
 

Gravitational lensing of gravitational waves: Rotation of polarization plane
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Similar to the light, gravitational waves traveling in multiple paths may arrive at the same location if
there is a gravitational lens on their way. Apart from the magnification of the amplitudes and the time delay
between the gravitational wave rays, gravitational lensing also rotates their polarization planes and causes
the gravitational wave Faraday rotation. The effect of the Faraday rotation is weak and can be ignored. The
rotation of the polarization plane results in the changes in the antenna pattern function, which describes the
response of the detector to its relative orientation to the gravitational wave. These effects are all reflected in
the strain, the signal registered by the interferometers. The gravitational wave rays in various directions
stimulate different strains, mainly due to different magnification factors, the phases and the rotation of the
polarization plane. The phase difference mainly comes from the time delay. Moreover, the rotation of the
polarization plane seemingly introduces the apparent vector polarizations, when these strains are compared
with each other. Because of the smallness of the deflection angles, the effect of the rotation is also
negligible.
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I. INTRODUCTION

The detection of the 11 gravitational wave (GW) events
by LIGO/Virgo collaborations [1–7] confirmed the pre-
diction of Einstein’s general relativity (GR) [8,9], and
marked the new era of GW astronomy and astrophysics.
Among them, GW170817, together with GRB 170817A,
verified that GWs in GR are traveling at the speed of light
[5,10–12]. So GWs would experience the similar gravita-
tional lensing by the gravitational potential on their way
[13–16]. In the geometrical optics regime, their trajectories
would bend, and then might come together at the Earth,
enabling the detection of all of them. Finally, the ampli-
tudes of these GWs change by different factors due to the
focusing effect of the lensing.
In the gravitational lensing of light, strong lensing is

referred to the case where the images of the lensed object
can be distinguished by the observer. Einstein rings or arcs
are also within the regime of strong lensing. If the
distortions of the images are much smaller, the gravitational
lensing is said to be weak [17]. Similar concepts might be
defined for gravitational lensing of GWs, where “images”
cannot be seen, but heard. Strong lensing of GWs can be
used to put constraints on modified theories of gravity,
formation, and evolution of structures, and the Hubble
constant H0 [18,19]. The cosmology and the speed of the
GW can also be constrained with the strong lensing of both

GW and light [20,21]. The primordial dark matter power
spectrum and the growth of structure can be constrained
using the weak lensing of GWs based on the method in
Ref. [22]. The extension of the previous method could
discriminate different cosmological models (ΛCDM,
dynamical dark energy/quintessence, modified gravity
et al.) [23]. These models can also be constrained with
the future joint inference of standard siren and GW weak
lensing [24]. In this work, we primarily consider the strong
GW lensing.
There are also some differences between the GWand the

light. For example, GWs have much longer wavelengths
than the light. GWs, generated by a binary star system and
traveling in various directions, are monochromatic with
varying frequencies in time and differ by definite phases
from each other [25,26], so they are coherent waves.
Usually, they arrive at the detector at well-separated times,
and are measured individually; if the earth nearly lines up
with the lens and the binary stars, it is possible to observe
the lensed GWs simultaneously, which might produce
interesting phenomena of beat, the interference between
GWs [27]. Other wave effects of GW could be found in
[16,28–30]. In contrast, lights, emanating from a star,
possess random frequencies and phases, so are incoherent.
And the third difference is related to the methods of

detection, or the variables used to describe the light and the
GW. For the light, it is the intensity that is usually
measured, which is a scalar quantity, so does not fully
explore the vector nature of the light. To the contrary,
interferometers measure the strain, the relative change in
the arm lengths. The strain, or rather the antenna pattern
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function (APF) [31], which is basically the strain for GWs
with the unit amplitude, depends on the polarization of the
GW. Therefore, it reflects the tensorial nature of GWs,
which is the main target of this work.
GWs in GR have two polarizations, the well-known plus

