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We study the orbital evolution of eccentric binary neutron stars. The motion follows a quasi-Keplarian
orbit with perturbations due to tidal couplings. We find that the tidal interaction between stars contributes to
orbital precession in addition to the post-Newtonian procession. The coupling between the angular and
radial motion of the binary also excites a series of harmonics in the stars’ oscillation. In the small
eccentricity limit, this coupling mainly gives rise to an additional orbital resonance, with the orbital
frequency being one third of the f-mode frequency. For a binary with initial eccentricity ∼0.2 at 50 Hz
orbital frequency, the presence of this tidal resonance introduces ∼Oð0.5Þ phase shift in the gravitational
waveform till merger, subject to uncertainties in neutron star equation of state and the distribution of binary
component masses. Such phase shift in the late-inspiral stage is likely detectable with third-generation
gravitational-wave detectors.
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I. INTRODUCTION

Neutron star mergers produce copious gravitational
wave (GW) and electromagnetic radiation, that encode
critical information about state of matter under the extreme
physical conditions (gravity, pressure, temperature, etc.).
In particular, the detection of GW170817 [1] and sub-
sequent observations from gamma-ray band to radio-wave
frequencies has ushered in a new era of multimessenger
astronomy [2–9]. As the sensitivity of current-generation
GW detectors degrades significantly above 1 kHz [10,11],
directly probing the postmerger GW signal from binary
neutron stars (BNSs) is less likely in a few years. The
inspiral part of the GW signal, however, not only provides
information about the binary orbital parameters, such as
component masses, eccentricity, distance, etc., but also
the matter properties through the measurement of tidal
deformability and possible resolution of the merger fre-
quency. For example, the tidal love number constraint from
GW170817 has greatly refined the possible parameter
range of NS equation of state.
Most of the compact binary mergers are believed to be

(nearly) circular.1 However, recent studies have shown
the possibility of forming eccentric compact binaries in
the LIGO (Laser Interferometric Gravitational Wave
Observatory) band by resonant and hierarchical triple

and quadruple systems in globular clusters [13–21], in
addition to dynamically captured binaries [22]. These
events may be rare comparing to circular inspirals, but
they contain important information about their forma-
tion channel(s), environment, and distribution, through
the spin and eccentricity measurement. For eccentric binary
neutron stars, we shall show that the coupling between
radial and angular orbital motions give rises to new
tidal resonances, that can be possibly detected by third-
generation GW detectors such as Einstein Telescope [23]
and Cosmic Explorer [24].
The motion of inspiring eccentric binary black holes

(BBHs), within the post-Newtonian framework, can be
described by the quasi-Keplerian (QK) orbits [25]. At the
zeroth order, the QK orbit coincides with the Newtonian
elliptical orbit. With higher-order post-Newtonian effect
included, the radial motion generically oscillates with a
different period from the angular motion, which is known as
the general relativistic precession. In addition, radial and
angular motions also receive periodic corrections that can be
expanded in a post-Newtonian manner. Alternatively, it is
possible to utilize the effective-one-body (EOB) framework,
which resembles the post-Newtonian expansion in the EOB
spacetime [26]. Based on these frameworks, different wave-
form models have been developed to characterize the GW
signature of BBHs, which have achieved in decent accuracy
for low-medium eccentricity binaries [27–30], with prom-
ising potential to realize fast frequency-domain waveform
model with arbitrary eccentricities [31,32].
For eccentric BNSs, the tidal coupling between stars

introduces extra complication in the equation of motion.

1A recent publication has argued that post-Newtonian radiation
reaction excites small eccentricities Oð0.01Þ in the late inspiral
stage [12], which appears to be interesting to be the discussion in
this work.
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For example, in [33], we have studied highly eccentric BNS
in the inspiral stage, where the f-modes of NSs are excited
during the close pericenter passages, and subsequently play
important roles in the orbital evolution. With sufficiently
accurate orbit model, it might be possible to combine
f-mode emission from different pericenter encounter cycles
to boost the signal-to-noise ratio of detection, e.g., with the
coherent stacking method [34–36]. While the formation of
such systems may require rather restrictive initial param-
eters, it is still important to characterize the tidal effect in
medium-low eccentricity BNSs, in addition to the under-
standing of equilibrium and dynamic tide in the circular
orbit limit [37,38].
In this work, we adopt the QK orbit as the unperturbed

solution without the tidal effect and compute the NS
oscillation in response to the orbital motion and tidal
couplings. For eccentric orbits, the tidal budge induced
on a star generally does not point to the companion star in
the binary. As a result, the binary orbital angular momen-
tum continuously exchanges with the NS mode angular
momentum within orbital timescales. These NS oscillations
also back-react on the binary orbit, giving rise to perturba-
tions of the QK orbit that affect the GW radiation. In the
low-eccentricity limit, we explicitly evaluate these pertur-
bation terms and determine their influence on the orbital
phases in the time domain. Although the discussion of the
NS mode and the orbital dynamics has been specified to
BNSs, the result is also applicable to BH-NS binary [39],
with the oscillation of the BH set to be zero. The
construction of a frequency-domain waveform model will
be left to further work.
This paper is organized as follows. In Sec. II, we present

the basic formalism to describe the motion of an eccentric
BNS system under the influence of tidal couplings. In
Sec. III, we apply this formalism to the Newtonian
orbits, characterize the importance of tidal effects for
low-eccentricity systems, and discuss the tidal resonance
effect. In Sec. IV, we repeat the exercise for post-Newtonian
orbits. We conclude in Sec. V. Natural units with c ¼ 1,
G ¼ 1 are used throughout the analysis.

II. BASIC FORMALISM

The Hamiltonian of a BNS system, including the
leading-order tidal excitations of the stars, can be expressed
as [37,38]

H ¼ Horb þ
X
n

ð _QnÞ2 þ ω2
nðQnÞ2

2
þ ϵ

EijQn
ij

2

¼ Horb þHmode þHint; ð2:1Þ

where the tidal field is labeled with ϵ for book keeping
purpose, and ωn is the eigenfrequency for mode n. In stellar
perturbation theory [40], the modes of a three-dimensional
star are often indexed by the angular nodal number l,

azimuthal nodal number m, and radial nodal number nr.
Here n represents the collection of these three indices:
n ¼ flmnrg. In particular, the gravitational response of
f mode generally dominates over other modes (e.g.,
p modes and g modes) of the NS, so that in this work
we primarily focus on the f-mode excitations. The electric
part of the tidal tensor, Eij, can be evaluated based on the
relative displacement of the binary [33,41], and the local
spacetime of the target star is influenced by the tidal
environment generated by its companion (also see the
application in extreme mass-ratio inspiral systems in
[42,43]). The orbital Hamiltonian Horb, expanded in the
post-Newtonian format, can be found in [44] up to the third
post-Newtonian order. Because of the center-of-mass con-
servation, the orbital motion is fully characterized by the
relative distance and orbital angle, which originally moti-
vated the development of the EOB formalism [45]. The
modal quadrupole moment Qn

ij induced by the tidal field
and the modal excitation displacement Qn are related to
each other through

Qij ¼
X
n

On
ijQn; ð2:2Þ

with the overlap tensor defined as

On
ij ¼

Z
ρd3xðξni xj þ ξnj xiÞ; ð2:3Þ

where ρ is the local density within the star and ξn is the
displacement vector associated with the eigenmode
wavefunction, that can be expressed in vector spherical
harmonics

ξðnÞ ¼ ðξðnÞR ðrÞer þ ξðnÞS ðrÞr∇ÞYlmðθ;ϕÞ: ð2:4Þ

The determination of ξðnÞR and ξðnÞS is discussed in the
Appendix A of [33]. Notice that Eq. (2.2) can be derived by
combining Eq. (2.3) with the following expansion

ξ ¼
X
n

Qnξn; ð2:5Þ

and it can be further represented as

On
ab ¼ Qn

ξ

Z
dΩðea · erÞðeb · erÞ; ð2:6Þ

with

Qn
ξ ¼ 2

Z
R�

0

drrlþ1ρ½ξðnÞR þ ðlþ 1ÞξðnÞS �: ð2:7Þ

At this point, all variables are still real. But later on when
we talk about specific modes, it is often convenient to use
complex wave functions for decomposition. In those cases,
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Qn can be complex valued, although the total displacement
ξ remains real.

A. Orbital description

Under the influence of tidal field, the binary orbit is no
longer eccentric, even in the Newtonian limit. However, as
the tidal interaction is generally weaker than the direct
point-mass gravitational attraction, we can expand the orbit
as power laws in the tidal-coupling coefficient ϵ,

x ¼ xorb þ ϵ2δxþOðϵ3Þ;
p ¼ porb þ ϵ2δpþOðϵ3Þ; ð2:8Þ

where x, p follow an eccentric orbit in the Newtonian
description or QK orbit in the post-Newtonian description,
and the orbital evolution is determined by the conserved
energy and angular momentum E, J.

