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The geometry of small causal diamonds is systematically studied, based on three distinct constructions
that are common in the literature, namely the geodesic ball, the Alexandrov interval and the light cone cut.
The causal diamond geometry is calculated perturbatively using Riemann normal coordinate expansion up
to the leading order in both vacuum and nonvacuum. We provide a collection of results including the area of
the codimension-two edge, the maximal hypersurface volume and their isoperimetric ratio for each
construction, which will be useful for any applications involving the quantitative properties of causal
diamonds. In particular, by solving the dynamical equations of the expansion and the shear on the light
cone, we find that intriguingly only the light cone cut construction yields an area deficit proportional to the
Bel-Robinson superenergy density W in four-dimensional spacetime, but such a direct connection fails to
hold in any other dimension. We also compute the volume of the Alexandrov interval causal diamond in
vacuum, which we believe is important but missing from the literature. Our work complements and extends
the earlier works on the causal diamond geometry by Gibbons and Solodukhin [Phys. Lett. B 649, 317
(2007)], Jacobson, Senovilla and Speranza [Classical Quantum Gravity 35, 085005 (2018)] and others
[J. Myrheim, CERN Report No. CERN-TH-2538, 1978; M. Roy, D. Sinha, and S. Surya, Phys. Rev. D 87,
044046 (2013); I. Jubb, Classical Quantum Gravity 34, 094005 (2017)]. Some potential applications of our
results in mathematical general relativity and quantum gravity are discussed.
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I. INTRODUCTION

Feynman interpreted the Einstein field equation as
directly relating radius excess of some small spatial ball
with the matter energy contained within, while holding the
area the same as in flat Minkowski space [1]. It suggests the
essence of spacetime dynamics is captured by the geometry
of a small causal diamond. Following the same philosophy,
there are some proposals demonstrating that the Einstein
field equation can be derived from the entanglement
equilibrium [2] or the quantum speed limit [3] using the
causal diamond setup. The causal diamond setup also plays
an important role in the study of quantum gravity. It has
been used in causal set theory [4–9], holography [10–12]
and cosmology [13,14]. In most applications, however, the
geometry of the small causal diamond is resolved at the
order of Ricci curvature. It is thus worth studying the
geometry at higher order in vacuum to open up more
applications of causal diamonds.
Causal diamond is a somewhat broad term and its exact

construction differs in different applications. One notable
recent work using causal diamond is by Jacobson et al.
[2,15], in which the Einstein field equation is related to the
entanglement equilibrium associated with the geodesic ball
causal diamond (GCD). The edge area deficit of GCD is

governed by the Einstein tensor. By hypothesizing that the
vacuum entanglement entropy in a small geodesic ball is
maximal at fixed volume with respect to variations in both
geometry and quantum fields, Jacobson derives the full
nonlinear Einstein equation. It is then natural to ask what a
higher order perturbation might imply according to the
maximal vacuum entanglement hypothesis. One expects at
higher order the gravitational superenergy characterized by
theBel-Robinson superenergyW (to be defined later) should
be the relevant quantities that control the GCD geometry.
However, the geometric perturbation does not behave nicely
at higher order as shown in [15], so ball deformations are
considered in [15] using the Alexandrov interval construc-
tion and various other consistent prescriptions. On the other
hand, one can take a different perspective by treating the
Alexandrov interval as another construction of causal
diamonds (ACD) parallel to the geodesic ball construction.
In fact, the standard notion of causal diamond usually refers
to the Alexandrov interval. ACD already receives a lot of
attention in earlier works [4,5,7,16]. However, none of the
investigations on ACD extend to higher order of perturba-
tions, in particular, the leading order in vacuum. Filling this
gap will certainly help extend the various applications of
ACD to the vacuum cases, for instance in causal set theory.
Furthermore, we also consider a third construction, the light
cone cut,which is used in evaluating the small sphere limit of
various quasilocal mass (QLM) proposals [17–22]. One can*jinzwang@phys.ethz.ch
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construct a causal diamond from the light cone cut (LCD) by
taking its domain of dependence. One notable feature of the
QLM is that it should give the stress tensor and Bel-
Robinson superenergy W in nonvacuum and vacuum
respectively at the small sphere limit. It is natural to expect
that the geometry of LCD has a nice connection with W in
vacuum.Wewill show, perhaps surprisingly, that among the
three constructions, only the light cone cut construction in
four-dimensional spacetime yields the result that the edge
area deficit is proportional to the superenergy W.
In this work, we unite all three constructions under the

same setting of causal diamonds. Since almost all studies of
the causal diamond geometry so far restrict to the leading
order in the presence of matter, we aim to provide a
collection of higher order results that could be of interest
for any applications involving the quantitative geometric
features of causal diamonds. In order to compute the
perturbations of the causal diamond geometry, one could
try the “special case” method used in [6,16], where the
causal diamond geometry is evaluated in example space-
times and universal geometric variations can be drawn out.
This method, though convenient, is difficult to generalize to
higher order for our purposes. Hence, we adopt the same
framework used by [15] in studying GCD to probe the
geometry of ACD in Riemann normal coordinates (RNC).
Such higher order results are made possible by using
Brewin’s results of general RNC expansions computed
by Cadabra [23]. The latter is a powerful tool that allows
the small geometries of causal diamonds to be perturba-
tively probed at an arbitrary order of interest. In the case of
LCD, as opposed to the method used to investigate the
GCD and ACD, we solve the Raychaudhuri equation and
the evolution equation of the shear to evaluate the area of
the light cone cut. We give explicit results for the area of a
codimension-2 causal diamond edge A, the maximal
hypersurface volume bounded by the causal diamond edge
V and the respective isoperimetric ratio I between the edge
area and the maximal volume. We investigate both non-
vacuum and vacuum cases for small ACD and LCD, and
relevant GCD geometry calculated in [15] will also be
mentioned for completeness. Furthermore, the d-volume
VðdÞ of the Alexandrov interval causal diamond in vacuum
is computed, extending the result in [16]. This particular
result is missing from the literature and could have direct
applications in the causal set approach to quantum gravity.
In Sec. II, we first introduce some preliminary notions

relevant to our discussions, such as the electromagnetic
decomposition of the Weyl tensor, the Bel-Robinson tensor
and superenergy density W. In Sec. III, we give the three
different constructions of causal diamonds. In Sec. IV, we
review and add some results regarding the geometry of
small causal diamonds in nonvacuum. Section V contains
the new results for the vacuum causal diamonds. We also
compute the total volume of ACD in Sec. VI. Finally in
Sec. VII, we briefly discuss the applications of our results.

We use the following index notation: a; b; c;… for
abstract index notations; μ; ν; α;… ¼ 0; 1;…; d − 1 for
RNC expressions concerning the full spacetime;
i; j; k;… ¼ 1;…; d − 1 for codimension-1 objects and
A;B;C;… ¼ 2;…; d − 1 for codimension-2 objects. For
the sake of brevity, we shall sometimes drop the Big O error
term in our results, such as Oðldþ2Þ, where the expansion
order is understood.

