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Testing gravity theory in the strong field region becomes a reality due to the observations of gravitational
waves and black hole shadows. In this paper, we discuss how to constrain the possible deviations of the
classical general relativity with the image of M87* observed by the Event Horizon Telescope. More
precisely, we want to know where is the event horizon for a nonrotating black hole. General relativity
predicts the horizon is located at the Schwarzschild radius rs, while other gravity theories may give
different predictions. We propose a parametrized Schwarzschild metric (PSM) in which the horizon is
located at r ¼ nrs, where n is a real free parameter, and prove general relativity with nonlinear
electrodynamics allows n ≠ 1. In the weak field region, the PSM is equivalent to the Schwarzschild
metric regardless of the value of n. In the strong field region, the difference between the PSM and
Schwarzschild metric would leave an imprint on the shadow image. We present detailed calculations and
discussions on the black hole shadows with large background light source and accretion disk in the PSM
framework. More importantly, we point out that n ≈ 2 can be used to explain why the black hole mass
measured by the shadow is a factor of about two larger than the previous gas dynamics measurements. If
this explanation is confirmed to be right, then this phenomenon, together with the late-time cosmological
acceleration, will be very important to test gravity theories.
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I. INTRODUCTION

The Event Horizon Telescope (EHT) observed the first
image of the black hole [1–6], which provides a new way to
test gravity theories in the strong field region. In the
framework of general relativity, assuming the black hole
is in front of a large light source, [7] and [8] calculated the
apparent size and shape of the Schwarzschild and Kerr
black hole, respectively. [9,10] analyzed the optical appear-
ance of a star orbiting a Kerr black hole. A more realistic
simulation is given by [11], which calculated the image of a
Schwarzschild black hole with the standard thin accretion
disk. References [12–14] simulated the image for the Kerr
black hole and other accretion disk models. In order to
compare observations with theories, the EHT collaboration
[5,6,15] simulated the accretion matters based on the
general relativistic magnetohydrodynamic (GRMHD, see
[16] for pedagogical resources) simulations and produced
the images by ray tracing [17].
For the non-Kerr metrics, which mainly appear in general

relativity with exoticmatters andmodified gravities, most of
thework (see [18] for examples) is to analyze the shadow for
the case that the black hole is in front of a large light source.

These works can be regarded as an extension of [8]. There
are few works to discuss the image of the non-Kerr black
holewith a realistic accretion disk.Herewe briefly introduce
threeworks in this direction. [19,20] simulated the images of
the quasi-Kerr black hole, which introduces a quadrupolar
moment to the Kerr metric [21], with radiatively inefficient
accretion flow, and discussed the observational constraints
on the quadrupolar deviation by the upcoming observations
of Sgr A*. [22] simulated the image of a spherically
symmetric dilaton black hole with Rezzolla-Zhidenko para-
metrization [23] based on GRMHD and general relativistic
radiative transfer [24] simulations, and pointed out that EHT
observations alone are not sufficient to distinguish between
the dilaton and Kerr black holes with the parameters they set
due to the low resolution. However, [22] did not discuss the
results of combining EHT observations with other astro-
nomical observations, which may be a powerful tool to test
general relativity as we will see in Sec. IV C. Very recently,
[25] simulated the image of the Janis-Newman-Winicour
naked singularity with the standard thin accretion disk. But
[25], as well as [11], missed the projection effect as we
mentioned in Sec. IV B. Imaging the non-Kerr black hole
with a realistic accretion disk plays an important role in
testing gravity theory with the EHT observations.
In this paper, we explore the ability to test gravity theory

in the strong field region with the image of M87* [1–6].
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More precisely, we focus on the issue that where is the
event horizon for a nonrotating black hole, which has not
been directly tested by observations before. A parametrized
metric is needed to do this. General relativity or the
Schwarzschild metric has been widely tested in the
weak field region [26–28]. Thus, in order to recover all
successes of the Schwarzschild metric, the desired metric
should be equivalent to the Schwarzschild metric in the
weak field region. We propose the following parametrized
Schwarzschild metric (PSM)

ds2 ¼ −c2AnðrÞdt2 þ
dr2

AnðrÞ
þ r2dΩ2; ð1:1Þ

where dΩ2 ¼ dθ2 þ sin2 θdφ2, rs ¼ 2GM=c2, n is a real
free parameter, and

AnðrÞ ¼
�
1 −

nrs
r

�
1=n

¼ 1 −
rs
r
þ ð1 − nÞr2s

2r2
þ � � � : ð1:2Þ

This metric satisfies the weak field equivalence requirement
regardless of the value of n. The Schwarzschild metric
corresponds to n ¼ 1 and the PSM is significantly different
with the Schwarzschild metric at the horizon scale if n ≠ 1.
One clear feature of the PSM is that the event horizon is
located at r ¼ nrs. EHT observations could be used to
constrain n if one can simulate the PSM black hole image.
In this paper, our calculations mainly follow [11,25],
which assume a standard thin accretion disk around the
black hole.
One important thing is worth mentioning here. EHT

observations show M87* is rotating [5,29], which is also
confirmed by the jet structure observations [30–32], while
the PSM describes a nonrotating black hole. So why can we
compare our results with EHT observations? The main
reason is that the shadow size is fairly independent of the
spin for the Kerr black hole with an accretion disk [12].
This is consistent with the result obtained in [8], which
shows the influence of the spin on the shadow for the Kerr
black hole with a large background light source is small if
the spin is not extremely high. It is reasonable to assume
that this property also holds for the parameterized Kerr
metric (PKM, an analogy of the PSM). On the other side,
our discussions (see Sec. IV C) depend only on the shadow
size. Therefore, choosing a spherical symmetry metric is
reasonable for our purpose. Note that the black hole spin
controls the north-south asymmetry [1] and circularity
[33,34] of the shadow. Comparing various measurements
of the spin (see [5,29–38] for examples) is useful for
exploring strong gravitational field physics (including not
only the gravity theory but also the accretion theory). We
would like to leave the work of constraining the PKM with
EHT observations to the future.
The other important thing worth mentioning is that the

