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Several approaches to quantum gravity suggest that Lorentz invariance will be broken at high energy.
This can lead to modified dispersion relations for wave propagation, which can be concretely realized in
effective field theories where the equation of motion involves higher order spatial derivatives in a preferred
frame. We consider such a model in the presence of a finite cavity whose walls follow parallel inertial
trajectories of speed vwith respect to the preferred frame. We find evidence that when the cavity wall speed
exceeds the phase velocity, the system becomes classically unstable. For dispersion relations that do not
lead to an instability, the energy levels of the cavity are non-trivial functions of v. In other words, an
observer could in principle measure their velocity with respect to the preferred frame by studying the
energy spectra of a quantum cavity, which is a stark violation of the principle of relativity. We also find that
the energy levels of the cavity become infinitely large as its velocity approaches light speed.
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I. INTRODUCTION

Lorentz symmetry is one of the cornerstones of modern
physics. The mathematical and physical properties of
fundamental theories are severely constrained by the simple
axioms that there are no preferred inertial observers in a
sufficiently small patch of spacetime, and that there is a
maximum universal speed. However, there is an inherent
tension between Lorentz invariance and quantum theories
that hypothesize that spacetime is fundamentally discrete,
or that there exists a preferred rest frame for physical
theories. This has led many authors to speculate that
Lorentz symmetry is an emergent phenomena that only
holds approximately at large scales, and it is therefore
possible for very high energy or small-scale experiments to
detect Lorentz invariance violations (see Refs. [1–6] for
reviews). Specific models exhibiting Lorentz symmetry
violation have been obtained in the context of string theory
[7–14], loop quantum gravity [15–18], and noncommuta-
tive geometry [19–27] (for other examples see [1] and
references therein).
A useful technique for modeling the effects of small

scale Lorentz symmetry violation in a model independent
way is effective field theory [28], which involves adding
Lorentz-symmetry breaking terms to the Lagrangian of an
otherwise Lorentz invariant theory (see Refs. [29–38] for
other phenomenological approaches). These symmetry
breaking terms can be categorized by their mass dimension;

for example, the standard kinetic term in scalar field
theory ∂αϕ∂αϕ is dimension 4, while a term of the form
M−2⋆ ∂α∂βϕ∂α∂βϕ is dimension 6, where M⋆ is some fixed
mass scale. From a phenomenological point of view, the
higher the dimension of a given term (or operator) in an
effective field theory, the less important it is at low energies.
For this reason, much of the work looking for experimental
signatures of Lorentz invariance violations has concen-
trated on constraining effective field theories with sym-
metry-breaking terms of dimension ≲4.
One of the most popular examples of a Lorentz violating

effective field theory is the StandardModel extension (SME)
[39–44]. A version of the SME incorporating such sym-
metry-breaking terms is called the “minimal SME” [40]. The
photonic sector of the theory is described by the Lagrangian
L ¼ − 1

4
FμνFμν − 1

4
ðkFÞκλμνFκλFμν. Here, ðkFÞκλμν is a non-

dynamical background tensor field that parametrized
Lorentz symmetry breaking. For a comprehensive summary
of current theoretical and experimental limits on Lorentz
violating coefficients in the mSME see [45].
One can also construct effective field theories with

unequal numbers of temporal and spatial derivatives (see
for e.g., [31,37,38,40,46,47]). In such models, the wave
4-vector kα appearing in plane wave solutions ϕ ∼ eikαx

α
for

massless fields does not in general satisfy the Lorentz-
invariant dispersion relation kαkα ¼ 0. Scalar field models
of this type have been used to analyze the effects of small
scale Lorentz invariance violations on the Hawking
radiation from black holes [48,49] and the Unruh effect
[50]. Modified dispersion relations can be directly con-
strained by astrophysical observations, since they imply
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that different frequency components of an astrophysical
signal will travel at different speeds and hence arrive at a
detector at different times. Because astrophysical signals
travel large distances to reach us, this frequency dependent
time delay is in principle detectable even if velocity
differences are very small. This idea has been used to
analyze high-frequency electromagnetic radiation from
gamma ray bursts and hence place limits on non-Lorentz
invariant dispersion relations [51–56].
While astrophysical observations represent the best

means we have to constrain higher dimensional Lorentz-
violating operators, it is obviously useful to have indepen-
dent and reproducible laboratory-based techniques for
probing these effects. These include clock-comparison
experiments [57–60], Penning traps [59,61,62], and dop-
pler shift experiments (for a more comprehensive discus-
sion, see [1–6]).
Below, we concentrate on tests involving microwave and

optical cavities. Such experiments are essentially modern
versions of the classic Michelson-Morley and Kennedy-
Thorndike experiments. The basic idea is to determine if
the resonant frequencies of radiation confined to a cavity
depend on the cavity’s orientation in space or state of
motion. Some of the earliest experiments of this type
directly addressed whether the speed of light was inde-
pendent of direction [63] or the state of motion of a cavity
[64,65]. The change in resonant frequency of a cavity in the
minimal SME was calculated to leading order in Ref. [66].
Subsequent experiments [67–76] used this result to directly
constrain the components of the ðkFÞκλμν tensor in the Sun’s
rest frame. The effects of higher mass dimension terms in
the SME on cavity experiments were derived in [47,77] in
the context of perturbation theory and considering the
effects of small boosts with v=c ∼ 10−4; the effects were
subsequently probed experimentally in [78].
In this work, we carefully calculate the energy levels of a

quantum cavity in an effective field theory with higher
derivatives, and hence modified dispersion. We work with a
scalar field for simplicity, and pay close attention to
boundary conditions. Unlike previous studies [47,66,77],
we concentrate on the determination the spectrum of the
cavity as a function of its inertial velocity with respect to a
preferred frame. We do not a priori assume the cavity’s
velocity is small, and we present a fully quantum and self-
consistent calculation.
In a Lorentz invariant theory, one would expect a cavity’s

energy spectrum to be velocity independent; i.e., any
observer comoving with the cavity must measure the same
discrete energy spectrum for longitudinal modes. This is a
direct consequence of the principle of relativity, which
states that the results of all local experiments in a non-
accelerating laboratory are independent of the laboratory’s
velocity. We find that the opposite is basically true for
scalar fields with non-Lorentz invariant dispersion relations
arising from an effective field theory. In order to maintain

invariance under parity, we only consider effective actions
with even dimension terms (see for e.g., [43,44,79] for
models incorporating CPT violations). We find evidence
that some dispersion relations lead to the classical insta-
bility of the system. For dispersion relations giving rise to
stable dynamics, we see that higher dimension operators in
the scalar field action imply that an observer can measure
their velocity with respect to the preferred frame by
measuring the energy levels of a quantum cavity.
In Sec. II, we present the classical formalism of our

model including the action, Hamiltonian, and equation of
motion. In Sec. III, we present a Fourier-like mode
decomposition of the scalar field that is used to quantize
the model in Sec. IV. The problem of quantization is made
significantly more complicated by the fact that the Fourier
modes of Sec. III are not orthogonal under the conserved
inner product for the problem.
In Sec. V,we rectify this by deducing the conditions under

which we can find Bogoliubov transformations that result
in an orthogonal mode basis and a diagonal Hamiltonian.
Roughly speaking, such a transformation exists if the cavity
walls do not exceed the phase velocity of any of the Fourier
modes in the scalar field spectrum. If this condition is
satisfied, the cavity is called “subsonic” and its energy
spectrum is simply given by integermultiples of the resonant
or normal mode frequencies of the cavity (which are
essentially the diagonal entries of the Hamiltonian operator
in the new basis). If the condition is not satisfied, we call the
cavity “supersonic” and we are not guaranteed the existence
of the Bogoliubov transformation discussed in Sec.V,which
in turn implies that the energy spectrum of the cavity is not
well defined.Whether or not it is even possible for a cavity to
be supersonic depends on the scalar field dispersion relation,
or, equivalently, the nature of the higher dimension terms
added to the action. Technical proofs of the results of Sec. V
are given in the Appendix.
In Sec. VI, we calculate the resonant frequencies of

subsonic cavities in various limits and for various choices
of Lorentz-symmetry breaking terms. We find if the
cavity’s velocity v with respect to the preferred frame is
small, the perturbation to the energy levels is Oðv2Þ.
Conversely, for jvj → 1 the resonant frequencies are gen-
erally divergent, implying that it takes an infinite amount
of energy to excite the cavity above its ground state. In
Sec. VII, we revisit the case of the supersonic cavity and
present some numeric and analytic evidence that the cavity
is classically unstable under these conditions (though we
do not have a proof of this). In Sec. VIII, we discuss the
implications of our results for rotating cavity experiments
under the plausible (but unproven) assumption that our
scalar field results will generalize to the electromagnetic
case. Despite the exceptionally low error in these experi-
ments, we find that the associated constraints placed on
higher dimension Lorentz-violating operators are not com-
petitive with constraints derived astrophysical tests.
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Section IX is reserved for a discussion of our results.