II. PRELIMINARIES

We are interested in variations of the causal diamond
geometry as compared to its flat space counterparts. In
nonvacuum, the geometric variations are characterized by
Ricci-related quantities, like R, Rab, Gab. In vacuum, the
Ricci tensor vanishes so the spacetime geometry is char-
acterized by the Weyl tensor Cabcd. The geometric quan-
tities of interest, such as area and volume, have leading
order expansions in terms of the squares of the Weyl tensor,
and they can be categorized by the electromagnetic decom-
position of the Weyl tensor. Our discussions on the
electromagnetic decomposition shall only concern relevant
notions that we need. One can refer to [24] for more details.
Given some timelike vector Ua atO, one can decompose

the Weyl tensor at O into spatial tensors on any hypersur-
face orthogonal to Ua at O. These spatial tensors are
referred to as the electric and magnetic parts. In adapted
coordinates with respect to Ua where the unit normal has
coordinates Uμ ¼ δμ0, the electric-magnetic decomposition
is defined as

Eij ≔ C0i0j; Hijk ≔ C0ijk; Dijkl ≔ Cijkl; ð1Þ
where Eij is the electric-electric part, Hijk is the electric-
magnetic part and Dijkl is the magnetic-magnetic part. The
unique tensor with the dominant property [25] and quad-
ratic in the Weyl tensor is the Bel-Robinson tensor, defined
in arbitrary dimension by [24]

Tabcd ¼ CaecfCb
e
d
f þ CaedfCb

e
c
f −

1

2
gabCgecfCge

d
f

−
1

2
gcdCaegfCb

egf þ 1

8
gabgcdCefghCefgh: ð2Þ

Given a timelike vector Ua at O, the associate super-
energy density is defined as W ≔ TabcdUaUbUcUd and it
has been shown to characterize various quasilocal masses
of the vacuum gravitational field in the small sphere limit
[17–22]. So we can write W as

W ¼ 1

2

�
E2 þH2 þ 1

4
D2

�
; ð3Þ

where E2 ¼ EijEij, H2 ¼ HijkHijk, D2 ¼ DijklDijkl.
In four dimensions, one recovers the original Bel-

Robinson (BR) tensor [22]
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Tabcd ¼ CaecfCb
e
d
f þ �Caecf � Cb

e
d
f; ðd ¼ 4Þ ð4Þ

which is defined in a way similar to how the electromag-
netic stress tensor is built from the electromagnetic tensor.
The BR tensor in four dimensions enjoys many nice
properties, such as being traceless, totally symmetric and
divergence-free in vacuum [24]. The superenergy is

W ¼ E2 þ B2; ðd ¼ 4Þ ð5Þ

where Bij ≔ 1
2
ϵjklHi

kl, and D2 ¼ 4E2 when d ¼ 4.
This form suggests the name “superenergy” density

analogous to the field energy in electrodynamics, but with
a different dimension. It is in parallel with the fact that in
vacuum the BR tensor is divergence-free. In fact, using
dimensional analysis, one can argue that in four-
dimensional vacuum any Lorentz invariant quasilocal mass
expression for a small sphere must be proportional to W at
leading order [22]. This justifies the interpretation of W
as some gravitational energy. We will investigate three
causal diamonds in vacuum and study how the geometric
quantities associated with them are related to the electro-
magnetic densities E2, H2, D2 and particularly the super-
energy W.
We close this section by introducing some important

expressions and identities that will be useful later in the
calculations. The metric expansion in RNC up to
the curvature squared order [23] is given in terms of the
Riemann curvature tensor at the RNC origin O:

gαβðxÞ ¼ ηαβ −
1

3
xμxνRαμβν −

1

6
xμxνxρ∇μRανβρ

þ xμxνxρxσ
�
2

45
Rγ

μανRγρβσ −
1

20
∇μ∇νRαρβσ

�
:

ð6Þ

The volume and area integral involves integration over
solid angles and the following result [26] will be handy to
use in our calculations later:

Z
Sd
dΩdni1 � � � nik ¼

Ωdðd − 1Þ!!
ðdþ k − 1Þ!! δ

ðkÞ
i1i2���ik ; ðk evenÞ ð7Þ

Z
Sd
dΩdni1 � � � nik ¼ 0: ðk oddÞ; ð8Þ

where niðθÞ is the unit spatial vector with nini ¼ 1, fθAg is
the angular coordinates on the d-sphere Sd, Ωd ¼ 2πðdþ1Þ=2

Γðnþ1
2
Þ is

the volume of unit d-sphere Sd and δðkÞi1i2���ik is defined
recursively for even k:

δðkþ2Þ
i1i2���ikþ2

¼ ðkþ 1Þ!δð2Þiðj δ
ðkÞ
i1i2���ikÞ;

¼ δijδ
ðkÞ
i1i2���ik þ δii1δ

ðkÞ
ji2���ik þ � � � þ δiikδ

ðkÞ
i1i2���j: ð9Þ

δð2Þij is the usual Kronecker delta δij and the second

equality above is due to the fact that δðkÞi1i2���ik so defined is
totally symmetric. We will frequently use the following in
later calculations:

δð4Þklmn ¼ δklδmn þ δkmδln þ δknδml: ð10Þ
In vacuum, we also have the following properties

concerning the electromagnetic decompositions of the
Weyl tensor.

Ei
i ¼ Hi

ji ¼ 0; ð11aÞ
Dikj

k ¼ −Ci0j
0 ¼ Ci0j0 ¼ Eij; ð11bÞ

Hkl
iHlkjδ

ij ¼ H2

2
; ð11cÞ

Hk
i
lHminδð4Þklmn ¼

3

2
H2; ð11dÞ

EklEmnδð4Þklmn ¼ 2E2; ð11eÞ

Dp
k
i
lDpminδð4Þklmn ¼

3

2
D2 þ E2; ð11fÞ

δijδð4Þklmn∇k∇lCimjn ¼ 0: ð11gÞ

III. THREE CONSTRUCTIONS
OF CAUSAL DIAMONDS

The standard causal diamond, the Alexandrov interval
causal diamond is the intersection region of two light cones,
with one oriented upwards (future directed) and the other
downwards (past directed). The joint of intersection has the
topology of Sd−2, and we shall refer to them as the diamond
edge. One can generalize the standard definition by starting
from a given edge S and define the domain of dependence as
the causal diamond. This is motivated by the fact that it is the
edge that captures the subtle geometric features of the causal
diamond. In this work, three distinct constructions of the
diamond edge found in the literature are considered. Starting
from a closed, spacelike, codimension-2 surface S that is
homeomorphic to Sd−2, and an arbitrary spacelike hyper-
surface Σwith ∂Σ ¼ S, we define the causal diamondDS as
the domain of dependence DS ≔ DðΣÞ. Note that DðΣÞ is
independent of what Σ we choose as long as it is spacelike
and has the edge S as boundary. The causal diamond defined
in this way coincides with the notion of causally closed/
complete set in algebraic quantum field theory [12,27], and
also resembles the entanglement wedge in AdS/CFT [28].
This is also how a geodesic ball causal diamond is defined in
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[2]. Therefore, we believe our definition in terms of the
domain of dependence associated with the edge is more
general than the usual notion of causal diamond as the
Alexandrov interval, thus facilitating more potential appli-
cations. Our definition also resembles the light-sheet con-
struction byRaphael Bousso’s covariant entropy bound [11].
His construction is more sophisticated as S can be some
arbitrary codimension-2 surface whereas we only consider
the closed surface that has a topology of sphere.
We shall investigate three constructions of the diamond

edge, and they give the geodesic ball causal diamond
(GCD), the Alexandrov interval causal diamond (ACD),
and the light cone cut causal diamond (LCD). Each causal
diamond has an associated orientation and we shall use a
normalized timelike vector Ua ∈ TOM to characterize it,
whereO is the reference point associated with the diamond.
We will later set up RNC at O and thus call it the diamond
origin. It is located in the center of GCD and ACD, whereas
it sits at the lower tip in LCD.
The causal diamonds DS are defined from the following

edge constructions (see Fig. 1 for illustrations):
GCD.—The edge in GCD is defined as the (d − 1) ball

with geodesic radius l, with the geodesics emanating from
O and orthogonal to Ua. Its boundary is the edge Sl, where
the subscript denotes the size parameter l.
ACD.—The edge in ACD is defined with a timelike

