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We propose a covariant definition of standing gravitational waves in general relativity.
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I. INTRODUCTION

Musical instruments in order to produce a tone use a
phenomenon of standing waves. This kind of behavior
appears naturally for sound and electromagnetic waves. It
may also, although very rarely, appear for water waves.
Standing waves are well understood in linear theories (or
approximations) where they are obtained as superposition
of waves traveling in opposite directions. If nonlinearities
are taken into account, the lack of superposition principle
complicates studies.
Almost two decades ago Hans Stephani formulated a

question [1]: Are there standing gravitational wave sol-
utions of vacuum Einstein’s equations?1 In order to answer
this question one has first to define what gravitational
standing waves are. Unfortunately, their definition cannot
be easily generalized from linear theories to nonlinear
gravitation. Stephani suggested to look for exact solutions
such that [1]

(I) The constitutive parts of the metric functions should
depend on the timelike coordinate only through a
periodic factor, and they should also depend on
spacelike coordinates.

(II) The time average of some of the metric functions
should vanish; in particular, the analogue of the
Poynting vector (if there is any) should be diver-
gencefree and the time average of the spatial
components should be zero.

The conditions presented above are not covariantly
formulated and, as shown by Stephani [1], not fully
satisfactory.

II. STANDING WAVES

In the search for a reliable criterion, we propose to define
standing waves using Burnett’s [11] formulation of the
Isaacson high frequency limit [12] in the form generalized
to nonvacuum spacetimes by Green and Wald [13].
Definition 2.1. Let ðM; gÞ be a spacetime satisfying

vacuum Einstein’s equations. We say that ðM; gÞ contains
standing gravitational wave if

(i) it belongs to a one-parameter family of spacetimes
ðM; gðλÞÞ satisfying the Green-Wald assumptions
[13] [we denote the background spacetime with
ðM; gð0ÞÞ],

(ii) the Ricci tensor of the background metric gð0Þ is
of a Serge type [(11)1,1] (in Plebański notation
½2S1 − S2 − T�ð111Þ) with the degenerate eigenvalue
equal to zero and remaining eigenvalues 1, −1.

Remark.—In a Ricci principal orthonormal tetrad
ðx; y; z; ηÞ of the Serge type [(11)1,1] (η is timelike) with
the degenerate eigenvalue equal to zero and remaining
eigenvalues 1, −1, the effective energy momentum tensor
tð0Þ (as defined in [13]) may be written as

tð0Þ ¼ ρðxαÞðη♭ ⊗ η♭ þ z♭ ⊗ z♭Þ;

where ρðxαÞ is an energy density. An alternative form is

tð0Þ ¼ 1

2
ρðxαÞðk♭þ ⊗ k♭þ þ k♭− ⊗ k♭−Þ;

where k♭� ¼ η♭ � z♭. The vectors k� are null (the Green-
Wald theorems imply that tð0Þ is traceless) and oriented in
opposite spatial directions. In other words, the effective
energy-momentum tensor tð0Þ is a superposition of null
dusts with equal amplitudes, but moving in opposite
directions. The background spacetime ðM; gð0ÞÞ may be
called effective standing wave spacetime. If the spacetime
ðM; gÞ satisfies nonvacuum Einstein equations, then our
definition still holds provided that the effective energy-
momentum tensor contains contribution from the
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1The same year the problem of gravitational standing waves
was investigated by Sir Hermann Bondi in his last paper on
general relativity [2]. Standing waves appear naturally in some
quasistationary approximations in binary black holes inspirals—
an approach introduced by Detweiler [3] and pursued by Price [4]
and others [5–10].
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gravitational radiation tð0Þ ¼ tð0ÞGW þ tð0ÞS , where tð0ÞGW satis-
fies the condition (ii). Such a situation will be illustrated in
the example below. Our definition of standing waves may
be trivially extended to fields. In the example presented
below, standing gravitational waves are accompanied by
standing scalar waves.