PSM is not regular. Especially, the Ricci scalar R is

divergent at r ¼ nrs for a general n. The regularity of
the spacetime is crucial for the general relativity researches
[39]. However, it is not hard to avoid the singularity
at r ¼ nrs and preserve the main properties we are
considering of the PSM. To do this, the key is that the
region involved in our calculations is mainly range from
approximately rISCO to infinity, where rISCO > 2nrs [see
Eq. (2.8)]. Thus we can further modify the PSM near the
horizon to avoid the singularity. For example, for the case
of jn − 1j ≪ 1, we can keep only the first three terms of the
Taylor expansion of An. The corresponding metric is
equivalent to the Reissner-Nordström metric, which do
avoid the singularity at the horizon. Furthermore, the
singularity disappears if we keep only finite terms of the
Taylor expansion of An (we checked this for R and RμνRμν).
The high-order terms may originate from modified
gravities as shown in [39] or general relativity with non-
linear electrodynamics as shown in Sec. V. This discussion
indicates that the PSM can be a good approximation of one
suitable regular metric outside the horizon (the domain that
is not very close to the event horizon) for our purpose. And
we choose the PSM as the background metric in the
following calculations due to its simplicity.
This paper is organized as follows: Sec. II analyzes the

geodesics in the PSM. Section III gives the shadow size for
the case that the black hole is in front of a large light source.
Section IV simulates the image of the black hole with the
standard thin accretion disk and discusses the observational
constraints. In this step, we reanalyze the disk structure,
light bending, redshift and projection effects in the PSM.
Section V proves general relativity with nonlinear electro-
dynamics allows n ≠ 1 in the PSM. Our conclusions will be
presented in Sec. VI. We set 8πG ¼ 1 and c ¼ 1 hereafter.

II. GEODESICS

In this section, we analyze the geodesics in the PSM,
which are the basis for the following calculations.

A. Timelike geodesic

Without loss of generality, we assume a test particle
with nonzero rest mass moving in the equatorial plane, i.e.,
θ ¼ π=2 and the θ-component 4-velocity uθ ¼ 0. The PSM
is independent of t and φ gives

ut ¼ gttut ¼ −An
dt
dτ

¼ −E; ð2:1aÞ

uφ ¼ gφφuφ ¼ r2
dφ
dτ

¼ L; ð2:1bÞ

where E and L are constants, and dτ2 ¼ −ds2, which gives
uμuμ ¼ −1, i.e.,
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−An ·

�
dt
dτ

�
2

þ 1

An

�
dr
dτ

�
2

þ r2
�
dφ
dτ

�
2

¼ −1: ð2:2Þ

Substituting Eq. (2.1) into Eq. (2.2), we obtain�
dr
dτ

�
2

¼ E2 − An ·

�
1þ L2

r2

�
: ð2:3Þ

Taking the derivative of the above equation yields

d2r
dτ2

¼ An
2nL2rs þ L2rs − 2L2rþ rsr2

2r3ðnrs − rÞ : ð2:4Þ

The circular orbits require d2r
dτ2 ¼ dr

dτ ¼ 0, which gives

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rsr2

2r − ð2nþ 1Þrs

s
; ð2:5aÞ

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
An ·

�
1þ rs

2r − ð2nþ 1Þrs

�s
; ð2:5bÞ

Note that here L > 0 means the test particle moving
along the positive φ-direction. Substituting Eq. (2.5) into
Eq. (2.1), we obtain the nonzero 4-velocity components for
the circular orbits are

ut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

An

�
1þ rs

2r − ð2nþ 1Þrs

�s
; ð2:6aÞ

and

uφ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rs
r2½2r − ð2nþ 1Þrs�

r
: ð2:6bÞ

In order to calculate the radius of the innermost stable
circular orbit (ISCO), we can solve d2r

dτ2 ¼ 0 based on
Eq. (2.4) to obtain the roots

r� ¼ L2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L4 − rsð2nL2rs þ L2rsÞ

p
rs

: ð2:7Þ

The ISCO corresponds to rþ ¼ r−, which gives L2 ¼
ð2nþ 1Þr2s and the ISCO radius

rISCO ¼ ð2nþ 1Þrs: ð2:8Þ

These results will be used to calculate the disk structure in
Sec. IVA.

B. Null geodesic

In Sec. IV B, we will discuss the motion of photons from
the disk to the observer. In this case, the photon orbit is not

on the equatorial plane. However, we can rotate the
coordinates to make the orbital plane coincide with the
equatorial plane, and denote φ̃ as the deflection angle in
the orbital plane. Similar to Eq. (2.1), we obtain

An
dt
dλ

¼ E; ð2:9aÞ

r2
dφ̃
dλ

¼ L; ð2:9bÞ

where λ is an affine parameter. When r ≫ rs, we obtain
L=E ¼ r2dφ̃=dt ¼ b, which is the impact parameter.
Substituting Eq. (2.9) into uμuμ ¼ 0, we obtain�

dr
dλ

�
2

¼ E2 − An
L2

r2
: ð2:10Þ

Considering the angular momentum conservation
Eq. (2.9b), the above equation gives�

dr
dφ̃

�
2

¼ r4

b2
− Anr2; ð2:11Þ

which is the orbit equation for photons. Letting u ¼ 1=r,
the above equation can be simplified to�

du
dφ̃

�
2

¼ 1

b2
− u2ð1 − nrsuÞ1=n ≡GðuÞ: ð2:12Þ

III. SHADOW: LARGE BACKGROUND
LIGHT SOURCE

If there is a black hole between the observer and
an infinity large background light source, then the
observer will see a shadow caused by this black hole.
For this scenario, [7] calculated the shadow size of the
Schwarzschild black hole. Here we calculate the shadow
size for the PSM with the same method. Based on
Eq. (2.12), we define fðuÞ ¼ −u2ð1 − nrsuÞ1=n. Figure 1
plots fðuÞ for n ¼ 0.75, 1, 1.25 and three representative
photon orbits for n ¼ 0.75. Note that the light source is far
from the black hole, which means u ¼ 0 initially. The left
side of Eq. (2.12) is a square requires GðuÞ > 0 along the
orbit. In Fig. 1, the red line, which corresponds to a big b,
intersects fðuÞ and the photon will back to u ¼ 0 after the
intersection. Therefore, there will be photons with such
large impact parameter observed by the observer. The blue
line, which corresponds to a small b, do not intersect fðuÞ
and the photon will be absorbed by the black hole. So, no
photon with such small impact parameter can be observed
by the observer. The green line corresponds to the critical
orbit and the photons will be trapped in the so called photon
sphere. fðuÞ takes its minimum value at u ¼ 2

ð2nþ1Þrs and the
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minimum value fmin ¼ − 4ð2nþ1Þ−2−1n
r2s

. The above discussions

give the critical impact parameter

bc ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

−fmin
p ¼ ð2nþ 1Þ1þ 1

2n

2
rs; ð3:1Þ

and the shadow size equals to πb2c .

