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We initiate the development of a horizon-based initial (or rather final) value formalism to describe the
geometry and physics of the near-horizon spacetime: data specified on the horizon and a future ingoing null
boundary determine the near-horizon geometry. In this initial paper we restrict our attention to spherically
symmetric spacetimes made dynamic by matter fields. We illustrate the formalism by considering a black
hole interacting with a) inward-falling, null matter (with no outward flux) and b) a massless scalar field.
The inward-falling case can be exactly solved from horizon data. For the more involved case of the scalar
field we analytically investigate the near slowly evolving horizon regime and propose a numerical
integration for the general case.
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I. INTRODUCTION

This paper begins an investigation into what horizon
dynamics can tell us about external black hole physics.
At first thought this might seem obvious: if one watches a
numerical simulation of a black hole merger and sees a
post-merger horizon ringdown (see e.g., Ref. [1]) then it is
natural to think of that oscillation as a source of emitted
gravitational waves. However this cannot be the case.
Neither event nor apparent horizons can actually send
signals to infinity: apparent horizons lie inside event
horizons which in turn are the boundary for signals that
can reach infinity [2]. It is not horizons themselves that
interact but rather the “near-horizon” fields. This idea was
(partially) formalized as a “stretched horizon” in the
membrane paradigm [3].
Then the best that we can hope for from horizons is that

they act as a proxy for the near-horizon fields with horizon
evolution reflecting some aspects of their dynamics. As
explored in Refs. [4–8] there should then be a correlation
between horizon evolution and external, observable, black
hole physics.
Robinson-Trautman spacetimes (see e.g., Ref. [9]) dem-

onstrate that this correlation cannot be perfect. In those
spacetimes there can be outgoing gravitational (or other)
radiation arbitrarily close to an isolated (equilibrium)
horizon [10]. Hence our goal is twofold: to understand
the conditions under which a correlation will exist and to
learn precisely what information it contains.
The idea that horizons should encode physical informa-

tion about black hole physics is not new. The classical

definition of a black hole as the complement of the causal
past of future null infinity [2] is essentially global and so
defines a black hole spacetime rather than a black hole in
some spacetime. However there are also a range of
geometrically defined black hole boundaries based on
outer and/or marginally trapped surfaces that seek to
localize black holes. These include apparent [2], trapping
[11], isolated [10,12–14] and dynamical [15] horizons as
well as future holographic screens [16]. These quasilocal
definitions of black holes have successfully localized black
hole mechanics to the horizon [11–13,15–17] and been
particularly useful in formalizing what it means for a
(localized) black hole to evolve or be in equilibrium.
They are used in numerical relativity not only as excision
surfaces (see, e.g., the discussions in Refs. [18,19]) but also
in interpreting physics (see e.g., Refs. [4–8,20–24]).
In this paper we work to quantitatively link horizon

dynamics to observable black hole physics. To establish an
initial framework and build intuition we for now restrict our
attention to spherically symmetric marginally outer trapped
tubes (MOTTs) in similarly symmetric spacetimes. Matter
fields are included to drive the dynamics. Our primary
approach is to take horizon data as a (partial) final boundary
condition that is used to determine the fields in a region of
spacetime in its causal past. In particular these boundary
conditions constrain the geometry and physics of the
associated “near-horizon” spacetime. The main application
that we have in mind is interpreting the physics of evolving
horizons that have been generated by either numerical
simulations or theoretical considerations.
Normally, data on a MOTT by itself is not sufficient to

specify any region of the external spacetime. As shown in
Fig. 1(a) even for a spacelike MOTT (a dynamical horizon)
the region determined by a standard (3þ 1) initial value
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formulation would lie entirely within the event horizon.
More information is needed to determine the near-horizon
spacetime and hence in this paper we work with a
characteristic initial value formulation [25–29] where extra
data is specified on a null surfaceN that is transverse to the
horizon [Fig. 1(b)]. Intuitively the horizon records inward-
moving information while N records the outward-moving
information. Together they are sufficient to reconstruct the
spacetime.
Many works have studied spacetime near horizons;

however they have not exactly addressed this problem.
Most works focused on isolated horizons. References [30]
and [31] examined spacetime near an isolated extremal
horizon as a Taylor series expansion of the horizon while
Refs. [32] and [33] studied spacetime near more general
isolated horizons but in a characteristic initial value
formulation with the extra information specified on a
transverse null surface. Reference [34] studied both the
isolated and dynamical case though again as a Taylor series
expansion off the horizon. In the case of the Taylor
expansions, as one goes to higher and higher orders one
needs to know higher- and higher-order derivatives of
metric quantities at the horizon to continue the expansion.
While the current paper instead investigates the problem as
a final value problem, it otherwise closely follows the
notation of and uses many results from Ref. [34].
This paper is organized as follows. We introduce the final

value formulation of spherically symmetric general rela-
tivity in Sec. II. We illustrate this for infalling null matter in

Sec. III and then the much more interesting massless scalar
field in Sec. IV. We conclude with a discussion of results
in Sec. V.

II. FORMULATION

A. Coordinates and metric

We work in a spherically symmetric spacetime (M, g)
and a coordinate system whose nonangular coordinates are
ρ (an ingoing affine parameter) and v (which labels the
ingoing null hypersurfaces and increases into the future).
Hence, gρρ ¼ 0 and the curves tangent to the future-
oriented inward-pointing

N ¼ ∂
∂ρ ð1Þ

are null. We then scale v so that V ¼ ∂
∂v satisfies

V · N ¼ −1: ð2Þ
One coordinate freedom still remains: the scaling of the
affine parameter on the individual null geodesics