E ¼ Horbðxorb;porbÞ;
J ¼ J orbðxorb;porbÞ; ð2:9Þ

where J orb can also be found in [44] up to the third post-
Newtonian order. The perturbation starts at the second
order in ϵ as Q starts at linear order in ϵ, so that the
backreaction of Q starts at the second order. As the binary
orbit decays due to GW radiation generated by orbital
motion and mode oscillation, we have

PE
orb þPE

mode þPE
× ¼ _Eorb þ _Emode þ _Eint

¼ _Eþ
�
ϵ2
∂Horb

∂x δx

�
;t
þ ϵ2

�∂Horb

∂p δp

�
;t

þ ϵ2 _Emode þ ϵ2 _Eint

¼ _Eþ ∂Hϵ2

∂E _Eþ ∂Hϵ2

∂J _J;

PJ
orb þPJ

mode þPJ
× ¼ _Jorb þ _Jmode

¼ _Jþ
�
ϵ2
∂J orb

∂x δx

�
;t
þ ϵ2

�∂J orb

∂p δp

�
;t

þ ϵ2 _Jmode

¼ _Jþ ∂J ϵ2

∂E _Eþ ∂J ϵ2

∂J _J; ð2:10Þ

where different components of the energy and angular
momentum flux PE;J are discussed in Sec. II B. To evolve
the orbit, we need to relate them to the secular change of E
and J. This means that we need to solve the equation of
motion for δx, δp,Q as a function of E, J and time t. Based
on the Hamiltonian, the equations of motion are

Q̈n þ γ _Qn þ ω2
nQn ¼ −ϵEQðxorb;porbÞ;
_δp ¼ −

∂2Horb

∂x∂x δx −
∂2Horb

∂x∂p δp −
∂Hint

∂x ;

_δx ¼ ∂2Horb

∂p∂x δxþ ∂2Horb

∂p∂p δp; ð2:11Þ

where γ is an infinitesimal positive damping rate due to
dissipations in the star that have not been accounted for
in the Hamiltonian formalism, and EQ ≔ EijO�

ij=2. Notice
that we are taking complex conjugation for Oij here
because the complex wave function is being used. The
solution of Q is

Qn ¼ −ϵ=ωn

Z
t
e−γðt−t0Þ sinωnðt − t0ÞEQðxorb;porb; t0Þdt0

þQn
inite

−iωnt−γt ¼ Qn
driven þQn

free; ð2:12Þ

where Qn
init corresponds to the initial value of Qn.

Like a normal weakly damped harmonic oscillator,
Qn generically contains a “driven” part that is pro-
portional to ϵ and a “free” that satisfies the homo-
geneous equation of motion [the left-hand side of the
first line of Eq. (2.11)]. Under a periodic driving force
with slowly varying frequency ω=ð2πÞ ( _ω=ω ≪ ω), the
driven part Qdriven can often be approximated by its
adiabatic value

Qn
driven ≈Qn

ad ¼ −ϵ
EQðtÞ

ω2
n − 2iγω − ω2

: ð2:13Þ

On the other hand, if the initial oscillation is zero or the
initial time of integration is far in the past, such “free” part
may be neglected. However, as we shall see later, when the
system evolves across mode resonances, certain level of
free mode oscillation will be excited as well.

B. The radiative terms

The radiation terms that appear in Eq. (2.10) can be
evaluated from the quadruple formula,

PE ¼ −
1

5
h ⃛I jk

⃛I jki;

PJ
i ¼ −

2

5
ϵijkhÏ jm

⃛Ikmi: ð2:14Þ

Because we have assumed both NSs to be nonspinning,
their orbital motion should still remain on a plane with
the presence of post-Newtonian correction and tidal
effects. As a result, the orbital angular momentum is
orthogonal to the orbital plane, so that only the normal
component (defined as the z direction) of PJ is
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nonvanishing, and hereafter we drop the vector indices
of PJ.
The orbital energy and angular momentum flux PE

orb;
PJ
orb are derived in [46] up to the third post-Newtonian

order. The modal fluxes PE
mode; P

J
mode are given by

PE
mode ¼ −

1

5

�����X
m

⃛QmOm
ij

����2
�
;

¼ −
8π

75
Q2

ξ

�X
m

j ⃛Qmj2
�
;

¼ −
4πM2�Q4

ξn
6

75q6
X
m

W2
2m

X
k

k6ðjcm3;kj2 þ jsm3;kj2Þ
½ðknÞ2 − ω2

f�2
;

ð2:15Þ
and [33]

PJ
mode ¼ −

2

5
ϵijk

�X
m

Q̈mOm
jh

X
m0

⃛Qm0Om0
kh

�
;

¼ −
i16π
75

Q2
ξhQ̈2

⃛Q−2 − Q̈−2
⃛Q2i;

¼ −
32π

75

W2
22M

2�
q6

Q4
ξn

5
X
k

k5s23;kc
−2
3;k

½ðknÞ2 − ω2
f�2

; ð2:16Þ

where we have used Eq. (3.12) and the fact that only the
l ¼ 2, m ¼ 0, �2 f modes are relevant for the discussions
here (the m ¼ �1 modes are not excited [33,47]). These
expressions can be made more explicit with the prescription
of an unperturbed orbit.
The cross terms PE

× and PJ
× comes from the beating

between radiation from the orbital motion and the mode
excitation.

PE
× ¼ −

2

5

�X
m

⃛QmOm
ij
⃛Iij

�
;

¼ 4π

25
μ
M3=2

q5=2
M�Q2

ξ

q3
n3
X
k

k3
ð4s23;k − 0.5es32;k þ 0.5es12;kÞc23;k þ ð4c23;k − 0.5ec32;k þ 0.5ec12;kÞs23;k

ðknÞ2 − ω2
f

−
8π

75
μ
M3=2

q5=2
e
M�Q2

ξ

q3
n3
X
k

k3
s12;kc

2
3;k

ðknÞ2 − ω2
f

; ð2:17Þ

and

PJ
× ¼ −

2

5
ϵijk

�̈
Ijh

X
m0

⃛Qm0Om0
kh

�
−
2

5
ϵijk

�X
m

Q̈mOm
jh
⃛Ikh

�
;

¼ 4π

25

μM
q

M�Q2
ξ

q3
n3
X
k

k3
½c21;k þ c22;k − eðc31;k − c11;kÞ þ e2=4ðc40;k − 2c20;kÞ�s23;k þ ðc ↔ sÞ

ðknÞ2 − ω2
f

þ 4π

25

μM3=2

q5=2
M�Q2

ξ

q3
n2
X
k

k2
ð4c23;k − 0.5ec32;k þ 0.5ec12;kÞc23;k þ ð4s23;k − 0.5es32;k þ 0.5es12;kÞs23;k

ðknÞ2 − ω2
f

: ð2:18Þ

In the Newtonian limit, ̈Iij and ⃛Iij can be found in Eq.
(12.77) of [48] for generic eccentric orbits.

C. Equilibrium and dynamic tide

The tidal response in the static limit can be formally
described by a transformation tensor

Qij ¼ T ijαβEαβ: ð2:19Þ

For spherically symmetric object, this transformation ten-
sor reduces to a single tidal Love numbers λ, such that

Qij ¼ −λEij: ð2:20Þ

When the frequency for the tidal fieldω is much less than
the mode frequencies, we can approximate the solution of
Eq. (2.13) as

Qn ≈ −EQ=ω2
n; ð2:21Þ

which is often referred as the equilibrium tide approxima-
tion. The total induced quadrupole moment is

Qij ¼
X
n

Qn
ij ¼ −

1

2

X
n

1

ω2
n
On

ijO
n�
abEab: ð2:22Þ

Such expression should be compared with Eq. (2.20).
While it is not immediately clear why these two
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expressions are equivalent, they are guaranteed by the
spherical symmetry of the star, and λ can be obtained as

λ ¼ 1

2

X
n

1

ω2
nðEijEijÞ EijOn

ijO
n�
abEab

≈
4πQ2

ξ

15ω2
f

; ð2:23Þ

where in the second line we have kept the contribution from
f modes. On the other hand, for the case with

E ∼
X
α

bαe−iΩαt; ð2:24Þ

we have

Qn ≈ −ϵ
X
α

bαe−iΩαt

ω2
n þ ðγ − iΩαÞ2

: ð2:25Þ

The tidal response is frequency dependent, which is
often referred as the dynamic tide. Certain higher harmonic
frequency Ωα may be comparable or even larger than the
f-mode frequency ωf. Resonance occurs when Ωα ≈ ωf.