(þ) and cross (×) polarizations [32]. These polarizations
are transverse, meaning the GW oscillates in the plane
perpendicular to the direction of propagation. This plane
can be called the polarization plane and is parallel trans-
ported along the null geodesic of the GW. When the null
trajectory bends due to the presence of a gravitational lens,
the polarization plane rotates accordingly. It is thus
expected that the APF for the lensed GW will be different
from the one for the GW that is not lensed. Likewise, the
APFs for the lensed GWs in different paths will also differ
from each other, depending on their directions.
The rotation of the polarization plane was not considered

in the previous studies on the gravitational lensing of GWs
[13,14,21,33–37], except a short remark in a footnote in
Ref. [15]. In the studies of the wave nature of GWs in
gravitational lensing [16,30], the tensor aspects of GWs is
completely ignored in order to solve the Kirchhoff’s
equation easily. Effectively, they treated the GWas a scalar
field. In this work, this rotation effect will be specifically
studied, discussing how the APF changes and what
contributes to the modified strain in the gravitational
lensing caused by a Newtonian potential. Since the
Newtonian potential is very weak, the deflection angle is
small, so this effect can be safely ignored in most situations,
which will be clarified in the following discussion.
The difference in APFs or the strains for different GWs

could be explained by the gravitational lensing. However,
it might also be simply explained by the possibility that
GWs come from sources at distinct locations but from
almost the same direction. So there seems to be a
degeneracy. One way to resolve the degeneracy is to
realize that gravitational lensing barely affects the fre-
quency evolution of the signal. In fact, the frequency
evolution of the observed GW does change due to the
inhomogeneous matter distribution along the path of the
GW as well as the expansion of the universe according to
Refs. [38–40]. However, interferometers have difficulties
in detecting this effect, as the frequency shift is generally
small for ground-based detectors and slightly larger for
LISA [40,41]. Moreover, the mismatch would be at most
10−3 if a template without this effect considered were
used for LISA. In addition, the recent paper [42] con-
cludes that LISA cannot measure the peculiar acceleration
of a binary black hole system, which causes the afore-
mentioned change in the frequency evolution, during the
nominal 4 years’ run. Therefore, from the point of view of
the observation, gravitational lensing basically does not
affect how the frequency of the detected GW varies over
the course of detection. Based on this, the statistics
method provided in Ref. [43] can be used to tell whether

some GW events detected by the LIGO/Virgo network are
lensed or not. So in this work, we will also concentrate on
the lensed GW events that could be detected by the
LIGO/Virgo network.
This work is organized in the following way. Section II

reviews how the GW propagates in a generic spacetime
background in the geometric optics limit; three propagation
effects will be discussed, including the rotation of the
polarization plane and the GW Faraday rotation. Section III
discusses how the polarization plane rotates due to the
gravitational lensing caused by a point mass. After that, the
strain of the lensed GW is calculated in Sec. IV. Finally, a
brief discussion and conclusion are given in Sec. V.
Appendix derives a general formula to calculate the strain.
Throughout this work, the geometrized units (G ¼ c ¼ 1)
are used. Round brackets enclosing indices imply symmet-
rization, while square brackets mean antisymmetrization,
e.g., TðμνÞ ¼ ðTμν þ TνμÞ=2, and T ½μν� ¼ ðTμν − TνμÞ=2.

II. THE PROPAGATION OF
GRAVITATIONAL WAVES

In the short wavelength limit, the Einstein’s equation
determines three major properties of GWs. First, GWs
propagate in null geodesics. Second, the polarization
tensors are parallel transported along the trajectories, and
the number of gravitons is conserved; since the direction of
the propagation changes, the polarization plane also rotates
[15]. Third, the GW Faraday rotation occurs at high enough
orders [44–46]. In the following, these three properties will
be analyzed in order.
GWs are perturbations hμν to the spacetime metric gμν ¼

gBμν þ hμν with gBμν describing the background geometry.
When the wavelength λ of the GW is much smaller than
the characteristic curvature radius R of the background
geometry, the geometric optics limit applies. In the trans-
verse-traceless (TT) gauge (∇νh̄μν ¼ 0 and gμνB h̄μν ¼ 0),
it satisfies the following perturbed vacuum Einstein’s
equation [47],

