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Multispinning higher dimensional Kerr-AdS black holes admit the stable small-large black hole phase
transition of van der Waals type. In this paper, we study the exact critical phenomena and phase structure in
five-dimensional spacetime. First, we examine the thermodynamic laws in the reduced parameter space and
find that they are quite different from the conventional thermodynamic laws. Then based on the reduced
laws, the phase structure in different parameter spaces is investigated. The stable and metastable black
hole phases are clearly displayed. We present a highly accurate fitting formula for the coexistence curve of
small and large black hole phases. Using this fitting formula, we examine the critical exponents when the
black hole system approaches the critical point along the coexistence curve. Moreover, employing the
dimensional analysis and symmetry analysis, we also give a numerical study of the critical point for
the unequal spinning black holes. These results are very useful on further understanding the microstructure
of the multispinning black holes in higher dimensional spacetime.
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I. INTRODUCTION

Black hole thermodynamics in anti–de Sitter (AdS)
space has been a great interest in black hole physics.
Especially, the black hole phase transition continues to be a
fascinating issue. Several decades ago, by investigating
the AdS space, Hawking and Page [1] discovered that there
is a phase transition between the thermal gas and stable
large Schwarzschild black hole. Later, inspired by the AdS/
CFT correspondence [2–4], the well-known Hawking-
Page phase transition was interpreted as the confinement/
deconfinement phase transition in gauge theory [5].
More interestingly, the phase transition can also occur

between two different stable black hole phases in the same
spacetime. For example, in the charged or rotating AdS
black hole background, there was a phase transition
between the stable small and large black holes [6–9].
The study also implies that such phase transition is very
similar to the liquid-gas phase transition of the van der
Waals (VdW) fluid. On the other hand, for the charged
AdS black holes, the similar phase transition and critical
phenomena were also found in the Q-Φ (charge-electric
potential) diagram [10–15]. These results indicate that there
exists a correspondence between the Q-Φ diagram of the
charged AdS black hole and the P-V (pressure-volume)
diagram of the VdW fluid. However, there is a problem due

to the fact that Q and Φ are extensive and intensive
quantities, while P and v are intensive and extensive
quantities.
In order to solve the problem, finding the thermody-

namic pressure P is a key step. In fact, the solution of
this question starts with the study of the cosmological
constant Λ. Of particular interest, the cosmological con-
stant was, recently, considered as a thermodynamic variable
in the first law of black hole thermodynamics [16–22] for
the reason that the cosmological constant is not fixed
a priori in a theory but appears as vacuum expectation
value and thus it can vary. Employing the consideration, the
inconsistency between the first law of the thermodynamics
and the Smarr relation was clarified [16] for a rotating AdS
black hole. Meanwhile, we need to identify the black hole
mass as the enthalpy rather than the internal energy of the
system. Further, the cosmological constant was interpreted
as the thermodynamic pressure [16,23]

P ¼ −
Λ
8π

¼ ðd − 1Þðd − 2Þ
16πl2

; ð1Þ

where d is the number of spacetime dimensions and l is
the AdS radius. Adopting such an interpretation, the P-v
criticality was first examined in detail in Ref. [22]. The
result shows that the P-v criticality, phase transition, and
critical exponents are extremely similar to that of the VdW
fluid. Subsequently, this study was extended to other AdS
black holes, see Refs. [24–34] and references therein.
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Remarkably, besides the phase transition of VdW type,
some rich critical phenomena and phase transitions, such as
the reentrant phase transition, triple point, isolated critical
point, and λ-line phase transition were observed [35–46].
These investigations not only give us new insight into the
black hole thermodynamics, but also enhance our under-
standing on the cosmological constant.
Among the different AdS black holes, the rotating ones

are more attractive. In a d ¼ 4 dimensional spacetime, a
rotating Kerr AdS black hole demonstrates a small-large
black hole phase transition of VdW type [23]. And when the
dimension of the spacetime increases, some novel phase
transitions of great interesting occur. For d ≥ 6, besides the
small-large black hole phase transition, the singly spinning
Kerr AdS black hole also yields a reentrant phase transitions
[35]. In this case, the black hole can have a phase transition
from a large black hole phase to a small one, and then back
to the large black hole phase with the increase of the
temperature or pressure. One of the phase transitions is
first-order while another is zero-order. Moreover, for a
six-dimensional multispinning Kerr AdS black hole, a
triple point emerges in the phase diagram, which is very
similar to the solid/liquid/gas phase transition of water [36].
Nevertheless, the analytic or exact study of the phase
transition for the rotating Kerr AdS black hole is very
difficult. The reason is that, different from the charged AdS
black hole case, the entropy of the rotating black hole
depends not only on the horizon radius, but also on the
angular momentum. Thus, only numerical result is possible.
From the other side, the black hole phase transition