III. NEWTONIAN ORBITS

In this section, we keep only the leading-order
Newtonian term in the Hamiltonian and solve for the
orbital evolution in response to the tidal coupling. We
also examine the tidal resonances in the low-eccentricity
limit, and discuss the criteria of detecting such resonances
with current and future GW detectors. For simplicity, we
only include the mode evolution for one reference star, as it
is straightforward to extend the analysis to oscillations of
both stars in the BNS system.
The Newtonian Hamiltonian for the orbit is

H0 ¼
p2

2μ
−
Mμ

r
¼ p2

r

2μ
þ L2

ϕ

2mr2
−
Mμ

r
; ð3:1Þ

with μ ¼ M1M�=M and M ¼ M1 þM�. The unperturbed
orbit can be characterized as

rorb ¼ að1 − e cos uÞ;
l ¼ nðt − tpÞ ¼ u − e sin u;

ϕ − ϕp ¼ 2 arctan

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ e
1 − e

	s
tan

u
2

#
; ð3:2Þ

with n ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
M=a3

p
, u being the mean anomaly, l being the

mean motion and ϕ being the true anomaly, and tp, ϕp

corresponding to the time and angle at the pericenter
passage. We further have energy and eccentricity given by

E ¼ −
Mμ

2a
; e2 ¼ 1þ 2EJ2

μ3M2
: ð3:3Þ

Now, according to Eq. (2.8), we expand the motion as

r ¼ rorb þ ϵ2δr; Lϕ ¼ Lorb þ ϵ2δLϕ: ð3:4Þ
The equations of motion [c.f. Eq. (2.11)] become

δ̈rþ 3L2
orbδr

μ2r4orb
−
2LorbδLϕ

μ2r3orb
−
2Mδr
r3orb

¼ −
ϵ

2μ

∂Eij

∂r Qij;

dδLϕ

dt
¼ −

ϵ

2

∂Eij

∂ϕ Qij; ð3:5Þ

and the solution of the mode excitation is given by
Eq. (2.12). For simplicity, we neglect the initial oscillation
by setting Qfree ¼ 0.

A. Dynamic tide

The dynamical-tide excitation corresponds to the tidal
response described by Eq. (2.12). For the “background”
trajectory described by Eq. (D1), the tidal tensor generated
by the companion NS with mass M�, that acts on the
reference NS, is [33] (taking ϕp ¼ 0 here)

Eij ¼
M�
r3orb

2
64
− 1

2
− 3

2
cos 2ϕ 3

2
sin 2ϕ 0

3
2
sin 2ϕ −1

2
þ 3

2
cos 2ϕ 0

0 0 1

3
75; ð3:6Þ

so that (restricting to l ¼ 2 subspace)

Em
Q ¼ −

W2mM�
r3orb

Qξe−imϕ: ð3:7Þ

Here Wlm are defined in [47], with relevant components
used in this work,

W2;�2 ¼
ffiffiffiffiffiffi
3π

10

r
; W2;0 ¼ −

ffiffiffi
π

5

r
; W2;�1 ¼ 0: ð3:8Þ

In order to solve the equations of motion in Eq. (3.5), let
us define [49]

eimϕð1þ e cosϕÞn ¼
X
k≥0

cmn;k cos klþ ismn;k sin kl: ð3:9Þ

Here cmn;k; s
m
n;k are functions of the eccentricity e, which are

proportional to the Hansen coefficients [50] [apart from a
ð1 − e2Þn factor]. They can be obtained through
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cmn;k ¼
1

πð1þ δk0Þ
Z

π

−π
ð1þ e cosϕÞn cosmϕ cos kldl;

¼ ð1 − e2Þn
πð1þ δk0Þ

Z
π

−π
ð1 − e cos uÞ1−n cos½kðu − e sin uÞ� cos

(
2m arctan

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ e
1 − e

	s
tan

u
2

#)
du;

¼ c−mn;k ; ð3:10Þ
and

smn;k ¼
1

πð1þ δk0Þ
Z

π

−π
ð1þ e cosϕÞn sinmϕ sin kldl;

¼ ð1 − e2Þn
πð1þ δk0Þ

Z
π

−π
ð1 − e cos uÞ1−n sin½kðu − e sin uÞ� sin

(
2m arctan

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ e
1 − e

	s
tan

u
2

#)
du;

¼ −s−mn;k : ð3:11Þ
In terms of the Hansen coefficients, and according to Eq. (2.12), the f-mode excitation becomes (γ → 0)

Qm ≈ −
ϵ

ωf

Z
t

−∞
e−γðt−t0Þ sinωfðt − t0ÞEQdt0

¼ −
W2mM�Qξϵ

ωf

Z
t

−∞

dt0

r3orbðt0Þ
sinωfðt − t0Þe−imϕðt0Þ

≈
ϵW2mM�Qξ

q3

�X
k

cm3;k cos kl

−ðknÞ2 þ ω2
f

− i
X
k

sm3;k sin kl

−ðknÞ2 þ ω2
f

	
; ð3:12Þ

where in the last line we have adopted the adiabatic approximation [c.f. Eq. (2.13)], and q ≔ að1 − e2Þ. The star is driven at
integer harmonics of the orbital frequency, so that it is possible to have resonance crossing during the inspiral stage. For
circular orbits, only the term with k ¼ 2 survives. In addition, the inspiral usually terminates at the ISCO (Innermost-Stable-
Circular-Orbit) frequency or the contact frequency of the two NSs, which are comparable or smaller than the f-mode
frequency divided by two. Therefore, it is difficult to observe a complete resonance during the inspiral stage for k ¼ 2.
However, it has been shown [37] that the frequency dependence of the tidal love number is important for describing motion
in the late inspiral stage, which is essentially related to the k ¼ 2 resonance.
We can similarly decompose the driving terms in the equations of motion into a summation of harmonics,

EijQij=2 ¼
X
m

Em�
Q Qm;

¼
X
m

ϵ2W2
2mM

2�Q2
ξ

q6

�X
k0
cm
3;k0 cos k

0l
X
k

cm3;k cos kl

ðknÞ2 − ω2
f

þ
X
k0
sm
3;k0 sin k

0l
X
k

sm3;k sin kl

ðknÞ2 − ω2
f

	
; ð3:13Þ

and

Qij=2
∂Eij

∂rorb ¼
X
m

∂Em�
Q

∂rorb Qm;

¼ −
X
m

ϵ23W2
2mM

2�Q2
ξ

q7

�X
k0
cm
4;k0 cos k

0l
X
k

cm3;k cos kl

ðknÞ2 − ω2
f

þ
X
k0
sm
4;k0 sin k

0l
X
k

sm3;k sin kl

ðknÞ2 − ω2
f

	
; ð3:14Þ

and

Qij=2
∂Eij

∂ϕ ¼
X
m

∂Em�
Q

∂ϕ Qm;

¼
X
m

ϵ2mW2
2mM

2�Q2
ξ

q6

�X
k0
sm
3;k0 sin k

0l
X
k

cm3;k cos kl

ðknÞ2 − ω2
f

−
X
k0
cm
3;k0 cos k

0l
X
k

sm3;k sin kl

ðknÞ2 − ω2
f

	
: ð3:15Þ
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As a result, we can determine Eq. (3.5) in an expansion of harmonics. We first write δr and δϕ as

δr ¼
X
k

bk cos kl; δLϕ ¼
X
k

gk cos kl: ð3:16Þ

There are no sin kl terms because of the absence of corresponding terms in the driving force. The equations of motion
become (k ≥ 0)

− k2n2bk þ
3L2

orb

2μ2q4
X
h≥0

bhðc04;jk−hj þ c04;kþhÞ −
M
q3

X
m≥0

bhðc03;jk−hj þ c03;kþhÞ −
2Lorb

μ2q3
X
h≥0

ghðc03;jk−hj þ c03;kþhÞ

¼
X
m

ϵ23W2
2mM

2�Q2
ξ

2μq7
X
h≥0

�
cm3;h

ðhnÞ2 − ω2
f

ðcm
4;jk−hj þ cm4;kþhÞ þ

sm3;h
ðhnÞ2 − ω2

f

ðSignðh − kÞsm
4;jk−hj þ sm4;kþhÞ

�
;

− kngk ¼ −
X
m

ϵ2mW2
2mM

2�Q2
ξ

2q6
X
h≥0

�
cm3;h

ðhnÞ2 − ω2
f

ðSignðk − hÞsm
3;jk−hj þ sm3;kþhÞ þ

sm3;h
ðhnÞ2 − ω2

f

ð−cm
3;jk−hj þ cm3;kþhÞ

�
:

ð3:17Þ

These equations can be solved in the matrix form. The
k ¼ 0 piece of angular momentum shift g0 is zero, because
there is no dc angular momentum exchange between the
orbit and the stars.

