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We study the orbital evolution of eccentric binary neutron stars. The motion follows a quasi-Keplarian
orbit with perturbations due to tidal couplings. We find that the tidal interaction between stars contributes to
orbital precession in addition to the post-Newtonian procession. The coupling between the angular and
radial motion of the binary also excites a series of harmonics in the stars’ oscillation. In the small
eccentricity limit, this coupling mainly gives rise to an additional orbital resonance, with the orbital
frequency being one third of the f-mode frequency. For a binary with initial eccentricity ~0.2 at 50 Hz
orbital frequency, the presence of this tidal resonance introduces ~(0.5) phase shift in the gravitational
waveform till merger, subject to uncertainties in neutron star equation of state and the distribution of binary
component masses. Such phase shift in the late-inspiral stage is likely detectable with third-generation

gravitational-wave detectors.
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I. INTRODUCTION

Neutron star mergers produce copious gravitational
wave (GW) and electromagnetic radiation, that encode
critical information about state of matter under the extreme
physical conditions (gravity, pressure, temperature, etc.).
In particular, the detection of GW170817 [1] and sub-
sequent observations from gamma-ray band to radio-wave
frequencies has ushered in a new era of multimessenger
astronomy [2-9]. As the sensitivity of current-generation
GW detectors degrades significantly above 1 kHz [10,11],
directly probing the postmerger GW signal from binary
neutron stars (BNSs) is less likely in a few years. The
inspiral part of the GW signal, however, not only provides
information about the binary orbital parameters, such as
component masses, eccentricity, distance, etc., but also
the matter properties through the measurement of tidal
deformability and possible resolution of the merger fre-
quency. For example, the tidal love number constraint from
GW170817 has greatly refined the possible parameter
range of NS equation of state.

Most of the compact binary mergers are believed to be
(nearly) circular.' However, recent studies have shown
the possibility of forming eccentric compact binaries in
the LIGO (Laser Interferometric Gravitational Wave
Observatory) band by resonant and hierarchical triple

'A recent publication has argued that post-Newtonian radiation
reaction excites small eccentricities ((0.01) in the late inspiral
stage [12], which appears to be interesting to be the discussion in
this work.
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and quadruple systems in globular clusters [13-21], in
addition to dynamically captured binaries [22]. These
events may be rare comparing to circular inspirals, but
they contain important information about their forma-
tion channel(s), environment, and distribution, through
the spin and eccentricity measurement. For eccentric binary
neutron stars, we shall show that the coupling between
radial and angular orbital motions give rises to new
tidal resonances, that can be possibly detected by third-
generation GW detectors such as Einstein Telescope [23]
and Cosmic Explorer [24].

The motion of inspiring eccentric binary black holes
(BBHs), within the post-Newtonian framework, can be
described by the quasi-Keplerian (QK) orbits [25]. At the
zeroth order, the QK orbit coincides with the Newtonian
elliptical orbit. With higher-order post-Newtonian effect
included, the radial motion generically oscillates with a
different period from the angular motion, which is known as
the general relativistic precession. In addition, radial and
angular motions also receive periodic corrections that can be
expanded in a post-Newtonian manner. Alternatively, it is
possible to utilize the effective-one-body (EOB) framework,
which resembles the post-Newtonian expansion in the EOB
spacetime [26]. Based on these frameworks, different wave-
form models have been developed to characterize the GW
signature of BBHs, which have achieved in decent accuracy
for low-medium eccentricity binaries [27-30], with prom-
ising potential to realize fast frequency-domain waveform
model with arbitrary eccentricities [31,32].

For eccentric BNSs, the tidal coupling between stars
introduces extra complication in the equation of motion.

© 2019 American Physical Society
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For example, in [33], we have studied highly eccentric BNS
in the inspiral stage, where the f-modes of NSs are excited
during the close pericenter passages, and subsequently play
important roles in the orbital evolution. With sufficiently
accurate orbit model, it might be possible to combine
f-mode emission from different pericenter encounter cycles
to boost the signal-to-noise ratio of detection, e.g., with the
coherent stacking method [34-36]. While the formation of
such systems may require rather restrictive initial param-
eters, it is still important to characterize the tidal effect in
medium-low eccentricity BNSs, in addition to the under-
standing of equilibrium and dynamic tide in the circular
orbit limit [37,38].

In this work, we adopt the QK orbit as the unperturbed
solution without the tidal effect and compute the NS
oscillation in response to the orbital motion and tidal
couplings. For eccentric orbits, the tidal budge induced
on a star generally does not point to the companion star in
the binary. As a result, the binary orbital angular momen-
tum continuously exchanges with the NS mode angular
momentum within orbital timescales. These NS oscillations
also back-react on the binary orbit, giving rise to perturba-
tions of the QK orbit that affect the GW radiation. In the
low-eccentricity limit, we explicitly evaluate these pertur-
bation terms and determine their influence on the orbital
phases in the time domain. Although the discussion of the
NS mode and the orbital dynamics has been specified to
BNSs, the result is also applicable to BH-NS binary [39],
with the oscillation of the BH set to be zero. The
construction of a frequency-domain waveform model will
be left to further work.

This paper is organized as follows. In Sec. II, we present
the basic formalism to describe the motion of an eccentric
BNS system under the influence of tidal couplings. In
Sec. III, we apply this formalism to the Newtonian
orbits, characterize the importance of tidal effects for
low-eccentricity systems, and discuss the tidal resonance
effect. In Sec. IV, we repeat the exercise for post-Newtonian
orbits. We conclude in Sec. V. Natural units with ¢ = 1,
G =1 are used throughout the analysis.

I1. BASIC FORMALISM

The Hamiltonian of a BNS system, including the
leading-order tidal excitations of the stars, can be expressed
as [37,38]

_ (") +wp(Q")? | EY0Q
H = Heom + Z 5 +e—

= How + Himode T Hints (21)
where the tidal field is labeled with ¢ for book keeping
purpose, and w,, is the eigenfrequency for mode r. In stellar
perturbation theory [40], the modes of a three-dimensional
star are often indexed by the angular nodal number 7,

azimuthal nodal number m, and radial nodal number #,.
Here n represents the collection of these three indices:
n={¢mn,}. In particular, the gravitational response of
f mode generally dominates over other modes (e.g.,
p modes and g modes) of the NS, so that in this work
we primarily focus on the f-mode excitations. The electric
part of the tidal tensor, £ ij» can be evaluated based on the
relative displacement of the binary [33,41], and the local
spacetime of the target star is influenced by the tidal
environment generated by its companion (also see the
application in extreme mass-ratio inspiral systems in
[42,43]). The orbital Hamiltonian H,,, expanded in the
post-Newtonian format, can be found in [44] up to the third
post-Newtonian order. Because of the center-of-mass con-
servation, the orbital motion is fully characterized by the
relative distance and orbital angle, which originally moti-
vated the development of the EOB formalism [45]. The
modal quadrupole moment Q7; induced by the tidal field
and the modal excitation displacement Q" are related to
each other through

Qij = ZO:‘;‘QW (22)
with the overlap tensor defined as
o = / pde(Elx; + E1x,), (23)

where p is the local density within the star and &" is the
displacement vector associated with the eigenmode
wavefunction, that can be expressed in vector spherical
harmonics

£ = (&) (Ner + &7 ()Y, (0.9).  (2.4)
The determination of fge”) and f(S"> is discussed in the

Appendix A of [33]. Notice that Eq. (2.2) can be derived by
combining Eq. (2.3) with the following expansion

§ = ZQngnv (25)
and it can be further represented as
0y, = 0t [ d0e, e )(ere) (20

with
R, (n) (n)
01 =2 [“an g + e+ 0 )
0

At this point, all variables are still real. But later on when
we talk about specific modes, it is often convenient to use
complex wave functions for decomposition. In those cases,
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Q,, can be complex valued, although the total displacement
& remains real.