∇ρ∇ρh̄μν þ 2RB
μρνσh̄ρσ ¼ 0; ð1Þ

where h̄μν ¼ hμν − gBμνg
ρσ
B hρσ=2 is the trace-reversed per-

turbation,∇μ is the covariant derivative compatible with gBμν
and RB

μρνσ is its curvature tensor. In the following, the
raising and the lowering indices are done with gBμν and its
inverse gμνB . One can write the GW as h̄μν ¼ ℜ½ðAμν þ
ϵBμν þ � � �ÞeiΦ=ϵ� with ℜ standing for the real part [32].
Here, ϵ is a formal expansion parameter which indicates
that the terms multiplied by ϵn are of the order of ðλ=RÞn.
The traceless condition leads to Aμ

μ ¼ Bμ
μ ¼ 0. Define

lμ ¼ −∇μΦ. At the leading orders Oð1=ϵ2Þ and Oð1=ϵÞ,
Eq. (1) gives lμlμ ¼ 0, and
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lρ∇ρAμν þ
1

2
Aμν∇ρlρ ¼ 0; ð2Þ

and the Lorenz gauge is equivalent to Aμνlν ¼ 0.
Since ∇μlν ¼ −∇μ∇νΦ ¼ ∇νlμ, one also finds out that
lν∇νlμ ¼ 0. Indeed, in the geometric optics limit, lμ is null
and parallel transported along its own integral curve.
GWs have polarizations [48,49]. To express the polari-

zations in a convenient way, one associates the graviton
with a tetrad basis flμ; nμ; xμ; yμg, which are parallel
transported along the trajectory of the graviton, and satisfy
−lμnμ ¼ xμxμ ¼ yμyμ ¼ 1 with the remaining contractions
vanishing. For convenience, the Newman-Penrose (NP)
null tetrad flμ; nμ; mμ; m̄μg can also be used with mμ ¼
ðxμ − iyμÞ= ffiffiffi

2
p

and m̄μ ¼ ðxμ þ iyμÞ= ffiffiffi
2

p
, which is suitable

for describing radiations [50,51].
For the two GW polarizations in GR, their polarization

tensors are defined as

eþμν ¼ xμxν − yμyν; e×μν ¼ xμyν þ yμxν: ð3Þ

These tensors are also parallel transported along the
trajectory of the graviton, i.e.,

lρ∇ρePμν ¼ 0; P ¼ þ;×: ð4Þ

Usually, one chooses a gauge such that h̄0μ ¼ 0, and the
spatial components ePij are often used to represent the
polarization tensors [31,48]. Equation (4), together with
Eq. (2), leads to the evolution of the amplitudes,

lμ∇μAP þ 1

2
AP∇μlμ ¼ 0: ð5Þ

This shows that the leading order polarizations evolve
separately and in exactly the same way. Although the
amplitudes vary along the trajectories of gravitons, the
numbers of gravitons are constant, i.e., ∇μ½jAPj2lμ� ¼ 0.
The gauge invariant quantities describing the GW are

some components of the Weyl tensor Cμνρσ, i.e., the NP
variable Ψ4 ¼ Cμνρσnμm̄μnρm̄σ [50,51]. A short calculation
gives

Ψð1Þ
4 ¼ 1

2
ℜðAþeiΦÞ þ i

2
ℜðA×eiΦÞ; ð6Þ

at the leading order Oð1=ϵ2Þ. There is a freedom to choose
the NP tetrad. In particular, one can carry out a spin, i.e.,
l0μ ¼ lμ, n0μ ¼ nμ and m0μ ¼ eiφmμ for some angle φ, then
Ψ4 transforms according to [52]