B. Small eccentricity limit

In the small eccentricity limit e ≪ 1, we can take the
leading-order expansion of the Hansen coefficients in terms
of e. They can be found in the Appendix A. In particular,
for the terms showing up in Eq. (3.17), we always have
m ¼ �2, 0 and n ¼ 3, 4. The nonzero components that are
proportional to e are

c0n;1 ¼ ne; s0n;1 ¼ 0;

c23;3 ¼ 3.5e; c−23;3 ¼ 3.5e;

s23;3 ¼ 3.5e; s−23;3 ¼ −3.5e

c23;1 ¼ −0.5e; c−23;1 ¼ −0.5e;

s23;1 ¼ −0.5e; s−23;1 ¼ 0.5e: ð3:18Þ
The principle part that survives in the circular limit is

c0n;0 ¼ 1; s0n;0 ¼ 0;

c2n;2 ¼ 1; s2n;2 ¼ 1;

c−2n;2 ¼ 1; s−2n;2 ¼ −1: ð3:19Þ
With these results, we now try to solve Eq. (3.17) in the

small eccentricity limit. The result is

g1 ¼ ϵ2
W2

22M
2�Q2

ξ

q6
16enðn2 − 4ω2

fÞ
ð9n2 − ω2

fÞð4n2 − ω2
fÞðn2 − ω2

fÞ
;

b0 ¼
ϵ23M2�Q2

ξ

a4μM

�
2W2

22

4n2 − ω2
f

−
W2

20

ω2
f

	
; ð3:20Þ

and we find that for k ¼ 1, the coefficient of b1 becomes
zero, which means that the k ¼ 1 term corresponds to the
resonant frequency of the orbit. Any external driving
frequency being the same as this frequency will formally
make b1 diverge. Physically what happens is that the
coupling with star’s internal degrees of freedom shifts
the radial frequency and makes the orbit precess. In order to
fix this problem, we need to assign a different frequency
nþ δn to the radial motion with δn ≠ 0; δn=n ∼Oðϵ2Þ.
The k ¼ 1 motion should also be absorbed into the back-
ground trajectory, with a redefinition of the eccentricity. By
expanding the radial equations of motion in ϵ and keeping
terms linear in ϵ2, we see that

6en2b0 þ 2nμδnea

¼ 2Lorb

μa3
g1 −

ϵ23M2�Q2
ξ

a7

×
4πeð−36n2 þ 100n4ω2 − 62n2ω4 þ 7ω6Þ

5ω2ðω2 − 9n2Þðω2 − 4n2Þ ; ð3:21Þ

with Lorb ≈ μna2. As a result, we have

δn
n
≈ −

ϵ2M2�Q2
ξ

μa8
6πð18n6 − 10n4ω2 − 12n2ω4 þ ω6Þ
5ω2n2ðω2 − n2Þðω2 − 4n2Þðω2 − 9n2Þ

≈n≪ω −
6πM2�Q2

ξ

5μMω2a5
: ð3:22Þ

All other terms (bk, gk) in the expansion series are zero.
With δr and δLϕ known, it is then straightforward to
compute the tidal perturbation of the Hamiltonian. Both δx
and δLϕ are time dependent, but the Hamiltonian pertur-
bation is not. Therefore, we can pick any time to evaluate
δH. It turns out that l ¼ π=2 is a convenient choice.
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δH ¼ ϵ2
∂Horb

∂x δxþ ϵ2
∂Horb

∂p δpþ Eint þ Emode

¼ prδpr

a
þMμδr

r2orb
−
L2
orbδr
μr3orb

þ EijQij

2
þ
X
m

ð _QmÞ2 þ ω2
fðQmÞ2

2

¼ μa2e2δnnþMμb0
a2

e2 þ EijQij

2
þ
X
m

ð _QmÞ2 þ ω2
fðQmÞ2

2

¼ ϵ2M2�Q2
ξ

a6



−
2πð4n2 − 11n2ω2 þ ω4Þ

5ω2ðω2 − 4n2Þ2

þ 6πe2

5

ð648n12 þ 2610n10ω2 − 9470n8ω4 þ 8759n6ω6 − 2179n4ω8 þ 133n2ω10 þ 3ω12Þ
ω2ðω2 − 4n2Þ2ðω4 − 10n2ω2 þ 9n4Þ2

�
: ð3:23Þ

Similarly, for the angular momentum,

δJ ¼ ϵ2
∂J orb

∂x δxþ ϵ2
∂J orb

∂p δpþ ϵ2Jmode

¼ ϵ2δLϕ þ ϵ2Jmode: ð3:24Þ

We notice that

dJmode

dt
¼

X
m

ðE2jOm
1j − E1jOm

2jÞQm ¼ −
dδLϕ

dt
; ð3:25Þ

so that δJ is conserved. At l ¼ π=2, δLϕ is zero (it has no
k ¼ 0 component) and Jmode is given by [37]

Jmode ¼
_Q2iQ1i − _Q1iQ2i

λω2
f

¼ 1

λω2
f

X
m;m0

_QmQm0 ðOm
2lO

m0
1l −Om

1lO
m0
2l Þ

¼ 1

λω2
f

8πi
15

W2
22M

2⋆Q4
ξ

q6
ð _Q2Q−2 − _Q−2Q2Þ

¼ 16π

15

W2
22M

2⋆nQ4
ξ

λω2
fq

6

X
k

kc23;ks
2
3;k

ððknÞ2 − ω2
fÞ2

¼ 6π

5

M2⋆nQ2
ξ

q6
X
k

kc23;ks
2
3;k

ððknÞ2 − ω2
fÞ2

≈
6π

5

M2⋆nQ2
ξ

a6



2

ð4n2 − ω2
fÞ2

þ e2
�

1

4ðn2 − ω2
fÞ2

þ 12

ð4n2 − ω2
fÞ2

þ 147

ð9n2 − ω2
fÞ2

��
; ð3:26Þ

where we have used the identification λ ¼ 4πQ2
ξ=ð15ω2

fÞ
for f mode. In addition, because

dϕ
dt

¼ ∂Horb

∂pϕ
; ð3:27Þ

we can evaluate the perturbation of the angular frequency
nþ δnϕ due to the tidal interaction, such that

δnϕ ¼ δ

�∂Horb

∂pϕ

�

≈
�
δLϕ

μr2
−
2Lϕδr

μr3

�

¼ 1

μa2
X
k

gkc02;k −
2Lϕ

μa3
X
k

bkc03;k: ð3:28Þ

Because of the modification of the radial and angular
frequencies δn; δnϕ, and the shift of the trajectory (δr; δLϕ),
the principle parts of the energy and angular momentum
radiation are correspondingly changed.

δPE
orb ¼ −

2

5
hδ ⃛I jk

⃛I jki;

δPJ
orb ¼ −

2

5
ϵ3jkhδÏ jm

⃛Ikmi −
2

5
ϵ3jkhÏ jmδ ⃛Ikmi: ð3:29Þ

The explicit evaluation of these quantities is discussed in
detail in Appendix D.

1. Sample evolution

In order to illustrate the effect of eccentric tidal terms in
the flux, energy, and angular momentum derived in Sec. III
and Appendix. C, we take an equal-mass, 1.3M⊙ þ 1.3M⊙,
binary NS system as an example. The star compactness is
assumed to beM�=R� ¼ 0.16, and the initial eccentricity at
forb ¼ 50 Hz is set to be 0.2. We use this system to com-
pare two separate evolution schemes. In the first evolution,
we adopt Eq. (C5), Eq. (C6), Eq. (D7), Eq. (D9), Eq. (D10),
and Eq. (3.26) for a time-domain evolution to obtain a
relation between forb and tfull. In the second evolution, we
drop the terms proportional to e2λ in these formulas and
evolve the system again to obtain the function tpartðforbÞ.
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The time difference up to certain orbital frequency, δt, is
defined to be tfull − tpart, as shown in Fig. 1.
The phase difference accumulated for the dominate

l ¼ 2, m ¼ 2 mode can be estimated as

δΨ22 ¼ 4π

Z
fup

fdown

forbdδt ∼ 0.06 ð3:30Þ

for this particular evolution if we choose fdown ¼ 50 Hz,
fup ¼ 500 Hz. Such phase difference is probably only

observable for loud events in the third-generation
detector era.

C. Tidal resonance

According to Eq. (3.12), when kn ≈ ωf we expect the
f mode to be resonantly excited. As the orbit does not
stay at resonance for infinite time because of radiative
dissipation, we need to account for the total phase shift
across the resonance. In this case, we need to consider
Eq. (2.12) taking into account the evolution of conserved
quantities.
There are two major effects of these tidal resonances,

which are intimately related to each other. At first, f mode is
resonantly excited across the resonance, and this free
oscillation of f modes persists in the postresonance stage.
This f-mode free oscillation also generates GW radiation
at frequency ωf=ð2πÞ. Second, as the orbital energy
and angular momentum transfer to the f mode to support
the free oscillation, the orbital motion after the resonance
gradually deviates away from the one without the reso-
nance, due to the change of the conserved quantities. In
this case, the resulting orbital phase shift can also be
determined.