ρ̃ ¼ fðvÞρ: ð3Þ
In Sec. II C we will fix this freedom by specifying how N is
to be scaled along the ρ ¼ 0 surface Σ (which we take to be
a black hole horizon).
Next we define the future-oriented outward-pointing null

normal to the spherical surfaces Sðv;ρÞ as la and scale so
that

l · N ¼ −1: ð4Þ
With this choice the four-metric gab and induced two-
metric q̃ab on the Sðv;ρÞ are related by

gab ¼ q̃ab − laNb − Nalb: ð5Þ
Further for some function C we can write

V ¼ l − CN: ð6Þ
The coordinates and normal vectors are depicted in Fig. 2
and give the following form of the metric:

ds2 ¼ 2Cðv; ρÞdv2 − 2dvdρþ Rðv; ρÞ2dΩ2 ð7Þ

where Rðv; ρÞ is the areal radius of the Sðv;ρÞ surfaces. Note
the similarity to ingoing Eddington-Finkelstein coordinates
for a Schwarzschild black hole. However ∂=∂ρ points
inwards as opposed to the outward-oriented ∂=∂r in
those coordinates (hence the negative sign on the dvdρ
cross term).
Typically, as shown in Fig. 2 we will be interested in

regions of spacetime that are bordered in the future by a
surface Σ of indeterminate sign on which ρ ¼ 0 and a null

FIG. 1. Domains of dependence of initial data.
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N which is one of the v ¼ const surfaces (and so ρ < 0 in
the region of interest). We will explore how data on those
surfaces determines the region of spacetime in their
causal past.

B. Equations of motion

In this section we break up the Einstein equations relative
to these coordinates, beginning by defining some geometric
quantities that appear in the equations.
First the null expansions for the la and Na congruences

are

θðlÞ ¼ q̃ab∇alb ¼
2

R
LlR and ð8Þ

θðNÞ ¼ q̃ab∇aNb ¼
2

R
LNR ¼ 2

R
R;ρ; ð9Þ

while the inaffinities of the null vector fields are

κN ¼ −NaNb∇alb ¼ 0 and ð10Þ

κV ¼ κl − CκN ¼ −laNb∇alb: ð11Þ

By construction κN ¼ 0 and so we can drop it from our
equations and henceforth write

κ ≡ κV ¼ κl: ð12Þ

Finally the Gaussian curvature of Sðv;ρÞ is

K̃ ¼ 1

R2
: ð13Þ

Then these curvature quantities are related by constraint
equations along the surfaces of constant ρ

LVR ¼ LlR − CLNR ðby definitionÞ; ð14Þ

LVθðlÞ ¼ κθðlÞ þ C

�
1

R2
þ θðNÞθðlÞ −GlN

�

−
�
Gll þ

1

2
θ2ðlÞ

�
; ð15Þ

LVθðNÞ ¼ −κθðNÞ −
�
1

R2
þ θðNÞθðlÞ −GlN

�

þ C

�
GNN þ 1

2
θ2ðNÞ

�
; ð16Þ

and “time” derivatives in the ρ direction

LNθðNÞ ¼ −
θ2ðNÞ
2

−GNN; ð17Þ

LNθðlÞ ¼ −
1

R2
− θðNÞθðlÞ þGlN; ð18Þ

LNκ ¼
1

R2
þ 1

2
θðNÞθðlÞ −

1

2
Gq̃ −GlN; ð19Þ

where by the choice of the coordinates

κ ¼ LNC: ð20Þ

These equations can be derived from the variations for the
corresponding geometric quantities (see, e.g., Refs. [35]
and [34]) and of course are coupled to the matter content of
the system through the Einstein equations

Gab ¼ 8πTab: ð21Þ

Using Eqs. (8) and (9) we can rewrite the constraint and
evolution equations in terms of the metric coefficients and
coordinates as

R;v ¼ Rl − CRN; ð22Þ

Rl;v ¼ κRl þ
Cð1þ 4RlRNÞ

2R
−
R
2
ðGll þ CGlNÞ; ð23Þ

RN;v ¼ − κRN −
ð1þ 4RlRNÞ

2R
þ R

2
ðGlN þ CGNNÞ; ð24Þ

and

R;ρρ ¼ −
R
2
GNN; ð25Þ

ðRRlÞ;ρ ¼ −
1

2
þ R2

2
GlN; ð26Þ

C;ρρ ¼
1

R2
þ 2RlRN

R2
−
1

2
Gq̃ −GlN; ð27Þ

FIG. 2. Coordinate system for characteristic evolution. We
work with final boundary conditions so that in the region of
interest ρ < 0.
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where

κ ¼ C;ρ: ð28Þ

For those who do not want to work through the derivations
of Refs. [35] and [34], these can also be derived fairly easily
(thanks to the spherical symmetry) from an explicit
calculation of the Einstein tensor for Eq. (7).

C. Final data

We will focus on the case where ρ ¼ 0 is an isolated or
dynamical horizon H. Thus

θðlÞ ¼H 0 ⇔ Rl ¼H 0: ð29Þ

The notation ¼H indicates that the equality holds on H (but
not necessarily anywhere else). Further we can use the
coordinate freedom (3) to set

RN ¼H R;ρj ¼H −1: ð30Þ

On H, the constraints (22)–(24) fix three of

fC; κ; R; Rl; RN; Gll; GlN;GNNg ð31Þ

given the other five quantities. For example if Rl¼H 0 and

RN¼H −1 then Eqs. (22) and (23) give

R;v ¼H C¼H R2Gll

1 − R2GlN
ð32Þ

and Eq. (24) gives

κ ¼ Cρ ¼H
1

2R
−
R
2
ðGlN þ CGNNÞ: ð33Þ

Thus if Gll and GlN are specified for vi ≤ v ≤ vf on H

and RðvfÞ¼HRf then one can solve Eq. (32) to find R over
the entire range. Equivalently one could take R and one of
Gll or GlN as primary and then solve for the other
component of the stress-energy.
Of course, in general the matter terms will also be

constrained by their own equations; these will be treated in
later sections. Further data on ρ ¼ 0 will generally not be
sufficient to fully determine the regions of interest and data
will also be needed on anN . Again this will depend on the
specific matter model.
Nevertheless if there is a MOTT at ρ ¼ 0 then the

constraints provide significant information about the hori-
zon. IfGll ¼ 0 (no flux of matter through the horizon) then
we have an isolated horizon with C ¼ 0, a constant R and a
null H. This is independent of other components of the
stress-energy.

Alternatively if Gll > 0 (the energy conditions forbid it
to be negative) and GlN < 1=R2 then we have a dynamical
horizon with C > 0, increasing R and spacelike H.1 Note
that this growth does not depend in any way on GNN :
there is no sense in which the growing horizon “catches”
outward-moving matter and hence grows even faster. The
behavior of the coordinates relative to isolated and dynami-
cal horizons along with Iþ is illustrated in Fig. 3.
The evolution equations are more complicated and

depend on the matter field equations. We examine two
such cases in the following sections.