Ψ4 → Ψ0
4 ¼ e−i2φΨ4: ð7Þ

The angle φ ¼ φþ at which ℑðΨ0
4Þ ¼ 0 is called the

polarization angle [46], given by

φþ ¼ 1

2
arctan

ℑðΨ4Þ
ℜðΨ4Þ

;

with ℑ representing the imaginary part. At the leading order
[Oð1=ϵÞ],

φð1Þ
þ ¼ 1

2
arctan

ℜðA×Þ
ℜðAþÞ :

Due to Eq. (5), lμ∇μφ
ð1Þ
þ ¼ 0, so there is no GW Faraday

rotation at this order Oð1=ϵ2Þ. The GW Faraday rotation
has been known for a while, but here, we examine this
effect in the context of the gravitational lensing for the
first time.
At the next order Oð1Þ, one finds out that [32]

lρ∇ρBμν þ
1

2
Bμν∇ρlρ ¼

i
2
∇ρ∇ρAμν þ iRB

μρνσAρσ; ð8Þ

which shows that the evolution of Bμν is affected by Aμν as
well as the background geometry. This feature also appears
in even higher order corrections to Aμν, which is discussed
in Ref. [53]. This behavior would generally lead to the GW
Faraday rotation [44–46]. The Lorenz gauge condition for
Bμν reads Bμνlν ¼ i∇νAμν, so Bμν is not transverse to lμ. In
the following, the focus will be on the propagation of GWs
in the background generated by a Newtonian potential (the
lens). As the Newtonian potential is very weak, and Bμν is
at least of second order in the Newtonian potential, so it will
be ignored completely.

III. GRAVITATIONAL LENSING OF
GRAVITATIONAL WAVES

We only work in the geometrical optical regime in this
work. Consider the gravitational lensing caused by a
Newtonian potential M=r. After passing the lens, the

deflected 4-velocity of the GW is approximately lμ ¼
ð1; ⃗l þ α⃗Þ in the limit where the lens is far away from

both the source of the GW and the detector. Here, ⃗l is the
original direction of the GW, and α⃗ ¼ −4Mb⃗=b2 is the
deflection vector [26], where b⃗ is the impact vector, which

is perpendicular to ⃗l and whose magnitude is the distance of
the closest approach. One also determines the remaining of
the tetrad basis, which are

nμ ¼ 1

2
ð1; −⃗lÞ; ð9Þ

xμ ¼
�
1

2
α⃗ · x⃗; x⃗ −

1

2
ðα⃗ · x⃗Þ⃗l

�
; ð10Þ

yμ ¼
�
1

2
α⃗ · y⃗; y⃗ −

1

2
ðα⃗ · y⃗Þ⃗l

�
: ð11Þ
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Here, a set of orthonormal 3-vectors f⃗l; x⃗; y⃗g (triads) is

introduced, satisfying ⃗l ¼ x⃗ ∧ y⃗.
When the GW is emitted and far away from the lens,

assume that the components of the trace-reversed metric
perturbation h̄μν are h̄0μ ¼ 0 and h̄ij ¼ ĀijeiΦ, where Āij ¼
Āþēþij þ Ā×ē×ij with

ēþij ¼ xixj − yiyj; ē×ij ¼ xiyj þ yixj: ð12Þ

ēþij and ē×ij would be the polarization matrices if there were
no lens. For a binary system of two stars with masses m1

and m2, circling around each other in an orbit of radius a,
the amplitudes during the inspiral phase are approximately
given by [26],