A. Orbital description

Under the influence of tidal field, the binary orbit is no
longer eccentric, even in the Newtonian limit. However, as
the tidal interaction is generally weaker than the direct
point-mass gravitational attraction, we can expand the orbit
as power laws in the tidal-coupling coefficient ¢,

X = Xgpp + €26x + O(e?),

P = Pon, + €25p + O(%), (2.8)

where x, p follow an eccentric orbit in the Newtonian
description or QK orbit in the post-Newtonian description,
and the orbital evolution is determined by the conserved
energy and angular momentum E, J.

E = Horb (Xorba porb)’
J=J

orb (Xorba porb)’ (29)

where 7, can also be found in [44] up to the third post-
Newtonian order. The perturbation starts at the second
order in ¢ as Q starts at linear order in €, so that the
backreaction of Q starts at the second order. As the binary
orbit decays due to GW radiation generated by orbital
motion and mode oscillation, we have

PoErb + Pglode + PE = Eop + Emode + Eint

. OHorp OH oy
) 2 orb s 2 orb s
e )

N

+ €2Emode + €2Eint
. OHp.. OHe-
—E € € J,
e "

Pérb+P[Jnode+P{< :]orb+]mode

=J+ |:€2 —8g;rb 6x} +é? [—ajorb 5 p]
N N

Jp
+€2]mode
. 0T 2. 0T -
= < < 2.1
It e B (2.10)

where different components of the energy and angular
momentum flux P%” are discussed in Sec. II B. To evolve
the orbit, we need to relate them to the secular change of £
and J. This means that we need to solve the equation of
motion for 6x, p, Q as a function of E, J and time ¢. Based
on the Hamiltonian, the equations of motion are

Qn + }/Qn + CO% Q" = _egQ (Xorb7 porb)’

3 82 Horb 82 Horb 87—(int

P =~ xox X axap P ox
- 0P Ho 0 Ho

0X = o 2 5p, 2.11
X apox apop P (2.11)

where y is an infinitesimal positive damping rate due to
dissipations in the star that have not been accounted for
in the Hamiltonian formalism, and &, = £;;0};/2. Notice
that we are taking complex conjugation for O;; here
because the complex wave function is being used. The
solution of Q is

t
0" = _€/wn/ e~ sin wn<t - t/)EQ (Xorb’ Porb» t/)dt/
+ Qﬁlite_iw"t_yr - Qgriven + Q’fzree’ (212)

where Q! corresponds to the initial value of Q".

Like a normal weakly damped harmonic oscillator,
Q" generically contains a “driven” part that is pro-
portional to ¢ and a “free” that satisfies the homo-
geneous equation of motion [the left-hand side of the
first line of Eq. (2.11)]. Under a periodic driving force
with slowly varying frequency w/(27) (@/w < w), the
driven part Qgiven Can often be approximated by its
adiabatic value

Eo(1) '

—_ 2.13
o2 = 2iyw — @ (2.13)

n ~ O — _
eriven RN a = —€

On the other hand, if the initial oscillation is zero or the
initial time of integration is far in the past, such “free” part
may be neglected. However, as we shall see later, when the
system evolves across mode resonances, certain level of
free mode oscillation will be excited as well.

B. The radiative terms

The radiation terms that appear in Eq. (2.10) can be
evaluated from the quadruple formula,

|
Pf = _§<IjkIjk>,

; 2 N
pP; = _geijk<Iijkm>‘ (2.14)

Because we have assumed both NSs to be nonspinning,
their orbital motion should still remain on a plane with
the presence of post-Newtonian correction and tidal
effects. As a result, the orbital angular momentum is
orthogonal to the orbital plane, so that only the normal
component (defined as the z direction) of P’ is
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nonvanishing, and hereafter we drop the vector indices
of P/,

The orbital energy and angular momentum flux PE,
P/, are derived in [46] up to the third post-Newtonian
order. The modal fluxes PZ . P/ . are given by

), O

mode
2
mode - < j >7
8
_ﬁ Q§<Z|Qm|2>9

4;:M2 Q4 6

= s 2 mZ

mode’

O(legel® 4 Is54l?)
[(kn)? — f} ’

(2.15)

and [33]

Pg = - g <ZQmOz‘j1ij>,

2 ) o
Proge = —geijk<ZQmOﬁ,ZQm'Okmh>,
1167/7
= Q§<Q2Q—2 - 0.,0,),

327r W22M S 53 kc3k
_ 2 ot sz e (216)

where we have used Eq. (3.12) and the fact that only the
£ =2, m =0, £2 f modes are relevant for the discussions
here (the m = £1 modes are not excited [33,47]). These
expressions can be made more explicit with the prescription
of an unperturbed orbit.

The cross terms PZ and P/ comes from the beating
between radiation from the orbital motion and the mode
excitation.

—0.5ec3, +0.5ec) )53,

4 M2 M .03 BZ e (453, — 0.5es3 , 4 0.5es) ;)3 + (4e3

RS

8z M>3/? M*Qg
TasHT5m 6T 3 ’
75" ¢ q

and

2 .. ' 2 >
Pi = —§€1jk<lthQm’Ozlh> _gei/k<ZQmO;nhlkh>’

4”ﬂMM Q: 3Zk3 el + 3y —eledy -
25 q

7_ 7
(kn)* — wy
S 52405 (2.17)
R (T '
cip) T €/Achi = 25153, + (c < 5)
7_ 72
(kn)* — w?
4ﬂ,uM3/ M Qé ZZ 2 (4c3; —0.5ec3 4 0.5ec) ;)c3, + (453, — 0.5es3, + 0. Seszk)s%k (2.18)

+55 25 q5/2

In the Newtonian limit, /;; and I l, can be found in Eq.
(12.77) of [48] for generic eccentric orbits.

