDER ON
COVARIANT DERIVATIVES

What follows is a short reminder on covariant deriva-
tives, needed to formulate the covariant Maxwell equations
in Rindler spacetime. For a detailed discussion of this topic,
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see for instance [27,28]. The covariant derivative∇μ, acting
on a tensor Aν with one upper or Aν with one lower index, is
connected to the partial derivative by

∇μAν ¼ ∂μAν þ Γν
μρAρ; ðB1Þ

∇μAν ¼ ∂μAν − Γρ
μνAρ; ðB2Þ

where the Christoffel symbols Γρ
μν are constructed by first

partial derivatives of the metric

Γρ
μν ¼ 1

2
gρσð∂μgσν þ ∂νgσμ − ∂σgμνÞ: ðB3Þ

Therefore the covariant Lorentz gauge condition for a four-
vector potential Aμ ¼ ðΦ=c;−AÞ is

∇μAμ ¼ ∂μAμ þ Γμ
μρAρ ¼ 0; ðB4Þ

where the indices of Aμ ¼ gμνAν are risen up with the
inverse metric gμν. The same way the electromagnetic
field strength tensor with two upper indices Fμν ¼
gμρgνσFρσ is constructed from Fμν ¼ ∂μAν − ∂νAμ. The
covariant derivative of this quantity is

∇ρFμν ¼ ∂ρFμν þ Γν
ρσFμσ þ Γμ

ρσFσν; ðB5Þ

∇νFμν ¼ ∂νFμν þ Γν
νσFμσ; ðB6Þ

where in the special case of the vacuum Maxwell equa-
tions ∇νFμν ¼ 0, for ρ ¼ ν in (B6) the term Γμ

σνFνσ ¼ 0
vanishes, which gives Maxwell equations in the form
of Eq. (30).

APPENDIX C: TOWARD GEONIUM IN
NEWTONIAN GRAVITY

In this Appendix we discuss the steps and transforma-
tions, leading to the Hamiltonian (43), its energies En;k;l;s
and the corresponding eigenfunctions ϕk;n;l;s. Therefore,
the starting point isH0, from (42), which is the Hamiltonian
of geonium, affected by a homogeneous gravitational field:

H0 ¼ mc2 þmg · r0 þ er0 · ðQ̂ · r0Þ

þ 1

2m
π2 −

egs
2m

Bð0Þ · s; ðC1Þ

(i) In the first step, we rotate the coordinate system from
the laboratory frame with the coordinates r0 ¼
ðx0; y0; z0Þ, where the z0-axis points into direction
of g, to the frame of trap geometry with r ¼ ðx; y; zÞ,
where the z-axis and Bð0Þ are aligned:

x0 ¼ x cos θ − z sin θ; y0 ¼ y;

z0 ¼ z cos θ þ x sin θ: ðC2Þ

This transformation introduces the angle θ between
the direction of acceleration and the magnetic field,
as it is shown in Fig. 2. The Hamiltonian (C1) in the
rotated system reads

H0 ¼ mc2 þmgðz cos θ þ x sin θÞ

−
eV
4L2

ðx2 þ y2 − 2z2Þ þ 1

2m
p2

þ e2B2

8m
ðx2 þ y2Þ − eB

2m
L3 −

egsB
2m

s3: ðC3Þ

(ii) In the second step, the coordinate dependent
Newtonian potential in (C3) is absorbed by an
additional coordinate transformation to coordinates
R ¼ ðX; Y; ZÞ, that shifts the coordinate center by a
constant vector, such that it coincides with the new
equilibrium position of the electron motion, as it is
shown in Fig. 2:

x ¼ X þ 2g sin θ=ω2
z ; y ¼ Y;

z ¼ Z − g cos θ=ω2
z ; ðC4Þ

Moreover, we have to absorb the upcoming constant
shift of the linearmomentuminY-directionbyanunitary
transformation UðYÞ¼expðimgsinθωcY=ðℏω2

zÞÞ of
the Hamiltonian H̃0¼UðYÞ†H0UðYÞ and the elec-
tron wave function ϕðRÞ ¼ UðYÞϕ0ðRÞ. After that,
the coordinate dependent Newtonian potential in H̃0

is replaced by an additive constant value:

H̃0 ¼ mc2 þm
2
ω2
zZ2 þm

8
ðω2

c − 2ω2
zÞðX2 þ Y2Þ

þ 1

2m
P2 −

ωc

2
ðL3 þ gss3Þ

þmg2

ω2
z

�
1 −

3

2
cos2θ

�
; ðC5Þ

where we replaced the electromagnetic quantities by
the frequencies (44) and (45). Expressing R in
cylindrical coordinates

X ¼ ρ cosφ; Y ¼ ρ sinφ; Z ¼ ζ; ðC6Þ

we obtain the Hamiltonian H̃0 as shown in (43). The
solution ϕk;n;l;sðRÞ ¼ UðYÞϕk;n;l;s

0 ðRÞ to the eigen-
value problem (46) is

ϕk;n;l;sðRÞ¼ 1ffiffiffiffiffiffi
2π

p UðρsinφÞeiðl−nÞφRn;lðρÞWkðζÞjsi;

ðC7Þ

where

GRAVITATIONAL EFFECTS ON GEONIUM AND FREE … PHYS. REV. D 100, 064029 (2019)

064029-11



Uðρ sinφÞ ¼ exp

�
img sin θωcρ sinφ

ℏω2
z

�
ðC8Þ

Rn;lðρÞ ¼
�
mωc̄

2ℏ

�ð1þl−nÞ=2
ffiffiffiffiffiffiffi
2n!
l!

r

× e−
mωc̄ρ

2

4ℏ ρl−nLl−n
n

�
mωc̄

2ℏ
ρ2
�

ðC9Þ

WkðζÞ¼
�
mωz

πℏ

�
1=42−k=2ffiffiffiffi

k!
p ×e−

mωzζ2

2ℏ Hk

� ffiffiffiffiffiffiffiffiffi
mωz

ℏ

r
ζ

�

ðC10Þ

where we defined ωc̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
c − 2ω2

z

p
and have

used the Laguerre polynomials Ll−n
n , the Hermite

polynomials Hn and the spin basis jsi ¼ j�1=2i.
The wave functions (C7) are normalized with respect
to the scalar product hϕ1jϕ2i0 ¼

R
ϕ†
1ϕ2ρdρdφdζ.

We are allowed to apply first order perturbation theory as
usual in flat space, using the scalar product hϕ1jϕ2i0, since
the result would coincide with the energy corrections,
obtained from scalar product (17) to desired order. The
justification of this procedure is motivated very detailed
in [29].
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