II. CLASSICAL FORMALISM

In this paper, we consider a scalar field propagating in
flat space with metric

ds2 ¼ −dT2 þ dX2 þ dY2 þ dZ2: ð1Þ

In these coordinates, the scalar field is assumed to be
governed by the action

S ¼ 1

2

Z
d4X½ð∂TϕÞ2 − ðD⃗ϕÞ2�; ð2Þ

where

D⃗ ¼ ∇⃗ðc1 þ c2L2⋆∇⃗2 þ � � � þ cML2M−2⋆ ∇⃗2M−2Þ: ð3Þ

Here, M ≥ 2 is an integer, the coefficients ci are dimen-
sionless, while L⋆ is a fixed length scale. In this frame, the
action is invariant under spatial parity ðX; Y; ZÞ ↦ ð−X;
−Y;−ZÞ, spatial rotations, and time inversion T ↦ −T.
Below, we take c1 ¼ 1. In the language of effective field
theory, we are considering CPT invariant deformations of
the Lorentz invariant massless scalar action by the addition
of dimension 4; 6;…; 4M operators.
We assume that the scalar field is confined to a semi-

infinite cavity Ω (shown in Fig. 1) whose walls are the
surfaces:

ΣL∶ X ¼ −vT; ΣR∶ X ¼ −vT þ L: ð4Þ

That is, the walls of the cavity follow inertial trajectories
with velocity dX=dT ¼ −v and are separated by a distance
of L as measured along a T ¼ constant surface. Therefore,
the proper length L0 of the cavity (i.e., its length as
measured in its rest frame) is

L0 ¼ γL; γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p : ð5Þ

Wewill be primarily interested in the longitudinal modes
of the cavity that are independent of Y and Z. The reduced
action governing these modes is

S ¼ 1

2

Z
Ω
dT dXfð∂TϕÞ2 − ½F̂ð∂XÞϕ�2g; ð6Þ

where

F̂ð∂XÞ ¼ ∂X þ c2L2⋆∂3
X þ � � � þ cML2M−2⋆ ∂2M−1

X

¼
XM
i¼1

ciL2i−2⋆ ∂2i−1
X : ð7Þ

If c2 ¼ c3 ¼ � � � ¼ cM ¼ 0 (or if L⋆ ¼ 0), then the action
takes the familiar form

S ¼ 1

2

Z
Ω
dT dX½ð∂TϕÞ2 − ð∂XϕÞ2�: ð8Þ

We now examine the behavior of the reduced action
under Lorentz transformations. Specifically, we perform a
boost to a frame where the walls ΣL and ΣR are at rest:

τ ¼ γðT þ vXÞ; η ¼ γðvT þ XÞ;
ds2 ¼ −dτ2 þ dη2 þ dY2 þ dZ2: ð9Þ

The transformed action is

S ¼ 1

2

Z
Ω
dτ dηf½γð∂τ þ v∂ηÞϕ�2 − ½F̂ðγðv∂τ þ ∂ηÞÞϕ�2g:

ð10Þ

If F̂ð∂XÞ ¼ ∂X, then the action is

FIG. 1. Cavity geometry in various coordinate systems.
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S ¼ 1

2

Z
Ω
dτ dη½ð∂τϕÞ2 − ð∂ηϕÞ2�; ð11Þ

i.e., the action is form-invariant under Lorentz transforma-
tions. However, if F̂ð∂XÞ ≠ ∂X, then the action is not
Lorentz invariant, and will involve higher order time
derivatives. Comparison of (8) and (10) clearly demon-
strates that when F̂ð∂XÞ ≠ ∂X, the ðT; XÞ coordinates
define a preferred frame.
While it is certainly possible to quantize theories with

higher order time derivatives in the action, it is cumber-
some. To avoid this complication, we consider a Galilean
change of coordinates

t ¼ T; x ¼ X þ vT

ds2 ¼ −dt2 þ ðdx − vdtÞ2 þ dY2 þ dZ2: ð12Þ

In these coordinates, the reduced action is

S ¼ 1

2

Z
dt

Z
L

0

dxf½ð∂t þ v∂xÞϕ�2 − ðF̂ϕÞ2g: ð13Þ

Here and below, F̂ is understood to refer to F̂ð∂xÞ. Clearly,
the action is not form invariant under Galilean trans-
formations either. However, this coordinate system has
the advantage that the cavity walls are stationary and the
action only involves first order time derivatives.
We now consider the variation of action with respect to ϕ,

subject to the usual assumption that the variationvanishes on
the boundary of region of interest: δϕj∂Ω ¼ 0. We obtain,
after integration by parts

δS¼−
Z

dt
Z

L

0

dx½δϕð∂tþv∂xÞ2ϕþðF̂δϕÞðF̂ϕÞ�: ð14Þ

Now, for any functions U and V satisfying the boundary
conditions

∂ð2iÞ
x Ujx¼0;L ¼ ∂ð2iÞ

x Vjx¼0;L ¼ 0; i ¼ 0…M; ð15Þ

we have the integration by parts identity1Z
L

0

dxðF̂VÞðF̂UÞ ¼ −
Z

L

0

dxUF̂2V: ð16Þ

Assuming thatϕ and δϕ satisfy the boundary conditions (15)
and setting δS ¼ 0, this identity yields the equation of
motion

ð∂t þ v∂xÞ2ϕ − F̂2ð∂xÞϕ ¼ 0; ∂ð2iÞ
x ϕjx¼0;L ¼ 0; ð17Þ

where i ¼ 0…M.2

We now define an inner product ð·; ·Þ between two
solutions ϕ and ψ of (17) as

ðϕ;ψÞ ¼ i
Z

L

0

dx½ψ�ð∂t þ v∂xÞϕ − ϕð∂t þ v∂xÞψ��

¼ i
Z

L

0

dxψ�∂↔Tϕ: ð21Þ

Useful properties of this inner product include

ðμϕ; νψÞ ¼ μν�ðϕ;ψÞ;
ðϕ�;ψ�Þ ¼ −ðϕ;ψÞ� ¼ −ðψ ;ϕÞ; ð22Þ

where μ and ν are constant scalars. The identity (16) and
wave equation (17) can be used to explicitly show that this
inner product is conserved in time

d
dt

ðϕ;ψÞ ¼ 0: ð23Þ

Another useful identity is

ðϕ; _ψÞ ¼ i
Z

dx½ð∂tψ
�Þð∂tϕÞ þ ðF̂ψ�ÞðF̂ϕÞ

− v2ð∂xϕÞð∂xψ
�Þ�; ð24Þ

where we use an overdot to denote ∂=∂t and have again
assumed that ϕ and ψ are solutions of the wave equation.
This leads to the facts:

ðϕ; _ψÞ ¼ −ðψ ; _ϕÞ� ¼ ðψ�; _ϕ�Þ; ð25Þ

which we will make use of below.
We now pass over to the Hamiltonian formalism. From

(13), we see that the Lagrangian of the system is

1The identity also holds if all the odd derivatives of u and v
vanish on ΣL and ΣR.