Āþ ¼ A
�
−
1þ cos2ι

2
cos 2ψ þ i cos ι sin 2ψ

�
; ð13Þ

Ā× ¼ A
�
i cos ι cos 2ψ þ 1þ cos2ι

2
sin 2ψ

�
; ð14Þ

whereA ¼ 4m1m2

aR e−i2ϖ, R is the distance from the source to
the observer, ψ is the polarization angle and ðι;ϖÞ
represents the angular direction of ⃗l in the source frame
with ι actually the inclination angle. From these expres-
sions, one finds out that the amplitudes also depend on the
direction (ι,ϖ) and the polarization angle ψ of the GW. The
contribution of the angle ϖ can be absorbed into the phase
Φ. So the GWs emanating from the binary star system in
various directions not only have different amplitudes, but
also differ in the initial phase.
For the Schwarzschild lens considered, there will be two

“images” of the source, which are located at the angles [33]

θ� ¼ β �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ 4θ2E

p
2

; ð15Þ

as shown in Fig. 1. Here, θE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M
c2

DLS
DSDL

q
is the Einstein

angle, and if the cosmological evolution is considered, one
has [33]

ð1þ zLÞ
DLDS

DLS
¼ 1

χðzLÞ − χðzSÞ
; ð16Þ

χðzÞ ¼
Z þ∞

z

dζ
HðζÞD2ðζÞð1þ ζÞ2 ; ð17Þ

where, in the denominator of the integrand, HðzÞ is the
Hubble parameter at the redshift z and DðzÞ is the angular
diameter distance, so DS ¼ DðzSÞ and DL ¼ DðzLÞ are the
angular diameter distances of the source and the lens,
respectively. In this work, we mainly focus on the case
where z≲ 2 because according to Ref. [54] the probability

for lensed GWs from neutron star-neutron star mergers
peaks around z ¼ 2, while the probability for lensed GWs
from black hole-black hole mergers peaks around z ¼ 4.
Because of the focusing effect of the lens, the amplitudes of
are enhanced by

μ� ¼ jθ�jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jθ2þ − θ2−j

p ; ð18Þ

respectively. The time delay between the two rays is

Δt ¼ 4Mð1þ zLÞ
�
θ2þ − θ2−
2θ2E

þ ln
θþ
−θ−

�
; ð19Þ

which contributes partially to the phase difference,

ΔΦ ¼ ωΔt: ð20Þ

Now, after passing by the gravitational lens, the polari-
zation tensors for the GW are given by

ePμν ¼
�

0 − 1
2
ēPikα

k

− 1
2
ēPjkα

k ēPij þ ẽPij

�
; P ¼ þ;×; ð21Þ

according to Eq. (3), where ẽPij are the corrections to ēPij
given by

ẽþij ¼ −
1

2
ðα⃗ · x⃗Þēxij þ

1

2
ðα⃗ · y⃗Þēyij; ð22Þ

FIG. 1. Geometry of a Schwarzschild lens. S is the position of
the binary star system, and the interferometer is at O. L represents
the gravitational lens, and the thick dashed line is the optical axis.
The vertical squares represent the observer, lens and source
planes, from the left to the right. β is the misalignment angle
between the optical axis and the line connecting O to S. Two GW

rays 1 and 2 are emitted from S, initially in the directions of ⃗l1 and
⃗l2, respectively. After passing the lens plane, their directions

change, given by ⃗l01 and ⃗l02, forming angles θ� with the optical
axis. The deflection angles are α1 and α2, respectively.
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ẽ×ij ¼ −
1

2
ðα⃗ · y⃗Þēxij −

1

2
ðα⃗ · x⃗Þēyij: ð23Þ

Finally, in the above expressions, ēxij ¼ lixj þ xilj and
ēyij ¼ liyj þ yilj are the vector polarization matrices for
the unperturbed GW. Therefore, after passing a gravita-
tional lens, the GW changes its direction of motion. Since
the polarization tensors ePμν are parallel transported, they are
also modified [15].
Note that the gravitational lensing inducing vector

polarizations (ēxij and ēyij) is an illusion. In fact, the
appearance of ēxij and ēyij is simply due to the use of the

original triads f⃗l; x⃗; y⃗g to describe the changed GW
polarizations, not because of the existence of some vector
degrees of freedom as in certain alternative metric theories
of gravity [49,55–57]. The gravitational lensing causes the