III. TRACELESS INWARD-FLOWING
NULL MATTER

As our first example consider matter that falls entirely in
the inward N direction with no outward l flux. Then data
on the horizon should be sufficient to entirely determine the
region of spacetime traced by the horizon-crossing inward
null geodesics: there are no dynamics that do not involve
the horizon.
Translating these words into equations, we assume that

TabNaNb ¼ 0 ð34Þ

(no matter flows in the outward l direction). Further, for
simplicity we also assume that it is trace-free

gabTab ¼ 0 ⇔ Tq̃ ¼ 2TlN: ð35Þ

FIG. 3. Spacetime foliation for isolated and dynamical
horizons.

1GlN > 1=R2 signals that another MOTS has formed outside
the original one and so a numerical simulation would see an
apparent horizon “jump” [16,36]. In the current paper all matter
satisfies GlN < 1=R2 and so this situation does not arise.
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Then we can solve for the metric using only the Bianchi
identities

∇aGab ¼ 0; ð36Þ

without any reference to detailed equations of motion for
the matter field. Keeping spherical symmetry but tempo-
rarily suspending the other simplifying assumptions they
may be written as

LlðR2GNNÞ þ LNðR2GlNÞ þ R2ð2κlGNNÞ

þ 1

2
R2θðNÞGq̃ ¼ 0; ð37Þ

LNðR2GllÞ þ LlðR2GlNÞ þ R2ð−2κNGllÞ

þ 1

2
R2θðlÞGq̃ ¼ 0: ð38Þ

In terms of metric coefficients with κN ¼ 0 plus Eqs. (34)
and (35) these reduce to

ðR4GlNÞ;ρ ¼ 0 and ð39Þ

ðR2GllÞ;ρ þ
1

R2
ðR4GlNÞ;v ¼ 0: ð40Þ

As we shall see, this class of matter includes interesting
examples like the Vaidya-Reissner-Nordström solution
(charged null dust).
We now demonstrate that given knowledge of Gll and

GlN over a region of horizon H̄ ¼ fH∶vi ≤ v ≤ vfg as

well as RðvfÞ¼HRf we can determine the spacetime every-
where out along the horizon-crossing inward null
geodesics.

A. On the horizon

First consider the constraints on H̄. In this case it is tidier
to take R and GlN as primary. Then we can specify

R¼HRHðvÞ and GlN¼H
QðvÞ
R4
H

ð41Þ

for some functions RHðvÞ (dimensions of length) and
QHðvÞ (dimensions of length squared) where the form
of the latter is chosen for future convenience. Then

C¼HRH;v ð42Þ

and by Eq. (32)

Gll¼HRH;v

�
1

R2
H
−

Q
R4
H

�
: ð43Þ

Finally by Eq. (33),

κ¼HCρ¼H
1

2RH

�
1 −

Q
R2
H

�
: ð44Þ

B. Off the horizon

Next, integrate away from H̄. First with GNN ¼ 0
Eq. (25) can be integrated with initial condition (30) to give

Rðv; ρÞ ¼ RHðvÞ − ρ: ð45Þ

Then with Eq. (41) we can integrate Eq. (39) to find

GlN ¼ Q
R4

ð46Þ

and use this result and Eq. (43) to integrate Eq. (40) to get

Gll ¼ ðR2
H −QÞRH;v

R2
HR

2
þ ρQ;v

RHR3
: ð47Þ

With these results in hand and the initial condition Rl¼H0
we integrate Eq. (26) to get

Rl ¼ ρðQ − R2
H þ ρRHÞ

2R2RH
ð48Þ

and finally with the initial conditions (32) and (33) we can
integrate Eq. (27) to find

C ¼ RH;v − Rl: ð49Þ

C. Comparison with Vaidya-Reissner-Nordström

We can now compare this derivation to a known
example. The Vaidya-Reissner-Nordström (VRN) metric
takes the form

ds2¼−
�
1−

2mðvÞ
r

þqðvÞ2
r2

�
dv2þ2dvdrþr2dΩ2 ð50Þ

where the apparent horizon rH ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
and r is

an affine parameter of the ingoing null geodesics. To put it
into the form of Eq. (7) where the affine parameter
measures distance off the horizon we make the trans-
formation

r ¼ rH − ρ ð51Þ

whence the metric takes the form

ds2 ¼ −
�
2rH;v −

ρðq2 − rHðrH − ρÞÞ
rHðrH − ρÞ2

�
dv2

− 2dvdρþ ðrH − ρÞ2dΩ2: ð52Þ
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That is

C ¼ rH;v −
ρðq2 − rHðrH − ρÞÞ

2rHðrH − ρÞ2 ð53Þ

R ¼ rH − ρ ð54Þ

and on the horizon

C¼HrH;v and R¼HrH ð55Þ

as expected.
To do a complete match we calculate the rest of the

quantities. First appropriate null vectors are

l ¼ ∂
∂vþ

�
rH;v −

ρðq2 − rHðrH − ρÞÞ
2rHðrH − ρÞ2

� ∂
∂ρ ; ð56Þ

N ¼ ∂
∂ρ : ð57Þ

Then direct calculation shows that

Rl ¼ −
ρðq2 − rHðrH − ρÞÞ

2rHðrH − ρÞ2 ; ð58Þ

RN ¼ −1 ð59Þ

and

Gll ¼ ðr2H − q2ÞrH;v

r2Hr
2

þ 2ρqq;v
rHr3

; ð60Þ

GlN ¼ q2

ðrH − ρÞ2 ; ð61Þ

GNN ¼ 0; ð62Þ

Gq ¼
2q2

ðrH − ρÞ2 : ð63Þ

It is clear that with RH ¼ rH andQ ¼ q2 our general results
(41)–(49) give rise to the VRN spacetime (as they should).
As expected the data on the horizon is sufficient to

determine the spacetime everywhere back out along the
ingoing null geodesics: we simply solve a set of (coupled)
ordinary differential equations along each curve. With the
matter providing the only dynamics and that matter only
moving inwards along the geodesics the problem is quite
straightforward. In this case there is no need to specify extra
data on N .
We now turn to the more interesting case where the

dynamics are driven by a scalar field for which there will be
both inward and outward fluxes of matter.