2As an aside, we note that if we set v ¼ 0 and send L → ∞, we
recover the equation of motion of the scalar in the preferred frame
in the absence of finite boundaries:

∂2
tϕ − F̂2ð∂xÞϕ ¼ 0: ð18Þ

Plane wave solutions ϕ ¼ e−iωtþikx satisfy the dispersion relation

ω2 ¼ k2 − 2c2L2⋆k4 þ � � � ð19Þ
We can compare this to a typical parametrization of modified
dispersion relations for massless bosons [53]:

ω2 ¼ k2 � k4

E2
QG

þ � � � ð20Þ

where EQG is some quantum gravity energy scale. Comparison of
these two equations yields EQG ¼ ð2jc2jÞ−1=2L−1⋆ . We will use
this in Sec. VIII to compare our results to astrophysical
constraints on Lorentz violations.
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L ¼ 1

2
f½ð∂t þ v∂xÞϕ�2 − ½F̂ð∂xÞϕ�2g: ð26Þ

The momentum conjugate to ϕ is

π ¼ δL
δð∂tϕÞ

¼ ð∂t þ v∂xÞϕ ¼ ∂Tϕ; ð27Þ

and we have the usual Poisson brackets

fϕðt; xÞ;ϕðt; x0Þg ¼ fπðt; xÞ; πðt; x0Þg ¼ 0;

fϕðt; xÞ; πðt; x0Þg ¼ δðx − x0Þ: ð28Þ

After performing the standard Legendre transformation, we
find that the full Hamiltonian is

H ¼ 1

2

Z
L

0

dx½π2 þ ðF̂ϕÞ2 − 2vπ∂xϕ�

¼ 1

2

Z
L

0

dx½ð∂tϕÞ2 þ ðF̂ϕÞ2 − v2ð∂xϕÞ2�: ð29Þ

Comparison of this expression with (24) yields the follow-
ing compact formula:

H ¼ −
i
2
ðϕ; _ϕÞ: ð30Þ

Now, if ϕ is a solution of (17), then _ϕ is also a solution
satisfying the same boundary conditions from which it
follows that the Hamiltonian is conserved dH=dt ¼ 0.
Furthermore, if we set ψ ¼ ϕ in (25), then we see that
ðϕ; _ϕÞ is imaginary, implying that H is real, as required.
Before moving on to the quantization of this system, we

note that the Hamiltonian defined above is the generator of
t evolution via the Poisson bracket:

df
dt

¼ ff;Hg: ð31Þ

Now, the coordinate time t is not the proper time τ for
observers comoving with the cavity; i.e., x ¼ constant
observers. From the metric (12), τ is related to t by

dt ¼ γdτ;
df
dτ

¼ ff; γHg: ð32Þ

Hence the proper time Hamiltonian (i.e., the generator of
τ-evolution), is

Hτ ¼ γH: ð33Þ

III. FOURIER MODE FUNCTIONS

Following the standard procedure, in order to quantize
the system presented in the last section we need to specify a

complete basis of solutions for the wave equation (17).
The natural temptation is to choose mode functions that
resemble those used for the standard wave equation in the
presence of a reflecting boundary; that is, mode functions
satisfying Fourier-like initial conditions

ψnjΣ−
¼ 1ffiffiffiffiffiffiffi

πζn
p sinðknxÞ; ∂tψnjΣ−

¼ −iζnψnjΣ−
; ð34Þ

where n ¼ 1; 2; 3…, kn ¼ πn=L, and ζn ≠ 0 are constants
yet to be determined. These explicitly satisfy the boundary
conditions on the initial hypersurface

∂2i
x ψnjΣ−∩ΣL

¼ ∂2i
x _ψnjΣ−∩ΣR

¼ 0; i ¼ 0; 1; 2… ð35Þ

Now, in order for fψn;ψ�
ng to comprise a complete basis,

we cannot choose the ζn in a completely arbitrary fashion.
To see why, let ϕ be an arbitrary real solution of the wave
equation (17), and further suppose it can be decomposed as
follows:

ϕ ¼ π

L

X∞
n¼1

ðanψn þ a�nψ�
nÞ: ð36Þ

We can use this to evaluate ϕ and _ϕ on Σ−:

ϕjΣ−
¼ 2π

L

X
n

ReðAnÞ sin
�
nπx
L

�
; ð37aÞ

_ϕjΣ−
¼ −

2π

L

X
n

ImðζnAnÞ sin
�
nπx
L

�
: ð37bÞ

with An ¼ an=
ffiffiffiffiffiffiffi
πζn

p
. If ReðζnÞ ≠ 0, then these expressions

represent independent Fourier sine series for ϕjΣ−
and _ϕjΣ−

,
respectively. This implies that fψn;ψ�

ng form an L2-
complete basis for solutions of the wave equation (17).
However, if ReðζnÞ ¼ 0 for any n, then ϕjΣ−

and _ϕjΣ−

cannot be independently selected, and fψn;ψ�
ng will fail to

be a basis. In what follows, we assume that all the ζn are
real and positive.
Using the initial data (34), it is easy to see that fψn;ψ�

ng
is not an orthogonal basis under the inner product (21) if
v ≠ 0:

ðψn;ψmÞ ¼ −ðψ�
n;ψ�

mÞ� ¼
L
π
ðδnm þ σnmÞ; ð38aÞ

ðψn;ψ�
mÞ ¼ ðψ�

n;ψmÞ ¼
L
π
σnm; ð38bÞ

where
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σnm ¼ σ�mn ¼
(
0; n ¼ m;
2ivnm½1−ð−1Þnþm�
L

ffiffiffiffiffiffiffi
ζnζm

p
ðm2−n2Þ ; n ≠ m: ð39Þ

However, it turns out that these mode functions and their
time derivatives do satisfy orthogonality relationships of
the form

ðψn; _ψmÞ
ðψn; _ψ�

mÞ

�
¼ iL½�ζ2n þ F2ðknÞ − v2k2n�

2πζn
δnm; ð40Þ

where

FðkÞ ¼ −iF̂ðikÞ: ð41Þ

Equation (40) does suggest that the Hamiltonian (30) will
have a particularly simple form in terms of these mode
functions. However, it would be ideal to work with a basis
for which both of ðψn;ψmÞ and ðψn; _ψmÞ are proportional
to δnm. Unfortunately, there does not seem to be a closed
form expression for initial data for such mode functions, so
we will work with the nonorthogonal basis defined by (34)
for the rest of this paper.
We have yet to fix the functional relationship between ζn

and kn. Equation (40) suggests that a convenient choice is

ζn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jF2ðknÞ − v2k2nj

q
; ð42Þ

which simplifies the inner products (40) considerably. We
can assign a physical interpretation to this dispersion
relation choice by considering solutions to the wave
equation (17) with eikx spatial dependance in the case of
an infinitely large cavity; i.e., in the L → ∞ limit:

ϕ ¼ Cþe−i½FðkÞtþvkt−kx� þ C−ei½FðkÞt−vktþkx�; ð43Þ

where C� are constants. This is superposition of plane wave
modes with phase velocities

u�ðkÞ ¼ v� FðkÞ
k

: ð44Þ

The geometric mean of the associated phase speeds is

uðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
juþðkÞu−ðkÞj

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jF2ðkÞ − v2k2j

p
k

: ð45Þ

Comparison with (42) yields

ζn ¼ unkn; un ¼ uðknÞ: ð46Þ

That is, the constant of proportionality between ζn and kn is
the mean phase speed of plane waves modes with wave
number kn when L → ∞.