1. Free oscillation

The orbit evolution across resonance requires that there
is a free oscillation piece of Qm, excited by the driving
force. In other words, the last line of Eq. (3.12) needs to be
modified in the near-resonance regime, which introduces a
free oscillation piece.
If kn ¼ ωf þ k _nðt − tfÞ þOðt − tfÞ2, then the free

oscillation piece of Qm is

Qfree
m ¼ ϵW2mM�Qξ

2q3


X
k

cm3;kffiffiffiffiffi
k _n

p ½Fcð
ffiffiffiffiffi
k _n

p
ðt − tfÞÞ sinωftþ Fsð

ffiffiffiffiffi
k _n

p
ðt − tfÞÞ cosωft�

�

− i
ϵW2mM�Qξ

2q3


X
k

sm3;kffiffiffiffiffi
k _n

p ½Fsð
ffiffiffiffiffi
k _n

p
ðt − tfÞÞ sinωftþ Fcð

ffiffiffiffiffi
k _n

p
ðt − tfÞÞ cosωft�

�
; ð3:31Þ

with the Fresnel functions

FcðxÞ ¼
Z

x

−∞
cos t2dt; Fs ¼

Z
x

−∞
sin t2dt: ð3:32Þ

We note that Fcð∞Þ ¼ Fsð∞Þ ¼ ffiffiffiffiffiffiffiffi
π=2

p
. The idea is that Qad

m smoothly transits to Qfree
m when kn → ωf,

Qm ¼ Qad
m ; t < t1;

¼ Qfree
m ; t1 < t < t2;

¼ Qad
m þ ϵ

ffiffiffi
π

p
W2mM�Qξ

2q3
×


X
k

cm3;k − ism3;kffiffiffiffiffi
k _n

p ½sinðωftþ π=4Þ�
�
; t > t2: ð3:33Þ

FIG. 1. δt − f plot comparing two individual evolutions. Here
forb is the orbital frequency, and δt ≔ tfull − tpart is the difference
in time between two evolutions up to a given frequency. The
“full” evolution incorporates the flux, energy, and angular
momentum formulas derived in Appendix C and Sec. III. The
“partial” evolution uses only previous known formulas, which do
not contain correction at the e2λ order. The initial eccentricity at
forb ¼ 50 Hz is 0.2, the NS mass is 1.3M⊙, and the compactness
is assumed to be 0.16.
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It can be shown that the transition is smooth (results do
not depend sensitively on t1, t2), for example, using the
asymptotic behavior discussed in Steinhoff and Hinderer.
However, they miss this free oscillation piece in the
postresonance regime (t > t2).
Free oscillation of f modes has been observed in highly

eccentric binaries [33,51].2 While the orbital timescale may
be long, the collective work of many harmonics gives rise
to the impulsive interaction near the pericenter. In general,
we need to consider (ωf=n)th order harmonic to reproduce
this “free oscillation” feather. If the orbit is highly eccen-
tric, this task is computationally expensive, and it is
preferable to apply the impulse approximation as in [33].

2. Orbital phase shift

According to Eq. (3.33), the amplitude of the f-mode free
oscillation gained after the kn ≈ ωf resonance is

jQmj ∼ ϵ
W2mM�Qξ

ωfq3

ffiffiffiffiffiffiffiffiffiffi
π=k _n

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcm3;kÞ2 þ ðsm3;kÞ2

q
: ð3:34Þ

The orbital energy decreases an extra amount across the
resonance, due to the excitation of the free oscillation. As a
result, the binary should merge faster than those without
resonance crossing. In the small eccentricity limit, the only
relevant tidal resonances are the associated with k ¼ 2 or
k ¼ 3. The k ¼ 2 resonance, although being largest in
amplitude, hardly takes place in the inspiral part because
the binary merger frequency is generally smaller than half
of the f-mode frequency. On the other hand, the mode
amplitude for the k ¼ 3 resonance is proportional to the
eccentricity. The orbital frequency associated with this
resonance, being one third of the f-mode frequency, could
be smaller than the merger frequency.
Therefore, for k ¼ 3 resonance, the corresponding (2,2)

component phase shift of the gravitational waveform is [52]
(for equal mass binaries)

Δϕ ∼ −2 × 4π
tD
torb

ω2
f

P
mjQmj2
Eorb

∼ 0.68

�
fmode

1.5 kHz

	
−2
�
Q
0.3

	
2

M−4
�1.3R

2
12

�
e

0.02

	
2

;

ð3:35Þ
where the first factor of 2 comes from the mode energy for
both NSs. Here torb is the orbital period at the resonance, e
is the eccentricity at the resonance, tD ¼ f= _f at the
resonance, and Eorb ¼ Mμ=ð2aÞ is the orbital energy at
the resonance. The quantity Q is the dimensionless tidal
overlap coefficient defined as

Q ¼ Qξ

ðM1R2�Þ1=2
: ð3:36Þ

Notice that the orbital eccentricity e decays with increas-
ing orbital frequency f due to GW radiation, with the
scaling being approximately e ≈ f−19=18. This means that a
binary with eccentricity ∼0.02 at 500 Hz would have
eccentricity ∼0.2 at 50 Hz and ∼0.6 at 20 Hz. Such binaries
may originate from dynamical captures in globular clusters
[53] and multibody dynamic evolutions. Despite the recent
developments, the rate of these channels is still subject to
significant theoretical uncertainties.
The statistical phase error of an event with signal-

to-noise ratio (SNR) ρ is approximately
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 1

p
=ρ [54],

with D being the number of degrees of freedom in the
parameter estimation. To resolve a phase Oð0.5Þ error with
D ∼Oð10Þ, events with ρ ≥ 7 are necessary. Note that this
resonance happens in the late-inspiral stage, which is
around 1 kHz for the quadrupole GW radiation, so that
ρ should represent the SNR of the waveform segment
starting from the resonance and ending at merger.3 For a
1.3M⊙ þ 1.3M⊙ binary NS system at 40 Mpc, the SNR for
the inspiral waveform from 1 kHz to the plunge frequency
(∼1.4 kHz) is around 1.5 for Advanced LIGO design
sensitivity [55] and around 20 for Cosmic Explorer [24].
Therefore, such requirements are more likely satisfied with
the third-generation GW detectors, such as the Einstein
Telescope, Cosmic Explorer, and LIGO-HF which also
have decent midfrequency sensitivity [10,11], etc.
If one (or both) NS(s) is a millisecond pulsar, the rotation

frequency fs may be a couple of hundred Hz. As a result,
the degeneracy between different f modes with different
azimuthal number m is broken. In particular, the frequency
split is roughly 0.5mfs [56]. If the NS spin counter-rotates
with the binary, the mode with frequency fmode − fs is
mostly excited; if the NS spin corotates with the binary, the
mode with frequency fmode þ fs is mostly excited.
Therefore, for counterrotating binaries, if the fmode − fs
is smaller than the merger frequency, the k ¼ 2 tidal
resonance is present in the inspiral stage [37].4 On the
other hand, for the k ¼ 3 tidal resonance, the mode
frequency in Eq. (3.35) is fmode − fs, and the correspond-
ing orbital frequency will be modified to ðfmode − fsÞ=3.

IV. TIDALLY MODIFIED QK ORBITS

In the post-Newtonian limit, the motion of two gravi-
tationally bounded points masses can be described by the
quasi-Keplerian orbit, as a generalization of the Keplerian
orbit in the Newtonian theory,

2For the impulsive approximation in [33] to hold, the eccen-
tricity needs to be generally larger than ∼0.6. As the eccentricity
generally decays with time, the impulsive approximation may
break down in the later part of the evolution, when e < 0.6.

3If the postmerger waveform can be accurately modelled,
ρ should also include the merger and postmerger SNR.

4Private communication with Yanbei Chen.
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r ¼ arð1 − er cos uÞ;
l ¼ n0ðt − tpÞ ¼ u − et sin uþ

X
lPN;

ϕ − ϕp

K0 ¼ vþ
X

ϕPN; ð4:1Þ

with

cos u ¼ eϕ þ cos v

1þ eϕ cos v
: ð4:2Þ

Here the post-Newtonian correction lPN, ϕPN are func-
tions of u or v. Their detailed expressions, together with the
expressions for er, eϕ, et, n0, K0 can be found in [25].
Unlike a Keplerian orbit, the radial and azimuthal frequen-
cies of a QK trajectory are no longer degenerate.
Notice that if we are only interested in obtaining leading-

order tidal effect in the post-Newtonian expansion, we only
need to plug in the Newtonian part ofHorb in Eq. (2.11), but
sticking to Eq. (4.1) for the prescription of the “back-
ground” trajectory. In fact, we can further neglect ϕPN and
lPN for this purpose because they contribute to oscillatory
post-Newtonian effect, as comparing to the secular post-
Newtonian effect encoded in er, et, eϕ, K0, n0. Let us write
δr, δLϕ as

δr ¼
X
m;k

bm;k cosðmKϕlþ klÞ;

δLϕ ¼
X
m;k

gm;k cosðmKϕlþ klÞ: ð4:3Þ

Kϕ ¼ K0 þ δK0 is different from K0 because of the tidal
correction. Similarly, n0 needs to be promoted to nt ¼
n0 þ δn0 by the tidal correction as well. In the Newtonian,
low-eccentricity limit, such mappings are described by
Eqs. (3.22) and (3.28). Here n0 can also be determined by
the equation of motion for the k0 ¼ 0; k ¼ 1 component of
orbital perturbations.