C. Equilibrium and dynamic tide

The tidal response in the static limit can be formally
described by a transformation tensor

For spherically symmetric object, this transformation ten-
sor reduces to a single tidal Love numbers A, such that

(kn)? — ;

When the frequency for the tidal field @ is much less than
the mode frequencies, we can approximate the solution of
Eq. (2.13) as

Qn ~ _EQ/w%n (221)

which is often referred as the equilibrium tide approxima-
tion. The total induced quadrupole moment is

Qi ZQ?] = ——Z > O} OsiE

Such expression should be compared with Eq. (2.20).
While it is not immediately clear why these two

(2.22)
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expressions are equivalent, they are guaranteed by the
spherical symmetry of the star, and 4 can be obtained as

1 1 .
/1 — Egmguouoabg‘l},

47 Q%
~ Q¢ . (2.23)
1507
where in the second line we have kept the contribution from
f modes. On the other hand, for the case with

—iQqt
E~ E b,e ,
a

(2.24)
we have

2.25
w% + (7 - lga)z ( )

0"~ _GZ b“e—_lga.t.
a
The tidal response is frequency dependent, which is
often referred as the dynamic tide. Certain higher harmonic
frequency Q, may be comparable or even larger than the
f-mode frequency w;. Resonance occurs when Q, ~ w;.

III. NEWTONIAN ORBITS

In this section, we keep only the leading-order
Newtonian term in the Hamiltonian and solve for the
orbital evolution in response to the tidal coupling. We
also examine the tidal resonances in the low-eccentricity
limit, and discuss the criteria of detecting such resonances
with current and future GW detectors. For simplicity, we
only include the mode evolution for one reference star, as it
is straightforward to extend the analysis to oscillations of
both stars in the BNS system.

The Newtonian Hamiltonian for the orbit is

2

M 2 L7 M
’H():p———'u—p— ¢ _DH

2u r  2u 2mrt r

. ()

with y = MM ,/M and M = M| + M. The unperturbed
orbit can be characterized as

Fop = a(1l — ecosu),

l=n(t—t,) =u—esinu,

¢ — ¢, = 2arctan l (1—1—:) tan%}, (3.2)

with n = \/M/a®, u being the mean anomaly, [ being the
mean motion and ¢ being the true anomaly, and 7,, ¢,

corresponding to the time and angle at the pericenter
passage. We further have energy and eccentricity given by

My , 2E
2 — 142
2a ¢ +y3M2

(3.3)

Now, according to Eq. (2.8), we expand the motion as

r=rap+€5r.  Ly=Loy+€3Ly (3.4)

The equations of motion [c.f. Eq. (2.11)] become

Sr 4 3L§rb6r _ 2Lorb5L¢ _ 2Mér _ _iagij )
Wty @, . 2uor Y
dsL € OEY
¢
T 557 Y 3.5
dt 2 a¢ Ql] ( )

and the solution of the mode excitation is given by
Eq. (2.12). For simplicity, we neglect the initial oscillation
by setting Qg = 0.

A. Dynamic tide

The dynamical-tide excitation corresponds to the tidal
response described by Eq. (2.12). For the “background”
trajectory described by Eq. (D1), the tidal tensor generated
by the companion NS with mass M,, that acts on the
reference NS, is [33] (taking ¢, = O here)

" —%—%COSZQ{) %Sin2¢ 0
Ej=—5| 3sin2¢  F4jeos2p 0. (3.6)
orb 0 0 1
so that (restricting to £ = 2 subspace)
W mM* —im
En=——22""Q.e ", (3.7)

Torb

Here W, are defined in [47], with relevant components
used in this work,

3 T
10 Wi = —\/g, Wy =0. (3.8)

In order to solve the equations of motion in Eq. (3.5), let
us define [49]

Wit =

M (1 +ecosgp)” = Zc;ﬁk coskl + s, sinkl.  (3.9)

k>0

Here ¢}, s}’ are functions of the eccentricity e, which are
proportional to the Hansen coefficients [50] [apart from a
(1 — ?)" factor]. They can be obtained through
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1

mo_ - 14 ecos cos cos kldl,
Cnk = (1 + S0) —77:( cos@)” cosme
1— 2\n g 1
= 7( c) / (1 —ecosu)'=" cos[k(u — e sinu)] cos { 2m arctan te tan & du,
ﬂ'(l + 5](0) —r 1 — e 2
- (3.10)
and
1 n
S = m/_ﬂ(l + ecos )" sin mep sin kldl,
1— 2\n P 1
= 7( e) / (1 —ecosu)' " sin[k(u — e sin u)] sin { 2m arctan te tan = du,
71'(1 + 5k0> —r 1 — e 2
- (3.11)

In terms of the Hansen coefficients, and according to Eq. (2.12), the f-mode excitation becomes (y — 0)

e (! /
O"x—— [ e sinws(t — 1)Epdl

a)f —
WonM. todr _—

-2 Qée/ — sinwg(t — 1) e (")

Wy © rorb(l) ‘
eW,,, M., ci' coskl S5 sin kl
5 EWan? Q: (Z 3408 i 2>’ (3.12)
q —(kn)* + o — —(kn)” + w}

where in the last line we have adopted the adiabatic approximation [c.f. Eq. (2.13)], and q := a(1 — e?). The star is driven at
integer harmonics of the orbital frequency, so that it is possible to have resonance crossing during the inspiral stage. For
circular orbits, only the term with k = 2 survives. In addition, the inspiral usually terminates at the ISCO (Innermost-Stable-
Circular-Orbit) frequency or the contact frequency of the two NSs, which are comparable or smaller than the f-mode
frequency divided by two. Therefore, it is difficult to observe a complete resonance during the inspiral stage for k = 2.
However, it has been shown [37] that the frequency dependence of the tidal love number is important for describing motion
in the late inspiral stage, which is essentially related to the kK = 2 resonance.
We can similarly decompose the driving terms in the equations of motion into a summation of harmonics,

<S‘ijQij/z = ng*Qm?

2W2 M2 c coskl s? sin kil
—z 0 (Zc3k,cosk’lz 3k Zs”,smk’lz 3k > (3.13)

and
85}11*
_ 9]
Ql]/ orb B zm: arorb Qm’
e*3W;3, M2 ™ cos kl s7 sin kl
= —Z Q‘f (Zc4 4 COS k/lz 3k Zs4k, s1nk/lz 3k ), (3.14)
and

ek

Z aQ O
2 a2
= Ze mW nM20% <Zs3 v smk’lz C3kCOS kl ch 4 COS k’lz s3ksmkl ) (3.15)
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As a result, we can determine Eq. (3.5) in an expansion of harmonics. We first write 6r and 6¢ as

r="> bycoskl,
k

oLy = ng cos kl.
3

(3.16)

There are no sin kl terms because of the absence of corresponding terms in the driving force. The equations of motion

become (k > 0)

3L
—k2n2bk—|—2ﬂ (Zb th ¢ ki T S ein) —

h=0 m>0
=2
— kng, = Z

23w2 M2

>0
€ mW2 M2

h>0

These equations can be solved in the matrix form. The
k = 0 piece of angular momentum shift g is zero, because
there is no dc angular momentum exchange between the
orbit and the stars.

B. Small eccentricity limit

In the small eccentricity limit e < 1, we can take the
leading-order expansion of the Hansen coefficients in terms
of e. They can be found in the Appendix A. In particular,
for the terms showing up in Eq. (3.17), we always have
m = %2, 0 and n = 3, 4. The nonzero components that are
proportional to e are

A = ne, 50, =0,

¢35 =35, ¢33 =35,

535 = 3.5e, 533 = —3.5¢

C%,l = —0.5¢, c3_’21 = —0.5e,

53, = —0.5e, 537 = 0.5e. (3.18)

The principle part that survives in the circular limit is

0o _ 0o _

Cro =1L Sno = 0.