It is important to note that if

v2 >
F2ðkÞ
k2

ð47Þ

for a given choice of k, the phase velocities u� will have the
same sign. Now, in the ðT; XÞ coordinates the plane wave
solution (43) is

ϕ ¼ Cþe−i½FðkÞT−kX� þ C−ei½FðkÞTþkX�: ð48Þ

This is clearly a superposition of a left and right moving
modes with identical phase speeds jFðkÞj=k. We there-
fore see that the condition (47) implies that the ðt; xÞ frame
is moving faster than the phase speed of modes with
wave number k as measured in the preferred frame. That is,
the ðt; xÞ frame is moving with a supersonic velocity
with respect to such modes. Now, when L is finite, the
cavity’s walls will be measured to have speed v in the
preferred frame, which causes us to adopt the following
terminology: if

F2ðknÞ − v2k2n > 0; n ¼ 1; 2…; ð49Þ

we say that the cavity velocity is subsonic; otherwise, we
call the cavity velocity supersonic. Furthermore, we call
modes for which the inequality (49) holds fast modes, all
other modes are called slow. It follows that if F2ðkÞ ≥ k2

for all k > 0, then there will exist no slow modes for all
jvj < 1. Conversely, if F2ðkÞ < k2 for some k > 0, then
there will exist slow modes for certain cavity velocities.
To conclude this section, we note that when both v and L

are finite, we do not know closed form expressions for the
mode functions defined by (34) throughout Ω. This is not a
fundamental difficulty since—as we will see explicitly
below—all we use to find the spectrum of the Hamiltonian
is explicit knowledge of the conserved inner products (38)
and (40).

IV. QUANTIZATION USING
NONORTHOGONAL MODES

We now quantize the system by promoting ϕ and π to
operators satisfying commutation relations

½ϕ̂ðt; xÞ; ϕ̂ðt; x0Þ� ¼ ½π̂ðt; xÞ; π̂ðt; x0Þ� ¼ 0;

½ϕ̂ðt; xÞ; π̂ðt; x0Þ� ¼ iδðx − x0Þ; ð50Þ

We consider the following mode decomposition for ϕ̂:

ϕ̂ðt; xÞ ¼ π

L

X∞
n¼1

½ânψnðt; xÞ þ â†nψ�
nðt; xÞ�; ð51Þ
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where fψn;ψ⋆
ng are the Fourier mode functions introduced

in the last section.3 This means that we cannot make the
usual assumption that the modes satisfy orthogonality
relations of the form

ðψn;ψmÞ ¼
L
π
δnm ¼ −ðψ�

n;ψ�
mÞ; ðψn;ψ�

mÞ ¼ 0: ð52Þ

For various technical reasons encountered below, we will
find it convenient to introduce an ultraviolet truncation in
our mode expansion. Specifically, we retain the first N
Fourier modes in the expansion (53):

ϕ̂ðt; xÞ ¼ π

L

XN
n¼1

½ânψnðt; xÞ þ â†nψ�
nðt; xÞ�; ð53Þ

Physically, this corresponds to considering solutions of the
wave equation generated by initial data on Σ− whose
Fourier transform contains wave numbers ≤ kN ¼ Nπ=L.
Eventually, we will take the limit N → ∞.
We also find it convenient to introduce some vector/

matrix notation for the operators and mode functions
appearing in (53). We write:

â ¼

0
BBBBBBBB@

â1
..
.

âN
â†1
..
.

â†N

1
CCCCCCCCA
; ψ ¼

0
BBBBBBBB@

ψ1

..

.

ψN
ψ�
1

..

.

ψ�
N

1
CCCCCCCCA
: ð54Þ

We use an “H” to denote the Hermitian transpose of a
matrix, such that

ψH ¼ ðψ�ÞT ¼ ðψ�
1 � � �ψ�

N jψ1 � � �ψN Þ;
âH ¼ ðâ†ÞT ¼ ð â†1 � � � â†N jâ1 � � � âN Þ: ð55Þ

With this notation, we can write our mode decomposition
concisely as

ϕ̂ ¼ π

L
âHΓψ ¼ π

L
ψHΓâ; ð56Þ

where

Γ ¼
�
0 I

I 0

�
; Γ2 ¼ I; ð57Þ

and I is the identity matrix. If we now define

ðϕ̂;ψHÞ ¼
�
ðϕ̂;ψ�

1Þ � � � ðϕ̂;ψ�
NÞjðϕ̂;ψ1Þ � � � ðϕ̂;ψNÞ

�
;

ð58Þ

then we have

ðϕ̂;ψHÞ ¼ âHΓS; ð59Þ

where the overlap matrix S is defined as

S ¼ π

L
ðψ;ψHÞ ¼ π

L

� ½ðψn;ψ�
mÞ� ½ðψn;ψmÞ�

½ðψ�
n;ψ�

mÞ� ½ðψ�
n;ψmÞ�

�
: ð60Þ

For an orthogonal basis satisfying (52), the overlap matrix
reduces to

S ¼ ΣΓ; Σ ¼
�
I 0

0 −I

�
; Σ2 ¼ I: ð61Þ

Now, assuming S is invertible4 and noting that
ðϕ̂;ψHÞH ¼ −ðϕ̂;ψÞ, we have

â ¼ −ΓðS−1ÞHðϕ̂;ψÞ; âH ¼ ðϕ̂;ψHÞS−1Γ: ð62Þ

From (50) it follows that if φ and ψ are classical scalar
quantities, then

½ðϕ̂;φÞ; ðϕ̂;ψ�Þ� ¼ ðφ�;ψ�Þ ¼ −ðψ ;φÞ: ð63Þ

Using this and (62), we find the following commutation
relations for fân; â†ng:

½â; âH� ¼ L
π
R−1; ð64Þ

where the (assumed invertible) matrix R is defined by

R ¼ −SHΓ ¼ π

L

� ½ðψn;ψmÞ� ½ðψ�
n;ψmÞ�

½ðψn;ψ�
mÞ� ½ðψ�

n;ψ�
mÞ�

��
: ð65Þ

Now, if the basis fψn;ψ�
ng satisfies (52) then R ¼ Σ. This,

in turn, implies

R ¼ Σ ⇔ ½ân; â†m� ¼
L
π
δnm; ½ân; âm� ¼ 0: ð66Þ

3Most of the formulas in this section and the next are valid for
an arbitrary choice of basis.

4We comment that part of the reason for introducing a finite
cutoff in our mode expansion is that the issue of the invertibility is
considerably more complicated in the infinite dimensional case.
If we take the matrix dimension 2N to be infinite a priori, it is
possible that only one of the left- or right-inverses of S might
exist. In this case, the statement that S is invertible means that
both the left- and right-inverses exist and are equal.
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Therefore, fân; â†ng will only satisfy the algebra of creation
and annihilation operators if fψn;ψ�

ng satisfies (52).
From the formula (30), we obtain the following expres-

sion for the Hamiltonian operator

Ĥ ¼ π2

2L2
âHΩâ; ð67Þ

with

Ω ¼ −iΓðψ; ∂tψHÞ ¼ −i
� ½ðψ�

n; _ψ�
mÞ� ½ðψ�

n; _ψmÞ�
½ðψn; _ψ�

mÞ� ½ðψn; _ψmÞ�

�
:

ð68Þ

Note that Ω is Hermitian (i.e., ΩH ¼ Ω), which means that
Ĥ is self-adjoint, as required.
We conclude this section by giving formulae for R, R−1

and Ω for the Fourier-mode functions introduced in
Sec. III:

R ¼ Σ −
�
σ σ

σ σ

�
; R−1 ¼ Σ −

�−σ σ

σ −σ

�
;

Ω ¼
�
ρ ξ

ξ ρ

�
: ð69aÞ

The entries of the various submatrices appearing above
are

σnm ¼ σ�mn ¼
(
0; n ¼ m;
2iv

ffiffiffiffiffi
nm

p ½1−ð−1Þnþm�
π
ffiffiffiffiffiffiffiffi
unum

p ðm2−n2Þ ; n ≠ m;

ρnm ¼ nunεnδnm; ξnm ¼ −nunð1 − εnÞδnm: ð70Þ

where un is the mean phase velocity defined in Eq. (46),
and

εn ¼
�
1; F2ðknÞ − v2k2n > 0;

0; F2ðknÞ − v2k2n < 0:
ð71Þ

Note that for a cavity with subsonic velocity (i.e., all modes
are “fast”), εn ¼ 1 for all n and ξ ¼ 0.