can be understood from the first law of thermodynamics.
The condition determining the critical point was
reexamined. The conventional condition that ∂vP ¼
∂v;vP ¼ 0 was extended to other cases. One useful con-
dition is ∂ST ¼ ∂S;ST ¼ 0 with S the black hole entropy
[47,48]. Employing this condition, we obtained the analytic
critical point for the four-dimensional Kerr AdS black hole
[49]. For the higher-dimensional cases, the expression of
the state equation becomes more complicated, and thus no
exact result has been obtained. However, in the small
angular momentum limit, the authors of Ref. [37] expanded
the state equation and obtained an approximate analytic
result. After examining the property of the thermodynamic
quantities, we proposed a new viewpoint that all the
thermodynamic quantities can be divided into two classes,
the universal parameters and characteristic parameters [48].
Adopting this point of view, it is natural to interpret the
critical point as the relation between the universal and
characteristic parameters. Further, the singly spinning Kerr
AdS black hole was found to be a single-characteristic-
parameter thermodynamic system, which can be used to
determine the specific form of the critical point. Then the
undetermined coefficients were obtained by using the
critical condition and thus the exact critical points were
derived. Furthermore, the exact critical reentrant phase

transition points were also obtained for the rotating black
holes in d ≥ 6 dimensions [49].
Recently, higher dimensional rotating Kerr-AdS or

Myers-Perry-AdS (MP-AdS) black hole has attracted great
interest. Comparing with four dimensional Kerr-AdS black
hole, five-dimensional and higher dimensional cases can
possess more than one spinning parameters, which will
lead to some novel phenomena and interest results. The
Hamilton-Jacobi equation, massive Klein-Gordon equa-
tion, massive Dirac equation, and geodesic equation of
the rotating MP black hole can be completely separated for
the five and higher dimensional cases, and the two sets of
equal spinning parameters enlarge the rotational symmetry
group [50–53]. The stability of five-dimensional Myers-
Perry black holes with equal angular momenta were
considered and several qualitative arguments were obtained
in Ref. [54,55]. For two equal angular momenta, the scalar
field perturbations were studied in five-dimensional space-
time in Refs. [56,57]. It was found that the confining box
can help the superradiant modes to extract rotational energy
from the black hole. The shadow cast by five-dimensional
MP black hole was studied [58]. The upper bound of the
radiation energy in the head-on collision of two MP black
holes was found to significantly depend on the alignments
of rotating axes for a given initial condition [59]. Following
the gedanken experiment designed by Wald, it was found
that the five-dimensional MP black hole cannot be over-
spun and the weak cosmic censorship conjecture holds
[60]. All these studies indicate that higher dimensional
rotating black holes are of great interest and worthy of
being further investigated.
In particular, its thermodynamics was examined in

Ref. [37,61]. In Ref. [37], it was found that there exists
a small-large black hole phase transition. Comparing
with the singly spinning black hole, the thermodynamic
phase transition and the critical phenomenon are closely
dependent of both two spinning parameters for the five-
dimensional Kerr-AdS black hole. This also enlarges
the thermodynamic parameter space. Adopting the small
angular momentum limit, the approximate critical point
was obtained for the equal spinning black hole. In this
paper, we would like to reconsider the thermodynamics
for the multispinning Kerr-AdS black hole. Although the
method we proposed in Ref. [48] fails for the multispinning
black hole case, it indeed works for the equal-spinning
Kerr-AdS black hole because it is a single-characteristic-
parameter thermodynamic system. In this paper, we mainly
focus on the five-dimensional equal spinning Kerr-AdS
black holes. The exact value of the critical point is obtained,
which greatly improves the result given in Ref. [37].
Based on this result, we discuss the reduced thermody-
namic law. The coexistence curve and the phase structure
are also given. At last, the critical exponents near the exact
critical point are numerically calculated when the system
follows along the coexistence curve. Furthermore, a brief
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discussion and numerical study are devoted to the critical
point of the unequal spinning black hole.
This paper is organized as follows. In Sec. II, we show