A. Equations of motion

The mode excitation of the star can still be determined
from (in the nonresonant regime)

Qm ¼ −ϵ=ðωfÞ
Z

t
e−γðt−t0Þ sinωfðt − t0ÞEQdt0

¼ −
W2mM�Qξϵ

ωf

Z
t

−∞

dt0

r3orbðt0Þ
sinωfðt − t0Þe−imϕðt0Þ

≈
ϵW2mM�Qξ

a3r


X
k;k0

cm
3;k;k0 cosðkþ K0k0Þl

−½ðkþ K0k0Þn0�2 þ ω2
f

−i
X
k;k0

sm
3;k;k0 sinðkþ K0k0Þl

−½ðkþ K0k0Þn0�2 þ ω2
f

�
; ð4:4Þ

where the QK-Hansen coefficients cmn;k;k0 , smn;k;k0 , which
depend on et;r;ϕ, K0, can be defined by

cmn;k;k0 ¼ c−mn;k;k0

¼ lim
T→∞

1

Tð1þδk0δk00Þ
Z

T

−T
ð1−er cosuÞ−nð1−et cosuÞ

×cos½ðkþK0k0Þðu−et sinuÞ�cosðmK0vÞdu;
ð4:5Þ

and

smn;k;k0 ¼ s−mn;k;k0

¼ lim
T→∞

1

Tð1þ δk0δk00Þ
×
Z

T

−T
ð1 − er cos uÞ−nð1 − et cos uÞ

× sin½ðkþ K0k0Þðu − et sin uÞ� sinðmK0vÞdu:
ð4:6Þ

It it straightforward to check that the QK-Hansen
coefficients cmn;k;k0 , smn;k;k0 reduce to cmn;kð1 − e2Þ−n,
smn;kð1 − e2Þ−n if we take the limit er;t;ϕ ¼ e, K0 ¼ 1.
Strictly speaking, Eq. (3.5) is no longer valid as Horb

in Eqs. (2.1) and (2.11) now contain higher-order
post-Newtonian corrections. However, the leading-post-
Newtonian tidal perturbation in δr; δLϕ can be still obtained
using Eq. (3.5) with Qm given in Eq. (4.4). In particular, the
equations of motion for δLϕ imply that (k0 ≡ k1K0 þ k2)X
k1;k2

− k0n0gk0;k sinðk0lÞ

¼ −ϵ
X
m

∂Em�
Q

∂ϕ Qm

¼
X
m

ϵ2mW2
2mM

2�Q2
ξ

a6r

�X
k1;k2

sm3;k1;k2 sink0l
X
k0
1
;k0

2

cm
3;k;k0 cosk

0
0l

−ðk00nÞ2 þω2
f

−
X
k1;k2

cm3;k1;k2 cosk0l
X
k0
1
;k0

2

sm
3;k0

1
;k0

2
sink00l

−ðk00nÞ2 þω2
f

	
: ð4:7Þ

This implies that

− k0n0gk0

¼
X
m

ϵ2mW2
2mM

2�Q2
ξ

2a6

×
X
k0
0

� cm
3;k0

0

−ðk00n0Þ2 þ ω2
f

ðSignðk0 − k00Þsm3;jk0−k00j þ sm
3;k0þk0

0
Þ

þ
sm
3;k0

0

−ðk00n0Þ2 þ ω2
f

ð−cm
3;jk0−k00j þ cm

3;k0þk0
0
Þ
�
: ð4:8Þ
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Similarly, for δr, we have

− k20n
02bk0 þ

3L2
orb

2μ2a4r

X
k0
0
≥0

bk0
0
ðc0

4;jk0−k00j þ c0
4;k0þk0

0
Þ

−
M
a3r

X
k0
0
≥0

bk0
0
ðc0

3;jk0−k00j þ c0
3;k0þk0

0
Þ

¼ 2Lorb

μ2a3r

X
k0
0
≥0

gk0
0
ðc0

3;jk0−k00j þ c0
3;k0þk0

0
Þ þ

X
m

ϵ23W2
2mM

2�Q2
ξ

2a7r

×
X
k0
0

� cm
3;k0

0

ðk00nÞ2 − ω2
f

ðcm
4;jk0−k00j þ cm

4;k0þk0
0
Þ

þ
sm
3;k0

0

ðk00nÞ2 − ω2
f

ðSignðk00 − k0Þsm4;jk0−k00j þ sm
4;k0þk0

0
Þ
�
:

ð4:9Þ

The k0 is selected within a two-dimensional lattice
ðk1; k2Þ, but with the requirement that k0 ≥ 0. In the small

eccentricity limit, the relevant components of QK-Hansen
coefficients are (also see Appendix A)

c0n;1;0 ¼ ner; s0n;1;0 ¼ 0;

c2n;1;2 ¼
n
2
er þK0ðet þ eϕÞ; s2n;1;2 ¼

n
2
er þK0ðet þ eϕÞ;

c−2n;1;2 ¼
n
2
er þK0ðet þ eϕÞ; s−2n;1;2 ¼ −

n
2
er −K0ðet þ eϕÞ;

ð4:10Þ

and

c0n;0;0 ¼ 1; s0n;0;0 ¼ 0;

c2n;0;2 ¼ 1; s2n;0;2 ¼ 1;

c−2n;0;2 ¼ 1; s−2n;0;2 ¼ −1: ð4:11Þ

Using these simplified coefficients, it is straightforward
to work out the dominant components of δr, δLϕ,

g1;0 ¼ ϵ2
W2

22M
2�Q2

ξ

q6
8K02n½12K02n2ð2er − et − eϕÞ þ n2ðet þ eϕÞ − ð6er þ et þ eϕÞω2

f�
½ð1þ 2K0Þ2n2 − ω2

f�ð4K02n2 − ω2
fÞ½ð1 − 2K0Þ2n2 − ω2

f�
;

b0;0 ¼
ϵ23M2�Q2

ξ

a4μM

�
2W2

22

4K02n2 − ω2
f

−
W2

20

ω2
f

	
: ð4:12Þ

Similar to the Newtonian case, the k1 ¼ 0, k2 ¼ 1 (so that k0 ¼ 1) component of Eq. (4.9) determines the tidally induced
orbital precession δn0 ¼ nt − n0, as it is degenerate with the radial motion of the background trajectory. As emphasized
earlier, Eq. (4.9) already neglects post-Newtonian terms on its left-hand side, which means n0 is in principle not consistent
with this Newtonian equation without the right-hand-side forcing term. However, as we are only interested in the leading-
post-Newtonian order of δn0, keeping Newtonian order terms in the principle part should suffice.

6ern02b0;0 þ 2n0δn0erar ¼
2L
μ2a3

X
k0
0
≥0

gk0
0
ðc0

3;j1−k0
0
j þ c0

3;1þk0
0
Þ þ

X
m

ϵ23W2
2mM

2�Q2
ξ

2a7
X
k0
0

� cm
3;k0

0

ðk00nÞ2 − ω2
f

ðcm
4;j1−k0

0
j þ cm

4;1þk0
0
Þ

þ
sm
3;k0

0

ðk00nÞ2 − ω2
f

ðSignðk00 − 1Þsm
4;j1−k0

0
j þ sm

4;1þk0
0
Þ
�
: ð4:13Þ

The solution of the above equation, δn0, is given by

δn0

n0
¼ −

ϵ2M2�Q2
ξ

erμn02a8r

3π

20



16K0½12K02n02ð2er − et − eϕÞ þ ðet þ eϕÞn02 − ð6er þ et þ eϕÞω2

f�
ðð1þ 2K0Þ2n02 − ω2

fÞð4K02n02 − ω2
fÞðð1 − 2K0Þ2n02 − ω2

fÞ

−
48K02n02ðet þ eϕÞ

ð1 − 4K02Þ2n04 − 2ð1þ 4K02Þn02ω2
f þ ω4

f

− 12et

�
−

1

ω2
f

þ 3

4K02n02 − ω2
f

�

− er

�
8

ω2
f

þ 6

n02 − ω2
f

þ 9

ð1 − 2K0Þ2n02 − ω2
f

þ 24

4K02n02 − ω2
f

þ 9

ð1þ 2K0Þ2n02 − ω2
f

��
; ð4:14Þ

which reduces to Eq. (3.22) in the limit er;t;ϕ ¼ e,K0 ¼ 1. On the other hand, the tidal perturbation of the angular frequency,
δn0ϕ, can be evaluated by
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δn0ϕ ¼ δðK0n0Þ ¼
�∂Horb

∂pϕ

�

≈
�
δLϕ

μr2
−
2Lϕδr

μr3

�

¼ 1

a2r

X
k;k0

gk;k0c02;k;k0 −
2Lϕ

a3r

X
k;k0

bk;k0c03;k;k0 : ð4:15Þ

According to Eqs. (4.5) and (4.6), only k0 ¼ 0 pieces of δr,
δLϕ would contribute to the right-hand side of the above
equation. This is because m is zero in these integrations for
the QK-Hansen coefficients, so that the product between
harmonics with frequency being multiples of 1 and
frequency kþ K0k0 should be zero, unless k0 ¼ 0. In the
small eccentricity limit, it is just

δn0ϕ ¼ −
2Lϕ

a3r
b0;0; ð4:16Þ

with b0;0 giving in Eq. (4.12).