V. BOGOLIUBOV TRANSFORMATION

The commutator algebra (64) and Hamiltonian (67)
along with the matrix definitions (65) and (68) completely
fix the quantum dynamics of the system. However, if R ≠
Σ then the fân; â†ng operators cannot be used to conduct a
Fock basis; i.e., we cannot write the Hamiltonian as a
function of a number operator that corresponds to the
occupation number of a given mode. In this section, we
therefore attempt to find a Bogoliubov transformation from
fân; â†ng to a new set of operators fb̂n; b̂†ng that do satisfy
the creation/annihilation algebra. We also attempt to

impose the constraint that the Hamiltonian is diagonal in
this new operator basis. Our treatment loosely follows the
formalism of Xiao [80], which treats the problem of
diagonalizing a Hamiltonian expressed in an orthogonal
basis.
Our Bogoliubov transformation is explicitly given by

ân ¼
XN
m¼1

ðAnmb̂m þ Bnmb̂
†
mÞ; â ¼ Tb̂; ð72Þ

with

T ¼
�

A B

B� A�

�
: ð73Þ

Here Anm and Bnm are the Bogoliubov coefficients. We note
that Eq. (73) is equivalent to demanding

T ¼ ΓT�Γ: ð74Þ
A matrix satisfying either (73) or (74) is said to be a
“Bogoliubov-Valatin” (BV) transformation. Now, (64)
gives

T½b̂; b̂H�TH ¼ L
π
R−1: ð75Þ

We demand that

THRT ¼ Σ; ð76Þ

which implies that fb̂n; b̂†ng satisfies the creation/
annihilation algebra:

½b̂; b̂H� ¼ L
π
Σ: ð77Þ

Now, in terms of the b̂ operators, the Hamiltonian is

Ĥ ¼ π2

2L2
b̂HTHΩTb̂: ð78Þ

Equation (76) implies that the inverse of T exists and
is given by T−1 ¼ ΣTHR, which means this can be re-
written as

Ĥ ¼ π2

2L2
b̂HΣT−1DTb̂; ð79Þ

where

D ¼ R−1Ω: ð80Þ

Let us now make the further assumption that we can choose
T such that it diagonalizes the D matrix in the following
manner:
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T−1DT ¼ diagðμ1;…; μN;−μ1;…;−μNÞ; ð81Þ

where μ1…μN are positive numbers. Then, the Hamiltonian
and operator algebra take the familiar form

Ĥ ¼ π2

2L2

XN
n¼1

μnðb̂†nb̂n þ b̂nb̂
†
nÞ; ½b̂n; b̂†m� ¼

L
π
δnm;

ð82Þ

with all other b̂n commutators vanishing. A number
operator that returns the number of field quanta associated
with the nth mode for a given quantum state is defined in

the usual way: N̂ n ¼ ðπ=LÞb̂†nb̂n. Making note of (5) and
(33), we find that the proper time Hamiltonian is given by

Ĥτ ¼
XN
n¼1

ωn

�
N̂ n þ

1

2

�
; ωn ¼

πμn
L0ð1 − v2Þ : ð83Þ

We call the ωn the “normal mode” frequencies of the cavity
due to the similarity of (83) and the Hamiltonian of a
mechanical mass-spring system expressed in normal coor-
dinates. The energy levels (i.e., eigenvalues of Ĥτ) of the
system will be the sum of the ground state energy plus
integer multiples of the normal mode frequencies (as
measured by an observer comoving with the cavity).
To summarize, if there exists a 2N-dimensional square

matrix T such that
[i] THRT ¼ Σ,
[ii] T ¼ ΓT�Γ, and
[iii] T−1DT ¼ diagðμ1;…; μN;−μ1;…;−μNÞ,

then we can write the Hamiltonian in the diagonal form (82)
via a Bogoliubov transformation. In such cases, we call T a
“normal mode transformation.” Furthermore, if the above
conditions hold for all N, then in the limit N → ∞ we will
have

Ĥτ ¼
X∞
n¼1

ωn

�
N̂ n þ

1

2

�
; ωn ¼

πμn
L0ð1 − v2Þ ; ð84Þ

where f�μng are the eigenvalues of the infinite matrix
D∞ ¼ limN→∞D. In Appendix, we demonstrate that such
a normal mode transformation exists if and only if Ω is
positive definite for all N.
We conclude this section by noting that, in addition to

the b̂ operators, T can be used to define normal mode
functions fφn;φ�

ng. We write

φ ¼

0
BBB@

φ1

..

.

φ�
1

..

.

1
CCCA ¼ ΓTHΓψ; ð85Þ

which implies that

ϕ̂ ¼ π

L
b̂HΓφ: ð86Þ

Repeating the calculations of Sec. IV with this mode
expansion and noting both (77) and (82), we see that the
normal mode functions satisfy:

ðφn;φmÞ ¼ ðL=πÞδnm ¼ −ðφ�
n;φ�

mÞ; ðφn;φ�
mÞ ¼ 0;

ðφn; _φmÞ ¼ iμnδnm; ðφ�
n; _φmÞ ¼ 0: ð87Þ

From this, it follows that:

�
φn;

dφm

dτ
þ iωmφm

�
¼

�
φ�
n;
dφm

dτ
þ iωmφm

�
¼ 0; ð88Þ

for all n and m. Since fφn;φ�
ng form a complete basis, this

means

dφm

dτ
þ iωmφm ¼ 0 ⇒ φm ¼ e−iωmτΦmðxÞ; ð89Þ

where ΦmðxÞ is a function determined by the details of the
normal mode transformation or, equivalently, a solution of
the ODE boundary value problem

�
−
iωm

γ
þ v∂x

�
2

Φm − F̂2ð∂xÞΦm ¼ 0;

∂ð2iÞ
x Φmjx¼0;L ¼ 0: ð90Þ

In other words, the φm functions oscillate sinusoidally with
frequency ωm according to an observer comoving with the
cavity. This is consistent with the classical behavior of a
normal mode, and hence provides additional justification
for calling ωm the “normal mode” frequencies of the
system.

VI. RESONANT FREQUENCIES FOR SUBSONIC
CAVITY VELOCITY

In the last section, we saw how the spectrum of D in the
N → ∞ limit gives the energy eigenvalues of the system,
also known as the normal mode frequencies, provided that
a normal mode transformation exists. In this section, we
consider the situation when the cavity velocity is subsonic;
or, equivalently, the case when all Fourier modes are
considered to be “fast.” In this case, we have ξ ¼ 0, which
means that Ω is positive-definite. By Lemma 4 in
Appendix, this means that a normal mode transformation
does indeed exist. In this section, we calculate the normal
mode frequencies using several different methods and
assumptions.
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A. Zero velocity case

When the cavity has zero velocity with respect to the
preferred frame, the matrix D is diagonal and its positive
eigenvalues are simply:

μn ¼
π

L0

����F
�
nπ
L0

�����: ð91Þ

This leads to normal mode frequencies of the form

ωn¼
����F
�
nπ
L0

�����¼nπ
L0

����1−XM
i¼2

cið−1Þi
�
nπL⋆
L0

�
2i−2

����: ð92Þ

If we make the physical assumption that the cavity is much
bigger than the exotic physics length scale L0 ≫ nL⋆, then
we have

ωn ≈ ωð0Þ
n þ δωstatic

n ; ð93Þ

where

ωð0Þ
n ¼ nπ

L0

; δωstatic
n ¼ −c2½ωð0Þ

n L⋆�2ωð0Þ
n : ð94Þ

Here, ωð0Þ
n are the frequencies of the cavity in the Lorentz

invariant case, and δωstatic
n is the leading order correction to

the frequencies when the cavity is at rest compared to the
preferred frame.