geodesic interval γðp; qÞ from p to q with the affine
parameter running from −l to l. O is the midpoint of
γðp; qÞ and Ua is the unit tangent to the geodesic at O. The
edge Sl is the intersection of the two light cones Sl ¼
_IþðpÞ ∩ _I−ðqÞ and the resulting causal diamond is thus the
Alexandrov interval IþðpÞ ∩ I−ðqÞ, where I�ð·Þ denotes
the chronological future/past of a point and _I�ð·Þ denotes
its boundary.
LCD.—Lastly, the edge in LCD is defined as the light

cone cut. More precisely, given O and Ua, the future-
directed null vector la is normalized asUala ¼ −1 and the

level set of parameter distance l along the null rays defines
a light cone cut Sl and it serves as the edge of LCD.
Note that apart from the origin O and the orientation Ua,

each diamond has a size parameter l, which refers to distinct
quantities in the three constructions. Nevertheless, we
denote the edge as Sl in all three constructions to keep
the notation consistent. Also note that all three constructions
are identical in Minkowski spacetime, and we obtain the
same causal diamond if the size parameters l’s are set equal
[29]. Therefore, the way we defined the size parameter for
each construction is indeed consistent. One can think of l
being small and the order counting in perturbative expres-
sions throughout is based on the power of l. Also, we will
only study small causal diamonds, where the size l is much
smaller than the curvature scale, such that we can do
calculations using the RNC expansions and we do not need
to worry about caustics or conjugate points.
The above causal diamonds are used by people in dif-

ferent contexts. The GCD is the one used by Feynman to
interpret the Einstein equation and recently used by
Jacobson to derive the Einstein equation from entanglement
equilibrium [2,15]. The ACD is perhaps the most standard
causal diamond and it is a natural object to consider in
causal set theory [4–9]. Its geometric properties are inves-
tigated in different contexts by Gibbons and Solodukhin
[16,30,31]. LCD or more precisely the light cone cut itself
[32] is the standard construction of the small sphere in
various quasilocal mass proposals [17–22], and its quali-
tative features are studied in terms of the light cone
comparison theorem by Choquet-Bruhat et al. [33].
Wewill be mainly interested in the geometry related to the

diamond edge, namely, the (d − 2) volumeof the edge thatwe
henceforth refer to as area A, the maximal hypersurface
volume V bounded by the edge and the isoperimetric ratio I
between them. We will calculate their variations with respect
to the causal diamond of the same size in Minkowski
spacetime. We use the notation

V♭ ¼ Ωd−2ld−1

d − 1
; A♭ ¼ Ωd−2ld−2 ð12Þ

to denote the maximal hypersurface volume and edge area in
Minkowski spacetime. One probably wonders whether the
different recipes for causal diamonds actually differ in the
perturbative order that we are interested in. The answer is
definitive and the distinction is more manifested at leading
order in vacuum. Nevertheless, one can already partially
distinguish them in the presence of matter as we shall now
discuss.

IV. THE NONVACUUM CASE

In the presence of matter, the earlier studies investigated
area/volume deficits of causal diamonds, in particular GCD
and ACD. The relevant quantities that govern the geometry
of small diamonds are Ricci related quantities defined at the

FIG. 1. Three causal diamond constructions are illustrated here.
The size parameter l (green), orientation Ua (yellow), diamond
edge Sl (blue) and diamond originO are indicated for each causal
diamond. Σ specifies the spacelike hypersurface with maximal
volume and its domain of dependence DðΣÞ defines the causal
diamond DSl .
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diamond origin O, where the 0-component refers to the
basis aligning with the orientation Ua of the diamond. Here
we review some known results and add some new results
concerning LCD. We shall consider causal diamonds of
some varied size lþ Xm, where Xm is the size ambiguity
with respect to the size l in Minkowski spacetime. More
explanation and elaboration will be provided later in
context. We assume the Einstein field equation Gab ¼
8πGTab throughout this section.

A. Geodesic ball causal diamond

Jacobson showed [2] that for a small GCD with radius l
and orientation Ua, the volume and area deficits are

δV ¼ −
Ωd−2ldþ1G00

3ðd − 1Þðdþ 1Þ ¼ −
8πGΩd−2ldþ1

3ðd − 1Þðdþ 1ÞT00; ð13Þ

δA ¼ −
Ωd−2ldG00

3ðd − 1Þ ¼ −
8πGΩd−2ld

3ðd − 1Þ T00; ð14Þ

where G00 is the component of the stress energy tensor
along the orientation of the diamond GabUaUb, and
similarly for other such quantities throughout the paper.
Therefore, the Einstein equation can be viewed as an
equation relating the area/volume deficit of the GCD edge
with the stress energy density. This is how Feynman
interpreted the Einstein equation in Sec. 11.2 of [1,34],
and is also part of Jacobson’s argument in deriving the
Einstein equation from the condition of maximal entangle-
ment entropy associated with GCD.
We can compute the isoperimetric ratio between the area

and volume given by the following formula:

I ≔
V=V♭

ðA=A♭Þd−1d−2
¼ 1þ G00l2

ðd − 2Þðdþ 1Þ þOðl3Þ: ð15Þ

The isoperimetric ratio is defined such that I ¼ 1 in flat
spacetime, and we see that its variation is also proportional
to G00.

B. Alexandrov interval causal diamond

ACD is the most commonly used causal diamond. It
serves as a very useful and natural setup in causal set
theory. The geometry of a small ACD has been studied by
Gibbons and Solodukhin [16]. For an Alexandrov interval
of length 2l, we have the variations of maximal hypersur-
face volume and edge area at leading order:

δV ¼ −
Ωd−2ldþ1ðR − ðd − 1ÞR00Þ

6ðd2 − 1Þ þOðldþ2Þ; ð16Þ

δA ¼ −
Ωd−2ldðR − ðd − 4ÞR00Þ

6ðd − 1Þ þOðldþ1Þ: ð17Þ

How is ACD different with GCD at this order? In fact,
one can relax the GCD radius from being fixed and

consider deformations of the geodesic ball in GCD
and make it ACD. Take the radius in GCD to be
r ¼ lþ R00

6ðd−1Þ l
3, and one will find that they match exactly

with δV, δA above [(16) and (17)]. Therefore, one can think
of the ACD as the scaled GCD. This match is only possible
at this order, i.e., the leading order in nonvacuum, and we
shall see later that at higher order, the edge in ACD also
deviates along theUa direction away from the geodesic ball
orthogonal to Ua, making the two causal diamonds
incomparable.
Motivated by the above considerations, one can in general

relax fixing the size parameter lwith respect to theMinkowski
diamond, but rather introduce a size ambiguity as lþ Xm,
where the subscript m stands for matter. This is also done in
[15] when considering more general variations of GCD. We
can setXm ∼Oðl3Þ such that the dimensionless variations due
to the size ambiguity Xm=l ∼Oðl2Þ are of the same order as
the variations due to curvature R00l2; Rl2; G00l2. Here, we
take the simplification that Xm does not have angular
dependence. Since Xm=l is chosen at the same order as the
leading order of our interest, there is actually no loss of
generality by assumingXm to be spherically symmetric, as the
angular dependence will average out after integration even-
tually. Accommodating Xm gives us the flexibility to fix any
other geometric quantities, like area, volume or more sophis-
ticated ones. We can thus extend all the results by appending
an ambiguity variation term Xm to the curvature variations,
and we will see the usefulness of explicitly stating the
ambiguity in some examples later. Nevertheless, if one is
only interested in variations when the size parameter is fixed,
the size ambiguityXm can be set as zero. Later in discussions
of the vacuum case, a similar ambiguity at higher order Xv is
introduced as well.
Let us take the example of ACD just mentioned, Xm is an

ambiguity on the proper length between two vertices of the
diamond. The variations δV 0; δA0 due to Xm can be readily
computed from the flat space values