IV. MASSLESS SCALAR FIELD

Spherical spacetimes containing a massless scalar field
ϕðv; ρÞ are governed by the stress-energy tensor given by,

Tab ¼ ∇aϕ∇bϕ −
1

2
gab∇cϕ∇cϕ: ð64Þ

This system has nonvanishing inward and outward fluxes
which are,

Tll ¼ ðϕlÞ2; ð65Þ

TNN ¼ ðϕNÞ2: ð66Þ

Here and in the following keep in mind that N ¼ ∂
∂ρ and so

ϕN ¼ ϕ;ρ. We also observe from Eq. (64) that,

TlN ¼ 0: ð67Þ

These fluxes are related by the wave equation

□gϕ ≔ ∇α∇αϕ ¼ 0 ⇒ ðRϕlÞ;ρ ¼ −Rlϕ;ρ: ð68Þ

For our purposes we are not particularly interested in the
value of ϕ itself but rather in the associated net flux of
energies in the ingoing and outgoing null direction. Hence
we define

Φl ¼
ffiffiffiffiffiffi
4π

p
Rϕl and ΦN ¼

ffiffiffiffiffiffi
4π

p
RϕN: ð69Þ

Respectively these are the square roots of the scalar field
energy fluxes in the N and l directions. That is, over a
sphere of radius R, Φl is the square root of the total
integrated flux in the N direction and ΦN is the square root
of the total integrated flux in the l direction. Though not
strictly correct, we will often refer to Φl and ΦN them-
selves as fluxes.
Then Eq. (68) becomes

Φl;ρ ¼ −
RlΦN

R
ð70Þ

or, making use of the fact that ϕ;vρ ¼ ϕ;ρv,

ΦN;v ¼ −κΦN − CΦN;ρ −
RNΦl

R
: ð71Þ

These can usefully be understood as advection equations
with sources. Recall that a general homogeneous advection
equation can be written in the form

∂ψ
∂t þ C

∂ψ
∂x ¼ 0 ð72Þ

where C is the speed of flow of ψ : if C is constant then this
has the exact solution
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ψ ¼ ψðx − CtÞ ð73Þ
and so any pulse moves with speed dx

dt ¼ C. Any nonho-
mogeneous term corresponds to a source which adds or
removes energy from the system. Then Eq. (70) tells us that
the flux in the N direction ðΦlÞ is naturally undiminished
as it flows along a (null) surface of constant v and
increasing ρ. However the interaction with the flux in
the l direction can cause it to increase or decrease.
Similarly Eq. (71) describes the flow of the flux in the l
direction (ΦN) along a surface of constant ρ and increasing
v. Rewriting with respect to the affine derivative (see the
Appendix B) Dv ¼ ∂v þ κ it becomes

DvΦN þ CΦN;ρ ¼ −
RNΦl

R
: ð74Þ

Then, as might be expected, ΦN naturally flows with
coordinate speed C (recall that l ¼ ∂

∂v þ C ∂
∂ρ so this is

the speed of outgoing light relative to the coordinate
system) but its strength can be augmented or diminished
by interactions with the outward flux.

A. System of first order PDEs

Together Eqs. (70) and (71) constitute a first-order
system of partial differential equations (PDEs) for the
scalar field. We now restructure the gravitational field
equations in the same way.
First with respect to Φl and ΦN the constraint equa-

tions (14)–(16) on constant ρ surfaces become

R;v ¼ Rl − CRN; ð75Þ

Rl;v ¼ κRl þ
Cð1þ 2RlRNÞ

2R
−
Φ2

l

R
; ð76Þ

RN;v ¼ −κRN −
ð1þ 2RlRNÞ

2R
þ CΦ2

N

R
ð77Þ

while the “time”-evolution equations (17)–(19) are

R;ρρ ¼ −
Φ2

N

R
; ð78Þ

ðRRlÞ;ρ ¼ −
1

2
; ð79Þ

C;ρρ¼
1þ 2RlRN

R2
−
2ΦlΦN

R2
: ð80Þ

Two of these equations can be simplified. First, integrat-

ing Eq. (79) from ρ ¼ 0 on which Rl¼H0 we find

Rl ¼ −
ρ

2R
: ð81Þ

This can be substituted into Eq. (76) to turn it into an
algebraic constraint

C ¼ 2Φ2
l − 2RlðκRþ RlÞ: ð82Þ

Despite these simplifications, the presence of interacting
outward and inward matter fluxes means that in contrast to
the dust examples, this is truly a set of coupled partial
differential equations. Hence we can expect that the matter
and spacetime dynamics will be governed by off-horizon
data in addition to data at ρ ¼ 0.
We reformulate as a system of first-order PDEs in the

following way. First designate

fR;RN; κ;Φl;ΦNg ð83Þ
as the primary variables. The secondary variables fRl; Cg
are defined by Eqs. (81) and (82) in terms of the primaries.
Next on ρ ¼ const surfaces the primary variables are

constrained by

R;v ¼ Rl − CRN and ð84Þ

RN;v ¼ −κRN −
1

2R
ð1þ 2RlRN − 2CΦ2

NÞ ð85Þ

along with the scalar flux equation (71) while their time
evolution is governed by

R;ρ ¼ RN; ð86Þ

RN;ρ ¼ −
Φ2

N

R
; ð87Þ

κ;ρ ¼
1

R2
ð1þ 2RlRN − 2ΦlΦNÞ; ð88Þ

Φl;ρ ¼ −
RlΦN

R
: ð89Þ

We now consider how all of these equations may be used
to integrate final data. The scheme is closely related to that
used in Ref. [27].