B. High velocity limit

We first examine the limit in which jvj → 1 while the
proper cavity length L0 is held fixed. In this limit, the wave
numbers kn are divergent:

kn ¼
nπ
L

¼ nπ

L0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p → ∞: ð95Þ

Recall that the highest order spatial derivative in the wave
equation (17) is ∂4M−2

x . If M > 1, it follows that the mean
phase velocity is given by

un ≈
jcMj
2M−1

�
nπL⋆
L0

�
2M−2

ð1 − jvjÞ1−M; ð96Þ

for jvj → 1. Now, we can decompose the D matrix as

D ¼ D0 þ D1;

D0 ¼
�
ρ 0

0 −ρ

�
; D1 ¼

�
σρ −σρ
−σρ σρ

�
: ð97Þ

Putting (96) into (70), we see that kρk ¼ O½ð1 − jvjÞ1−M�
while kσk ¼ O½ð1 − jvjÞM−1�, where k · k indicates some
suitable matrix norm. Hence, we can takeD ≈ D0. SinceD0

is diagonal its eigenvalues and eigenvectors are trivial and
can be divided into two sets. First, we have eigenvalue-
eigenvector pairs:

ðμn; vnÞ ¼ ðnun; enÞ; n ¼ 1…N; ð98Þ

where en is the nth standard basis vector in C2N . The
second set of eigenvalue-eigenvector pairs are

ð−μn;unÞ ¼ ð−nun;ΓenÞ; n ¼ 1…N: ð99Þ

Neglecting the contribution of D1 to D, we then find that
the normal mode frequencies are given by

ωn≈
nπjcMj
2ML0

�
nπL⋆
L0

�
2M−2

ð1− jvjÞ−M; M>1: ð100Þ

This result is independent of matrix size, so we can trivially
take the N → ∞ limit. Therefore, the energy levels of the
system diverge like ð1 − jvjÞ−M for high velocities.
If all the coefficients appearing in (7) are of order unity,

we expect the phase velocity approximation (96) to hold for

knL⋆ ¼ nπL⋆
L0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ≫ 1: ð101Þ

Hence, this is also the condition for which we expect the
high-v normal mode formula (100) to be applicable. We
can rewrite this in terms of the Lorentz invariant frequency

ωð0Þ
n ¼ nπ=L0:

ωð0Þ
n L⋆ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ≫ 1: ð102Þ

We can further interpret this physically by noting that in
this approximation, the D matrix is diagonal and therefore
the Fourier modes of Sec. III are the normal modes of the
cavity. Then, the characteristic wavelength of each of these
modes as measured in the preferred frame is

λprefn ¼ L0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p

2n
; ð103Þ

and the condition for the approximation (100) to hold is
simply that mode wavelength in the preferred frame is less
than the exotic physics length scale:

λprefn ≪ L⋆: ð104Þ

C. Small velocity limit

We now turn our attention to the small velocity case
jvj ≪ 1. We note that the matrix D1 is proportional to v, so
it makes sense to treat it as a perturbative correction to D0.
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This allows us to find the approximate the eigenvalues of D
using an algorithm highly analogous to time-independent
perturbation theory in quantum mechanics. However, there
is one key difference: in quantum mechanics, one is trying
to estimate the eigenvalues of a Hermitian linear operator
(the Hamiltonian), whereas here the relevant operator D is
not self-adjoint. Fortunately, it is not difficult to generalize
the quantum mechanical formula to non-Hermitian linear
operators.
We write the eigenvalues of D as

νn ¼ νn;0 þ νn;1 þ νn;2 þ � � � ; ð105Þ

where νn;0 indicates the eigenvalue ofD0 associated with an
eigenvector wn, νn;1 is the first order perturbative correction
due to D1, νn;2 is the second order correction, etc. The first
order correction is given by

νn;1 ¼ wH
nD1wn: ð106Þ

Now, just as in the high velocity case above, the eigen-
vectors and eigenvalues of D0 are given by (98) and (99).
Since the eigenvectors are essentially the standard basis
vectors, we see that νn;1 is just the ðn; nÞ component of D1.
But D1 has zeroes on its main diagonal, so νn;1 ¼ 0.
Turning to the second order correction, we have

νn;2 ¼
X
k≠n

ðwH
nD1wkÞðwH

kD1wnÞ
νn;0 − νk;0

: ð107Þ

After some algebra, this expression yields the following
formula for the positive eigenvalues of D:

μn¼nun

�
1þ16v2n2

π

X
k≠n

k2½1−ð−1Þnþk�2
ðk2−n2Þ2ðn2u2n−k2u2kÞ

þOðv4Þ
	

ð108Þ

We note that this expression holds for all N and that the
mean phase velocity un is a function of v.
For certain choices of dispersion relation, the sum

appearing in (107) is analytically calculable in the
N → ∞ limit. For example, if we take

F̂ð∂xÞ ¼ ∂x − L2⋆∂3
x; FðkÞ ¼ kþ L2⋆k3;

un ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ n2π2L2⋆

L2
0

�
2

− v2

s
; ð109Þ

and retain terms of order v2 in (107) we can derive a
complicated closed form expression for μn.

5 This expres-
sion becomes much simpler if we make the physical

assumption that the cavity’s rest length is much larger
than the length scale of exotic physics L0 ≫ L⋆, yielding

μn ¼ nð1 − v2Þ þ π2L2⋆ð1þ 7v2Þn3
L2
0

þO
�
v4;

L3⋆
L3
0

�
: ð110Þ

From this, we obtain the normal mode frequencies

ωn ¼
nπ
L0

�
1þ π2n2L2⋆ð1þ 8v2Þ

L2
0

	
þO

�
v4;

L3⋆
L3
0

�
; ð111Þ

we can rewrite this as

ωn ≈ ωð0Þ
n þ δωstatic

n þ δωdynamic
n ; ð112Þ

where ωð0Þ
n ¼ nπ=L0 is the Lorentz invariant frequency,

δωstatic
n is the leading order correction to the frequency of a

stationary cavity as derived in Sec. VI A (with c2 ¼ −1),
and

δωdynamic
n ¼ 8v2½ωð0Þ

n L⋆�2ωð0Þ
n ; ð113Þ

is the leading order velocity correction to the normal mode
frequencies. Hence, we see that both the leading order static
and dynamic corrections to a given normal mode’s fre-

quency scale like ½ωð0Þ
n L⋆�2.

D. Numerical approximation

We can estimate the normal mode frequencies numeri-
cally using a variation of the Rayleigh-Ritz method. The
idea is to calculate the eigenvalues of D for matrix sizes
N ≤ Nmax. We then approximate the a subset of the
eigenvalues of D∞ by eigenvalues of D which appear to
converge to fixed values as N → Nmax. The associated
eigenvectors are approximations to the eigenvectors of
D∞ that are “mostly” confined to the subspace spanned
by the columns of D.6

Physically, we can understand why this method works by
recalling that by taking N to be finite, we are essentially
excluding initial data involving wavelengths ≲L=N.
Hence, the normal modes identified by this method are
the solutions of the wave equation involving wavelengths
≪ L=Nmax; i.e., “infrared”modes are best approximated by
this algorithm.
In Fig. 2, we show how the smallest positive eigenvalues

of D behave as the matrix size is increased for F̂ given
by (109).7 We see that for a rather moderate choice of
matrix size (N ∼ 30), the first ten eigenvalues appear to
be approaching their asymptotic values. In the plots that

5Note that FðkÞ=k > 1 for the choice (109), so we are
guaranteed that all modes are subsonic.