IV. SHADOW: ACCRETION DISK

The scenario described in Sec. III is too ideal to compare
with the EHTobservations. The realistic light source should
be an accretion disk orbiting around the black hole. In this
paper, we assume the standard thin accretion disk model,
i.e., the disk is optically thick and geometrically thin
[40–44]. We also neglect the influence of the jet [45] on
the black hole image. For the Schwarzschild metric, [46,47]
calculated the structure of an optically thick and geomet-
rically thin accretion disk, and [11] simulated a photograph
of such black hole-accretion disk system. In this section, we
firstly analyze the disk radial structure in the PSM, which
gives the intrinsic radiation flux from the disk surface. Then
we discuss how to transfer the flux from the disk surface to
the photographic plate, and plot the images for several
examples. Especially, we take into account a projection
effect that missed in [11].

A. Accretion disk

Our method mainly follows [46], while there are minor
differences in the details of dealing with the conservation of
angular momentum. As the disk is assumed to be geomet-
rically thin and the disk can be put on the equatorial plane,
the metric can be written as

ds2 ¼ −Andt2 þ A−1
n dr2 þ dz2 þ r2dφ2: ð4:1Þ

The energy-momentum tensor for the fluid with shear
viscosity is [48]

Tμν ¼ ρuμuν − 2εησμν þ qμuν þ qνuμ; ð4:2Þ

where the density ρ ¼ ρðr; zÞ, the coefficient of dynamic
viscosity η ¼ ηðr; zÞ, the shear tensor

σμν ¼ 1

2
ðuμ;αPαν þ uν;αPαμÞ − 1

3
θPμν; ð4:3Þ

the projection tensor Pμν ¼ gμν þ uμuν, the isotropic
expansion coefficient θ ¼ uμ;μ, and qμ is the heat-flux
4-vector. Here, we neglect the internal energy, which is valid
as discussed in [46]. ε is a mathematical infinitesimals, and
one can set ε ¼ 1 after calculations. ε is mathematical
infinitesimal indicates the viscosity is weak, the inflow
velocity is small, and the radiation is weak. Thus the disk is a
nearly relativistic Kepler disk and the 4-velocity of the fluid
element can be written as

uμ ¼ fut; εur; 0; uφg; ð4:4Þ

where ut and uφ are given by Eq. (2.6), and the inflow
velocity ur ¼ urðr; zÞ. The thinness of the disk indicates qμ
is in the vertical direction [46], which gives

qμ ¼ f0; 0; εqz; 0g; ð4:5Þ

where qz ¼ qzðr; zÞ. The boundary condition is qzðr; hÞ ¼
−qzðr;−hÞ ¼ FsðrÞ, where h is the height of the disk and
FsðrÞ is the surface radiation flux. In order to describe the
radial structure of the disk, we can define the surface density

ΣðrÞ≡
Z þh

−h
ρðr; zÞdz; ð4:6Þ

the mass-averaged inflow velocity

ūrðrÞ≡ 1

Σ

Z þh

−h
ρðr; zÞurðr; zÞdz; ð4:7Þ

and the integral viscosity coefficient

η̄ðrÞ≡
Z þh

−h
ηðr; zÞdz: ð4:8Þ

ε appears in Eqs. (4.2), (4.4), and (4.5), and all the following
calculations only need to preserve the OðεÞ terms.
The conservation of rest mass ðρuμÞ;μ ¼ 0 gives

∂ðρurrÞ
∂r ¼ 0: ð4:9Þ

FIG. 1. Representative plot shows the critical impact parameter.
The value of GðuÞ equals to the distance between the straight line
and the curve line with constant u. Here we set rs ¼ 2.
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Integrating the above equation in the r and z-directions
gives

_M ¼ −2πrΣūr; ð4:10Þ

where the integral constant _M is the mass accretion rate.
Energy-momentum conservation gives Jμ ≡ Tμν

;ν ¼ 0.
One can directly verify Jr ¼ Oðε2Þ and Jz ¼ Oðε2Þ. The
angular momentum conservation Jφ ¼ 0 gives

rðnrs − rÞð2r − rISCOÞ2
∂ðρurrÞ

∂r þ rðnrs − rÞð2r − rISCOÞðr − rISCOÞρur þ r2ðnrs − rÞð2r − rISCOÞ2
∂qz
∂z

þ ð4n3r3s − 14n2r2srþ 13nrsr2 þ nr2sr − 3nr3s − 3r3 − rsr2 þ 4r2sr − r3s ÞAnη

þ ðnrs − rÞð3r − rISCOÞð2r − rISCOÞrAn
∂η
∂r ¼ 0; ð4:11Þ

where rISCO is given by Eq. (2.8). Integrating the above equation in the z-direction, and substituting Eq. (4.10) into the
result, we obtain

∂η̄
∂rþ

ð4n3r3s − 14n2r2srþ 13nrsr2 þ nr2sr− 3nr3s − 3r3 − rsr2 þ 4r2sr− r3s Þ
rðnrs − rÞð3r− rISCOÞð2r− rISCOÞ

η̄−
_Mðr− rISCOÞ

2πrð3r− rISCOÞAn
þ 2rð2r− rISCOÞ
ð3r− rISCOÞAn

Fs ¼ 0:

ð4:12Þ

In principle, we can regard Jt ¼ 0 as another constraint equation. However, as calculated in [46], energy conservation
uμJμ ¼ 0 is a simpler approach, which gives