rotation of the propagation vector of the GW, from ⃗l to
⃗l0 ¼ ⃗l þ α⃗. Note that neither x⃗ nor y⃗ is perpendicular to ⃗l0.
This can be remedied by adding to xμ and yμ some linear
combinations of lμ, xμ and yμ, for example, x0μ ¼ xμ−
ðα⃗ · x⃗Þlμ=2 ¼ ð0; x⃗ − ðα⃗ · x⃗Þ⃗lÞ and y0μ ¼ yμ − ðα⃗ · y⃗Þlμ=2 ¼
ð0; y⃗ − ðα⃗ · y⃗Þ⃗lÞ. Now, call

x⃗0 ¼ x⃗ − ðα⃗ · x⃗Þ⃗l; y⃗0 ¼ y⃗ − ðα⃗ · yÞ⃗l: ð24Þ

The use of the (primed) triads f⃗l0; x⃗0; y⃗0g to represent the
GW polarizations will not introduce the apparent vector
polarizations. To sum up, the appearance of the vector
polarizations is simply because one expresses the polari-
zation matrices in terms of the original (unprimed) triads.
There are still two tensor polarizations.
Equation (24) shows that the triad gets rotated by a small

angle, after the GW passes the lens. This effect is displayed
in Fig. 1, where the red triad represents the initial basis

f⃗l; x⃗; y⃗g, and the blue one represents the final basis

f⃗l0; x⃗0; y⃗0g for the GW ray 1. In order to calculate the
strain, one has to compute the APFs first, which is the topic
of the next section.

IV. THE MEASUREMENT OF LENSED
GRAVITATIONAL WAVES

When the GW reaches the interferometers, it causes the
change in the lengths of the arms. This kind of the response
of the detector is quantified by the so-called antenna pattern
function [31]. To calculate this function, one needs com-
pute the Riemann tensor of the GW.
According to Ref. [53], the leading order of the Riemann

tensor for the GW is given by

RGW
μνρσ ¼ −2ω2eiΦl½μAν�½ρlσ�; ð25Þ

with ω the frequency of the GW. So the electric part of it is

RGW
tjtk ¼

X
P¼þ;×

ω2

2
eiΦð2eP

0ðjlkÞ þ ePjkÞ: ð26Þ

Let Djk ¼ 1
2
ðX̂jX̂k − ŶjŶkÞ represent the configuration of

an interferometer, with unit vectors X̂j and Ŷj pointing in
the directions of the arms. The strain is thus given by

hðtÞ ¼ −2Djk

Z
dt
Z

dt0RGW
tjtk ; ð27Þ

whose justification is relegated in the Appendix.
Performing the double integration and dropping the factor
of the amplitude and the phase, the antenna pattern
functions are simply given by

Fþ ¼ F̄þ −
1

2
ðα⃗ · x⃗ÞF̄x þ 1

2
ðα⃗ · y⃗ÞF̄y; ð28Þ

F× ¼ F̄× −
1

2
ðα⃗ · yÞF̄x −

1

2
ðα⃗ · x⃗ÞF̄y; ð29Þ

for the ground-based detectors, where F̄P ¼ DijēPij are the
antenna pattern functions for the unperturbed GW. FP

depend not only on the unperturbed polarization matrices
ēPij, but also the corrections ẽPij. These relations show that
the APFs get modified by the gravitational lensing.
Now, compare the APFs for the two GW rays 1 and 2.