6Technically speaking, here “columns of D” refer to the C∞

vectors obtained from the actual columns ofD by appropriately ap-
pending zeroes.

7The spectrum ofD is symmetric under μ → −μ for this choice
of F̂, so we do not show the negative eigenvalues.
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follow, we take N ¼ 200which implies that the lowest ∼25
eigenvalues are well converged.
In Fig. 3, we show the dependence of the eigenvalues and

normal mode frequencies on the cavity velocity for the
cubic F̂ given in (109). We see that at low velocities and for

large cavities (v2 ≪ 1 and L0 ≫ L⋆) the eigenvalues are
≈nð1 − v2Þ and the standard spectrum ω ≈ nπ=L0 is
recovered, as expected from Sec. VI C. However, for
v2 → 1 we see that the ωn frequencies diverge, as predicted
by the analytic analysis of Sec. VI B. Qualitatively, the
spectra associated with larger cavities resemble the stan-
dard case more strongly than the spectra of smaller cavities.
In Fig. 4, we compare the high velocity behavior of our

numeric approximation to the results of Sec. VI B. We see
excellent agreement between the analytic and numerical
results when the mode wavelength λprefn is less than L⋆.

E. Aside: Recovering the standard result
in the Lorentz invariant case

Before leaving this section, we comment that all of the
above formalism applies to the Lorentz invariant choice
F̂ð∂XÞ ¼ ∂X. We know that in this case, the normal mode
frequencies as measured by comoving observers cannot
depend on v and must be given by

ωn ¼
nπ
L0

; ð114Þ

which in turn implies that the positive eigenvalues of the D
matrix have to be

FIG. 2. Plot demonstrating the convergence of the lowest ten
eigenvalues of D as N is increased. We have taken F̂ to be the
cubic polynomial given in (109) and selected L0 ¼ 20πL⋆
with v ¼ 0.9.

FIG. 3. Numerical approximations to the positive eigenvalues μn of D∞ and the normal mode frequency ωn as a function of cavity
velocity v. We have take F̂ to the cubic polynomial given in (109).
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μn ¼ nð1 − v2Þ; ð115Þ

in the N → ∞ limit.
Now, we note that even when F̂ð∂XÞ ¼ ∂X, the matrix D

has a nontrivial structure:

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p �
ℵ 0

0 −ℵ

�
þ 4iv

π

�
χ −χ
−χ χ

�
;

where

ℵ ¼ diagð1; 2; 3…Þ; ð116Þ

and the components of χ are given by

χnm ¼
�
n1=2m3=2ðm2 − n2Þ−1; ðn −mÞ ∈ odd;

0; ðn −mÞ ∈ even:
ð117Þ

Written out explicitly, the upper-left portion of the χ
matrix is

χ ¼

0
BBBBBBBBBBBB@

0 2
ffiffi
2

p
3

0 8
15

0 � � �
−

ffiffi
2

p
3

0 3
ffiffi
6

p
5

0 5
ffiffiffiffi
10

p
21

� � �
0 − 2

ffiffi
6

p
5

0 8
ffiffi
3

p
7

0 � � �
− 2

15
0 − 6

ffiffi
3

p
7

0 10
ffiffi
5

p
9

� � �
0 − 2

ffiffiffiffi
10

p
21

0 − 8
ffiffi
5

p
9

0 � � �
..
. ..

. ..
. ..

. ..
. . .

.

1
CCCCCCCCCCCCA

ð118Þ

From this, we see that D is a rather complicated matrix, and
it is not at all clear how to analytically demonstrate that its
positive eigenvalues are given by (115).
Since we cannot analytically determine the eigenvalues

of D∞, we instead calculate them numerically. The results
are shown in Fig. 5. We find that the numerical eigenvalues
are indeed consistent with μn ¼ nð1 − v2Þ, which is an
important consistency check for both our analytic and
numerical arguments.

VII. CLASSICAL INSTABILITIES FOR
SUPERSONIC CAVITY VELOCITY

In this section, we consider the case of a supersonic
cavity; i.e., one for which certain modes have phase speed
less than the velocity of the cavity’s walls (as measured in
the preferred frame in the L → ∞ limit). In other words, the
cavity’s walls act as a sonic horizon for some Fourier
modes. In this case, the Ω matrix given in (69) is not
diagonal or positive-definite, so we are guaranteed that a
normal mode transformation does not exist by Lemma 5 in
Appendix.
In fact, the classical Hamiltonian is not bounded from

below in this case. To see this, we can plug the classical
Fourier mode expansion (36) into (30) to obtain

H ¼ π2

2L2
aHΩa; ð119Þ

where a is the vector formed by the classical expansion
coefficients an in a manner similar to (54). Let us define
two sets of positive integers:

S ¼ fn ∈ ZþjF2ðknÞ − v2k2n ≥ 0g; ð120Þ

S̄ ¼ fn ∈ ZþjF2ðknÞ − v2k2n < 0g ¼ Zþ=S: ð121Þ

FIG. 4. Numerical approximations to the positive eigenvalues
μn of D∞ as a function of cavity rapidity v (solid lines). Also
plotted is the analytic approximations for the high velocity
eigenvalue behavior derived in Sec. VI B (dashed lines). The
squares on the solid lines where the characteristic wavelength of a
given mode equals the exotic physics length scale. This plot
assumes that F̂ is given by (109) with L0 ¼ 100πL⋆.

FIG. 5. Numerical approximations to the positive eigenvalues
μn of D∞ in the Lorentz-invariant case F̂ ¼ ∂X (points). Shown
for comparison are the curves μn ¼ nð1 − v2Þ, which represent
our expectations from Lorentz symmetry considerations (lines).
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The set S contains the integer labels of all the modes with
mean phase velocity greater than v (“fast” modes), while
the set S̄ contains all the integer labels of the modes with
mean phase velocity less than v (“slow” modes). Then, the
classical Hamiltonian can be written as

H ¼ π

L

X
n∈S

ζnjanj2 −
π

L

X
n∈S̄

ζnReða2nÞ: ð122Þ

Recalling that ζn ≥ 0, we see that the first sum is associated
with the amplitudes of the fast modes and is positive
semidefinite. On the other hand, the second sum is due to
the slow modes and does not have a fixed sign. Hence, the
classical Hamiltonian is unbounded from below if there are
any slow modes present (S̄ ≠ ∅); i.e., if the cavity velocity
is supersonic.
The unboundedness of H would seem to imply a

classical instability of the system. To test this, we numeri-
cally solved the wave equation with the choice

FIG. 6. Numeric simulations of the solution of the wave equation (17) for the choice (123). The top panels show F2ðknÞ=k2n − v2

versus n for the first few Fourier modes of the system and three different sets of parameter values. The sign of this quantity determines
whether or not a given mode is fast or slow. If there exist any slow modes, the classical Hamiltonian to be unbounded from below and we
expect the system to be classically unstable. The lower panels show numeric simulations for the various parameter choices shown in the
top row. We indeed see that when the system supports even one slowmode, the numerical solution the wave equation appears to exhibit a
classical instability.
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F̂ð∂xÞ ¼ ∂x þ L2⋆∂3
x; FðkÞ ¼ k − L2⋆k3;

un ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����
�
1 −

n2π2L2⋆
L2
0

�
2

− v2
����

s
: ð123Þ

Depending on the values of v and L0, the cavity may
or may not possess slow modes. In Fig. 6, we plot
F2ðknÞ=k2n − v2 versus n for several parameter choice along
with the associated simulation results. We clearly see in the
figure that if the cavity’s velocity is subsonic for every
mode (i.e., all modes are “fast”), then the numerical
evolution appears to be stable. On the other hand, if even
one mode has mean phase velocity less than the wall
velocity (i.e., some modes are “slow”), the numerical
solution is exponentially growing.
Based on the unboundedness of the Hamiltonian and

numerical simulations, we may be tempted to conclude that
the cavity exhibits a classical instability whenever its wall
velocity is supersonic in the preferred frame. However, we
caution that the circumstantial evidence presented here
does not constitute a proof of this conjecture.
We conclude this section by comparing our results to the

discussion in Ref. [79]. In that paper, it was pointed out that
if a field has a non-Lorentz-invariant dispersion relation
such that the 4-momentum kα of a given mode is spacelike,
then the energy of that mode E ¼ −kαuα, as measured by
an inertial observer with 4-velocity uα, can be either
positive or negative. In [79], frames in which the energy
is positive or negative were termed “concordant” or “non-
concordant,” respectively. The existence of negative energy
modes in nonconcordant frames would suggest an insta-
bility in the same way that the unboundedness of the
Hamiltonian from below does in our system.
To see how this intuition works in our model, we note

that a plane wave solution of the wave equation in the
preferred frame in the absence of cavity walls is