δV 0 ¼ V♭ðlþ XmÞ − V♭ðlÞ ¼ Ωd−2ld−2Xm; ð18Þ

δA0 ¼ A♭ðlþ XmÞ − A♭ðlÞ ¼ Ωd−2ld−3ðd − 2ÞXm: ð19Þ

Appending these to (16) and (17),

δV ¼ −
Ωd−2ldþ1ðR − ðd − 1ÞR00Þ

6ðd2 − 1Þ þΩd−2ld−2Xm; ð20Þ

δA ¼ −
Ωd−2ldðR − ðd − 4ÞR00Þ

6ðd − 1Þ þΩd−2ld−3ðd − 2ÞXm:

ð21Þ

Taking Xm ¼ − R00

6ðd−1Þ l
3 gives the GCD results. Also

notice the minus sign here. This is the reverse of turning
GCD to ACD as pointed out above.
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We see that the area/volume deficits cannot both be
proportional to T00 in ACD with any choice of Xm, but it
turns out that the surplus of isoperimetric ratio I between
them does [16]:

I ≔
V=V♭

ðA=A♭Þd−1d−2
¼ 1þ G00l2

ðd− 2Þðdþ 1Þ ¼ 1þ 8πGT00l2

ðd− 2Þðdþ 1Þ :

ð22Þ
The isoperimetric ratio is independent of an overall change
in the size of the causal diamond, so Xm is not manifested in
the variation above. This is therefore not surprising that this
isoperimetric ratio is the same as the one of GCD in (15).

C. Light cone cut causal diamond

The geometry of a small LCD in arbitrary dimension has
not been systematically studied even in nonvacuum, except
that, qualitatively, comparison theorems regarding the area
of the cut have also been given in [33]. Here we intend to
compute the edge area and maximal hypersurface volume
of the LCD. In addition, we also give a recipe for
associating a nonvanishing volume form to the light cone
itself and compute its volume under this prescription.
Recall the construction of the light cone cut. One starts

with la, Ua ∈ TOðMÞ, where Ua is the timelike vector
which defines the orientation of the causal diamond, la is
the null generator of the light cone. The affine parameter l
of the null congruence is normalized by imposing
Uala ¼ −1. We choose the basis of TOðMÞ such that
Uμ ¼ ð1; 0; 0; 0Þ, lμ ¼ ð1; niÞ, nini ¼ 1. The RNC is set
up around the tip of light cone O and the coordinates of a
generic point p on the light cone are xμðpÞ ¼ ðl; lniÞ,
where l is the parameter distance between p and O. The
light cone cut which defines the edge Sl of LCD is the locus
of points with the affine parameter distance l on the light
cone. Hence, l controls the size of the causal diamond and
we shall calculate the relevant quantities up to order Oðl4Þ.

1. Edge area

By solving the Raychaudhuri equation and the evolution
equation of the shear, the edge area deficit in small LCD is
shown to be

δA¼−
Ωd−2ldðdR00þRÞ

6ðd−1Þ þΩd−2ld−3ðd−2ÞXmþOðldþ1Þ:

ð23Þ
We defer the calculation details to Sec. V C 1 where we
solve the equations to higher orders of perturbations that
cover both vacuum and nonvacuum cases.

2. Maximal hypersurface volume

We can also make an attempt to evaluate the maximal
hypersurface volume enclosed by the light cone cut Sl. In

Minkowski spacetime, the maximal slice corresponds to the
geodesic ball with radius l. We expect that the perturbed
maximal hypersurface deviates from the geodesic ball. One
can treat the light cone cut as the corrugated boundary of
some deformed geodesic ball. In order to have good control
of the deviation, we shall assume that the causal diamond
with orientation Ua has spherical symmetry. With this
assumption, the maximal slice is either a geodesic ball
orthogonal to the geodesic generated by Ua or a cone-
shaped spacelike hypersurface with a conical singularity.
The latter cannot have maximal volume, so we end up with
a ball that deviates from the flat ball only radially.
To evaluate the deviated geodesic ball volume, we first

need to locate the deformed geodesic ball with the light
cone cut as its boundary. We do so by changing from the
RNC centered at the light cone vertex O to another RNC
centered at O0, which is l0 parameter distance away
following the geodesic generated by Ua. We use the
following transformation formula between RNCs to the
leading order [23],

x0μðpÞ ¼ Δxμ þ 1

3
Rμ

ανβxνO0ΔxαΔxβ; ð24Þ

where x0μðpÞ, xμðpÞ denote the coordinates of a generic
event p in O0-RNC and O-RNC respectively; xμO0 is the
coordinates of event O0 in O-RNC; and Δxμ ¼ xμðpÞ−
xμO0 . We have left out a possible local Lorentz transform in
the tangent space, which is not relevant for our coordinate
transform.
Take p to be some point in the light cone cut, it has

xμðpÞ ¼ ðl; lniÞ. We also have xμO0 ¼ ðl0; 0Þ. Since we
should choose l0 in such a way that the ball deviates from
the flat ball only radially, and the radial geodesics are
orthogonal to Ua, so in RNC we should set x00ðpÞ ¼ 0. By
substitution to the above equation, we have

x0kðpÞ ¼ lnk þ 1

3
R0i

k
jninjl0l2 −

1

3
R0

k
0iniðl − l0Þl0l ð25Þ

with the constraint

x00ðpÞ ¼ l − l0 −
1

3
R0i0jninjl0l2 ≡ 0: ð26Þ

The above constraint gives l0 ¼ l − 1
3
R0i0jninjl3 þOðl4Þ.

Plugging it into (25) gives

x0kðpÞ ¼ lnk þ 1

3
R0i

k
jninjl3 −

1

9
R0

k
0iR0j0lninjnll5

−
1

9
R0i

k
jR0m0nninjnmnnl5: ð27Þ

This above expression does not capture a radial deviation
yet. Because of spherical symmetry, we can set x0kðpÞ ¼
rn0k with some radius r. We can fix r by taking the inner
product on both sides of the above expression:
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r2 ¼ l2 þOðl6Þ; ð28Þ

where we have taken the average over Ωd−2, so we have

x0kðpÞ ¼ ln0k: ð29Þ

Hence, the nontrivial term is beyond the order of interest, so
the conclusion is that the geodesic ball is effectively not
deviated at leading order in vacuum and we have the ball
boundary sitting at x0ðpÞ ¼ ð0; ln0kÞ. Its volume deficit is
purely due to the metric change and is given by (13).
However, later we see that these perturbation terms do
contribute in vacuum. Hence, we have the maximal hyper-
surface volume deficit of a spherical symmetric LCD:

δV ¼ −
Ωd−2ldþ1G00

3ðd − 1Þðdþ 1Þ þΩd−2ld−2Xm þOðldþ2Þ: ð30Þ

It is less meaningful to compute the isoperimetric ratio for
LCD here as the above volume is only valid assuming
spherical symmetry. Hence, we leave this out for
future works.
Motivated by [2], there is a good reason to fix the volume

rather than the size parameter. We can check if we can
connect the volume deficit to T00 by holding volume
constant rather than the size parameter l. This is the case
for GCD, and thus ACD as argued above. Holding volume
fixed corresponds to a variation in the size parameter, by
solving δVðXmÞ ¼ 0, we have

Xm ¼ −
δVjl

Ωd−2ld−2
; ð31Þ

where Vjl means holding size l fixed, i.e., Vjl ¼
− 8πGΩd−2ldþ1

3ðd−1Þðdþ1ÞT00. Now using (23), we can readily compute

the area holding the volume fixed:

δAjV ¼ δAjl þ Ωd−2ld−3ðd − 2ÞXm ¼ δAjl −
d − 2

l
δVjl;

¼ −
Ωd−2ldðd2 − dþ 4ÞR00 þ 3R

6ðd2 − 1Þ ; ð32Þ

which unfortunately fails to connect directly with the stress
energy tensor.
We hereby summarize and collect all the results

mentioned and computed in this section into Table I below.
The first row is the Minkowski reference of the geometric
quantities, which is the same for all three diamond
constructions. The other entries are the corresponding
variations to the flat space values. We have set Xm ¼ 0
to keep the table clean.