the black hole solution and its thermodynamic quantities.
In the reduced parameter space, the thermodynamic laws
and phase transition are discussed in detail in Sec. III. In
Sec. IV, the phase structure of the black hole system is
displayed, respectively, in the P̃-T̃ diagram, T̃-Ṽ diagram,
and P̃-Ṽ diagram. Different black hole phases are clearly
illustrated. When the system follows along the coexistence
curve, we calculate different critical exponents near the
critical point in Sec. V. For the unequal spinning black hole,
its exact critical point is also studied by employing the
dimensional analysis and symmetry analysis in Sec. VI.
Finally, we summarize and discuss our results in Sec. VII.

II. BLACK HOLE AND THERMODYNAMIC
QUANTITIES

A five-dimensional Kerr-AdS black hole possesses two
spin parameters a1 and a2. Here, would like to consider the
equal spinning case, i.e., a1 ¼ a2 ¼ a. Accordingly, in the
Boyer-Lindquist coordinates, its metric is given by [62]

ds2 ¼−
1

Ξ

�
1þ r2

l2

�
dt2 þ 2m

UΞ2
ðdt− aðμ21dϕ1 þ μ22dϕ2ÞÞ2

þU
Ξ
ðμ21dϕ2

1 þ μ22dϕ
2
2Þ þ

Udr2

F − 2m
þU

Ξ
ðdμ21 þ dμ22Þ

−
U2

ðr2 þ l2ÞΞ ðμ1dμ1 þ μ2dμ2Þ2; ð2Þ

where the metric functions read

Ξ ¼ 1 −
a2

l2
; U ¼ r2 þ a2; ð3Þ

F ¼ r−2
�
1þ r2

l2

�
ðr2 þ a2Þ2: ð4Þ

Note that the coordinates μ1 and μ2 satisfy μ21 þ μ22 ¼ 1.
The thermodynamic quantities were obtained in Ref. [63].
For the five-dimensional equal spinning Kerr-AdS black
hole, the black hole mass M, angular momentum J, and
angular velocity Ω on the horizon are

M ¼ πmð4 − ΞÞ
4Ξ3

; J ¼ amπ

2Ξ3
; Ω ¼ aðl2 þ r2hÞ

l2ðr2h þ a2Þ :

ð5Þ

Here rh denotes the radius of the black hole horizon,
which can be obtained by solving F − 2m ¼ 0. The
temperature T, entropy S, thermodynamic volume V and
specific volume v read [20,63,64]

T ¼ 1

2π

�
2rhðl2 þ r2hÞ
l2ða2 þ r2hÞ

−
1

rh

�
; ð6Þ

S ¼ A
4
¼ π2ða2 þ r2hÞ2

2rhΞ2
; ð7Þ

V ¼ rhA
4

þ 4πaJ
3

; ð8Þ

v ¼
�
512V
81π2

�
; ð9Þ

where A is the area of the black hole horizon. One can
check this black hole solution obeys the following differ-
ential form

dM ¼ TdSþ 2ΩdJ þ VdP; ð10Þ

where the factor “2” comes from the two equal angular
momenta J1 ¼ J2 ¼ J. of the black hole. In order to meet
the first law of the ordinary thermodynamic fluid, the black
hole mass M needs to be treated as the enthalpy H rather
the energy of the black hole. Then the Gibbs free energy
will be

G¼H − TS

¼ 3πða2 þ r2hÞ
8r2hð3− 4πa2PÞ3 ð9r

2
h − 12πPr4h þ 4πPa4ð4πPr2h − 3Þ

þ a2ð45þ 8πPr2hð9þ 10πPr2hÞÞÞ: ð11Þ

III. REDUCED THERMODYNAMICS

In this section, we would like to study the thermody-
namic laws and phase transition for the black hole in the
reduced parameter space. As shown in Ref. [37], there
exists a VdW like phase transition. According to the
dimensional analysis [49], the critical point must have
the following relations

Pc ∼ J−
2
3; Tc ∼ J−

1
3; vc ∼ J

1
3; ð12Þ

In the small angular momentum limit, the critical values
have been obtained in Eq. (102) of Ref. [37] for d-
dimensional equal spinning Kerr-AdS black holes.
Taking d ¼ 5, one can obtain the following result:

Pa
c ¼ 0.0181J−

2
3; Ta

c ¼ 0.1227J−
1
3; vac ¼ 2.9655J

1
3:

ð13Þ

It is obvious that it has the same form as (12) given by the
dimensional analysis. Then we can reduce the thermody-
namic quantities with their critical values. For example, the
reduced pressure and temperature are defined as
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P̃ ¼ P
Pc

; T̃ ¼ T
Tc

: ð14Þ

After this, the critical point will be shifted to (1, 1). In the
following, it is interesting to discuss the black hole
thermodynamics in the reduced parameter space. For
simplicity, we fix the angular momentum J. Then the first
law (10) will be of the form

dH̃ ¼ Rc1T̃dS̃þ Rc2ṼdP̃; ð15Þ

dG̃ ¼ −Rc3S̃dT̃ þ Rc4ṼdP̃; ð16Þ

where the critical ratios Rci (i ¼ 1, 2, 3, 4) are dimension-
less constants, and they are

Rc1 ¼
TcSc
Hc

; Rc2 ¼
PcVc

Hc
;

Rc3 ¼
TcSc
Gc

; Rc4 ¼
PcVc

Gc
: ð17Þ

A. Maxwell equal area laws

As we know, the black hole phase transition point can be
exactly determined by the swallow tail behavior of the
Gibbs free energy. Alternatively, one can also construct two
equal areas on each isothermal line or isobaric line in P-V
or T-S plane by drawing a horizontal line. It is worthwhile
pointing out that the equal area law does not hold in some
cases, for details, see Ref. [48].
In ordinary parameter space, we can get the Maxwell

equal area laws from the first law for fixed temperature and
pressure, respectively,

Z
P�

P�
VdP ¼ 0; ð18Þ

Z
T�

T�
SdT ¼ 0; ð19Þ

where P� and T� denote the pressure and temperature of the
phase transition. Note that the above two integrals should be
calculated along the isothermal line and isobaric line, respec-
tively. The lower and upper integration limits denote different
states of the black hole system, and thus these integrals are
nonzero. Since Rci are dimensionless constants, we can find
that the equal area laws are also held in the reduced parameter
space. For fixed reduced temperature and pressure, they are

Z
P̃�

P̃�
ṼdP̃ ¼ 0; ð20Þ

Z
T̃�

T̃�
S̃dT̃ ¼ 0: ð21Þ

So in the reduced parameter space, the Maxwell equal area
laws have the similar forms, and one can use them to
determine the reduced phase transition point. Moreover, at
the phase transition point of the small and large black hole
phases, we have

ΔG̃ ¼ G̃lðT̃�; P̃�Þ − G̃sðT̃�; P̃�Þ ¼ 0: ð22Þ

Here G̃l and G̃s are the reduced Gibbs free energy for the
small and large black holes, respectively. Hence, it is natural
that the swallow tail behavior also exists for the reduced
Gibbs free energy in the reduced parameter space.

B. Clapeyron equation

Clapeyron equation gives the slope of the coexistence
curve in the P-T diagram. Its generalizations for the
charged AdS black hole and rotating AdS black hole have
been done in Refs. [48,49]. Here we only consider the
conventional one, which is

�
dP
dT

�
J
¼ ΔS

ΔV
: ð23Þ

By using Eq. (16), we can obtain the reduced Clapeyron
equation:

�
dP̃

dT̃

�
J
¼ Rc3

Rc4
·
ΔS̃
ΔṼ

: ð24Þ

During the small-large black hole phase transition, there
will be latent heat absorbed or released by the system. In the
reduced parameter space, the reduced latent heat can be
calculated with

L̃ ¼ L
TcSc

¼ T̃ΔS̃: ð25Þ

C. Heat capacity

Heat capacity often marks the local instability of a
thermodynamic system. Positive and negative heat
capacities correspond to stable and unstable systems,
respectively. In the reduced parameter space, we can define
the reduced heat capacity as

C̃J̃;P̃ ¼ CJ;P

Sc
¼ T̃

�
dS̃

dT̃

�
J̃;P̃

: ð26Þ

Since the critical value Sc is positive, C̃J̃;P̃ and CJ;P have
the same sign. Then, we can use the reduced heat to explore
the instability for the black hole system in the reduced
parameter space.
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IV. PHASE TRANSITION AND PHASE
STRUCTURES