2rðnrs − rÞð2r − rISCOÞ2
∂ðρurrÞ

∂r þ 2r2ðnrs − rÞð2r − rISCOÞ2
∂qz
∂z þ ð3r − rISCOÞ2rsAnη ¼ 0: ð4:13Þ

Integrating the above equation in the z-direction, and substituting Eq. (4.10) into the result, we obtain

Fs ¼
ð3r − rISCOÞ2rsAnη̄

4r2ðr − nrsÞð2r − rISCOÞ2
: ð4:14Þ

Substituting Eq. (4.14) into Eq. (4.12), we obtain

∂η̄
∂r þ

8n3r3s − 28n2r2sr − 4n2r3s þ 26nrsr2 þ 14nr2sr − 10nr3s − 6r3 − 11rsr2 þ 14r2sr − 3r3s
2rðnrs − rÞð2r − rISCOÞð3r − rISCOÞ

η̄ −
_Mðr − rISCOÞ

2πrð3r − rISCOÞAn
¼ 0;

ð4:15Þ

which is a first-order ordinary differential equation for η̄ðrÞ. Solving the above equation with the boundary condition
η̄ðrISCOÞ ¼ 0 [46], we obtain

η̄ðrÞ ¼
_M
2π

ð2r − rISCOÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r − nrs

p

rð3r − rISCOÞA3=2
n ðrÞ

·
Z

r

rISCO

ðr̃ − rISCOÞA1=2
n ðr̃Þ

ð2r̃ − rISCOÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̃ − nrs

p dr̃: ð4:16Þ

Substituting the above equation into Eq. (4.14), we obtain the surface radiation flux

FsðrÞ ¼
_M
8π

rsð3r − rISCOÞ
r3ð2r − rISCOÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r − nrs
p

A1=2
n ðrÞ

·
Z

r

rISCO

ðr̃ − rISCOÞA1=2
n ðr̃Þ

ð2r̃ − rISCOÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̃ − nrs

p dr̃: ð4:17Þ

It is not hard to verify Eq. (4.17) is consistent with the
result obtained in [46,47] for the Schwarzschild metric. The
integral part of Eq. (4.17) approximately equals to

ffiffiffi
r

p
when

r ≫ rISCO. Thus limr≫rISCOFs ¼ 3M _M=ð8πr3Þ, which is

consistent with the result in the Newtonian case [40,44].
Actually, the result obtained in [46,47] (see Eq. (9) in [49]
for a clearer expression) also applies to the PSM, and
could directly give Eq. (4.17). We give the above detailed
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derivation because our calculations are more straightfor-
ward than the details presented in [46,47]. Figure 2 plots
FsðrÞ for n ¼ 0.75, 1, 1.25, and shows the smaller horizon
corresponds to the brighter disk.

B. From disk to observer

In order to obtain the observed flux, we need to find the
position and flux correspondences between the disk and the
photographic plate as did in [11]. Solving the null geodesic
gives the position correspondence. There are three factors
that affect the observed flux for one specific point. One is
the distance from the observer to the black hole. However,
the leading terms of the distances from different disk
elements to the observer are same, which means the
distance does not affect the relative brightness at different
points in the photographic plate. So, we can neglect this
factor hereafter. The second one is the redshift including
Doppler redshift and gravitational redshift. The third one is
the projection effect that missed in the previous simula-
tions, e.g., [11,25,44,50]. This effect is related to the fact
that the photon trajectory is not perpendicular to the
disk surface. For clarity, one can see the factor cos i
appeared in Eq. (23) of [51] or Eq. (3.80) of [44] for the
Newtonian case.
The coordinate system is plotted in Fig. 3. The design is

mainly taken from [11], and we make minor modifications.
The radius of the sphere equals to r. The black hole is
placed at point o and the disk is placed on the xoy plane.
PointM means a disk element, and the light it emits reaches
point m in the photographic plate. The corresponding
photon trajectory is in the yellow plane, and the photon
trajectory is parallel to oo0 when the photon is far from the
black hole. The coordinates ofM are marked by ðr;φÞ, and
the coordinates of m are marked by ðb; αÞ. In the bottom
right subgraph, the red line is the photon trajectory, point P
is the perihelion of the photon trajectory with the impact

parameter b, and point M0 satisfies oM0 ¼ oM ¼ r but is
on the other side of the perihelion. Note that the light
emitted from M0 does not pass through M (Do not be
disturbed by this subgraph). In the figure, we also point out
the start and positive directions of the angle φ, θ (i.e., θ0)
and α:β and γ means the value of the corresponding angle
with no positive direction. It is clear that θ0 ∈ ½0; π=2�,
α ∈ ½0; 2π�, φ ∈ ½0; 2π� and γ ¼ ½π=2 − θ0; π=2þ θ0�.
Several useful parallel and perpendicular relations:

xoz0kx00o0y00, o0mkox0, oo0⊥xoz0 and My
⌢⊥yy0

⌢
. Here AB

means a line, ABCmeans a plane and AB
⌢

means an arc. We

denote dABC as an angle hereafter.

1. Point to point

At first, we assume α ∈ ð0; π=2Þ. Using the sine
theorem of spherical triangle in ΔMyy0, we obtain

sin dMyy0=sinðMy0
⌢

=rÞ¼sin dy0My=sinðyy0
⌢

=rÞ. SubstitutingdMyy0 ¼π=2, My0
⌢

=r¼γ, dy0My ¼ β and yy0
⌢

=r ¼ π=2 − θ0
into this result, we obtain sin β ¼ cos θ0= sin γ. The
parallel and perpendicular relations in Fig. 3 givesdx0oM ¼ π=2 − γ > 0, dxox0 ¼ π=2 − α > 0, dMxx0 ¼ θ0
and dxMx0 ¼ β. Using the sine theorem of spherical

triangle in ΔMxx0, we obtain sin dMxx0= sin dx0oM ¼
sin dxMx0= sin dxox0, i.e., sin θ0= cos γ ¼ sin β= cos α.
Eliminating sin β and using sin γ > 0, we obtain

cos γ ¼ cos αðcos2 αþ cot2 θ0Þ−1=2: ð4:18Þ

One can easily verify Eq. (4.18) holds for α ∈ ½0; 2π�
following the above proof. Reference [11] showed this
result directly without proof. So we present detailed
proof here.