III. EXAMPLE

The example2 of the standing gravitational wave pre-
sented in the Stephani’s paper [1] is a special member of a
one-parameter family of exact solutions studied by one of
us in the context of the backreaction effect. This one-
parameter family corresponds to elementary Einstein-
Rosen waves coupled to a massless scalar field. It has
been studied within the Green-Wald framework in the
article [15]. Stephani showed [1] that his example satisfies
his definition of a “standing wave spacetime.” Our defi-
nition of standing waves, if applied to any member of the
one-parameter family studied in [15] (including Stephani’s
example) leads to the same conclusion in a straightforward
manner (both conditions (i), (ii) are satisfied). The effective
energy-momentum tensor has the form

tð0Þ ¼ α2 þ β2

πρ
ðdt ⊗ dtþ dρ ⊗ dρÞ

¼ 1

2πρ
½α2ðk♭þ ⊗ k♭þ þ k♭− ⊗ k♭−Þ

þ β2ðk♭þ ⊗ k♭þ þ k♭− ⊗ k♭−Þ�;

where k♭� ¼ dt� dρ and α, β are constant. The parameter
β controls an amplitude of the scalar field. If β ¼ 0, then the
one-parameter family of solutions studied in [15] satisfies
vacuum Einstein’s equations. Therefore, the parameter
α is related to the amplitude of the gravitational radiation.
The effective energy-momentum tensor corresponds to the
superposition of ingoing and outgoing gravitational radi-
ation (and to the superposition of ingoing and outgoing
waves of the scalar field). This remains true if the solution
is rewritten as the three-torus Gowdy cosmology [15].
The properties of the background metric confirm our

interpretation of solutions studied in [15]. Although the
background metric has a remarkably simple form, it has not
been studied extensively in literature before (except the
Morgan’s article [16] where it appears indirectly and the
Kramer’s article [17] where spherically symmetric equiv-
alent of this metric is derived)

gð0Þ ¼eκρð−dt⊗dtþdρ⊗dρÞþρ2dφ⊗dφþdz⊗dz; ð1Þ

where t; z ∈ ð−∞;þ∞Þ, ρ ∈ ð0;þ∞Þ, φ ∈ ½0; 2π�mod2π

and κ ¼ 2 α2þβ2

π is an auxiliary constant.
This solution has been discovered in [15] as a limit of a

regular one-parameter family of Einstein-Rosen waves
coupled to a massless scalar field. The alternative procedure
to derive it follows from generation technique described in
[18] (subsection 25.6.2). For spacetimes with an ortho-
gonally transitive Abelian group G2 acting on spacelike
2-surfaces,3 pure radiation fields (null dust) may be
associated with vacuum solution simply by multiplying
the metric coefficient guv (assuming appropriate paramete-
rization) by the factor exp ½F1ðuÞ þ F2ðuÞ� with arbitrary
real functions F1ðuÞ, F2ðvÞ, where u and v are null
coordinates. If F1 ¼ −id, F2 ¼ id, u ¼ t − ρ, v ¼ tþ ρ
(t is a time coordinate and ρ is a spatial coordinate), then
F1ðuÞ þ F2ðvÞ ¼ 2ρ. For this particular choice of F1 and
F2, a new null dust solution is stationary provided that an
original vacuum spacetime was stationary. With the help of
this procedure the background metric (1) may be generated
from the Minkowski spacetime in cylindrical coordinates.
The third way to derive the metric (1) is to superpose

outgoing and ingoing null dust Morgan solutions [16]. The
Morgan solutions are cylindrically symmetric equivalents
of Vaidya spacetimes. These solutions, similarly to gener-
alized Einstein-Rosen waves, satisfy superposition princi-
ple in the sense that essential part of Einstein equations is
linear. The superposition does not work at the level of
metric functions, so it is not “complete.”
In his paper [16], Morgan studied superposed solutions.