2 2 _

Cn,Z - 1’ sn,2 - 1’

-2 _ -2 _

s =1, Spp =—1. (3.19)

With these results, we now try to solve Eq. (3.17) in the
small eccentricity limit. The result is

o= W%QM%QE 16en(n® — 40)?)
1= ,
q° (9n?* — a)J%)(4n2 - co]%)(n2 - a)j%)
_BMIQF [ 2W3, W5
T M 42— w2 ) (3.20)
H @y

P th e ) T €3, Skn) = e
Q.f 3
Z[ hn)? C4 eon T Cakn) + (}14

0; S ,
Z hn Slgn(k h)s3 Jk=h] + §3. k+h) + W—wf

2Lorb
0 0
913 jeop + Cen)
>0

S5

) —a? (Sign(h — k)s’ le—n| T 54 k+h)]
S5 " m

2 (_63,|k—h\ + C3,k+h)]'

(3.17)

|

and we find that for k = 1, the coefficient of b; becomes
zero, which means that the kK = 1 term corresponds to the
resonant frequency of the orbit. Any external driving
frequency being the same as this frequency will formally
make b; diverge. Physically what happens is that the
coupling with star’s internal degrees of freedom shifts
the radial frequency and makes the orbit precess. In order to
fix this problem, we need to assign a different frequency
n+dn to the radial motion with én # 0,6n/n ~ O(e?).
The k = 1 motion should also be absorbed into the back-
ground trajectory, with a redefinition of the eccentricity. By
expanding the radial equations of motion in € and keeping
terms linear in €2, we see that

6en’by + 2nudnea

2Lorb 623M3Q§
- /“13 91 a’
" 4rme(—36n* + 100n*w? — 62n°w* + Ta®)

5% (0* — 9n?)(w* — 4n?) '

(3.21)

with L.y ~ una®. As a result, we have

on M0z 67(18n° — 10n*w? — 12n%0* + o)
- —4n?)(w* —9n?)

ua®  So*n*(w? — n?)(w?
202
A il (3.22)
SuMw*a’

All other terms (by, g;) in the expansion series are zero.
With 6r and 6L, known, it is then straightforward to
compute the tidal perturbation of the Hamiltonian. Both ox
and 6L are time dependent, but the Hamiltonian pertur-
bation is not. Therefore, we can pick any time to evaluate
OH. It turns out that [ = z/2 is a convenient choice.
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OHorm OHom
oH = 2—0r5 2_or5 Ein Emoe
€ x X+ € ap p + Ein + d
_ POp, n Mubr Lorbér ,JQ,] n Z (Qm)
a rgrb 'ur(3)rb
Mub 51“ y + 2 (O™)?
= pa*e*snn + 520€2+ ]ZQ]+Z " > f<Q )
B eEM:0; B 27(4n* — 11n*w* + o)
o ad 5% (w? — 4n?)?
6re? (648n'2 +2610n'"%w? — 9470n8w* + 8759n°w® — 2179n*w® + 133n%w'’ + 3w'?) (3.23)
5 @?(0? — 4n?)?(w* — 10n’°w? + 9n*)? ’ '
[
Similarly, for the angular momentum, dg IH oy (3.27)
dt N 3p,/) ’ .

oJ = 62%6)( + 62%517 + €2Jmode
0x 0
= 625L¢ + ezlmode. (3.24)
‘We notice that
@ mog . . doL,

m

so that 6/ is conserved. At [ = /2, 5L, is zero (it has no
k = 0 component) and J,,,q. 1S given by [37]

o 0200i= 010y
mode — ﬂw%

W > _0nQuw (0507 = O7,05)

fmm

1 8ni W22M Qg

EF (0,0, -0.,0,)
_M_HW%ZM%”ng kC3ks3k
15 Jwlgt ((kn

6;1—M2nQ§Z kc3ks§k

q° ((kn)? —

ﬂM%ant 2 e
~N— ec | ————

5 4 (4n* — a)})2 4(n* - w})2

12 147
3.26
* (4n? — co]%)2 * (9n? — a)%)z] }’ (3.26)

where we have used the identification 2 = 4zQ%/(1507)
for f mode. In addition, because

we can evaluate the perturbation of the angular frequency
n + ony due to the tidal interaction, such that

OH
5l’l¢ _ 5< 5 0rb>
Py
o 5L_¢ B 2L or
prtopr
1 2L
_ 0 ¢ 0
— W ;gkcz’k — M? ;bkcik.
Because of the modification of the radial and angular
frequencies on, 6ny, and the shift of the trajectory (6r, 5L ),

the principle parts of the energy and angular momentum
radiation are correspondingly changed.

2

(3.28)

5Pgrb =75 <5fjkfjk>v
7 2 v e 2 ..
OPg, = §€3jk<5Iijkm> —§€3jk<Ijm5Ikm>. (3.29)

The explicit evaluation of these quantities is discussed in
detail in Appendix D.

1. Sample evolution

In order to illustrate the effect of eccentric tidal terms in
the flux, energy, and angular momentum derived in Sec. I1I
and Appendix. C, we take an equal-mass, 1.3M o + 1.3M,
binary NS system as an example. The star compactness is
assumed to be M, /R, = 0.16, and the initial eccentricity at
Sforr = 50 Hz is set to be 0.2. We use this system to com-
pare two separate evolution schemes. In the first evolution,
we adopt Eq. (C5), Eq. (C6), Eq. (D7), Eq. (D9), Eq. (D10),
and Eq. (3.26) for a time-domain evolution to obtain a
relation between f4 and 5. In the second evolution, we
drop the terms proportional to 2 in these formulas and
evolve the system again to obtain the function #,,(for)-
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5t (G Mp/cd)
N

ol ]
100 200 300 400 500

forb(HZ)
FIG. 1. 6t — f plot comparing two individual evolutions. Here

Soro 18 the orbital frequency, and 6t := fp — f,4y 1S the difference
in time between two evolutions up to a given frequency. The
“full” evolution incorporates the flux, energy, and angular
momentum formulas derived in Appendix C and Sec. IIl. The
“partial” evolution uses only previous known formulas, which do
not contain correction at the %2 order. The initial eccentricity at
Sforb = 50 Hz is 0.2, the NS mass is 1.3M, and the compactness
is assumed to be 0.16.

The time difference up to certain orbital frequency, dt, is
defined to be fg — fpar, as shown in Fig. 1.

The phase difference accumulated for the dominate
¢ =2, m =2 mode can be estimated as

fup
FondSt ~0.06
fdown

6‘{”22 =4z (330)

for this particular evolution if we choose fj,wn = 50 Hz,
Jfup =500 Hz. Such phase difference is probably only

free _ eWomM. Qé’ { C% k
v PO

observable for loud events in the third-generation

detector era.