In this section, we would like to consider the black hole
phase transition and phase structure for the five-dimen-
sional equal spinning Kerr-AdS black hole.
At first step, we focus on the exact critical point. As

discussed in Ref. [48], it is easy to determine the point by
using

ð∂STÞJ;P ¼ ð∂S;STÞJ;P ¼ 0; ð27Þ

for the rotating AdS black hole. Since the temperature
given in (6) is a function of l, a, and rh, we need to change
these parameters to P, J, and S. Here we summarize how to
do this. Using Eq. (1), we can change the parameter l to P.
Then by solving the entropy equation showed in (7),
we have

a2 ¼ 3ð8PSrh �
ffiffiffi
2

p ð4πPr2h þ 3Þ ffiffiffiffiffiffiffi
Srh

p þ 3πr2hÞ
πð32P2Srh − 9Þ : ð28Þ

Adopting the “+” sign in the equation, we will get negative
temperature T ¼ −16P2S=9π, which corresponds to the
naked singularity, and thus we will not consider this
solution. Then choosing the negative sign and plunging
it into the angular momentum formula (5), one can express
the horizon radius as rh ¼ rhðJ; P; SÞ. Finally, substituting
all these results into the temperature (6), we can obtain
T ¼ TðJ; P; SÞ. Adopting the condition (27), we get the
exact critical point

Pc ¼ 0.0229J−
2
3; Tc ¼ 0.1381J−

1
3; Sc ¼ 37.8149J;

Vc ¼ 74.5554J
4
3; vc ¼ 2.6287J

1
3: ð29Þ

It is worthwhile noting that this result has no approximation
of the angular momentum. The result has a small difference

between these given in (13) obtained in Ref. [37] by taking
small angular momentum limit. Comparing our result with
them, we obtain the relative deviations

ΔPc ≈ 21%; ΔTc ≈ 11%;

Δvc ≈ −13%; Δ
�
Pcvc
Tc

�
≈ 0.4%: ð30Þ

It is clear that there is a large deviation between the our
exact result and the approximate one. Another significant
feature is that these relative deviations are independent
of the angular momentum J, which is also similar to the
d-dimensional singly spinning Kerr-AdS black hole cases
[49]. The reason of this is mainly because that the five-
dimensional equal spinning Kerr-AdS black hole is a
single-characteristic-parameter systems. Moreover, in
Ref. [37], they kept the small quantity ðalÞ to the fourth
order in the state equation. We believe that if higher orders
are included in, the approximate result (13) will approach
our exact one. For the unequal spinning black hole case,
J1 ≠ J2, we discuss and give the exact values of the critical
points in Sec. VI. The result also shows that the critical
point is only dependent on ϵ ¼ J2=J1 ∈ ð0; 1Þ. Moreover,
we calculate the four dimensionless critical ratios

Rc1 ¼ 0.8192; Rc2 ¼ 0.2683;

Rc3 ¼ 4.5320; Rc4 ¼ 1.4840: ð31Þ

After obtaining the values of the critical point, we show the
reduced isobaric lines in Fig. 1 for fixed P̃ ¼ 0.95, 0.98, 1,
1.02, and 1.05. In Fig. 1(a), the isobaric lines are displayed
in the T̃-S̃ diagram. From it, we can find that for P̃ < 1,
there exists a nonmonotonic behavior for each curve, and
two extremal points are presented. As P̃ increases, these
two extremal points approach to each other, and coincide at
the critical point. When P̃ > 1, the nonmonotonic behavior

P 0.95

P 0.98

P 1.00

P 1.02

P 1.05

0.5 1.0 1.5 2.0 2.5 3.0
0.96

0.98

1.00

1.02

1.04

S S

T
T

c

(a) (b)