He stated incorrectly that such spacetime is regular every-
where. The Ricci scalar vanishes as expected, but the
Kretschmann scalar blows up at the symmetry axis ρ ¼ 0

K ¼ 2

�
2κ

ρ

�
2

e−2κρ:

This blow up is unexpected because all the metric
functions are regular everywhere (only the determinant
detðgð0ÞÞ vanishes at ρ ¼ 0 which leads to a curvature
singularity).
For the one-parameter family of solutions studied in the

article [15], the C-energy (cylindrical energy as defined by
Thorne [19]) is constant “on average” for a fixed ρ (at nodes
it is strictly constant). Therefore, there is no energy transfer.
For the background metric (1), the C-energy is equal to
κρ=4 and it does not depend on t.4

In summary, the background metric (1) corresponds to a
cylindrically symmetric spacetime with a central naked
singularity accreting and radiating the same amount of
gravitational and scalar waves. This spacetime provides

2Stephani [1] refers to this solution as the Kramer solution
[14]. Simple redefinitions in this metric lead to totally different
physical interpretations of the corresponding spacetime [14].

3In [18] only S2 is considered.
4The C-energy corresponds to the time-component of the

Poynting vector as has been shown by Stephani [1].
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an effective description of cylindrical gravitational and
scalar standing waves. It is stationary and of Petrov type D.
The Weyl scalars are ψ0 ¼ ψ1 ¼ ψ3 ¼ ψ4 ¼ 0

ψ2 ¼
1

12ρ2
e−κρ:

IV. STEPHANI’S SECOND EXAMPLE

Stephani illustrates a flaw in his criteria with the
following example of the Gowdy universe

g ¼ e−2U½e2kð−dt ⊗ dtþ dρ ⊗ dρÞ
þ sin2 ρ sin2 tdϕ ⊗ dϕ� þ e2Udz ⊗ dz;

where t∈ð0;πÞ, ρ;ϕ;z∈ ½0;2π�mod2π and U¼ ccosρcos t,
2k ¼ c2 sin2 ρ sin2 tþ lnðcos2 ρ − cos2 tÞ with c being a
constant. According to criterion (I), this universe is a
standing wave solution. According to criterion (II), it is not.
The hypersurfaces sinðtÞ ¼ 0 (t ¼ 0 and t ¼ π) corre-

spond to initial and final collapse singularities. Singularities
at sinðρÞ ¼ 0 are only apparent. A natural generalization of
this solution to a one-parameter family of metrics is given
by the following substitution t → t=λ, ρ → ρ=λ, c → cðλÞ,
where cðλÞ is an arbitrary function. Now, for any cðλÞ the
metric is not pointwise convergent to any background
metric. Therefore, according to our criteria, there is no
reason to believe that this oscillatory solution (contrary to
the first example) is a standing wave. This fact support the
hypothesis that our definition of standing waves resolved
ambiguity in Stephani’s criteria.

V. SUMMARY

In this paper, we have proposed to define standing
gravitational waves in terms of their high frequency limit.
We showed that our definition is “nonempty” by providing

an example. Moreover, we presented an arguments sup-
porting the claim that ambiguities in Stephani criteria are
resolved in our covariant definition.
It follows from our definition that the effective descrip-

tion of standing gravitational or/and scalar waves may be
provided by superposition of two null dusts of equal
density moving in opposite directions. The huge class of
solutions to Einstein equations5 with the Ricci tensor of the
Serge type [(11)1,1] gains a new interesting physical
interpretation—otherwise these solutions would be inter-
preted mainly as anisotropic perfect fluid solutions which
is, of course, much less interesting from the physical
standpoint.
An interesting open question is: does any effective

standing waves spacetime ðM; gð0ÞÞ correspond to some
standing wave spacetime ðM; gÞ? The results obtained
under the assumption of the polarized Uð1Þ symmetry
[28] suggest that it may be the case: any generic local-in-
time small-data-polarized-Uð1Þ-symmetric solution to the
Einstein-multiple null dust system can be achieved as a
weak limit of vacuum solutions. The related question is:
does any standing wave spacetime ðM; gÞ, as defined by
Stephani criterion (II) [1], belong to a one-parameter family
of spacetimes satisfying the Green-Wald assumptions [13]?
This question is open and needs further studies.
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