FIG. 3. The coordinate system (see main text). The design of
this figure is mainly taken from [11].

FIG. 2. The surface radiation flux with n ¼ 0.75, 1, 1.25. Here
we set rs ¼ 2 and _M ¼ 1.
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Equation (2.12) gives the deflection angle of photons
from M to the observer

γ ¼
Z

1=r

0

duffiffiffiffiffiffiffiffiffiffi
GðuÞp ; ð4:19Þ

in which b is a parameter. We can obtain α ¼ αðγÞ and
b ¼ bðγÞ from Eq. (4.18) and Eq. (4.19), respectively. Then
we obtain b ¼ bðαÞ for a given r, which is the isoradial
curve (see the definition in [11]) as seen by the observer.
Numerically we can do this by interpolation. One thing
worth mentioning here is that one b corresponding to two γ
as shown in Fig. 3. Actually, Eq. (4.19) gives γðMÞ directly
because M is on the right side of the perihelion P. For
γðM0Þ, we can calculate its value based on symmetry. At
first, we should find the distance from P to o, which is
given by Gð1=rÞ ¼ 0. P corresponds to the intersection of
the red line and the purple curve in Fig. 1. Then we can
calculate the deflection angle from P to the observer using

γðPÞ ¼ R 1=rðPÞ
0 du=GðuÞ. The PSM is spherically symmet-

ric and static, and the photon orbit should be symmetrical
about the line oP. So γðM0Þ ¼ 2½γðPÞ − γðMÞ� þ γðMÞ.
One b corresponding to two γ does not influence the
numerical interpolation because one γ only corresponding
to one b. In the numerical calculation, we use the above
method to obtain bðαÞ for α ∈ ½0; π�, and then use the
symmetry to calculate bðαÞ for α ∈ ½π; 2π�.

2. Redshift

As discussed in [11,52], the redshift will contribute a
factor ð1þ zÞ−4 to the observed flux. Here we denote pμ as
the 4-momentum of photons. The PSM is independent of t
and φ gives pt and pφ are conserved. However, the photon
orbit is not in the equatorial plane, and we cannot set
θ ¼ π=2 anymore. In the rest frame of the emitting disk
element, the photon energy is [11]

Eem ¼ pμuμ ¼ ptut þ pφuφ; ð4:20Þ
where ut and uφ are given by Eq. (2.6). The only nonzero
component of the observer’s 4-velocity is utob ¼ 1, and the
observed energy of the same photon is Eob ¼ pμu

μ
ob ¼ pt.

Thus the redshift of photon is given by

1þ z ¼ Eem

Eob
¼ ut þ uφ

pφ

pt
¼ ut þ uφ

gφφ
gtt

dφ
dt

¼r≫rs ut − uφr2sin2θ0
dφ
dt

: ð4:21Þ

In the second line of the above equation, we estimate the
value of pφ=pt at r ≫ rs. This is valid because pφ=pt is
conserved along the photon orbit. Note that, in Eq. (4.21),
ut;φ ¼ ut;φðrdisk-elementÞ, and the notation rdisk-element is
different with r. Projecting the photon trajectory onto
the equatorial plane, one can prove

dφ
dt

����
r≫rs

¼ b sin α
ðr2 − b2Þ sin θ0

: ð4:22Þ

Substituting Eq. (4.22) into Eq. (4.21), we obtain

1þ z ¼ ut − uφb sin θ0 sin α: ð4:23Þ

For a given r in the disk and any given point ðb; αÞ in the
photographic plate, Eq. (4.23) gives the corresponding
redshit. Note that there is a difference of one sign between
Eq. (4.23) and Eq. (19) in [11], which is due to the different
definitions of the positive directions.

3. Projection

We can calculate the projection factor cos i in the rest
frame of the disk element, where i is the angle between the
normal line of the disk surface and the photon trajectory in
the three-dimensional space. The 4-velocity of disk element
is given by Eq. (4.4) with ur ¼ 0. Then, we should find the
4-momentum of photon when it just leaves the disk surface.
pt and pφ are conserved gives

pt ¼ dt
dλ

¼ E
An

; ð4:24aÞ

pφ ¼ dφ
dλ

¼ L
r2 sin2 θ

: ð4:24bÞ

Note that θ varies from π=2 to θ0 when the photon moves
from the disk to the observer, and hence pθ ≠ 0. Here the
constants E and L are different with the same symbols
appeared in Eq. (2.9). Combined Eq. (4.24) with Eq. (4.22),
we obtain L=E ¼ b sin θ0 sin α. The disk is assumed to be
geometrically thin. When the photon just leaves the disk
surface, pμpμ ¼ 0 gives

A−1
n ðprÞ2 þ r2ðpθÞ2 þ r2ðpφÞ2 ¼ E2A−1

n : ð4:25Þ

In addition, based on Fig. 3, we know tan β ¼ jdθ=dφj,
where β is given by sin β ¼ cos θ0= sin γ (see Sec. IV B 1).
This result gives ðpθÞ2 ¼ ðpφÞ2 tan2 β. The above results
are sufficient to calculate cos i. The coordinate transforma-
tion (xμ → x0μ∶ t → t0 ¼ t=ut, r → r0 ¼ r, θ → θ0 ¼ θ,
φ → φ0 ¼ φ − t · uφ=ut) gives the rest frame of the disk
element, in which u0μ ¼ ∂x0μ

∂xα uα ¼ f1; 0; 0; 0g. In the x0μ

coordinate system, the space components of the photon
momentum are p0r¼pr, p0θ¼pθ, and p0φ¼pφ−ptuφ=ut.
Thus the projection factor

cos i ¼ jrp0θjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2jp0θj2 þ r2jp0φj2 þ A−1

n jp0rj2
p

¼ jrpφ tan βjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2A−1

n − 2r2pφptuφ=ut þ ðrptuφ=utÞ2
p ; ð4:26Þ
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wherept andpφ are given byEq. (4.24)with θ ¼ π=2, andut

and uφ are given by Eq. (2.6). Note that the value of cos i is
independent of the choice of E as we expected. And we set
E ¼ 1 in the numerical calculations.As shown inSec. IV B 1,
one α corresponds to one γ and one β. So far, for a given r and
ðb; αÞ, we can calculate the value of cos i. Figure 4 plots
cos i − α for n ¼ 1 and θ0 ¼ 80°; 45°; 10°, which shows
(1) limr≫rs cos i ¼ cos θ0, i.e., Eq. (4.26) is consistent with
the result obtained in the flat spacetime as we expected;
(2) largeθ0 causes large relative change of cos i, whichmeans
the influence of the projection effect will be enhanced if θ0 is
increased. The curve in Fig. 4 is not symmetric about α ¼ π
because of the Kepler motion of the disk.
Finally, the observed flux is given by

Fob ¼
Fs cos i
ð1þ zÞ4 : ð4:27Þ

In the simulated figures, we use maxðFobÞ to rescale the
observed flux.