The initial triads for these GW rays are f⃗l1; x⃗1; y⃗1g and

f⃗l2; x⃗2; y⃗2g [58], respectively. Let δ⃗ ¼ ⃗l1 − ⃗l2, whose mag-

nitude is δ ¼ arccosð⃗l1 · ⃗l2Þ, a small angle. Then, x⃗2 and y⃗2
can be approximately expressed as x⃗2 ¼ x⃗1 þ ðδ⃗ · x⃗1Þ⃗l1 and
y⃗2 ¼ y⃗1 þ ðδ⃗ · y⃗1Þ⃗l1 up to an arbitrary rotation around ⃗l1.
One can thus relate the polarization tensors of the second
GW to those of the first one in the following way,

ēþ2;ij ¼ ēþ1;ij þ ðδ⃗ · x⃗1Þēx1;ij − ðδ⃗ · y⃗1Þēy1;ij; ð30Þ

ē×2;ij ¼ ē×1;ij þ ðδ⃗ · x⃗1Þēy1;ij þ ðδ⃗ · y⃗1Þēx1;ij: ð31Þ

Therefore, the relations between the APFs for the two
gravitons are,

Fþ
2 ¼ Fþ

1 þ ðδ⃗0 · x⃗1ÞFx
1 − ðδ⃗0 · y⃗1ÞFy

1; ð32Þ

F×
2 ¼ F×

1 þ ðδ⃗0 · x⃗1ÞFy
1 þ ðδ⃗0 · y⃗1ÞFx

1; ð33Þ

where Fx
1 ≈Dijēx1;ij, Fy

1 ≈Dijēy1;ij, and δ⃗0 ≡ ⃗l01 − ⃗l02 ¼
δ⃗ − ðα⃗2 − α⃗1Þ.
In an ideal situation, one can measure the angle

δ0 ¼ −ðθþ − θ−Þ, where the overall minus indicates that
δ⃗0 points downward in Fig. 1. Since the deflections α1 and
α2 are small, it is a good approximation that the vectors δ⃗0,
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δ⃗, α⃗1, and α⃗2 are parallel to each other. Therefore,
δ0 ¼ δþ α1 − α2. From Fig. 1, one recognizes that
b1 ¼ θþDL, b2 ¼ θ−DL, and b1b2=D2

L ¼ θþθ− ¼ −θ2E,
so δ ¼ ð1 − 4M

θ2EDL
Þδ0. In this way, the initial and the final

angular separations of the two GW rays are related. As long
as δ is known, it is possible to infer the initial phase
difference between the rays 1 and 2.
To fully appreciate the effects of the gravitational

lensing, the strains for the two GW rays 1 and 2 should
be compared. The strain caused by the GW 2 is related to
that of the GW 1 in the following way,

h2 ¼ Aþ
2 F

þ
2 þ A×

2F
×
2

≈ e−iΔΦ
μ−
μþ

fh1 þ ½ðδ⃗ · x⃗1ÞAx
1 − ðδ⃗ · y⃗1ÞAy

1�Fþ
1

þ ½ðδ⃗ · x⃗1ÞAy
1 þ ðδ⃗ · y⃗1ÞAx

1�F×
1

þ Aþ
1 ½ðδ⃗0 · x⃗1ÞFx

1 − ðδ⃗0 · y⃗1ÞFy
1�

þ A×
1 ½ðδ⃗0 · x⃗1ÞFy

1 þ ðδ⃗0 · y⃗1ÞFx
1�g; ð34Þ

where h1 ¼ Aþ
1 F

þ
1 þ A×

1F
×
1 with AP

1 ≈ μþĀP
1 [refer to

Eqs. (13) and (14)], and the phase difference ΔΦ is given
by Eq. (20). Ax

1 and Ay
1 are approximately

Āx ¼ A
�
−
1

2
sin 2ι cosψ þ i sin ι sinψ

�
; ð35Þ

Āy ¼ A
�
1

2
sin 2ι sinψ þ i sin ι cosψ

�
; ð36Þ

multiplied by μþ and evaluated along the GW ray 1 at the
observer, respectively.
The differences in the strains h1 and h2 are multiple.

First, they differ from each other in phase, which comes
from (1) the time delay Δt [refer to Eq. (20)], and
(2) propagation direction in the source frame, i.e., ϖ in
Eqs. (13) and (14). Second, the magnification factors (μ�)
are not the same. Third, the polarization planes underwent
distinct rotations, which is the reason for the existence of
the terms in the curly brackets except h1.