C. Tidal resonance

According to Eq. (3.12), when kn ~ @, we expect the
f mode to be resonantly excited. As the orbit does not
stay at resonance for infinite time because of radiative
dissipation, we need to account for the total phase shift
across the resonance. In this case, we need to consider
Eq. (2.12) taking into account the evolution of conserved
quantities.

There are two major effects of these tidal resonances,
which are intimately related to each other. At first, f mode is
resonantly excited across the resonance, and this free
oscillation of f modes persists in the postresonance stage.
This f-mode free oscillation also generates GW radiation
at frequency w;/(27). Second, as the orbital energy
and angular momentum transfer to the f mode to support
the free oscillation, the orbital motion after the resonance
gradually deviates away from the one without the reso-
nance, due to the change of the conserved quantities. In
this case, the resulting orbital phase shift can also be
determined.

1. Free oscillation

The orbit evolution across resonance requires that there
is a free oscillation piece of Q,,, excited by the driving
force. In other words, the last line of Eq. (3.12) needs to be
modified in the near-resonance regime, which introduces a
free oscillation piece.

If kl’l = (l)f + ki’l(t — tf) + O(f— ff)z,
oscillation piece of Q,, is

then the free

F.(Vki(t = t;)) sinwt + F,(Vki(t — t;)) cos a;ft}}

€W2mM Qg{ 53 F.(VkA . . }
- kn(t—t;))sinw,t + F (Vkn(t —ty))coswt| ¢, 3.31
2 Z\/H (t—t))sinwy (Vka(t —17)) cos 1] (3.31)
with the Fresnel functions
Fo(x) = / " cosfdi,  F,— / " sin2dr. (3.32)
We note that F(c0) = Fy(c0) = /x/2. The idea is that Qi smoothly transits to Q¢ when kn — wy,
O, = %17 1 <t,
= Qfree, t <t<t,
_ ad VAWM. QO { 3y — i85, }
_ ou VI amPae  INT Gk T Bk rGn 0 1 4+ 1/4 1> 1. 3.33
o+ TR [ S iy 1/4) : 3.3
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It can be shown that the transition is smooth (results do
not depend sensitively on #;, t,), for example, using the
asymptotic behavior discussed in Steinhoff and Hinderer.
However, they miss this free oscillation piece in the
postresonance regime (¢ > 1,).

Free oscillation of f modes has been observed in highly
eccentric binaries [33,51].2 While the orbital timescale may
be long, the collective work of many harmonics gives rise
to the impulsive interaction near the pericenter. In general,
we need to consider (w/n)th order harmonic to reproduce
this “free oscillation” feather. If the orbit is highly eccen-
tric, this task is computationally expensive, and it is
preferable to apply the impulse approximation as in [33].

2. Orbital phase shift

According to Eq. (3.33), the amplitude of the f-mode free
oscillation gained after the kn ~ w; resonance is

WzmM*Q ﬂ/kl’l m m
1l ~ e (07 (550

Tk (3.34)

The orbital energy decreases an extra amount across the
resonance, due to the excitation of the free oscillation. As a
result, the binary should merge faster than those without
resonance crossing. In the small eccentricity limit, the only
relevant tidal resonances are the associated with k =2 or
k =3. The k =2 resonance, although being largest in
amplitude, hardly takes place in the inspiral part because
the binary merger frequency is generally smaller than half
of the f-mode frequency. On the other hand, the mode
amplitude for the k = 3 resonance is proportional to the
eccentricity. The orbital frequency associated with this
resonance, being one third of the f-mode frequency, could
be smaller than the merger frequency.

Therefore, for kK = 3 resonance, the corresponding (2,2)
component phase shift of the gravitational waveform is [52]
(for equal mass binaries)

2 2
A ~ 2 x 4 0. 12l Cnl”
forb Eorb

fmode -2 Q 2 —4 p2 e 2
~0.68 =) M;5R, )
<1.5 kHz 03) 197120 0.02

(3.35)

where the first factor of 2 comes from the mode energy for
both NSs. Here 7., is the orbital period at the resonance, e

is the eccentricity at the resonance, tp = f/ f at the
resonance, and E., = Mu/(2a) is the orbital energy at
the resonance. The quantity Q is the dimensionless tidal
overlap coefficient defined as

“For the impulsive approximation in [33] to hold, the eccen-
tricity needs to be generally larger than ~0.6. As the eccentricity
generally decays with time, the impulsive approximation may
break down in the later part of the evolution, when e < 0.6.

Q:

Q= MR

(3.36)

Notice that the orbital eccentricity e decays with increas-
ing orbital frequency f due to GW radiation, with the
scaling being approximately e ~ f~'%/18, This means that a
binary with eccentricity ~0.02 at 500 Hz would have
eccentricity ~0.2 at 50 Hz and ~0.6 at 20 Hz. Such binaries
may originate from dynamical captures in globular clusters
[53] and multibody dynamic evolutions. Despite the recent
developments, the rate of these channels is still subject to
significant theoretical uncertainties.

The statistical phase error of an event with signal-
to-noise ratio (SNR) p is approximately vD — 1/p [54],
with D being the number of degrees of freedom in the
parameter estimation. To resolve a phase O(0.5) error with
D ~ O(10), events with p > 7 are necessary. Note that this
resonance happens in the late-inspiral stage, which is
around 1 kHz for the quadrupole GW radiation, so that
p should represent the SNR of the waveform segment
starting from the resonance and ending at merger.’ For a
1.3M, + 1.3M, binary NS system at 40 Mpc, the SNR for
the inspiral waveform from 1 kHz to the plunge frequency
(~1.4 kHz) is around 1.5 for Advanced LIGO design
sensitivity [55] and around 20 for Cosmic Explorer [24].
Therefore, such requirements are more likely satisfied with
the third-generation GW detectors, such as the Einstein
Telescope, Cosmic Explorer, and LIGO-HF which also
have decent midfrequency sensitivity [10,11], etc.

If one (or both) NS(s) is a millisecond pulsar, the rotation
frequency f; may be a couple of hundred Hz. As a result,
the degeneracy between different f modes with different
azimuthal number m is broken. In particular, the frequency
split is roughly 0.5mf [56]. If the NS spin counter-rotates
with the binary, the mode with frequency fo4c — f5 18
mostly excited; if the NS spin corotates with the binary, the
mode with frequency foq + fs, 1S mostly excited.
Therefore, for counterrotating binaries, if the fi,04e — f
is smaller than the merger frequency, the k£ =2 tidal
resonance is present in the inspiral stage [37].* On the
other hand, for the k =3 tidal resonance, the mode
frequency in Eq. (3.35) is f04e — fs» and the correspond-
ing orbital frequency will be modified to (f o4 — f5)/3-

IV. TIDALLY MODIFIED QK ORBITS

In the post-Newtonian limit, the motion of two gravi-
tationally bounded points masses can be described by the
quasi-Keplerian orbit, as a generalization of the Keplerian
orbit in the Newtonian theory,

’If the postmerger waveform can be accurately modelled,
p should also include the merger and postmerger SNR.
*Private communication with Yanbei Chen.
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r=a,(l —e,cosu),

l:n’(t—tp):u—e,sinu—l—ZlPN,

¢;(,¢p:1f+z¢PN,

(4.1)
with

ey +cosv
cosy =—

. 4.2
1—|—e¢cosv (4.2)

Here the post-Newtonian correction lpy, ¢py are func-
tions of u or v. Their detailed expressions, together with the
expressions for e,, ey, e, n’, K’ can be found in [25].
Unlike a Keplerian orbit, the radial and azimuthal frequen-
cies of a QK trajectory are no longer degenerate.