FIG. 1. Isobaric lines in the reduced parameter space for fixed reduced pressure P̃ ¼ 0.95, 0.98, 1, 1.02, and 1.05. (a) T̃-S̃ diagram.
The fixed pressure increases from bottom to top. (b) G̃-T̃ diagram. The fixed pressure increases from left to right.
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disappears. Thus, the reduced temperature monotonously
increases with the reduced entropy. In fact, the nonmono-
tonic behavior of the isobaric line implies the existence of
the phase transition. We can construct the equal area law to
determine the phase transition point. In the G̃-T̃ diagram,
for the reduced isobaric lines with P̃ < 1, the swallow tail
behaviors are presented. Considering that the Gibbs free
energy prefers a phase of low G̃, the phase transition takes
place at the intersection point of the two different branches
of the system phases.
Here, we adopt the latter one to determine the phase

transition point. Through varying the pressure, one can
obtain the temperature of the phase transition accordingly.
In Fig. 2, we describe the phase structure in the P̃-T̃
diagram. The red thick line is the coexistence curve of small
and large black holes. The black dot denotes the critical
point. The green region above the coexistence curve is for
the small black hole phase. And the red region below the
curve is for the large black hole phase. The blue region
located at the upper right corner is for the supercritical
phase, within which the small and large black hole will not
be clearly distinguished.

Coexistence curve is an important key to study the
physical change among the phase transition. However,
for this case, there is no analytic form. Fortunately, we
can adopt the fitting method used in Ref. [48] to obtain a
highly accurate fitting formula for the coexistence curve.
The result is

P̃ ¼ 0.870469T̃2 − 0.000219T̃3 þ 0.136996T̃4

− 0.057063T̃5 þ 0.079964T̃6 − 0.057912T̃7

þ 0.039096T̃8 − 0.013912T̃9 þ 0.002581T̃10: ð32Þ

For low T̃, the relative deviation is less than 0.002%. And
for high T̃, the relative deviation can reach 10−8.
Next, we would like to turn to construct the phase

structure in the P̃-Ṽ and T̃-Ṽ diagrams. Before doing it, we
would like to give a brief note on the metastable phase.
For example, we plot the isobaric line with P̃ ¼ 0.9 in
Fig. 3 by using the state equation. In Fig. 3(a), the isobaric
line is divided into five branches: AB, BC, CD, DE, and EF,
which are named as the small black hole (SBH) branch,
superheated small black hole (SHSBH) branch, intermedi-
ate black hole (IBH) branch, supercooled large black
hole (SCLBH) branch, and large black hole (LBH)
branch, respectively. Among these branches, only the
intermediate black hole branch has negative heat capacity,
which indicates thermodynamic instability. According to
the thermodynamics, the phase transition occurs at T̃ ¼
0.9548. So the curve BCDE will be replaced by the
horizontal line BE. Then with the increase of the entropy
or the black hole horizon radius, the system will encounter
the small black hole branch AB, coexistence black hole
branch BE, and large black hole branch EF. This can also
be found in Fig. 3(b). In addition, due to the density
fluctuations or interactions, the system can reach the
superheated small black hole branch BC with the increase
of the black hole entropy, or reach the supercooled large

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

T Tc

P
P

c

FIG. 2. Phase structure in P̃-T̃ diagram.

A

B

D
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E

F
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SHSBH SBH+LBH

SCLBH

LBH

IBH

0.5 1.0 1.5 2.0 2.5

0.950

0.955

0.960

0.965

S Sc

T
T

c

(a)

SBH

LBH

SHSBH

SCLBH

IBH

A

B E C

D

F

0.948 0.950 0.952 0.954 0.956 0.958 0.960 0.962
1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

T Tc

G
G

c

(b)

FIG. 3. Isobaric line in the reduced parameter space for fixed reduced pressure P̃ ¼ 0.9. The solid lines have positive heat capacity,
while the dashed ones have negative capacity. (a) T̃-S̃ diagram. (b) G̃-T̃ diagram.
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black hole branch DE with the decrease of the black hole
entropy. Nevertheless, these two branches are two meta-
stable phases of the system. In the phase diagram Fig. 2, the
two metastable phases are not shown. However, in another
parameter space, we can clearly display them.
We show the phase structures of the black hole in the

T̃-Ṽ diagram and P̃-Ṽ diagram in Fig. 4. The phase
structures are similar. Six phases are presented. Regions
I ∼ VI are, respectively, the small-large black hole coex-
istence phase, small black hole phase, superheated small
black hole phase, supercooled large black hole phase, large
black hole phase, and supercritical black hole phase.