B. Final data on H̄ and N̄

In line with the depiction in Fig. 1(b), we specify final
data on H ∪ N or rather on the sections H̄ ∪ N̄ where

H̄ ¼ fð0; vÞ ∈ H∶vi ≤ v ≤ vfg and

N̄ ¼ fðρ; vfÞ ∈ N ∶ρi ≤ ρ ≤ 0g: ð90Þ
Their intersection sphere is H̄ ∩ N̄ ¼ ð0; vfÞ. Here and in
what follows we suppress the angular coordinates.
The final data is

H̄∶ Φl

N̄ ∶ ΦN and

H̄ ∩ N̄ ∶ R ¼ Ro: ð91Þ
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Φl on H̄ is a function of v while ΦN on N̄ is a function of
ρ. Ro is a single number.
Further on H we have

Rl¼H 0 and RN¼H −1 ð92Þ
where the null vectors are scaled in the usual way and, as

before, the notation ¼H indicates that all quantities on both
sides of the equality are evaluated on H.
This data can be used to evaluate C and R on H̄. From

Eqs. (82) and (84)

C¼H2Φ2
l and ð93Þ

R¼HRo þ 2

Z
v

vf

Φ2
ldv: ð94Þ

This is shown in Fig. 4. To find ΦN on H̄ we would need
to solve

ΦN;v þ
1

2R
ð1 − 4Φ2

lΦ2
NÞΦN ¼H −2Φ2

lΦN;ρ þ
Φl

R
ð95Þ

which comes from Eq. (71) combined with the above
results. However at this stageΦN;ρ is not known and so this

can only be solved directly in the isolated Φl¼H0 case.
There

Φiso
N ¼HΦNf

e−ðv−vfÞ=2Ro ð96Þ

where ΦNf
¼ ΦNð0; vfÞ. Equivalently (see Appendix B)

ΦN is affinely constant on an isolated horizon.
With RN ¼ −1, Eq. (77) tells us that

κ¼H 1

2R
ð1 − 2CΦ2

NÞ; ð97Þ

and so without ΦN on H̄ we also cannot determine this
(away from isolation). However the corner H̄ ∩ N̄ is an

exception to that rule. There we know Φl, ΦN and Ro
and so

κ ¼H̄∩N̄ 1

2Ro
ð1 − 4Φ2

lΦ2
NÞ: ð98Þ

The situation is less complicated on N̄ . There withΦN as
known data and final values known for all quantities on
H̄ ∩ N̄ all other quantities can be calculated in order.

(i) Solve Eqs. (86) and (87) for R and RN .
(ii) Calculate Rl from Eq. (81).
(iii) Solve Eq. (89) for Φl.
(iv) Solve Eq. (88) for κ.
(v) Calculate C from Eq. (82).

We then have all data on N̄ .

C. Integrating from the final data

We now consider how that data can be integrated into the
causal past of H̄ ∪ N̄ . The basic steps in the integration
scheme are demonstrated in a simple numerical integration
based on Euler approximations. This scheme alternates
between using steps i)–v) to integrate data down the
characteristics of constant v followed by an application
of Eq. (71) to calculate ΦN on the next characteristic.
In more detail, assume a discretization fvm; ρng (with m

and n at their maxima along the final surfaces) by steps Δv
and Δρ. Then if all data is known along a surface vmþ1 and
R and Φl are known everywhere on H̄:
(a) Use the knowledge of ΦN on vmþ1 to calculate ΦN;ρ.
(b) Use Eq. (71) at ðvm; ρnÞ to find ΦN;v. Then

ΦNðvm; ρnÞ ≈ ΦNðvmþ1; ρnÞ − ΦN;vðvmþ1; ρnÞΔv:
ð99Þ

(c) Apply Eq. (97) to calculate κ at ðvm; 0Þ.
(d) Use Eqs. (86)–(89) to integrate the values of RN;ρ, κ;ρ

and Φl;ρ out along the v ¼ vm characteristic as for the
initial data.

This can then be repeated marching all the way along H̄ as
shown in Fig. 5.
This is how we would proceed for general cases.

However those general studies will be left for a future

FIG. 5. Evolving Φ in the − ∂
∂v direction.

FIG. 4. The constraint equations along with initial conditions

on the horizon, i.e., Rl¼H0, RN¼H − 1 determine κ, C and R on H̄.
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paper. Here instead we will focus on spacetime near a
slowly evolving horizon. There, as will be seen in the next
section, ΦN;ρ is negligible and it becomes possible to
integrate along surfaces of constant v.
It may not be immediately obvious how this integration

scheme obeys causality and what restricts it to determining
points inside the domain of dependence. This is briefly
discussed in Appendix A.

D. Spacetime near a slowly evolving horizon

We now apply the formalism to a concrete example:
weak scalar fields near the horizon. Physically the black
hole will be close to equilibrium and hence the horizon will
evolve slowly in the sense of Refs. [17,35].
“Near horizon” means that we expand all quantities as

Taylor series in ρ and keep terms up to order ρ2. “Weak
scalar field” means that we assume

ΦN; Φl ∼
ε

R
ð100Þ

and then expand the terms of the Taylor series up to order
ϵ2. To order ϵ0 the spacetime will be vacuum (and
Schwarzschild), order ϵ1 will be a test scalar field propa-
gating on the Schwarzschild background and order ϵ2 will
include the backreaction of the scalar field on the geometry.

1. Expanding the equations

We expand all quantities as Taylor series in ρ. That is for
X ∈ fR;RN; Rl; κ; C;Φl;ΦNg

Xðv; ρÞ ¼
X∞
n¼0

ρnXðnÞðvÞ
n!

ð101Þ

with

RðnÞ
N ¼ Rðnþ1Þ and κðnÞ ¼ Cðnþ1Þ: ð102Þ

The free final data is Φð0Þ
l on H̄, Ro on H̄ ∩ N̄ and the

Taylor-expanded

ΦNf
ðρÞ ¼

X∞
n¼0

ρn

n!
ΦðnÞ

Nf
ð103Þ

on N̄ . Following Ref. [37] we give names to special cases
of this free data.

(i) Out modes: no flux through H̄ (Φð0Þ
l ¼ 0), nonzero

flux through N̄ (ΦðnÞ
N ≠ 0 for some n).

(ii) Down modes: nonzero flux through H̄ (Φð0Þ
l ≠ 0),

zero flux through N̄ (ΦðnÞ
N ¼ 0 for all n).