V. CONCLUSION

In this work, we have discussed the trajectory model
of an eccentric binary neutron star system, that evolves
under the influence of dynamic tidal interaction and
gravitational radiation. This formalism is suitable for both
Newtonian and post-Newtonian description of the con-
served dynamics. We focus more on the Newtonian
description in the present study, as the leading-order tidal
correction can already be obtained in the Newtonian
framework.
Within eccentric orbits, the direction of tidal bulges on

the stars generally does not point to the companion star.
This is different from circular binaries, where the tidal
bulges always point to each other, even with the consid-
eration of dynamic tide. As a result, the stars oscillatorily
exchange orbital angular moment and mode angular
momentum within orbital timescales. In addition, the
energy and angular momentum fluxes are also modified
by the beating between the orbital quadrupole moment and
the star quadrupole moment. For binaries with eccentricity
e ∼ 0.2 at forb ¼ 50 Hz, the eccentric-tidal effect on the 22
mode radiation is only detectable by third-generation
gravitational-wave detectors.
Eccentric tidal interaction also leads to tidal resonances

in the inspiral stage. For circular binary, this resonance
happens at ωorb ¼ ωf=2, which is likely higher than the
merger frequency of the binary, depending on the star
equation of state. For eccentric orbits, the tidal resonances
show up at ωorb ¼ ωf=k with k ≥ 2, although the high-
order resonances are generally weaker for low-eccentricity
binaries. We have analyzed the first eccentric tidal reso-
nance, which shows up at ωorb ¼ ωf=3. We argue that it
can be observed in the third-generation detector era. As the

GW detectors are continuously improving in sensitivity,
there is a growing interest to characterize the gravitational-
wave radiation at the late-inspiral stage and the merger/
postmerger stage, as a way to probe the neutron star physics
beyond the information about tidal love number [10].
In order to build a post-Newtonian waveform model for

binary neutron stars at arbitrary eccentricity, one needs to
solve the matrix equation for the Fourier components
of δr, δLϕ, which in turn affects the gravitational-wave
radiation of the orbit. For a frequency-domain description,
additional difficulty arises in the analytical transformation
from time-domain waveform to frequency-domain wave-
form under the stationary phase approximation, which
has been discussed for eccentric binary black holes [32]
in the Newtonian limit. An alternative route is to use the
effective-one-body framework for the system, for which the
time-domain waveform is solved up to 1.5 post-Newtonian
order [26]. We shall leave the construction and valida-
tion of the eccentric binary neutron star waveform to
future work.
At last, although the discussion here is presented on

binary neutron star systems, the formalism is still valid for
eccentric black hole-neutron star binaries. As the mass
ratios for these systems are expected to be larger than those
of binary neutron stars, except for low-mass black hole and
neutron star binaries formed in more exotic astrophysical
channels [39], it is reasonable to expect very different initial
eccentricity distribution at LIGO band even for dynami-
cally formed binaries.
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APPENDIX A: HANSEN COEFFICIENTS

In general, cmn;k and smn;k can be obtained through
numerical integration, based on Eqs. (3.10) and (3.11).
However, in special cases, they satisfy the following
relations:

eiϕ ¼ −eþ
X∞
p¼1

�
2ð1 − e2Þ

e
JpðpeÞ cospl

þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p 2

p

dJpðpeÞ
de

sinpl

�
; ðA1Þ

and
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cosϕð1þ e cosϕÞ2 ¼ ð1 − e2Þ2
X∞
p¼1

p½Jp−1ðpeÞ − Jpþ1ðpeÞ� cospl;

sinϕð1þ e cosϕÞ2 ¼ ð1 − e2Þ2
X∞
p¼1

p½Jp−1ðpeÞ þ Jpþ1ðpeÞ� sinpl; ðA2Þ

where JkðxÞ is the Bessel function of the first kind. Some other useful relations are

1

1 − e cos u
¼ 1þ

X∞
p¼1

2JpðpeÞ cospl; ðA3Þ

and

cos ku ¼ −
eð1 − δk0Þ

2
þ
X∞
p¼1

k
p
½Jp−kðpeÞ − JpþkðpeÞ� cospl: ðA4Þ

In the small eccentricity limit, cmn;k, s
m
n;k become

cmn;k ¼
δk;m þ δk;−m
1þ δk;0

þ eðn − 1Þ δk;m−1 þ δk;1−m þ δk;−m−1 þ δk;1þm

2ð1þ δk;0Þ
þ ek

−δk;m−1 þ δk;1−m − δk;−m−1 þ δk;1þm

2ð1þ δk;0Þ
− em

δk;m−1 þ δk;1−m − δk;−m−1 − δk;1þm

2ð1þ δk;0Þ
; ðA5Þ

and

smn;k ¼
δk;m − δk;−m
1þ δk;0

þ eðn − 1Þ δk;m−1 − δk;1−m − δk;−m−1 þ δk;1þm

2ð1þ δk;0Þ
− ek

δk;m−1 þ δk;1−m − δk;−m−1 − δk;1þm

2ð1þ δk;0Þ
þ em

−δk;m−1 þ δk;1−m − δk;−m−1 þ δk;1þm

2ð1þ δk;0Þ
: ðA6Þ

Similarly, for the QK-Hansen coefficients, we define in Eqs. (4.5) and (4.6), the low-eccentricity limit is given by
(with κ ≔ kþ K0k0)

cmn;k;k0 ¼
δk0ðδmk0 þ δ−m;k0 Þ

1þ δk0δk00
þmK0eϕðδk0m − δk0;−mÞ

2ð1þ δk0δk00Þ
ðδk1 − δk;−1Þ þ

ðner − etÞðδmk0 þ δ−m;k0 Þðδk1 þ δk;−1Þ
2ð1þ δk0δk00Þ

þ κetðδmk0 þ δ−m;k0 Þðδk1 − δk;−1Þ
2ð1þ δk0δk00Þ

; ðA7Þ

and

smn;k;k0 ¼
δk0ðδmk0 − δ−m;k0 Þ

1þ δk0δk00
þmK0eϕðδk0m þ δk0;−mÞ

2ð1þ δk0δk00Þ
ðδk1 − δk;−1Þ þ

ðner − etÞðδmk0 − δ−m;k0 Þðδk1 þ δk;−1Þ
2ð1þ δk0δk00Þ

þ κetðδmk0 − δ−m;k0 Þðδk1 − δk;−1Þ
2ð1þ δk0δk00Þ

: ðA8Þ
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APPENDIX B: PRECESSION IN THE LARGE
ECCENTRICITY CASE

Consider a one-dimensional problem with Hamiltonian
p2

2μ þ VðxÞ, the period is

T ¼ 2

Z
xmax

xmin

ffiffiffiffiffi
2μ

p
dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E − VðxÞp
¼ 4

∂
∂E

Z
xmax

xmin

ffiffiffiffiffi
2μ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − VðxÞ

p
dx: ðB1Þ

If VðxÞ is perturbed to VðxÞ þ δVðxÞ, T is perturbed as

δT ¼ −2
∂
∂E

Z
xmax

xmin

ffiffiffiffiffi
2μ

p
δVdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E − VðxÞp
¼ −2

∂
∂E

Z
xmax

xmin

δVdt: ðB2Þ

Now if the relevant forcing terms in the equation of
motion for δr [the right-hand side of Eq. (4.9)] can be
expressed as

P
k Fk cos kl, we have

δV ¼ −
Z X

k

Fk cos kldr

¼ −arer
X
k

Fk

Z
u

π=2
cos kl sin udu; ðB3Þ

so that

δT ¼ 2arer
n0

∂
∂E

Z
π

π
duð1 − et cos uÞ

×
Z

u

π=2

X
k

Fk cos kl sin u0du0; ðB4Þ

which gives the tidal-induced frequency shift, as δT=T ¼
−δn0=n0.