V. THE VACUUM CASE

We shall now work with Ricci-flat spacetime and we are
interested in the order of the fourth derivative of the metric.
In vacuum, the Riemann tensor equals the Weyl tensor and
we will use Rabcd and Cabcd interchangeably. As in the
nonvacuum case, we introduce a size ambiguity lþ Xv to
the size parameter in all three constructions, where the
subscript v stands for vacuum.We set Xv ∼Oðl5Þ, such that
the dimensionless perturbation Xv=l ∼Oðl4Þ is at the same
order as other perturbative quantities characterized by E2l4,
H2l4,D2l4 due to curvature. Xv introduces the flexibility to
fix any other geometric quantity of interest besides the size
parameter at the same order. In the following we will
evaluate areas and volumes with the size fixed, and then
append the variation due to Xv in the end. Nevertheless, if
one is only interested in variations when the size is fixed,
the size ambiguity Xv can be set as zero.

A. Geodesic ball causal diamond

GCD has been studied by Jacobson et al. in [15], so we
simply summarize their results here. The hypersurface
volume variation is

δV ¼ Ωd−2ldþ3

15ðd2 − 1Þðdþ 3Þ
�
−
D2

8
−
H2

2
þE2

3

�
þΩd−2ld−2Xv;

ð33Þ
and the edge area deficit is

δA¼ Ωd−2ldþ2

15ðd2 − 1Þ
�
−
D2

8
−
H2

2
þE2

3

�
þΩd−2ld−3ðd− 2ÞXv:

ð34Þ
As for the nonvacuum results, we have appended the size

ambiguity terms accordingly. We see that as opposed to the
GCD in nonvacuum, here the variations are not always
negative definite and thus not proportional toW as given in

TABLE I. The leading order geometry of small causal dia-
monds in nonvacuum. The first row shows the geometry in flat
Minkowski background and the rows below give the leading
order deviations of the edge area, the maximal hypersurface
volume and the isoperimetric ratio for each diamond in non-
vacuum.

Background Edge area A

Maximal
hypersurface
volume V

Isoperimetric
ratio I

Md Ωd−2ld−2 Ωd−2ld−1

d−1
1

GCD −Ωd−2ldG00

3ðd−1Þ − Ωd−2ldþ1G00

3ðd−1Þðdþ1Þ
G00l2

ðd−2Þðdþ1Þ
ACD −Ωd−2ldðRþðd−4ÞR00Þ

6ðd−1Þ −Ωd−2ldþ1ðRþðd−1ÞR00Þ
6ðd2−1Þ

G00l2

ðd−2Þðdþ1Þ
LCD −Ωd−2ldðdR00þRÞ

6ðd−1Þ − Ωd−2ldþ1G00

3ðd−1Þðdþ1Þ
� � �
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(3). Jacobson et al. also considered various plausible
deformations of the geodesic ball motivated from different
perspectives. The deformation considered coincideswith the
prescription of ACD and the leading order deformation is
specified as δr ¼ 1

6
l3ninjEij. The second order variation is

unspecified and denoted asX in [15] and our investigation of
ACD in the next subsection shall fill in this gap. Lastly, the
isoperimetric ratio surplus can be readily computed:

I ¼ 1þ ð3D2 þ 12H2 − 8E2Þl4
72ðdþ 3Þðdþ 1Þðd − 2Þ þOðl5Þ: ð35Þ

B. Alexandrov interval causal diamond

In ACD, our task is to first fix the coordinates of the
edge. Since the two vertices p, q of ACD are given, we treat
it as a geodesic boundary value problem. By putting the
constraints of the vanishing arclength of the null geodesics
sitting at the light cone, we can solve for the coordinates of
the edge in the RNC base at the center O of the diamond.
The arclength of a generic geodesic interval starting at xμ

and ending at xμ þ Δxμ in RNC [23] has the following
expression up to the order of interest:

L2 ¼ ημνΔxμΔxν −
1

3
RμανβxαxβΔxμΔxν −

1

12
ð∇μRνβαρ þ 2∇αRμβνρÞxαxβxρΔxμΔxν

−
�
1

45
RμρνσRαλβ

σ þ 1

60
∇μ∇νRαρβλ

�
xρxλΔxμΔxνΔxαΔxβ þ

�
2

45
RμαβσRνρλ

σ −
1

20
∇α∇βRμρνλ

�
xαxβxρxλΔxμΔxν

þ
�
2

45
RμαβσRνρλ

σ −
1

20
∇ðμ∇βÞRνραλ

�
xβxρxλΔxμΔxνΔxα: ð36Þ

RNC is set up around the midpoint O of the geodesic interval γðp; qÞ. We choose the basis of TOðMÞ such that
the time direction is set to be the orientation of the diamond. Hence q, p have coordinates ð�l; 0; 0; 0Þ respectively, and
the edge Sl is located at xμS ¼ ðt; rðθÞniÞ where ni is normalized nini ¼ 1. tðθÞ, rðθÞ are unknown coordinate
components describing the time and radial directions respectively, which depends on the angular coordinates fθAg.
We have

xμq;p ¼ ð�l; 0; 0; 0Þ; Δxν ¼ xμS − xμq;p ¼ ðtðθÞ ∓ l; rðθÞniÞ; ð37Þ
and we can now plug these into (36) and set L2 ¼ 0. This gives us two equations and each corresponds to null
generators emanating from the top q, and bottom p of the causal diamond. Solving them simultaneously for tðθÞ, rðθÞ
yields the equations that describe the edge.
The solutions are

rðθÞ ¼ lþ 1

6
Eijninjl3 þ

1

24
n ·∇Eijninjl4 þ

1

120
l5
�
1

3
ðð11EijElk þ 4Hi

m
jHlmkÞninjnlnk − 8EilHj

l
kn

injnk þ 4Ei
lEljninjÞ

þ 2nk∇k∇0Eijninj þ∇0∇0Eijninj þ nlnk∇l∇kEijninj
�
þOðl6Þ; ð38Þ

tðθÞ ¼ −
1

24
∇0Eijninjl4 þ

�
1

45
EilHj

l
k þ

1

40
∇k∇0Eij

�
ninjnkl5 þOðl6Þ: ð39Þ

We see that at the leading order in nonvacuum Oðl3Þ,
there are radial deviations from flat geometry but no
temporal ones, which only kicks in when considering
leading order in vacuum Oðl5Þ. This timelike deviation
(39) complicates our evaluation of the edge area and the
volume of the maximal hypersurface. Nevertheless, we can
circumvent the complications at this perturbative order.
Since the geodesic ball orthogonal to Ua maximizes the
spatial volume in flat space, we can assume that the
maximal hypersurface in ACD is of the form that perturbs
the geodesic ball. The variations of the geometric quantities

of interest associated with the perturbed ball will be
characterized by the l3, l4, l5 terms in (38) and (39). In
particular, the contributions due to the l4, l5 can be
calculated already by averaging over the solid angles,
because any combinations of these two terms with other
perturbative terms will have order higher than Oðl5Þ. Note
that in (39) the l4 term average to zero in vacuum and the l5

term will vanish according to (8).
Therefore, we can safely ignore these perturbations in

the time direction, and the ACD at this order is thus
effectively equivalent to GCD with a radius variation. Note
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that at leading order in nonvacuum, the ACD can be
converted to deformed GCD exactly and one can think
of them being equivalent up to scaling, but here they are
only effectively equivalent in terms of those integral
quantities of interest, namely the volume and the area.
After averaging, (38) simplifies to

rðθÞ ¼ lþ 1

6
Eijninjl3 þ

ð2dþ 13ÞE2 þ 3H2

180ðd2 − 1Þ l5 þOðl6Þ:

ð40Þ

We have argued that the ACD edge can be effectively
treated as a deformed geodesic ball. The induced metric hij
on the ball is

hijðxÞ ¼ δij −
1

3
xkxlRikjl −

1

6
xkxlxm∇kRiljm

þ xkxlxmxn
�
−

2

45
R0kilR0mjn

þ 2

45
Rp

kilRpmjn −
1

20
∇k∇lRimjn

�
þOðx5Þ: ð41Þ

To compute the edge area, we need the pullback metric
on the edge:

qAB ¼ ∂xμ
∂θA

����
Sl

∂xν
∂θB

����
Sl

gμνjSl ¼
∂rðθÞni
∂θA

∂rðθÞnj
∂θB hij; ð42Þ

where rðθÞ is given by (40).
The maximal hypersurface volume and the edge area

integrals in spherical coordinates are given by

V ¼
Z ffiffiffi

h
p

dd−1x ¼
Z

dΩd−2

Z
rðθÞ

0

dr rd−2
ffiffiffi
h

p
; ð43Þ

A ¼
Z ffiffiffi

q
p

dd−2θ ¼ ld−2
Z
Sl

dΩd−2
ffiffiffi
q

p
: ð44Þ

The integrals are calculated in [15], and we simply quote
their results:

V ¼ V♭ðlÞ þ ΔV þΩd−2ld−3
�
lX þ ðd − 2ÞYijYij

d2 − 1

−
l3

3ðd2 − 1ÞY
ijEij

�
þOðldþ4Þ; ð45Þ

A ¼ A♭ðlÞ þ ΔAþ Ωd−2ld−4
�
ðd − 2ÞlX

þ d2 − 3dþ 4

d2 − 1
YijYij −

l3d
3ðd2 − 1ÞY

ijEij

�
þOðldþ3Þ;

ð46Þ

with δV, ΔA given by (33) and (34). Yij, X are radius
deformation r ¼ lþ Yijninj þ X.
Compared with (40), we can substitute

Yij ¼
l3

6
Eij; X ¼ ð2dþ 13ÞE2 þ 3H2

180ðd2 − 1Þ l5;

into (45) and (46) to obtain the variations

δV ¼Ωd−2ldþ3
ð14d2 þ 28d− 34ÞE2 þ 6ðdþ 1ÞH2 − 3D2

360ðd− 1Þðdþ 1Þðdþ 3Þ
þΩd−2ld−3ðd− 2ÞXv þOðldþ4Þ; ð47Þ

δA ¼ Ωd−2ldþ2
ð14d2 − 32d − 4ÞE2 þ 6ðd − 4ÞH2 − 3D2

360ðd − 1Þðdþ 1Þ
þ Ωd−2ld−2Xv þOðldþ3Þ: ð48Þ

Note that here the size ambiguity Xv has nothing to do with
X. The latter was treated as a size ambiguity of GCD in [15]
but fixed by ACD geometry here. We see that including the
higher order variation X, as suggested in [15], does not help
make the area deficit proportional toW. Another interesting
quantity to consider is the isoperimetric ratio I. As
discussed for the nonvacuum ACD, δI is proportional to
the stress-energy tensor at leading order. It is therefore
plausible that δI in vacuum is proportional to the super-
energy at leading order:

I ≔
V=V♭

ðA=A♭Þd−1d−2
;

¼ 1þ ðð−2d2 þ 2dþ 16ÞE2 þ 12H2 þ 3D2Þl4
72ðdþ 3Þðdþ 1Þðd − 2Þ ;

¼ 1þ ð12W − ðdþ 1Þðd − 2ÞE2Þl4
36ðdþ 3Þðdþ 1Þðd − 2Þ ; ð49Þ

where in the last line we have substituted inW according to
(3). Unfortunately, this ratio variation fails to directly
connect with the W unlike in the nonvacuum case.

C. Light cone cut causal diamond

We first compute the area of the cut in vacuum for
arbitrary spacetime dimension d, which has not been
investigated before to our knowledge.

1. Area of the light cone cut

There are two ways of computing the area. The first
entails solving evolution equations of the optical quantities
on the light cone. It uses the dynamical behaviors of the
light cone and is less demanding in terms of calculations, so
we are going to follow this method. The second method is
conceptually simpler, only demanding the pullback metric
on Sl in RNC and then the area integral, but the calculation
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is much lengthier [35]. Since we shall also demonstrate the
area in the nonvacuum case (23) with the same method, we
will not assume the Ricci tensor vanishes a priori in this
subsection.
Denote the covariant derivative of the null generators as

Bab ≔ ∇alb. One can decompose Bab into the twist,
expansion and shear. The light cone has vanishing twist.
The expansion and shear are defined by the following:

θ̂ ≔ B̂a
a ¼ ∇ala; ð50Þ

σ̂ab ≔ B̂ðabÞ −
1

d − 2
θ̂hab; ð51Þ

where ·̂ denotes the transverse projection given by

hab ¼ δab þ Nalb þ laNb; ð52Þ

where Na is a null vector field on the light cone obeying

Nala ¼ −1; ∇lNa ¼ 0: ð53Þ

In RNC, following the LCD setup outlined in earlier
sections (lμ ¼ ð1; niÞ, Uμ ¼ ð1; 0; 0; 0Þ), we have

Nμ ¼ ð1=2;−ni=2Þ; hμν ¼ δμjδ
i
νðδij − ninjÞ; ð54Þ

where the repeated i, j here are not summed. Hence in RNC
hμν is block diagonalized with 0 ⊕ ðδij − ninjÞ, so it only
projects to the spatial part as expected [36].
The expansion of the null geodesic congruence governs

the rate of change of the light cone cut area. Denote the
pullback metric on the cut Sl to be qAB, and its volume form
satisfies

_ffiffiffiqp ¼ θ
ffiffiffi
q

p
; ð55Þ

where the dot represents the derivative with respect to the
affine parameter l of the null generators.
With vanishing twist on the light cone, the Raychaudhuri

equation and the evolution equation for shear in arbitrary
dimension d read [37]:

_̂θ ¼ −
1

d − 2
θ̂2 − σ̂abσ̂ab − Rablalb; ð56Þ

_̂σab ¼ −
2

d − 2
θ̂σ̂ab − Ccedfhcalehdbl

f; ð57Þ

whereCcedf is the Weyl tensor and we shall use a shorthand
for the partly projected Weyl term,

Cab ≔ Ccedfhcalehdbl
f: ð58Þ

Note that the Weyl tensor which appeared in the shear
evolution equation should be defined at xμ ¼ llμ.