V. DISCUSSION AND CONCLUSION

For a lens of mass ð106–1012ÞM⊙ and β ∼ 1 arcsecond,
the deflection angle α ¼ 4M=b is about 1 arcsecond.
Further decreasing the misalignment angle β causes even
smaller α. Although we only work in the geometrical
optical regime in this work, for the most cases, the terms
with δ and δ0 in Eq. (34) are smaller than h1 by at least 6
orders of magnitude, so they can be safely ignored. This
justifies the ignorance of the rotation of the polarization
plane in Refs. [16,30], although these works discussed the
wave nature of the GW. In addition, Refs. [13,14,21,33–37]
neglected the effects of the rotation because the authors

mainly considered lensed signals that are well separated in
time. The particularly interesting situation where there is a
time window when the lensed signals are simultaneously
observed is discussed in Ref. [27].
The difference between h1 and h2 mainly comes from the

magnification and the phase shift caused by the time delay.
The ratio μ−=μþ between the magnification factors of the
two GW rays can be much smaller than 1, especially when
the misalignment angle β is large, which can be estimated
as

μ−
μþ

¼ −
θ−
θþ

≈
ðθE=βÞ2

1þ ðθE=βÞ2
; ð37Þ

by Eqs. (15) and (18). The magnification factors are very
close to each other when β ≪ 1 arcsecond. In this case, the
geometric optics might not be sufficient to describe the
lensing. The phase difference ΔΦ is very huge as the time
delay could ranges from a few days to a few months. So in
the geometric optics regime, the change in the strain is
dominated by the magnification and the phase shift.
Finally, the GW Faraday rotation is also one interesting

phenomena, which is due to the interaction between the
GW and the background geometry [44–46]. However, it
happens at higher orders in the short-wavelength limit, so
unlikely be observed in the near future.
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APPENDIX: STRAIN

In this Appendix, Eq. (27) is derived. One starts with the
linearized geodesic deviation equation [32]

ẍj ¼ −RGW
tjtk x

k; ðA1Þ

where xj represents the relative displacement between two
test particles, e.g., the mirrors used in the interferometers.
Integrating twice gives the change in the relative displace-
ment,

δxj ¼ −xk0

Z
dt
Z

dt0RGW
tjtk ; ðA2Þ

where xk0 stands for the initial relative displacement. Here,
one assumes that the total relative displacement xjðtÞ
remains the same, i.e., xjðtÞ ¼ xj0, which is a good
approximation as the GW is weak.
Now, consider the effect of the GWon an interferometer

whose arms have the initial length L, and are in the
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directions x̂j1 and x̂j2. The change in the length of
the first interferometer arm in the direction given by
x⃗1=L ¼ x̂1 is

δL1 ¼ δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δjkx

j
1x

k
1

q
¼ −

xj1x
k
1

L

Z
dt
Z

dt0RGW
tjtk : ðA3Þ

One can obtain the similar expression for the second arm.
Then the strain is

hðtÞ ¼ δL1 − δL2

L
¼ −2Djk

Z
dt
Z

dt0RGW
tjtk ; ðA4Þ

where Djk ¼ ðx̂j1x̂k1 − x̂j2x̂
k
2Þ=2. From the derivation, one

understands that the above expressions applies to any
metric theory of gravity in any gauge. Since the angle
arccos ðx̂1 · x̂2Þ between the two arms is not specified, this
result also applies to Einstein Telescope [59]. In the
transverse-traceless (TT) gauge, RGW

tjtk ¼ −ḧTTjk =2, then
one recovers the usual expression for the strain,

hðtÞ ¼ DjkhTTjk : ðA5Þ

Equation (27) can thus be obtained by setting x̂1 ¼ X̂
and x̂2 ¼ Ŷ. This justifies the correctness of Eq. (27).
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