APPENDIX C: e-ϖ REPRESENTATION

In the main text (c.f. Sec. III), the tidal perturbation is
evaluated with respect to constant semimajor axis a, and the

radial and azimuthal frequencies deviate from the Keplerian
frequency. In practice, it is more convenient to discuss the
modification at fixed azimuthal frequency nϕ, as this is
more suitable for constructing the frequency-domain wave-
forms. Therefore, we shall rewrite some of the key results in
Sec. III with respect to fixed nϕ. For convenience, we
define ϖ ≔ nϕ and x ≔ ϖ=ωf.
In order to ensure constant ϖ, the radius has to further

shift by δa with [c.f. Eq. (3.28)]

δa
a
¼ −

4

3

ð1− e2Þ1=2b0
a

þ 4

3

eg1
μa2ϖ

¼ λM�
M1a5

�
12

1− x2

1− 4x2
þ 3e2

2

31þ 42x2 þ 371x4 − 144x6

ð1− 9x2Þð1− 4x2Þð1− x2Þ
�
;

ðC1Þ

where in the last line we have extended the expression in
Eq. (3.20) to include order Oðe2Þ corrections

b0 ¼
9M�λ
4M1a4

ð1 − 3e2Þ
�

3

4x2 − 1
− 1

	

þ 9M�λe2

8M1a4
ð396x6 − 919x4 þ 282x2 − 59Þ
ð1 − 9x2Þð1 − 4x2Þð1 − x2Þ : ðC2Þ

At constant ϖ, the tidally induced radius shift is

b00 ¼ b0 þ δa ¼ 3M�
4M1

λ

a4

�
3

1 − 4x2
þ 1

	

þ 3e2M�
8M1

λ

a4
ð−36x6 þ 95x4 þ 222x2 þ 19Þ
ð1 − 9x2Þð1 − 4x2Þð1 − x2Þ ; ðC3Þ

and b01 is now −eδa. The radial frequency shift is

δnr ¼ δn − n
3δa
2a

¼ 9M�λn
2M1a5

ð−5þ 56x2 − 66x4 þ 18x6Þ
ð1 − 9x2Þð1 − 4x2Þð1 − x2Þ : ðC4Þ

The energy shift at constant ϖ is δH in Eq. (3.23) plus
modification due to δa; δnr, with g0=Lϕ ¼ δa=ð2aÞ,

δEðϖÞ ¼ μa2e2nrδnr þ μaδae2n2 þMe2μb00
a2

þ LϕδLϕ

μa2
þ EijQij

2
þ
X
m

ð _QmÞ2 þ ω2
fðQmÞ2

2

¼ μðMϖÞ2=3 λM�
M1a5



9

2

1 − 3x2 þ 4x4

ð1 − 4x2Þ2 þ 3e2

4

29þ 234x2 − 6636x4 þ 29878x6 − 34773x8 þ 11700x10 þ 2592x12

ð1 − 4x2Þ2ð1 − x2Þ2ð1 − 9x2Þ2
�
:

ðC5Þ
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Similarly, the orbital-averaged modification in orbital
angular momentum δJorb is just g0, which is

δJorb ¼
μϖλM�
2M1a3

ð1 − e2Þ1=2
�
12

1 − x2

1 − 4x2

þ 3e2

2

31þ 42x2 þ 371x4 − 144x6

ð1 − 9x2Þð1 − 4x2Þð1 − x2Þ
�
: ðC6Þ

APPENDIX D: EVALUATION OF THE FLUXES

In the Newtonian limit, we first consider a “background”
trajectory, which can be written as

rorb ¼ að1 − e cos uÞ;
l ¼ nrðt − tpÞ ¼ u − e sin u;

ϕ − ϕp ¼ nϕ
nr

v: ðD1Þ

Adopting the convention of [48], we define the vector n,
ξ, which are the unit vectors r̂; ϕ̂. We also define Π1 ¼ nn,
Π2 ¼ nξ þ ξn, Π3 ¼ ξξ. We have Iij ¼ μxixj, I ij ¼
Iij − Iδij=3, and

_Π1 ¼ _ϕΠ2; _Π2 ¼ 2 _ϕðΠ3 − Π1Þ; _Π3 ¼ − _ϕΠ2;

ðD2Þ

and

Ïij ¼ ð2_r2 − 2r2 _ϕ2 þ 2r̈rÞΠ1

þ ð4r_r _ϕþr2ϕ̈ÞΠ2 þ 2r2 _ϕ2Π3; ðD3Þ

and

⃛Iij ¼ ½12r_rð _ϕÞ2 þ 6_r ̈r−6r2 _ϕ ϕ̈þ2r ⃛r �Π1

þ f6_r2 _ϕþ 6r_r ϕ̈þrð6 _ϕ ̈rþr½−4 _ϕ3 þ ⃛ϕÞ�gΠ2

þ 6ð2r_r _ϕ2 þ r2 _ϕ ϕ̈ÞΠ3: ðD4Þ

Therefore, we have the associated fluxes for this orbital
trajectory being

PE
back¼−

1

5
h ⃛I jk

⃛I jki¼−
1

5
h ⃛Ijk ⃛Ijk−

1

3
⃛Ijj ⃛Ikki

≈−
32

5
M4=3μ2ϖ10=3

�
1

ð1−e2Þ7=2
�
1þ73

24
e2þ37

96
e4
	
þ

−
279e2M�λ
8M1a5

ð−5þ56x2−66x4þ18x6Þ
ð1−9x2Þð1−4x2Þð1−x2Þ

�
; ðD5Þ

where we have identified nϕ withϖ and used the expansion
of nr in Eq. (C4). Similarly, the expansion of angular
momentum flux for the background trajectory is

PJ
back ¼ −

2

5
ϵ3jkhÏ jm

⃛Ikmi

¼ −
32

5
M4=3μ2ϖ7=3

�
1

ð1 − e2Þ2
�
1þ 7

8
e2
	

þ 9e2M�λ
8M1a5

ð70 − 784x2 þ 924x4 − 252x6Þ
ð1 − 9x2Þð1 − 4x2Þð1 − x2Þ

�
:

ðD6Þ

The physical trajectory is deformed from the background
trajectory by r → rþ b00 and ϕ → ϕþ δϕ, with δ _ϕ ¼
g1 cos l=ðμa2Þ. As a result, we can apply Eq. (3.29) and
obtain

PE
orb ¼ −

32

5
M4=3μ2ϖ10=3

�
1

ð1 − e2Þ7=2
�
1þ 73

24
e2 þ 37

96
e4
	

þ 12
M�λ
M1a5

1 − x2

1 − 4x2

þ 3e2M�λ
8M1a5

ð2328 − 8626x2 þ 13339x4 − 5049x6Þ
ð1 − 9x2Þð1 − 4x2Þð1 − x2Þ

�
;

ðD7Þ

PJ
orb ¼ −

32

5
M4=3μ2ϖ7=3

�
1

ð1 − e2Þ2
�
1þ 7

8
e2
	

þ 12
M�λ
M1a5

1 − x2

1 − 4x2

þ 3e2M�λ
4M1a5

ð941 − 1899x2 þ 3286x4 − 1260x6Þ
ð1 − 9x2Þð1 − 4x2Þð1 − x2Þ

�
:

ðD8Þ
The total energy and angular momentum fluxes are

approximately the simulation between orbital flux PE;J
orb

and PE;J
orb , as the modal fluxes are higher order in ϵ. In the

small eccentricity limit, they are

PE
× ¼ −

1

5
M4=3μ2ϖ10=3 ×

Mλ

M1a5
×

�
192

1 − 4x2

þ e2
�

11

2ð1 − x2Þ þ
64

1 − 4x2
þ 15309

2ð1 − 9x2Þ
	�

; ðD9Þ

and

PJ
× ¼ −

1

5
M4=3μ2ϖ7=3 ×

Mλ

M1a5

×

�
192

1 − 4x2
þ e2

�
9

1 − x2
þ 216

1 − 4x2
þ 5103

1 − 9x2

	�
:

ðD10Þ

Note that Eqs. (D9) and (D10) together with Eq. (D7)
produce consistent result with Eq. (8) in [38] in the circular
limit. In particular, when e ¼ 0, we have
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PE
orb ¼ ϖPJ

orb; PE
× ¼ ϖPJ

×: ðD11Þ

Using Eqs. (C5), (C6), and (3.26), it is straightforward to
check that

dEðϖÞ
dϖ

¼ ϖ

�
dJorbðϖÞ

dϖ
þ dJmodeðϖÞ

dϖ

�
; ðD12Þ

or

_EðϖÞ ¼ ϖ½ _JorbðϖÞ þ _JmodeðϖÞ�; ðD13Þ

so that circular binaries remain circular even with the
inclusion of dynamic tide.
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