Notice that if we are only interested in obtaining leading-
order tidal effect in the post-Newtonian expansion, we only
need to plug in the Newtonian part of H, in Eq. (2.11), but
sticking to Eq. (4.1) for the prescription of the “back-
ground” trajectory. In fact, we can further neglect ¢ppy and
Ipy for this purpose because they contribute to oscillatory
post-Newtonian effect, as comparing to the secular post-
Newtonian effect encoded in e,, ¢,, e;, K', n'. Let us write
or, 6Ly as

or = me.k cos(mK 4l + k),
m.k

6L, = ng.k cos(mKyl + kl).

m,k

(4.3)

K, =K'+ 6K’ is different from K’ because of the tidal
correction. Similarly, n’ needs to be promoted to n, =
n’ + 6n’ by the tidal correction as well. In the Newtonian,
low-eccentricity limit, such mappings are described by
Eqgs. (3.22) and (3.28). Here n’ can also be determined by
the equation of motion for the ¥ = 0, k = 1 component of
orbital perturbations.

A. Equations of motion

The mode excitation of the star can still be determined
from (in the nonresonant regime)

0, = —¢/(wy) / L) sinw(t —1)Epdrt’
N WzmM*Q(:G/t dr’

—0 r(3)rb<t/)
eW5,,M,Q: {Z ' wcos(k + K'k')1
- a’ = —[(k+ K'K)n']* + wF

s™ o sin(k + K'K')1
_iz S T\ 112 2
—[(k + K"K + oF

kK

sinw(t — 1 )em(r)
o wf( )e

(4.4)

where the QK-Hansen coefficients ¢ which

depend on e,, 4, K', can be defined by

§m
n.kk'? n,k.,k/’

m J— —m
cn.k.,k’ - Cn,k.k’

T
=lim — 1—e,cosu)™(1—e,cosu
T"°°T(1+5k05k’0)/—T( = )

x cos|[(k+ K'k')(u—e,sinu)|cos(mK'v)du,
(4.5)

and

—m

= Sukk

m
Sk

= lim ——
T=eo T(1 + 8106y0)

T
x/ (1 —e,cosu)™
-T

x sin[(k + K'k')(u — e, sinu)] sin(mK'v)du.
(4.6)

(1 —e,cosu)

It it straightforward to check that the QK-Hansen
coefficients ¢, ,, s, reduce to ¢y (1—e*)7",
s (1 —e?)™ if we take the limit e, ,, = e, K’ = 1.

Strictly speaking, Eq. (3.5) is no longer valid as Hy,
in Egs. (2.1) and (2.11) now contain higher-order
post-Newtonian corrections. However, the leading-post-
Newtonian tidal perturbation in r, 5L, can be still obtained
using Eq. (3.5) with Q,, given in Eq. (4.4). In particular, the
equations of motion for 6L, imply that (ky = k; K’ + k)

Z — kon' g e sin(kol)

ki .ky
mx
o

__62 a Qm
_Ze mW%mMzQé (Zs3k N smkolz C}kk’ cosk l

ki .ky A

s3 KK, sin kgl
ZcSk & coskolz (4.7)
ky ko K K, +wf

This implies that

- konlgko

_ Ze sz M2Q§

C3 k’ m m
X Z[ (Slgn( — k¢ )S3,|k0—k6\ + S3,k0+k;,>

s3
3.K)

+ —(k6n/)2 + o (_Cgf|k0—k;,| + CgfkoJrkg) :

(4.8)
Wy
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Similarly, for or, we have eccentricity limit, the relevant components of QK-Hansen
coefficients are (also see Appendix A)
3L2
— k(2)n/2bk + orb bk’ (CO o+ CO ,)
0 zﬂzaz;];) 0N dlko—kol T T4 kotky C2.1,o = ne,, 53,1,0 =0,
n n
Zbk c3 kK| + c3 ko +k) ) C%l,l.Z = Ee’ +K'(e, + e¢), Si,l,z = Eer +K'(e, + e¢),
a 7 0~
o 2, =" +K'(e,+ey), s,3 =2 —K'(e, +ey)
2L 23W2 M2Q nl12 — 2 r t ¢) nl12 — ) r ¢ ¢)
orb 0 2m ¢
tc )ty —
T 2a /;)gk €3, |kg—ky| 3,k0+k0) Zm: 2d] (4.10)
S and
XZ{]{/ 4\k0 k’\+c4k+k’>
sy K oo =L, Snoo = 0.
7' m m

+ (k’on) - wf (S1gn(k —k )34»|ko—k(’)| + S4,ko+k{))} 0202 — 1 3302 _.
(49) 1102_ 1, n%)2_ -1 (411)
The ko is selected within a two-dimensional lattice Using these simplified coefficients, it is straightforward

(ky, ky), but with the requirement that ky > 0. In the small ~ to work out the dominant components of ér, 6L,
|

, WM Q8K n[12K"n*(2e, — e, — e4) + n*(e, + ey) — (6e, + ¢, + e4) 7]

Jro =€ )
q° [(1+2K")*n* — 3] (4K?n* — w3)[(1 = 2K')*n* — w7}
2317202
_ €3M0; 2W35, W i1n
00 =73 s a il b (4.12)
a*uM \4K"”n -y O

Similar to the Newtonian case, the k; = 0, k, = 1 (so that k; = 1) component of Eq. (4.9) determines the tidally induced
orbital precession 6n’ = n, — n’, as it is degenerate with the radial motion of the background trajectory. As emphasized
earlier, Eq. (4.9) already neglects post-Newtonian terms on its left-hand side, which means »’ is in principle not consistent
with this Newtonian equation without the right-hand-side forcing term. However, as we are only interested in the leading-
post-Newtonian order of &n’, keeping Newtonian order terms in the principle part should suffice.