From the free data we construct the rest of the final data
on H̄. Equations (93) and (97) give

Cð0Þ ¼ 2Φð0Þ2
l ; ð104Þ

Cð1Þ ¼ κð0Þ ≈
1

2Rð0Þ : ð105Þ

Here and in what follows the ≈ indicates that terms of order
ϵ3 or higher have been dropped. Further by our gauge
choice

Rð0Þ
N ¼ Rð1Þ ¼ −1 ð106Þ

and so from Eq. (94)

Rð0Þ ¼ Ro þ
Z

v

vf

Cð0Þdv: ð107Þ

This is an order-ϵ2 correction as long as the interval of
integration is small relative to 1=ϵ.

The last piece of final data on H̄ is Φð0Þ
N and comes from

the first-order differential equation (95)

dΦð0Þ
N

dv
þΦð0Þ

N

2Ro
≈
Φð0Þ

l

Ro
ð108Þ

which has the solution

Φð0Þ
N ¼ Φð0Þ

Nf
eðvf−vÞ=2Ro þ e−v=2Ro

Z
v

vf

eṽ=2RoΦð0Þ
l dṽ ð109Þ

in which the free dataΦð0Þ
Nf

came in as a boundary condition.

Note that scalar fields that start small on the boundaries
remain small in the interior, again as long as the integration
time is short compared to 1=ϵ. We assume that this is
the case.
From the final data, the black hole is close to equilibrium

and the horizon is slowly evolving to order ϵ2. That is, the
expansion parameter [17,35]

C

�
1

2
θ2ðNÞ þ GabNaNb

�
≈
�
4Φ2

l

R2

�
∼
4ϵ2

R2
: ð110Þ

Further we already have the first-order expansion of C:

C ≈ 2Φð0Þ2
l þ ρ

2Ro
: ð111Þ

That is (to first order) there is a null surface at

ρEHC ≈ −4RoΦ
ð0Þ2
l : ð112Þ

This null surface is the event horizon candidate discussed
in Ref. [34]: if the horizon evolves slowly throughout its
future evolution and ultimately transitions to isolation then
the event horizon candidate is the event horizon.
Moving off the horizon to calculate up to second order

in ρ2, from Eqs. (86) and (87) we find
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Rð1Þ
N ¼ Rð2Þ ≈ −

Φð0Þ2
N

Ro
; ð113Þ

Rð2Þ
N ≈ −

Φð0Þ
N ðΦð0Þ

N þ 2RoΦ
ð1Þ
N Þ

R2
o

ð114Þ

and so from Eq. (81)

Rð0Þ
l ¼ 0; ð115Þ

Rð1Þ
l ¼ −

1

2Rð0Þ ; ð116Þ

Rð2Þ
l ¼ −

1

Rð0Þ2 : ð117Þ

Note that the last two terms will include terms of order ϵ2

once the Eq. (107) integration is done to calculate Rð0Þ.
From Eq. (89) we can rewrite ΦðnÞ

l terms with respect to

ΦðnÞ
N ones:

Φð1Þ
l ¼ 0; ð118Þ

Φð2Þ
l ≈

Φð0Þ
N

2R2
o
: ð119Þ

The vanishing linear-order term reflects the fact that close
to the horizon (where Rl ¼ 0) the inward flux decouples
from the outward flux (89) and so freely propagates into the
black hole. Physically this means that (to first order in ρ
near the horizon) the horizon flux is approximately equal to
the “near-horizon” flux.
Next, from Eq. (88)

κð1Þ ¼ Cð2Þ ≈
1

Rð0Þ2 −
2Φð0Þ

l Φð0Þ
N

R2
o

and ð120Þ

κð2Þ ≈
3

Rð0Þ2 −
2Φð0Þ

l ð2Φð0Þ
N þ RoΦ

ð1Þ
N Þ

R2
o

: ð121Þ

Again keep in mind that the Rð0Þ terms will be corrected to
order ϵ2 from Eq. (107).
Finally these quantities may be substituted into Eq. (71)

to get differential equations for the ΦðnÞ
N :

dΦð1Þ
N

dv
þΦð1Þ

N

Ro
≈
Φð0Þ

l

R2
o
−
Φð0Þ

N

R2
o
; ð122Þ

dΦð2Þ
N

dv
þ 3Φð2Þ

N

2Ro
≈
2Φð0Þ

l

R3
o

−
5Φð0Þ

N

2R3
o
−
3Φð1Þ

N

R2
o

: ð123Þ

Like Eq. (109) these are easily solved with an integrating

factor and respectively have Φð1Þ
Nf

and Φð2Þ
Nf

as boundary

conditions.
Note the important simplification in this regime that

enables these straightforward solutions, namely, the fact
that Rl ∼ ρ has raised the ρ order of the ΦN;ρ terms. As a
result we can integrate directly across the ρ ¼ const
surfaces rather than having to pause at each step to first

calculate the ρ derivative. The ΦðnÞ
Nf

are final data for these

equations. They can be solved order by order and then
substituted back into the other expressions to reconstruct
the near-horizon spacetime.
It is also important that the matter and geometry

equations decompose cleanly in orders of ϵ: we can solve
the matter equations at order ϵ relative to a fixed back-
ground geometry and then use those results to solve for the
corrections to the geometry at order ϵ2.

2. Constant inward flux

We now consider the concrete example of an affinely
constant flux through H̄ along with an analytic flux through
N̄ . Then by Appendix B

Φð0Þ
l ¼ Φð0Þ

lf
eV; ð124Þ

where Φð0Þ
lf

is the value of Φð0Þ
l at vf and V ¼ v−vf

2Ro
while

ΦNf
retains its form from Eq. (103).