Nevertheless, we still use the tensor Ccedf evaluated at
the origin, because the difference between the Weyl tensor
at l and the origin can be safely ignored for our leading
order calculations later. In RNC, the nonzero components
of Cab can be computed using (54). Because of the
projection, only the spatial parts Cij are nonzero:

Cij ¼ Eij − 2nkEkðinjÞ þ ninjElknlnk − 2HðijÞknk

þ 2nðiHl
jÞknlnk þDikjlnknl: ð59Þ

Since we are only interested in perturbative solutions to
(56) and (57), the ordinary differential equations can be
solved by a power series ansatz. It is known that the light
cone expansion is given by θ̂ ¼ ðd − 2Þ=l in Minkowski
spacetime. Substituting it into (57) yields σ̂ab ¼ −Cabl=3 at
the leading order. Therefore, we propose the following
ansatz:

θ̂ðlÞ ¼ d − 2

l
þ c0 þ c1lþ c2l2 þ c3l3 þOðl4Þ; ð60Þ

σ̂abðlÞ ¼ −
Cab

3
lþ k2l2 þ k3l3 þOðl4Þ: ð61Þ

Plugging into (56) and (57) and solving them simulta-
neously up to Oðl3Þ gives

θ̂ðlÞ ¼ d− 2

l
−
Rablalb

3
l−

ðd− 2ÞCabCabþðRablalbÞ2
45ðd− 2Þ l3;

ð62Þ

σ̂abðlÞ ¼ −
Cab

3
l −

2CabRcdlcld

45ðd − 2Þ l3: ð63Þ

We are only interested in the expansion to compute the
volume form

ffiffiffi
q

p
. We shall once again use an ansatz:

ffiffiffi
q

p ¼ Ωd−2ld−2ð1þ q1lþ q2l2 þ q3l3 þ q4l4Þ þOðldþ3Þ:
ð64Þ

Plugging in the ansatz and (62) into (55) yields

ffiffiffi
q

p ¼Ωd−2ld−2
�
1−

Rablalb

6
l2

−
ð2d−4ÞCabCabþð12−5dÞðRablalbÞ2

360ðd−2Þ l4
�
: ð65Þ

Now we are ready to compute the edge area. We first
show (23), and we only need the first two terms in (65):
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Z
Sl

ffiffiffi
q

p
dxd−2 ¼ ld−2

Z
Sl

dΩd−2

�
1 −

Rablalb

6
l2
�
;

¼ ld−2Ωd−2

�
1 −

ðd − 1ÞR00 þ Ri
i

6ðd − 1Þ
�
;

¼ A♭

�
1 −

dR00 þ R
6ðd − 1Þ l

2

�
þOðldþ1Þ; ð66Þ

which gives the result (23).
In vacuum, Rab ¼ 0 and (65) reduces to

ffiffiffi
q

p ¼ Ωd−2ld−2
�
1 −

CabCab

180
l4
�
þOðldþ3Þ: ð67Þ

Computing CabCab is lengthy and we state the result here:

CabCab ¼ E2 − 2Ei
kEk

jninj þ 2EijDi
l
j
knlnk

þ EijElkninjnlnk þ 4Hkl
iHðklÞjninj

− 2Hi
m
jHlmkninjnlnk

þDm
i
n
jDmlnkninjnlnk: ð68Þ

Finally, the integration yields

A ¼ ld−2
Z
Sl

dΩd−2

�
1 −

CabCab

180
l4
�
;

¼ A♭

�
1 −

ð2ðd2 þ 2ÞE2 þ 3D2 þ 6dH2Þl4
360ðd2 − 1Þ

�
; ð69Þ

which in particular when d ¼ 4, with D2 ¼ 4E2,
H2 ¼ 2B2, it gives

δA ¼ −
2l6Ω2

225
ðE2 þ B2Þ ¼ −

2l6Ω2

225
W; ð70Þ

whereas it is not proportional to W in any other spacetime
dimension.
The negative definite area variation can be understood

using the light cone cut comparison theorem in the case of
the energy condition being satisfied trivially [33]. This area
deficit in four dimensions was partially implied by the
volume form mentioned in studies of quasilocal mass
[17,18,20,21]. Their calculations are carried out in the
Newman-Penrose formalism and therefore only restricted
to d ¼ 4. We here show that this nice connection between
area deficit and LCD surprisingly holds only in dimen-
sion four.
If we relax the identification of the size parameter l with

reference to the Minkowski spacetime, introducing a size
ambiguity Xv gives the general result of the light cone cut
area deficit:

δA ¼ −Ωd−2ldþ2
2ðd2 þ 2ÞE2 þ 3D2 þ 6dH2

360ðd2 − 1Þ
þ Ωd−2ld−3ðd − 2ÞXv þOðldþ3Þ: ð71Þ

2. Maximal hypersurface volume

The maximal hypersurface volume is straightforward to
evaluate following exactly the same procedure given in the
nonvacuum case. We state the results here and the details
can be found in [35]. The volume variation assuming
spherical symmetry is

δV ¼ Ωd−2ldþ3ð−ð40dþ 112ÞE2 þ ðdþ 2Þ12H2 − 3D2Þ
360ðd2 − 1Þðdþ 3Þ

þΩd−2ld−2Xv þOðldþ4Þ: ð72Þ

Again, we will not compute the isoperimetric ratio of
LCD here as the above hypersurface volume is only valid
under spherical symmetry. We close this section by
summarizing all the results in the table below. We see that
none of the quantities have a direct connection with W (3)
in all dimensions. To keep the expressions as simple as
possible, we set the size ambiguity Xv to be zero.

VI. VOLUME OF ACD IN VACUUM

The total volume of ACD has been computed in [16] up
to the leading order in nonvacuum. Since the volume
variation of ACD provides a link between the continuum
geometric quantities like Ricci scalar curvature and the
discrete counting of k-chains in causal set theory [5], it is
worth working out the volume expansion to leading order
in vacuum. The result could also be used to test the discrete
causal set action for an ACD region [7].
The d-volume integral can be expressed as the sum of the

upper cone volume and lower cone volume:

VðdÞ ¼
Z

dΩd−2

Z
l

tðθÞ
dt
Z

rþðt;θÞ

0

ffiffiffi
g

p
rd−2dr

þ
Z

dΩd−2

Z
tðθÞ

−l
dt
Z

r−ðt;θÞ

0

ffiffiffi
g

p
rd−2dr; ð73Þ

where tðθÞ locates the diamond edge as given by (39). Via
imposing vanishing (36) on the light cone, similar to how
(38) and (39) are obtained, the light cone boundary r�ðt; θÞ
of ACD is given by the following equation:

r�ðt; θÞ ¼ ðl ∓ tÞ
�
1þ Eijninj

6
l2 þ EijElkninjnlnk

24
l4

∓ Ei
kEkjninj

45
l3tþ l2ðl ∓ tÞ2ninj

90

× ðEi
lElj þ ½Hi

m
jHlmk − EijElk�nlnkÞ

	
; ð74Þ

GEOMETRY OF SMALL CAUSAL DIAMONDS PHYS. REV. D 100, 064020 (2019)

064020-11



whereþ indicates the upper cone and − indicates the lower
cone and they simply differ by the sign of t. Note that the
above expression is the abridged version, where we omit
terms that will be irrelevant in the integration later
according to (11). One can find the full expression in
[35]. As a sanity check, one sees that at the edge r�ð0; nÞ ¼
tðθÞ agrees with (40) as expected.
Following a similar argument in calculating the maximal

hypersurface volume of ACD, only the averaged tðθÞ,
which is zero, will be relevant. Therefore, we can simplify
the integrals, and the upper and lower cones contribute the
same

VðdÞ ¼ 2

Z
dΩd−2

Z
l

0

dt
Z

rþðt;θÞ

0

dr rd−2
ffiffiffi
g

p
; ð75Þ

with

ffiffiffi
g

p ¼ 1 −
1

180
Cγ

μ
α
νCγρασxμxνxρxσ; ð76Þ

¼ 1 −
1

180
½E2t4 þ ð2ElkDlikj þ 4Hl

i
kHðljjjkÞ

þ 2EikEk
jÞninjr2t2 þ r4ðEijElk − 2Hi

m
jHlmk

þDm
i
n
jDmlnkÞninjnlnk�: ð77Þ

Again, we have kept only the relevant terms. Note that the
leading order of the above expansion is already of order R2,
so we can divide the integral into two parts:

VðdÞ ¼ −
1

90

Z
dΩd−2

Z
l

0

dt
Z

l−t

0

dr rd−2δ
ffiffiffi
g

p

þ 2

Z
dΩd−2

Z
l

0

dt
Z

rþðt;θÞ

0

dr rd−2; ð78Þ

where we have kept the first term of rþ ¼ l − t in the first
integral and δ

ffiffiffi
g

p
is given by (77) above.