” IS/ 23w2 M2Q~f Cg Ky
6e,n"* by + 2n'én'e,a, = M2 3 E i, ( 3“ k/|+c31+k/)+ E E K C4“ k,‘+c41+k,)
k,>0 m
s’3”k,
) —a? 7 (Sign(ky — 1)sy), k| 55 1+k,) . (4.13)

The solution of the above equation, én’, is given by

on' eM: 03 3n 16K'[12K”n*(2e, — e, — e,) + (e, + ey)n"> = (6e, + e, + e,)w7]
n' e un"*ad 20 ((1+2K")*n" — @7)(4K"*n"? — 07)((1 = 2K')*n"* — w7})
48K"n" (e, + e,) 1 1 N 3
—12e 0
(1 —4K7)n" = 2(1 4 4K"?)n" 0} + o} [0l 4K - 0}

LA ’ SR S— ) (4.14)
—e , )
d a)% n'? — Zf (1 =2K")*n" —wj% 4K’2n’2—a)% (1 +2K/)2n’2—wj%

which reduces to Eq. (3.22) in the limit e, , , = e, K’ = 1. On the other hand, the tidal perturbation of the angular frequency,
én;ﬁ, can be evaluated by
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OH b>
on', = 8(K'n’ —< il

. <6L_¢ ~ 2L¢5r>

prrour
1 2L
= 0 ® 0
-2 ng*k/ c2,k,k/ -3 Zbk’k/c3,k,k/ . (4 1 5)
ar k,k’ ar k,k/

According to Egs. (4.5) and (4.6), only k' = 0 pieces of 6r,
oL, would contribute to the right-hand side of the above
equation. This is because m is zero in these integrations for
the QK-Hansen coefficients, so that the product between
harmonics with frequency being multiples of 1 and
frequency k + K'k’ should be zero, unless k' = 0. In the
small eccentricity limit, it is just

(4.16)
with by giving in Eq. (4.12).

V. CONCLUSION

In this work, we have discussed the trajectory model
of an eccentric binary neutron star system, that evolves
under the influence of dynamic tidal interaction and
gravitational radiation. This formalism is suitable for both
Newtonian and post-Newtonian description of the con-
served dynamics. We focus more on the Newtonian
description in the present study, as the leading-order tidal
correction can already be obtained in the Newtonian
framework.

Within eccentric orbits, the direction of tidal bulges on
the stars generally does not point to the companion star.
This is different from circular binaries, where the tidal
bulges always point to each other, even with the consid-
eration of dynamic tide. As a result, the stars oscillatorily
exchange orbital angular moment and mode angular
momentum within orbital timescales. In addition, the
energy and angular momentum fluxes are also modified
by the beating between the orbital quadrupole moment and
the star quadrupole moment. For binaries with eccentricity
e~ 0.2 at f 4, = 50 Hz, the eccentric-tidal effect on the 22
mode radiation is only detectable by third-generation
gravitational-wave detectors.

Eccentric tidal interaction also leads to tidal resonances
in the inspiral stage. For circular binary, this resonance
happens at @y, = w,/2, which is likely higher than the
merger frequency of the binary, depending on the star
equation of state. For eccentric orbits, the tidal resonances
show up at @y, = @;/k with k > 2, although the high-
order resonances are generally weaker for low-eccentricity
binaries. We have analyzed the first eccentric tidal reso-
nance, which shows up at @y, = @;/3. We argue that it
can be observed in the third-generation detector era. As the

GW detectors are continuously improving in sensitivity,
there is a growing interest to characterize the gravitational-
wave radiation at the late-inspiral stage and the merger/
postmerger stage, as a way to probe the neutron star physics
beyond the information about tidal love number [10].

In order to build a post-Newtonian waveform model for
binary neutron stars at arbitrary eccentricity, one needs to
solve the matrix equation for the Fourier components
of ér, 6L;, which in turn affects the gravitational-wave
radiation of the orbit. For a frequency-domain description,
additional difficulty arises in the analytical transformation
from time-domain waveform to frequency-domain wave-
form under the stationary phase approximation, which
has been discussed for eccentric binary black holes [32]
in the Newtonian limit. An alternative route is to use the
effective-one-body framework for the system, for which the
time-domain waveform is solved up to 1.5 post-Newtonian
order [26]. We shall leave the construction and valida-
tion of the eccentric binary neutron star waveform to
future work.

At last, although the discussion here is presented on
binary neutron star systems, the formalism is still valid for
eccentric black hole-neutron star binaries. As the mass
ratios for these systems are expected to be larger than those
of binary neutron stars, except for low-mass black hole and
neutron star binaries formed in more exotic astrophysical
channels [39], it is reasonable to expect very different initial
eccentricity distribution at LIGO band even for dynami-
cally formed binaries.
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APPENDIX A: HANSEN COEFFICIENTS

In general, c)’; and s, can be obtained through
numerical integration, based on Egs. (3.10) and (3.11).
However, in special cases, they satisfy the following
relations:

‘ = [2(1 - €?)
b — — A SSAY l
e e+pE:] [ p »(pe)cos p

and
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cos (1 + ecosd)? = (1= P23 pli -1 (pe) = 1 (pe)] o5
1

S|
Il

NgE

sing(1 +ecosp)? = (1 —e*)> ) plJ,_1(pe) +J,.1(pe)]sin pl, (A2)

1

a]
Il

where J;(x) is the Bessel function of the first kind. Some other useful relations are

1 o0
S 2J I, A3
eamn ™ | 2 Mlpe)coss (A3)
and
1-6 >k
cosku = — <1 =%0) | > pilpe) = T, 4(pe)] cos pl. (A4)
2 pe

In the small eccentricity limit, ¢/, s/, become

Py — 5k,m + 5k,—m + e(n _ 1) 5k,m—1 + 5k,1—m + 5k,—m—1 + 5k,l+m + ek _6k.m—1 + 5k.1—m - 5k,—m—l + 5k,1+m
m L+ 60 2(1 + 6x0) 2(1 + 6x0)
5k.m—l + 5k.l—m B 5k,—m—l B 5k,l+m

_ , A5
em 2(1 + 610 (A5)

and

s?k _ 5k,m - 5k,—m + e(n _ 1) 5k,m—1 - 5k,1—m - 5k,—m—l + 6k~1+m _ ekék,m—l + 5k,1—m - 5k,—m—l - 6k,1+m
’ 1 + 5](’0 2(1 + 5]{‘0) 2(1 + 5k,0)
—Okm—1+ Or1-m = Ok —m—1 + Ok 14m
2(1 4 610) '

+em

(A6)

Similarly, for the QK-Hansen coefficients, we define in Egs. (4.5) and (4.6), the low-eccentricity limit is given by
(with k := k + K'k')

o _ 5k0(5mk’ + 5—m,k’) mK/eqﬁ(ék’m - 5k’,—m>
mkk 1 + 600k 2(1 + 6kodp0)
ke (Syp + O_p i) (Op1 — Ok 1)

(ner - et)(émk/ + 5—m,k')(5k1 + ak,—l)
2(1 + 5](061{’0)

(61 — Op—1) +

, (A7)
2(1 + 6kody0)
and
w Ok0(B = 6_p ) | mK'ey (S + O ) (ne, —e.)(8mp — O_p i) (S + 6 1)
s = (61 = Ok—1) +
e 1 + 6x06k0 2(1 + 8x00r0) ' 2(1 + 6kodr0)
ke (Sp = Oy o) (Bk1 — Op—1) (A8)

2(1 + 6kodp0)
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APPENDIX B: PRECESSION IN THE LARGE
ECCENTRICITY CASE

Consider a one-dimensional problem with Hamiltonian
g—; + V(x), the period is

Xmax YV zﬂdx
Xmin V E - V

_4— \/_ E—V(x)dx.