We solve the equations for this data up to second order in

ρ and ϵ. First for ΦðnÞ
N equations we find

Φð0Þ
N ≈ ðeV − e−VÞΦð0Þ

lf
þ e−VΦð0Þ

Nf
; ð125Þ

Φð1Þ
N ≈

2Φð0Þ
lf

Ro
ð1 − e−2VÞ þ

2Φð0Þ
Nf

Ro
ðe−2V − e−VÞ þΦð1Þ

Nf
e−2V;

ð126Þ

Φð2Þ
N ≈ −

Φð0Þ
lf

4R2
o
ðeV þ 14e−V − 48e−2V þ 33e−3VÞ

þ
Φð0Þ

Nf

2R2
o
ð7e−V − 24e−2V þ 17e−3VÞ ð127Þ

þ
6Φð1Þ

Nf

Ro
ðe−3V − e−2VÞ þΦð2Þ

Nf
e−3V ð128Þ

and so

Φð0Þ
l ¼ eVΦð0Þ

lf
; ð129Þ

Φð1Þ
l ¼ 0; ð130Þ
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Φð2Þ
l ≈

Φð0Þ
lf

2R2
o
ðeV − e−VÞ þ

Φð0Þ
Nf

2R2
o
e−V: ð131Þ

The scalar field equations are linear and so it is not
surprising that to this order in ϵ each solution can be
thought of as a linear combination of down and out modes.
However for the geometry at order ϵ2, down and out

modes no longer combine in a linear way. These quantities

can be found simply by substituting the ΦðnÞ
l and ΦðnÞ

N into

the expression for RðnÞ, RðnÞ
N , RðnÞ

l , CðnÞ and κðnÞ given in the
last section. They are corrected at order ϵ2 by flux terms

that are quadratic in combinations of ΦðmÞ
lf

and ΦðnÞ
Nf
. The

terms are somewhat messy and the details are not especially
enlightening. Hence we do not write them out explic-
itly here.

3. H̄ − N̄ correlations

From the preceding sections it is clear that there does not
need to be any correlation between the scalar field flux
crossing H̄ and that crossing N̄ . These fluxes are actually
free data. Any correlations will result from appropriate
initial configurations of the fields. In this final example
we consider a physically interesting case where such a
correlation exists.
Consider quadratic affine final data (Appendix B) on

H̄ ¼ fðv; 0Þ∶vi < v < vfg,

Φð0Þ
l ¼ a0eV þ a1e2V þ a2e3V ð132Þ

for V ¼ v − vf=2Ro along with similarly quadratic affine

data on N̄ ,

ΦNf
¼ Φð0Þ

Nf
þ ρΦð1Þ

Nf
þ ρ2

2
Φð2Þ

Nf
: ð133Þ

A priori these are uncorrelated but let us restrict the initial

configuration so that ΦðnÞ
N ðviÞ ¼ 0. That is, there is no ΦN

flux through v ¼ vi.
Then the process to apply these conditions is, given the

free final data on H̄:
(i) Solve for the ΦðnÞ

N from Eqs. (108), (122) and (123).
(ii) Solve ΦðnÞ

N ðviÞ ¼ 0 to find the ΦðnÞ
Nf

in terms of the
an. These are linear equations and so the solution is
straightforward.

(iii) Substitute the resulting expressions for ΦðnÞ
N into

results from the previous sections to find all other
quantities.

These calculations are straightforward but quite messy.
Here we only present the final results for ΦNf

:

Φð0Þ
Nf
≈ð1−e2ViÞa0þ

2a1ð1−e3ViÞ
3

þa2ð1−e4ViÞ
2

; ð134Þ

Φð1Þ
Nf

≈
2a0ðe2Vi − e3ViÞ

Ro
þ a1ð1þ 8e3Vi − 9e4ViÞ

6Ro

þ a2ð1þ 5e4Vi − 6e5ViÞ
5Ro

; ð135Þ

Φð2Þ
Nf

≈ −
a0ð1þ 14e2Vi − 48e3Vi þ 33e4ViÞ

4R2
o

−
a1ð1þ 35e3Vi − 135e4Vi þ 99e5ViÞ

15R2
o

þ a2ð1 − 35e4Vi þ 144e5Vi − 110e6ViÞ
20R2

o
ð136Þ

where Vi ¼ VðviÞ. If Vi is sufficiently negative that we can
neglect the exponential terms, then

Φð0Þ
Nf

≈ a0 þ
2a1
3

þ a2
2
;

Φð1Þ
Nf

≈
a1
6Ro

þ a2
5Ro

;

Φð2Þ
Nf

≈ −
a0
4R2

o
þ −

a1
15R2

o
þ a2
20R2

o
: ð137Þ

In either case the flux through H̄ fully determines the flux
through N̄ . The constraint at vi is sufficient to determine
the Taylor expansion of the flux through N̄ relative to the
expansion of the flux through H̄. Though we only did this
to second order in ρ=vwe expect the same process to fix the
expansions to arbitrary order.

V. DISCUSSION

In this paper we have begun building a formalism that
constructs spacetime in the causal past of a horizon H̄ and
an intersecting ingoing null surface N̄ using final data on
those surfaces. It can be thought of as a specialized
characteristic initial value formulation and is particularly
closely related to that developed in Ref. [28]. Our main
interest has been to use the formalism to better understand
the relationship between horizon dynamics and off-horizon
fluxes. So far we have restricted our attention to spherical
symmetry and so included matter fields to drive the
dynamics.
One of the features of characteristic initial value prob-

lems is that they isolate free data that may be specified on
each of the initial surfaces. Hence it is no surprise that the
corresponding data in our formalism is also free and
uncorrelated. We considered two types of data: inward-
flowing null matter and massless scalar fields.
For the inward-flowing null matter, data on the horizon

actually determines the entire spacetime running back-
wards along the ingoing null geodesics that cross H̄.
Physically this makes sense. This is the only flow of
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matter and so there is nothing else to contribute to
the dynamics.
More interesting are the massless scalar field spacetimes.