Among these phases, Regions III and IVare two metastable
phases. It is also worthwhile noting that in the coexistence
region I, the state equation does not hold.
On the other hand, employing the fitting formula (32),

we can check the reduced Clapeyron equation given in (24).
Moreover, the reduced latent heat can also be calculated
and the result is shown in Fig. 5. It is clearly that the
reduced latent heat decreases with the temperature of the
phase transition. At low temperature, the reduced latent
heat has a very large value, which is of order 104. However,
when the critical temperature is approached, the latent
heat vanishes, indicating a second order phase transition.
Note that at the critical point, L̃ ¼ 0, and thus one has
log L̃ ¼ −∞, however we have not clearly show it in Fig. 5.

V. CRITICAL EXPONENTS

Near the critical point, there is a number of interesting
behaviors. For example, the heat capacity defined in (26)
diverges at the critical point. And the microstructures of the
small and large black holes also approach the same [30]. In
particular, the critical exponents can reflect certain univer-
sality of the phase transition. So, here we would like to
examine the critical exponents near the critical point.
We first examine the critical exponent for the heat

capacity. When the black hole system approaches the
critical point along the coexistence curve, we can obtain
the following result with the fitting method of the numerical
result

C̃J̃;P̃ ¼
�
0.9798 × j1 − T̃j−1.0411; for coexistence small black hole;

2.3189 × j1 − T̃j−0.9576; for coexistence large black hole:
ð33Þ

So, the critical exponent approximately equals to 1 for both the coexistence small and large black holes. This result is also
the same as that of Ref. [65]. In addition, we have another exponent
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FIG. 4. Phase structures for the black hole system. (a) T̃-Ṽ diagram. (b) P̃-Ṽ diagram.
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FIG. 5. Behavior of the reduced latent heat.
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ð1 − P̃Þ ¼
�
0.1142 × j1 − Ṽj1.9058; for coexistence small black hole;

0.2318 × j1 − Ṽj2.0954; for coexistence large black hole:
ð34Þ

Considering the error of calculation and fitting formula, we
expect that the exponent is 2.
On the other hand, the microstructures of the small and

large black holes approach the same. Thus it is interesting
to consider other exponents. Apply the similar process,
we have

ΔS̃ ¼ ðS̃L − S̃SÞ ∼ 5.7123 × j1 − T̃j0.5014; ð35Þ

ΔṼ ¼ðṼL − ṼSÞ ∼ 7.6606 × j1 − T̃j0.5020; ð36Þ

Δṽ ¼ðṽL − ṽSÞ ∼ 1.8876 × j1 − T̃j0.5004: ð37Þ

It is clearly that near the critical point, ΔS̃, ΔṼ, and Δṽ
exactly have the same critical exponent 1

2
. As we know, the

order parameter has a critical exponent 1
2
. So we can treat

them as the order parameter to describe the small-large
black hole phase transition. From the above result, one gets

ΔS̃
ΔṼ

¼ 0.7457; ð38Þ

which means that near the critical point, ΔS̃ and ΔṼ have a
linear relation. Further, the slope (24) of the coexistence
curve near the critical point is

�
dP̃

dT̃

�
J
¼ 2.2772: ð39Þ

One needs to note that the factors Rc3 and Rc4 have been
included in. In fact, we can also obtain the slope from the
fitting formula (32), ðdP̃

dT̃
Þ
J
¼ 2.2907 near the critical point.

The relative deviation between these two results is about
0.6%. On the other hand, at other temperature of the phase
transition, the slope can be obtained directly with (32).

VI. CRITICAL POINT FOR UNEQUAL
SPINNING BLACK HOLES

As shown above, there are two angular momenta J1 and
J2 in the spacetime. If both J1 and J2 are nonzero and
unequal, the critical phenomena will be quite complicated.
However, some interesting properties can be obtained by
simple dimensional analysis and symmetry analysis.
Both the angular momenta J1 and J2 can take values

form ð0;∞Þ, where we only require the angular momentum
is positive. On the other hand, J1 and J2 are symmetrical, so
the thermodynamics is invariable under

J1 ↔ J2: ð40Þ

Considering this symmetry, we would like to reduce
the thermodynamic state parameter with X ¼ ffiffiffiffiffiffiffiffiffi

J1J2
p

. For
example, a reduced state parameter A, such as the temper-
ature T and pressure P, reads

Ã ¼ A
Xα ; ð41Þ

with α being the dimension number of Ameasured with the
angular momentum J. The specific values can be found in
Ref. [49]. For simplicity, we define a dimensionless ratio of
the angular momenta