Xmin

=2
(B1)

If V(x) is perturbed to V(x) 4+ 6V (x), T is perturbed as

Fmax \/_5de
aE Xmin V E V

8 Xmax
=-2— ovdz.
aE /r'min

Now if the relevant forcing terms in the equation of
motion for 6r [the right-hand side of Eq. (4.9)] can be
expressed as Y, F cos kl, we have

oV = _/ZFk cos kldr
3

oT = —

(B2)

= —are,ZFk /u cos kI sin udu, (B3)
k 7‘[/2
so that
2 o [
oT = C:’er(?_El du(1 — e, cosu)
X /u ZFk cos klsinu'du’, (B4)
/2%

which gives the tidal-induced frequency shift, as 67/T =
=oén'/n'.

APPENDIX C: e-w REPRESENTATION

In the main text (c.f. Sec. III), the tidal perturbation is
evaluated with respect to constant semimajor axis a, and the
|

radial and azimuthal frequencies deviate from the Keplerian
frequency. In practice, it is more convenient to discuss the
modification at fixed azimuthal frequency ny, as this is
more suitable for constructing the frequency-domain wave-
forms. Therefore, we shall rewrite some of the key results in
Sec. III with respect to fixed ny. For convenience, we
define @ = ny and x = w/w;.

In order to ensure constant w, the radius has to further
shift by éa with [c.f. Eq. (3.28)]

da 4(1-e*)"2by 4 eg,

a 3 a 3ua*w
_ M., [12 1—x? ﬁ31—|—42x2+371x4— 144x6]
M@ | 1-4x> 2 (1-9x)(1-4x2)(1-x%) ]’

(C1)

where in the last line we have extended the expression in
Eq. (3.20) to include order O(e?) corrections

M, A 3
b 1-3e2 -1
° 7 ama* ] )<4x2—1 >

OM, 1e? (396x5 — 919x + 2822 — 59)
8Ma* (1 —9x%)(1 —4x?)(1 —x?)

(€2)

At constant @, the tidally induced radius shift is

_3M, A 3 .
CAM, a* \1 - 4x2

3¢*M, A (=36x°% + 95x* +222x* +19)

b6=b0+5a

— , C3
8M, a* (1-9x*)(1-4x*)(1-x?) (€3)
and b is now —eda. The radial frequency shift is
3éa
on, =oén—n——
n, n—n 20
_ 9M ., An (=5 + 56x* — 66x* + 18x°) (Ca)

C2Mya® (1=9x2)(1 —4x2)(1 —=x2) "

The energy shift at constant @ is 6H in Eq. (3.23) plus
modification due to éa,én,, with go/Ly = da/(2a),

Mzb/ L,6L gi. i .m2+a)2 m\2
SE(w) = pa*e*n,én, + padae*n* + eaf 04 Za2¢ + Qi 4 Z(Q ) - f(Q )
Ay i 3x% 4 4xt | 3¢229 423437 — 6636x" +29878x° — 347732 4 11700210 + 2592
uMw Ma® |2 (1 —4x2)2 4 (1- 4x2)2<1 —x2)2(1 — 9x2)2 .

(C5)
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Similarly, the orbital-averaged modification in orbital
angular momentum 6J 4, is just g, which is

UwAM 1-x°

2M,a? 1 —4x?
3?31 4 42x* +371x* - 144x6] (C6)
2 (1=-9x)(1=4x*)(1=x%) |

oJ orb —

(1-¢2)1/2 [12

APPENDIX D: EVALUATION OF THE FLUXES

In the Newtonian limit, we first consider a “background”
trajectory, which can be written as

Fop = a(l —ecosu),

l=n,(t—1t,) =u—esinu,

by ="Lo.

n,

(D1)

Adopting the convention of [48], we define the vector n,
&, which are the unit vectors 7, q;ﬁ We also define IT; = nn,
I, =ng +¢&én, Il; =8 We have [;; =uxx;, 7
1;; —15;;/3, and

ij —

I, =¢l,, L =2p(I5-1,), I=-¢l,
(D2)
and

I;; = (2% = 277¢* + 2ri)TT,

+ (4rip+rd), + 277, (D3)
and
i = 120H(§)? + 617 =67 +2r7 I,
+ {612+ 6ri (66 7 +r{~4¢* + )]},
62’ + 1’ )Ly, (D4)

Therefore, we have the associated fluxes for this orbital
trajectory being

| | TR
Pfack - _§<IjkIjk> = _§<Ijk1jk _gljjlkk>
32 1 73 37
%——M4/3 2.10/3 14+-— 27" 4
s G sy T gt )T

_279e2M*/1 (=5+56x> —66x* + 18x6)} (D5)

8M @’ (1-9x%)(1—4x%)(1-x?)
where we have identified n, with @ and used the expansion

of n, in Eq. (C4). Similarly, the expansion of angular
momentum flux for the background trajectory is

Pl =- §€3jk<Iijkm>

32 ., 1 7
__2caan,2 73 b )
5M U [(1—e2)2<1+86>

9e>M, 2 (70 — 784x* + 924x* — 252x5)
8Mia® (1 —9x%)(1 —4x?)(1 — x?)

(D6)

The physical trajectory is deformed from the background
trajectory by r — r+ b and ¢ — ¢ + 5¢p, with 5¢ =
gy cosl/(ua®). As a result, we can apply Eq. (3.29) and
obtain

32 1 73 37
PE. — 2% g4/3,2.0210/3 142220 4
b = "5 HTHE {(1—(32)7/2( ¢ +96e>
M 1—x2
12—
+ M1a5 1 _4X2
3e?M, 1 (2328 — 8626x% + 13339x* — 5049x°)
8M,a’ (1=9x%)(1 —4x?)(1 — x?) '
(D7)
32 1 7
)22 :__M4/3 2..7/3 1 o2
o= = o (1439
M. 1—x?
12—
+ M]Cls 1 —4X2

3e2M, A (941 — 1899x? + 3286x* — 1260x°)
aM,a’ (1=9x%)(1 —4x*)(1 — x?)
(D8)

The total energy and angular momentum fluxes are

approximately the simulation between orbital flux PZ

and PE/, as the modal fluxes are higher order in e. In the

small eccentricity limit, they are

1 M2 192
PE — —— M*/3 25103
AR VIpE Ral F T

11 64 15309
2 , D9
te <2(1—x2)+1—4x2+2(1—9x2)>} (D9)
and
1 MA
P{< :—*M4/3 2,.7/3
5 Iu @ % M1a5
» 192 Lo 9 n 216 L 5103
e .
1 —4x2 1—x2 1—-4x2 1-9x2

(D10)

Note that Egs. (D9) and (D10) together with Eq. (D7)
produce consistent result with Eq. (8) in [38] in the circular
limit. In particular, when e = 0, we have
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Pt =wP!,, PL = wPl. (DI1)
Using Egs. (C5), (C6), and (3.26), it is straightforward to

check that

dE(w)

- dJorb (TD') + d‘]mode (w)

dw dw dw . (DI2)

or

E(w) = w[‘.]orb(w) + jmode(w)]’ (D13)
so that circular binaries remain circular even with the

inclusion of dynamic tide.
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