The final result is

VðdÞ ¼ 2Ωd−2ld

dðd − 1Þ þ Ωd−2ldþ4
ð7d3 þ 58d2 þ 146dþ 108ÞE2 þ 6ðdþ 2Þðdþ 6ÞH2 − 3ðdþ 2ÞD2=2

90ðd − 1Þðdþ 1Þðdþ 2Þðdþ 3Þðdþ 4Þ þOðldþ5Þ; ð79Þ

where the first term is the flat space d-volume and the
second term is the variation due to curvature.

VII. DISCUSSION

The leading order causal diamond geometry is inves-
tigated perturbatively in our work, both in vacuum and
nonvacuum. It systematically complements and extends the
earlier investigations in [4–6,15,16]. We have summarized
our results in Tables I and II above, and hopefully this
glossary will be useful to those who work with causal
diamonds. There are still a few missing pieces from our
results.We are not aware of a general technique to determine
the maximal surface given some arbitrary closed boundary.
Itwould be interesting to find awayof doing this and then lift
the spherical symmetry assumption in our analysis of the
maximal hypersurface volume in LCD. One may also be

interested in the nonvacuumexpansions up to the same order
as we explored in the vacuum case. We have left them out,
but they can be done simply by keeping all those Ricci terms
that are set to zero in vacuum. In principle, following the
same method outlined in our work, one can compute the
geometry of the small causal diamond up to an arbitrary
order of interest. For that, one needs higher order RNC
expansions. Doing this by hand is a daunting task, but
fortunately they can be computed by a powerful tool, Cadabra,
following the guidelines provided by Leo Brewin [23].
Nevertheless, we can hardly think of any cases where a
higher order result will be useful. Furthermore, one can
apply the same methods to probe the geometry of small
causal cones, which are constructed by intersecting a light
conewith a spacelike hypersurface. This is partly done in [6]
and one can work out higher order geometries following the
same strategy as we tackle causal diamonds.

TABLE II. The leading order geometry of small causal diamonds in vacuum. The first row shows the geometry in flat Minkowski
background and the rows below give the leading order deviations of the edge area, the maximal hypersurface volume and the
isoperimetric ratio for each diamond in vacuum.

Background Edge area A Maximal hypersurface volume V Isoperimetric ratio I

Md Ωd−2ld−2 Ωd−2ld−1

d−1
1

GCD Ωd−2ldþ2 ð−D2

8
−H2

2
þE2

3
Þ

15ðd2−1Þ Ωd−2ldþ3 ð−D2

8
−H2

2
þE2

3
Þ

15ðd2−1Þðdþ3Þ
ðD2

8
þH2

2
−E2

3
Þl4

3ðdþ3Þðdþ1Þðd−2Þ
ACD Ωd−2ldþ2 ð14d2−32d−4ÞE2þ6ðd−4ÞH2−3D2

360ðd−1Þðdþ1Þ Ωd−2ldþ3 ð14d2þ28d−34ÞE2þ6ðdþ1ÞH2−3D2

360ðd−1Þðdþ1Þðdþ3Þ
ðð−2d2þ2dþ16ÞE2þ12H2þ3D2Þl4

72ðdþ3Þðdþ1Þðd−2Þ
LCD −Ωd−2ldþ2 ð2ðd2þ2ÞE2þ3D2þ6dH2Þ

360ðd2−1Þ −Ωd−2ldþ3 ðð40dþ112ÞE2−12ðdþ2ÞH2þ3D2Þ
360ðd2−1Þðdþ3Þ

� � �
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We do not attempt to interpret our results here, rather we
would like to discuss some potential applications of small
causal diamonds. Since the three causal diamond construc-
tions have a wide range of applications in studying
gravitational theory, our discussion here does not mean
to be comprehensive. One can also refer to the discussions
in [15,16].
Following the theme of [15], we want to look for a causal

diamond construction that yields the area deficit propor-
tional the Bel-Robinson superenergy densityW in vacuum.
LCD turns out to be the only construction that gives such a
nice relation exclusively in dimension four. However, LCD
is not so nice that the same relation with the stress tensor
fails in nonvacuum. It is still possible that one can directly
connect the area deficit with T00 or W, with the size
ambiguity Xm determined by holding some quantities fixed
in any of the three causal diamonds, or even with another
different recipe for causal diamond.
Since LCD is commonly used in the small sphere limit of

quasilocal mass, it would be interesting to see whether the
connection between various QLM proposals still obeys
the small sphere limit in arbitrary dimensions. Provided the
QLM proposals could admit higher dimensional general-
izations, such as the generalized Hawking mass and the
Brown-York mass as proposed in [38], one can apply the
same techniques used in our calculations to such proposals
to verify the small sphere limits. Since the area deficit hints
at four dimensions being somewhat unique, it could be that
the small sphere limit of QLM’s also fails to be proportional
to W in vacuum in dimensions other than four.
We fixed the ACD geometry by solving the geodesic

boundary value problem for the light cones, and then
computed the integrals. Our methods of probing ACD can
be applied to causal set theory. For example, ACD is used
to test the boundary term contribution in the causal set
action [7]. It turns out that in Minkowski spacetime, the
Benincasa-Dowker-Glaser causal set action [8] evaluated in
ACD contributes an amount proportional to the edge area.
It would be interesting to check, using the same machinery
as in Sec. VI, if the same holds true in general vacuum
spacetime. Another case where ACD is used is in calculat-
ing the discrete Ricci curvature and Ricci scalar in terms of
counting of k-chains in a causal set sprinkled from a small
ACD [5]. One can generalize their results to higher order, to

obtain the casual set counterparts of other geometric
quantities like the electromagnetic decompositions of the
Weyl tensor E2, H2, D2 and the Bel-Robinson superenergy
density W.
There are other plausible applications of our result.

Causal diamonds appear in discussions of holography
[10,11]. Our results concerning the edge area could be
useful in bounding the covariant entropy in some causal
diamond shaped regions, when the curvature scale is larger
than the diamond size. Moreover, by considering the
quantum speed limit of quantum operations inside a causal
diamond, Seth Lloyd is able to derive the Einstein field
equation [3]. It would be interesting to see how one can
generalize his arguments to higher order in a vacuum causal
diamond, and then possibly connect with the geometry
results given in this work. Lastly, recall that we define the
causal diamond as the domain of dependence of the edge,
generalizing the standard Alexandrov interval causal dia-
mond definition. We believe our definition is a more natural
way to understand causal diamonds as it coincides with the
notion of causally closed set in algebraic quantum field
theory [12,27], and resembles the entanglement wedge in
AdS/CFT [28]. Although the actual diamond is not the
main object of interest in our work except for ACD, we
believe our definition could be potentially useful in other
applications.
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