C. Results and discussions

We only consider the direct image of the disk because
the disk is assumed to be optically thick. Figure 5 plots
the simulated image for θ0 ¼ 80° and n ¼ 1 without

considering the projection effect, which is exactly
Figure 11 in [11]. Comparing Fig. 5 with the middle
one in Fig. 6, we know the projection effect extends the
bright area from the negative x00-axis to the positive y00-axis.
This is consistent with the left panel of Fig. 4, which shows
the positive y00-axis corresponds to the bigger cos i. Figure 6
also plots the simulated image for θ0 ¼ 80° and n ¼ 0.75,
1.25, and shows larger n corresponds to larger shadow size
as we expected. However, the shape of the black hole
shadow is approximately independent of the value of n.
This conclusion is also confirmed in Fig. 7 and Fig. 8,
which plot the simulated image for θ0 ¼ 45° and θ0 ¼ 10°,
respectively.
The mass of the black hole M87* given by the EHT is

Mshadow-method ¼ ð6.5� 0.7Þ × 109 M⊙ [1]. There are two
other ways to measure the mass of M87*: stellar dynamics

FIG. 5. The simulated image without considering the projection
effect. The innermost dash-dotted loop corresponds to r ¼ rISCO,
and the outer solid loops correspond to r ¼ 10, 15, 20, 30,
respectively. The dashed line corresponds to z ¼ 0. The left side
of this dashed line has z < 0 (blueshift), and the right side has
z > 0 (redshift). cos i ¼ 1 indicates this figure do not take into
account the projection effect. Here, the horizontal and vertical
directions correspond to the x00 and y00 axes in Fig. 3, respectively.
We set rs ¼ 2.

FIG. 6. The simulated image with considering the projection
effect for θ0 ¼ 80° and n ¼ 0.75ðtopÞ; 1ðmiddleÞ; 1.25ðbottomÞ.
The other marks are the same as in Fig. 5.

FIG. 4. The projection factor cos i for n ¼ 1 and θ0 ¼ 80°ðleftÞ; 45°ðmiddleÞ; 10°ðrightÞ. Here we set rs ¼ 2.

S. X. TIAN and ZONG-HONG ZHU PHYS. REV. D 100, 064011 (2019)

064011-8



measurements yield Mstellar-method ¼ 6.2þ1.1
−0.6 × 109 M⊙

[6,53,54] and gas dynamics observations giveMgas-method ¼
3.5þ0.9

−0.3 × 109 M⊙ [6,55–57]. The shadow method is per-
formed in the horizon scale and mainly depends on the
shadow size (note that the shadow size is nearly indepen-
dent of the spin for the Kerr black hole [12]), while the
stellar and gas methods are performed in the scale that
much larger than the black hole horizon and mainly depend
on the weak field limit of the metric. Thus we obtain nM ≈
Mshadow-method and M ¼ Mstellar;gas-method for the PSM. If the
results about Mshadow-method and Mstellar-method are correct,
then we obtain jn − 1j≲ 0.1 based on these observations. If
the results about Mshadow-method and Mgas-method are correct,
then we can use n ≈ 2 in the PSM to explain why the black
hole mass measured by the shadow is a factor of about two
larger than the previous gas dynamics measurements. The
latter scenario is very important because it is likely to be the
second phenomenon that violates the classical general
relativity (Einstein equation with the normal matter).
Note that the first phenomenon that violates the classical
general relativity is the late-time cosmological acceleration
[26,58]. Finding more observational phenomenon against
general relativity will help us to establish the correct theory
of gravity.

V. EXISTENCE OF THE PSM IN ONE SPECIFIC
GRAVITY THEORY

In Sec. I, we directly parametrize the Schwarzschild
metric. In this section, we discuss the possible physical
origins of the PSM. Here we try three theories: fðRÞ
gravity, general relativity with scalar field, and general
relativity with nonlinear electrodynamics. The first two
give negative results, while the last one gives a positive
result.

A. Nonexistence of the PSM in the f ðRÞ gravity
The action of the fðRÞ gravity is (see [26,59] for

reviews)

S ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ; ð5:1Þ

where fðRÞ is an analytic function and κ ¼ 8πG=c4, which
can be given by the Newtonian approximation [60].
Variation of the action with respect to the metric in the
metric formalism gives the field equation

Eμν ≡ fRRμν −
gμν
2

f −∇μ∇νfR þ gμν□fR ¼ 0; ð5:2Þ

FIG. 7. The simulated image with considering the projection effect for θ0 ¼ 45° and n ¼ 0.75ðleftÞ; 1ðmiddleÞ; 1.25ðrightÞ. The other
marks are the same as in Fig. 5.

FIG. 8. The simulated image with considering the projection effect for θ0 ¼ 10° and n ¼ 0.75ðleftÞ; 1ðmiddleÞ; 1.25ðrightÞ. The other
marks are the same as in Fig. 5. Here no point corresponds to z ¼ 0 and all the region we are considering has z > 0.