In that case, matter can flow both inwards and outwards and
further inward-moving radiation can scatter outwards and
vice versa. For the weak-field near-horizon regime that we
studied most closely, the free final data is the scalar field
flux through H̄ and N̄ along with the value of R at their
intersection. Hence, as noted, these fluxes are uncorrelated.
However we also considered the case where there was no
initial flux of scalar field traveling “up” the horizon. In this
case the coefficients of the Taylor expansion of the inward
flux on H̄ fully determined those on N̄ (though in a fairly
complicated way). This constraint is physically reasonable:
one would expect the dominant matter fields close to a
black hole horizon to be infalling as opposed to traveling
(almost) parallel to the horizon. It is hard to imagine a
mechanism for generating strong parallel fluxes.
While we have so far worked in spherical symmetry

the current work still suggests ways to think about the
horizon-Iþ correlation problem for general spacetimes. For
a dynamic nonspherical vacuum spacetime, gravitational
wave fluxes will be the analogue of the scalar field fluxes of
this paper and almost certainly they will also be free data.
Then any correlations will necessarily result from special
initial configurations. However as in our example these
may not need to be very exotic. It may be sufficient to
eliminate strong outward-traveling near-horizon fluxes. In
future works we will examine these more general cases
in detail.
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APPENDIX A: CAUSAL PAST OF H̄ ∪ N̄

In this Appendix we consider how the general integration
scheme for the scalar field spacetimes of Sec. IV “knows”
how to stay within the past domain of dependence of
H̄ ∪ N̄ .
First, it is clear how the process develops spacetime up to

the bottom left-hand null boundary (v ¼ vi) of the past
domain of dependence. The bottom right-hand boundary is
a little more complicated but follows from the advection
form of the ΦN;v equation (74). Details will depend on the

exact numerical scheme but the general picture is as
follows.
Assume that we have discretized the problem so that we

are working at points ðvj; ρkÞ. Then in using Eq. (74) to
move from a surface vi to vi−1, the Courant-Friedrichs-
Lewy (CFL) condition (common to many hyperbolic
equations) tells us that the maximum allowed Δv is

Δv <
Δρ
C

; ðA1Þ

where Δρ is the coordinate separation of the points that we
are using to calculate the right-hand side of Eq. (74).
Then, as shown in Fig. 6, the discretization progressively

loses points from the bottom right of the diagram: they are
outside of the domain of dependence of the individual
points being used to determine them. For example if we are
using a centred derivative so that

ΦN;ρ ≈
ΦNðvj; ρkþ1Þ −ΦNðvj; ρk−1Þ

2Δρ
ðA2Þ

then we need adjacent points as shown in Fig. 6.
The lower-right causal boundary of Fig. 1 is then

enforced by a combination of the end points of N̄ and
the CFL condition as shown in Fig. 7. Points are pro-
gressively lost as they require greater than the maximum
allowed Δv. The numerical past domain of dependence
necessarily lies inside the analytic domain. The coarseness

FIG. 6. Causality restrictions onΔv: the CFL condition restricts
the choice of Δv to ensure that attempted numerical evolutions
respect causality. In this figure the ρ and v coordinates are drawn
to be perpendicular to clarify the connection with the usual
advection equation: to compare to other diagrams rotate about
45° clockwise and skew so coordinate curves are no longer
perpendicular. The dashed lines are null and have slope C in this
coordinate system. If data at points A, B and C are used to
determine ΦN;ρ then the size of the discrete v evolution is limited
to lie inside the null line from point C. The largest Δv allowed by
the restriction evolves to D.
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of the discretization in the figure dramatizes the effect: a
finer discretization would keep the domains closer.

APPENDIX B: AFFINE DERIVATIVES AND
FINAL DATA

The off-horizon ρ coordinate in our coordinate system is
affine while v is not. However, as seen in the main text,
when considering the final data on H̄ it is more natural to
work relative to an affine parameter. This is somewhat
complicated because Φl and ΦN are respectively linearly
dependent on l and N and the scaling of those vectors is
also tied to coordinates via Eqs. (1), (2) and (6). In this
Appendix we will discuss the affine parametrization of the
horizon and the associated affine derivatives for various
quantities.
Restricting our attention to an isolated horizon H̄ with

κ ¼ 1
2Ro

, consider a reparametrization

ṽ ¼ ṽðvÞ: ðB1Þ
Then

∂
∂v ¼ dṽ

dv
∂
∂ṽ ðB2Þ

and so

l ¼ eV l̃ and N ¼ e−VÑ ðB3Þ

where we have defined V so that eV ¼ dṽ
dv. Hence

κ̃ ¼ −Ñbl̃
a∇al̃

b ¼ e−V
�
κ −

dV
dv

�
ðB4Þ

and so for an affine parametrization (κ ¼ ∂vV)

eV ¼ exp

�
v − vf
2Ro

�
ðB5Þ

for some vf and

ṽ − ṽo ¼ 2RoeV ðB6Þ
for some ṽo. The vf freedom corresponds to the freedom to
rescale an affine parametrization by a constant multiple
while the ṽo is the freedom to set the zero of ṽ wherever
you like.
Now consider derivatives with respect to this affine

parameter. For a regular scalar field

df
dṽ

¼ e−V
df
dv

: ðB7Þ

However in this paper we are often interested in scalar
quantities that are defined with respect to the null vectors:

Φð0Þ
l ¼ eVΦð0Þ

l̃
and Φð0Þ

N ¼ e−VΦð0Þ
Ñ
: ðB8Þ

Then

dΦð0Þ
l̃

dṽ
¼ e−V

d
dv

ðe−VΦð0Þ
l Þ ¼ e−2V

�
dΦð0Þ

l

dv
− κΦð0Þ

l

�
; ðB9Þ

dΦð0Þ
Ñ

dṽ
¼ e−V

d
dv

ðeVΦð0Þ
N Þ ¼ dΦð0Þ

N

dv
þ κΦð0Þ

N : ðB10Þ

That is these quantities are affinely constant if

Φl ¼ eVΦð0Þ
lf

and ΦN ¼ e−VΦð0Þ
Nf

ðB11Þ

for some constants Φð0Þ
lf

and Φð0Þ
Nf
.

In the main text we write this affine derivative on H̄ as
Dv with its exact form depending on the l orN dependence
of the quantity being differentiated.
Finally at Eq. (132) we consider a Φl that is “affinely

quadratic.” By this we mean that

Φl̃ ¼ Ao þ A1ṽþ A2ṽ2

⇕

Φl ¼ aoeV þ a1e2V þ a2e3V; ðB12Þ
where for simplicity we have set ṽo to zero (so that v ¼ 0 is
Ṽ ¼ 2Ro) and absorbed the extra 2Ros into the an.

FIG. 7. A cartoon showing the CFL-limited past domain of
dependence of H̄ ∪ N̄ . Null lines are now drawn at 45° so the
analytic past domain of dependence is bound by the heavy dashed
null lines running back from the ends of H̄ and N̄ . A (very
coarse) discretization is depicted by the gray lines and the region
that cannot be determined with dashed lines. The boundary points
of that region are heavy dots.
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