ϵ ¼ J2
J1

; ϵ ∈ ð0;∞Þ: ð42Þ

For the unequal spinning MP-AdS black hole, the state
equation has an abstract form

T ¼ TðP; V; J1; J2Þ: ð43Þ

After reducing this state equation with parameter X, one
will get

T̃ ¼ T̃

�
P̃; Ṽ;

1ffiffiffi
ϵ

p ;
ffiffiffi
ϵ

p �
: ð44Þ

Further, we can reexpress the reduced temperature as

T̃ ¼ T̃ðP̃; Ṽ; ϵÞ; ð45Þ
which means that the reduced temperature is a function of
the reduced pressure P̃, volume Ṽ, and the dimensionless
parameter ϵ.
On the other hand, since the existence of the symmetry

equation (40), the reduced temperature T̃ depends on the
same form of 1ffiffi

ϵ
p and

ffiffiffi
ϵ

p
, which leads to an interesting result

that the reduced thermodynamics is invariable under

ϵ ↔
1

ϵ
: ð46Þ

Therefore, we only need to consider ϵ ∈ ð0; 1Þ. Based on
the above analysis, we can obtain the result that the critical
phenomena and phase transition for the unequal spinning
Kerr-AdS black holes are only dependent of the dimension-
less parameter ϵ ∈ ð0; 1Þ in the reduced parameter space.
Here we show the specific values of the reduced critical

point in Table I. For a given critical point, we can study the
coexistence curve, phase diagram, and critical exponents
for the unequal spinning Kerr-AdS black hole. However,
the results are similar to these of the equal spinning
black hole.
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VII. CONCLUSIONS

In this paper, we studied the critical phenomena and
phase structures for the five-dimensional equal spinning
Kerr-AdS black hole. This system demonstrates a small-
large black hole phase transition of VdW type.
For the equal spinning black hole, by employing with the

dimensional analysis, we obtained the exact values of the
critical points of the phase transition and greatly improved
the result given in Ref. [37], where the small angular
momentum limit was used.
We examined the reduced thermodynamic laws and

introduced several dimensionless critical rations. Based
on them, we considered the condition to determine the
phase transition point. The result states that, in the reduced
parameter space, the generalized Maxwell equal area lawsR
ṼdP̃ ¼ 0 and

R
S̃dT̃ ¼ 0 hold. And the phase transition

point can also be determined by the swallow tail behavior
of the Gibbs free energy. Moreover, the Clapeyron
equation was also modified in the reduced parameter
space. The reduced latent heat and heat capacity were also
calculated.
Then based on the reduced thermodynamic laws, we

investigated the phase structures. In the P̃-T̃ diagram, T̃-Ṽ

diagram, and P̃-Ṽ diagram, the phase structures were
clearly plotted. Especially, in the T̃-Ṽ and P̃-Ṽ diagrams,
two new metastable phases, a superheated small black hole
phase and a supercooled large black hole phase, were
shown. The coexistence curve in the P̃-T̃ diagram is a
monotonically increasing function of temperature, and ends
with the reduced critical point located at (1, 1). By
combining with the numerical result, we obtained a highly
accurate fitting formula for the coexistence curve, which is
very useful on studying the black hole phase transition. For
example, by employing this formula, one can check the
reduced Clapeyron equation. The latent heat can also be
calculated, see Fig. 5.
Considering that the black hole system varies along the

coexistence small and large black hole curve, we numeri-
cally calculated the critical exponents. It was found that the
heat capacity has an exponent 1. Moreover, allΔS̃,ΔṼ, and
Δṽ have exponent 1

2
, which implies that all these quantities

can act as order parameter to describe the small-large black
hole phase transition.
Additionally, we investigated the critical point for the

unequal spinning Kerr-AdS black hole. Through reducing
all the thermodynamic quantities with

ffiffiffiffiffiffiffiffiffi
J1J2

p
and intro-

ducing a dimensionless ratio ϵ ¼ J2=J1, we found that the
reduced critical point only depends on ϵ, and is invariable
under ϵ ↔ 1

ϵ. Then we listed some exact values of the
critical point for ϵ ∈ ð0; 1Þ. These results are critical for
studying the property of the MP-AdS black hole system
among the phase transition.
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