TESTING THE SCHWARZSCHILD METRIC IN A STRONG … PHYS. REV. D 100, 064011 (2019)

064011-9



where fR ≡ df=dR, ∇μ is the covariant derivative and
□≡∇α∇α. fðRÞ ¼ R gives the Einstein field equation,
whose solution corresponds to n ¼ 1 in the PSM.
Contraction of Eq. (5.2) gives

3□fR − 2f þ RfR ¼ 0: ð5:3Þ

We can substitute the PSM into Eq. (5.3) to obtain the
solution of fðRÞ, and then verify whether all Eμν are equal
to zero for this solution. For simplicity, and as a first step,
we assume n ¼ 1þ δ and jδj ≪ 1. All the following
calculations only preserve the OðδÞ terms.
Direct calculation gives the Ricci scalar

R ¼ −A00
n −

4A0
n

r
−
2An

r2
þ 2

r2

¼ δ

�
1

r2
ln
ðr − rsÞ2

r2
þ 2rsr − r2s
r3ðr − rsÞ

�
þOðδ2Þ; ð5:4Þ

where 0 ≡ d=dr. We can assume fðRÞ ¼ RþOðδÞ as we
expect fðRÞ ¼ R if δ ¼ 0. Then the Taylor expansion of
fðRÞ at R ¼ 0 is

fðRÞ ¼ f0 þ fRð0ÞRþOðR2Þ ¼ f0 þ RþOðδ2Þ; ð5:5Þ

where f0¼fð0Þ¼OðδÞ and fRð0Þ ¼ fRjR¼0 ¼ 1þOðδÞ.
Here we also use R ¼ OðδÞ given by Eq. (5.4). We assume
fR ¼ 1þ gðrÞ þOðδ2Þ, where gðrÞ ¼ OðδÞ. fR is a scalar
gives

□fR ¼ 1ffiffiffiffiffiffi−gp ∂
∂xμ

� ffiffiffiffiffiffi
−g

p
gμν

∂fR
∂xν

�
¼

�
1 −

rs
r

�
g00 þ

�
2

r
−
rs
r2

�
g0 þOðδ2Þ: ð5:6Þ

Substituting the above results into Eq. (5.3), we obtain

3

�
1 −

rs
r

�
g00 þ 3

�
2

r
−
rs
r2

�
g0 − 2f0

− δ

�
1

r2
ln
ðr − rsÞ2

r2
þ 2rsr − r2s
r3ðr − rsÞ

�
¼ 0: ð5:7Þ

Solving the above equation yields

gðrÞ ¼ f0r2s
9

ðB3 þ lnB2Þ þ C1 lnB1 þ C2

þ δ

6

�
lnB2 lnB1 − 4dilog

�
rs
r

�
−
3

4
ln2B1

�
; ð5:8Þ

where Ci is integral constant, B1 ¼ ð1 − rs=rÞ2, B2 ¼
ð1 − r=rsÞ2, B3 ¼ ð1þ r=rsÞ2, and the dilogarithm
function

dilogðxÞ≡
Z

x

1

ln x̃
1 − x̃

dx̃; ð5:9Þ

which is defined in x ∈ ½0;þ∞Þ.
So far, we obtain the expressions for f ¼ fðrÞ,

fR ¼ fRðrÞ. Then we can directly calculate Eμν based
on Eq. (5.2). Unfortunately, there are nonzero components
of Eμν, e.g.,

E00 ¼
1

36r4
· ½−6f0r4 þ 10f0rsr3 þ 36C1r2s

þ 12δrsr − 24δr2s þ 3δð2r2 − r2s Þ lnB1�: ð5:10Þ

This result indicates the PSM with n ≠ 1 cannot exist in the
fðRÞ gravity.1 Actually, this conclusion is consistent with
the weak field limit of the fðRÞ gravity as the PSM gives
the post-Newtonian parameter γ ¼ 1 and the weak filed
limit of the general fðRÞ gravity gives γ ¼ 1=2 [61].
Inspired by this, we think a necessary condition for a
gravity theory has the PSM solution is the weak field limit
of this gravity theory gives γ ¼ 1. Some modified gravities
can indeed give exactly γ ¼ 1 [62,63]. Finding a modified
gravity theory that has the PSM solution is meaningful, and
we leave this work to the future. In the next two sub-
sections, we try general relativity with exotic matters.

B. Nonexistence of the PSM in general
relativity with scalar field

The action for general relativity with scalar field can be
written as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ

−
Lϕ

κ

�
; ð5:11Þ

where Lϕ ¼ ∂μϕ∂μϕ=2þ VðϕÞ. The field equation is

Gμ
ν ¼ Tμ

ν; ð5:12Þ
where Tμ

ν ¼ ∂μϕ∂νϕ − gμνLϕ. For the PSM, the nonzero
components of the Einstein tensor are

G0
0 ¼ G1

1 ¼
A0
n

r
þ An

r2
−

1

r2
; ð5:13aÞ

G2
2 ¼ G3

3 ¼
A00
n

2
þ A0

n

r
; ð5:13bÞ

while the nonzero components of the energy-momentum
tensor are

1Note that the above calculations are performed in the metric
formalism, and the Palatini or metric-affine formalism [59] may
give different results. One important thing is that if different
formalism gives different black hole solution for the same action,
then EHT observations would be useful to distinguish between
these formalisms.
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T0
0 ¼ T2

2 ¼ T3
3 ¼ −Lϕ; ð5:14aÞ

T1
1 ¼ An · ðϕ0Þ2 − Lϕ: ð5:14bÞ

Generally we have G0
0 ≠ G2

2, which is contrary to
T0

0 ¼ T2
2. Thus general relativity with scalar fields do not

have the PSM solution.

C. Existence of the PSM in general relativity
with nonlinear electrodynamics

In the framework of general relativity, what kind of field
is consistent with the PSM? We recognize that T0

0 ¼ T1
1

for the possible field should be necessary because of
Eq. (5.13a). The electromagnetic fields satisfy this con-
dition. However, the PSM is not the Reissner-Nordström
metric. To deal with this problem, our method is to use the
nonlinear electrodynamics [64–68]. The action for general
relativity with nonlinear electrodynamics can be written as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ

þ LðIÞ
�
; ð5:15Þ

where I ¼ FμνFμν=4 and Fμν ¼ ∂μAν − ∂νAμ. The filed
equation is

Gμ
ν ¼ κðδμνL − FμαFνα∂ILÞ≡ κTμ

ν; ð5:16Þ

where ∂IL ¼ ∂L=∂I. The energy-momentum tensor
appeared in Eq. (5.16) is consistent with [48,64,65], but
contrary to [66–68]. So we present the details of the
derivation of Eq. (5.16) in the Appendix. We set κ ¼ 1
hereafter. The equation of motion for the electromagnetic
field is

0 ¼ ∇μðFμν∂ILÞ ¼ ∂μð
ffiffiffiffiffiffi
−g

p
Fμν∂ILÞ; ð5:17Þ

where the second equality uses Fμν is an anti-symmetric
tensor.
As did in [67], we assume Aμ ¼ fA; 0; 0; 0g, where

A ¼ AðrÞ. Thus the nonzero components of Fμν are F01 ¼
−F01 ¼ A0 and F10 ¼ −F10 ¼ −A0. The scalar
I ¼ −ðA0Þ2=2. The nonzero components of Tμ

ν are

T0
0 ¼ T1

1 ¼ Lþ ðA0Þ2∂IL; ð5:18aÞ

T2
2 ¼ T3

3 ¼ L: ð5:18bÞ

Equation (5.17) gives A0∂IL ¼ q=r2, where the integral
constant q is the charge. Comparing the PSM with
the Reissner-Nordström metric, which replace AnðrÞ with
1 − rs=rþ q2=2r2 in Eq. (1.1), and considering the Taylor
expansion Eq. (1.2), we obtain

ð1 − nÞr2s ¼ q2; ð5:19Þ

which requires n ≤ 1. Then solving Eq. (5.16) yields

qA0 ¼ r2
�
An

r2
−
1

r2
−
A00
n

2

�
¼ðn−1Þr2s

r2
þOðr3s=r3Þ; ð5:20Þ

L ¼ A00
n

2
þ A0

n

r
¼ ð1 − nÞr2s

2r4
þOðr3s=r5Þ; ð5:21Þ

and the scalar

I ¼ −
1

2
ðA0Þ2¼r→þ∞ ðn − 1Þr2s

2r4
: ð5:22Þ

Therefore general relativity with nonlinear electrodynamics
allows the existence of the PSM. The Taylor expansions of
above results give

lim
I→0

LðIÞ ¼ −I þOðI2Þ; ð5:23Þ

which means the theory return to the linear electrodynamics
if the field is weak. Comparing with the Fig. 1 in [68],
which shows limI→0LðIÞ ≠ 0 in their case, we know
Eq. (5.23) is nontrivial. Figure 9 plots LðIÞ for n ¼ 0.75
based on Eqs. (5.21) and (5.22).

VI. CONCLUSIONS

In this paper, we discuss the issue that where is the event
horizon of a spherically symmetric black hole. More
precisely, if the mass of the black hole is defined in the
weak field limit, which is called the Newtonian gravita-
tional mass, then we want to know whether the radius of the
horizon is equal to the Schwarzschild radius. We first
parametrize the Schwarzschild metric in the form of
Eq. (1.1), which introduces a real free parameter n. We
call this metric PSM in the main text. The Schwarzschild
metric corresponds to n ¼ 1. In the weak field limit, the

FIG. 9. The Lagrangian density LðIÞ of nonlinear electrody-
namics for n ¼ 0.75. Here we set rs ¼ 2.
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PSM is equivalent to the Schwarzschild metric regardless
of the value of n. The geodesics in the PSM are analyzed
and Eq. (3.1) gives the black hole shadow size for a large
background light source. In order to get closer to the real
scenario, we analyze the image of the black hole with an
accretion disk. Equation (4.17) gives the brightness of an
optically thick and geometrically thin accretion disk. The
observed flux is given by Eq. (4.27), which takes into
account the light bending, redshift and projection effects.
Figures 6–8 plot several simulated images. The observa-
tional constraints on n are discussed. More importantly, we
point out that general relativity may be violated in the
horizon region if the results of the EHT measurements [1]
and the gas dynamics measurements [6,55–57] of the mass
of M87* are correct. Especially, n ≈ 2 could eliminate the
inconsistency between these two kinds of observations. The
upcoming EHT observations about Sgr A* are useful to
prove or disprove this conjecture. If this conjecture is
confirmed, then this phenomenon will be very important to
test gravity theories. Finally, we prove that the PSM cannot
exist in the fðRÞ gravity (metric formalism) or general
relativity with scalar field. However, general relativity
with nonlinear electrodynamics has the PSM solution with
n < 1.
Before 2015 (GW150914), tests of gravity theory are

mainly performed in the weak field region (e.g., the post-
Newtonian analysis), the dynamical region (mainly the
cosmological constraints with the Friedmann-Lemaître-
Robertson-Walker metric), and their combination (e.g.,
the cosmological large-scale structure formation). Now,
observations of gravitational waves and black hole shadows
open a new window to test gravity theory and explore new
physics. For example, the simultaneous detection of
GW170817 and GRB 170817A rules out many of the
parameter space for modified gravities [69]. Personally, we
believe the most important thing is that these observations,
for the first time, directly provide physical information
about the extremely strong gravitational field (see [70,71]

for applications). We look forward to seeing a phenomenon
that is inconsistent with the prediction of general relativity
in the strong field region.
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APPENDIX: VARIATION
OF THE ACTION EQ. (5.15)

We can rewrite Eq. (5.15) as S ¼ SEH þ SI , where SEH is
the Einstein-Hilbert action and its variation is

δSEH ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
Gμνδgμν: ðA1Þ

Aμ and Fμν are independent of the metric, and Fμν depends
on the metric as Fμν ¼ gμαgνβFαβ. Based on the definition
of I, we obtain

δI ¼ 1

4
FμνδFμν

¼ 1

4
ðFμνgνβFαβδgμα þ FμνgμαFαβδgνβÞ

¼ 1

2
FμαgαβFνβδgμν: ðA2Þ

Considering δ
ffiffiffiffiffiffi−gp ¼ − ffiffiffiffiffiffi−gp

gμνδgμν=2, we obtain

δSI ¼
Z

d4x
− ffiffiffiffiffiffi−gp

2
½gμνL − FμαgαβFνβ∂IL�δgμν: ðA3Þ

The above results give Eq. (5.16).
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