ϕ ¼ Ceikαx
α ¼ Ce−i½jFðkÞjt−kx�; kα ¼ ½jFðkÞj; k; 0; 0�:

ð124Þ
A sufficient condition for the 4-momentum to be spacelike
(i.e., kαkα > 0) is that F2ðkÞ < k2. In the preferred frame,
the 4-velocity uα of an inertial observer with velocity v in
the x-direction is given by

uα ¼ γ½1; v; 0; 0�: ð125Þ
The energy of the mode according this observer is then

E ¼ γ½jFðkÞj − kv�: ð126Þ
We see then that E < 0 is only possible if

F2ðkÞ − k2v2 < 0: ð127Þ
But this inequality is exactly the condition that slow modes
exist in a frame moving at speed v with respect to the

preferred frame. Furthermore, since v2 < 1 the inequality
can only be satisfied if mode’s 4-momentum is spacelike.
So, like the authors of [79], we find that if there exist mode
solutions of the wave equation with spacelike momenta and
positive energy in a given frame, there exist other frames
where the mode energy is negative and the Hamiltonian is
unbounded from below. In such nonconcordant frames, it is
not surprising to find a classical instability. In some sense,
we have found an explicit example that supports the general
argument found in [79].

VIII. CONSTRAINTS FROM
CAVITY EXPERIMENTS

In this section, we consider how experiments an be used
to put constraints on Lorentz violations based on the effects
described above. Several scenarios are possible, but here
we concentrate on one particularly precise experiment:
namely, rotating cavities (see, e.g., [75]). The key obser-
vation is that, in the presence of Lorentz violation of the
form discussed in this paper, the normal mode frequencies
of a cavity moving with 3-velocity v⃗ with respect to the
preferred frame will be different if the cavity’s boundaries
are parallel or perpendicular to v⃗. We will need to assume
that the results presented in the previous section for scalar
fields generalize to spin-1 fields, since actual experiments
almost exclusively measure electromagnetic radiation. This
does not seem like a radical assumption based on expe-
rience from ordinary quantum field theory, but it is
important to keep in mind that electromagnetic field theory
is considerably more complicated in models that break
Lorentz invariance. Therefore, the discussion in this section
is some what heuristic. In this section, we take F̂ to be of
the form (109) for concreteness.
We are therefore motivated to consider the experimental

set-up is shown in Fig. 7. As before, we denote Cartesian
coordinates in the preferred frame by ðX; Y; ZÞ. We

FIG. 7. A rotating cavity experiment.
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consider two orthogonal cavities on a turntable rotating
with frequency ωrot in the XY-plane. The centre of the
turntable moves with speed v in the negative X-direction. It
is easy to see that if v ≪ 1 and we adopt the cubic-squared
dispersion relation (109), the results of Sec. VI C give

ωn

ωð0Þ
n

≈ 1þ ½ωð0Þ
n L⋆�2 ×

�
1þ 8v2; X orientation;

1; Y orientation;
ð128Þ

where the ωð0Þ
n ¼ nπ=L0 are the normal mode frequencies

in the absence of Lorentz violation. Here, “X orientation”
and “Y orientation” refer to the cases where the normals to
the cavity boundaries are parallel to the X and Y axes,
respectively. We also assume that a pair of tuneable lasers
are stabilized to normal modes of frequency ω1 > ω2 in
cavities 1 and 2 respectively. The beat frequency between
the two lasers Δω ¼ ðω1 − ω2Þ=2 can then be easily
measured by siphoning-off and combining a small amount
of output from each laser. As the table rotates, Δω will be
modulated with frequency 2ωrot as the cavities’ orientation
relative to the turnable velocity changes. The amplitude A
of the modulation will be

A ∼ 4L2⋆v2ðω1 þ ω2Þðω2
1 − ω1ω2 þ ω2

2Þ: ð129Þ

Finally, we can make the simplifying assumption that the
frequencies each laser are reasonably close to each other
ω1 ≈ ω2 ≈ ω0:

A
ω0

∼ 8ω2
0L

2⋆v2: ð130Þ

An terrestrial experiment of this type was done by
Herrmann et al. [75], who found that A=ω0 ≲ 10−16 using
lasers tuned to frequency ω0 ¼ 1.17 eV. Assuming that the
preferred frame is defined by the cosmic microwave
background (CMB) and noting that the speed of the earth
with respect to the CMB is v ∼ 2 × 10−3, this gives
L−1⋆ ≳ 7 × 10−4 GeV.
We note that L⋆ for this dispersion relation can sepa-

rately constrained by observations of gamma-ray bursts. If
we translate the results of Vasileiou et al. [53] into our
notation, one finds the constraint L−1⋆ ≳ 1010 GeV from
astrophysical observations. Clearly, this is a much more
stringent result than can be obtained from the terrestrial
experiment described above.
Is it possible to do better? We saw in Sec. VI that the

relative changes to the resonant frequency of a given the
cavity becomes significant [i.e., Δω=ω0 ≳Oð1Þ] if

ω0L⋆ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ≳ 1: ð131Þ

Assuming ω0L ≪ 1, this becomes

jvj≳ 1 −
1

2
ω2
0L

2⋆ ð132Þ

Hence, in order to obtain better a better constraint on L⋆
than the one from gamma ray bursts from an experiment
using a modes with ω0 ≈ 1 eV, one would need to conduct
the experiment in a lab traveling at a speed of v≳ 1–5 ×
10−39 with respect to the preferred frame. Obviously, this
represents a significant technical (and energetic) challenge
if the preferred frame is the CMB.

IX. DISCUSSION

In this paper, we have considered scalar fields with non-
Lorentz invariant dispersion relations confined in a quan-
tum cavity. If the walls of the cavity move with a speed
exceeding the speed of the scalar modes, we have presented
evidence that the system is classically unstable and, as
mentioned in the introduction, a Bogoliubov transforma-
tion to a basis diagonalizing the Hamiltonian may not exist.
The fact that we are not guaranteed the existence of a
Bogoliubov transformation diagonalizing the Hamiltonian,
and in turn a well-defined energy spectrum, is not a novel
feature of our model; indeed similar phenomena can be
found in the literature albeit in a different context. For
example in [79] the authors find that dispersion relations
induced by Lorentz violation in the electromagnetic sector
of SME can lead to negative energies in certain observer
frames; the nomenclature used for these frames is “non-
concordant,” where a “concordant frame” is one in which
modifications due to Lorentz violations remain small.
Boosting to nonconcordant frames leads to failure of the
canonical quantization procedure and may lead to stability
problems when interactions are introduced. Additionally,
violations of microcausality may also arise as one particle
dispersion relations can develop group velocities exceeding
1. For further discussion on nonconcordant frames see
[81,82]; to see how these issues may be overcome via an
extended Hamiltonian formalism see [83,84].
If however the walls move slower than the speed of all

the scalar modes, we find that the energy spectrum of the
cavity depends on the inertial velocity of the cavity with
respect to a preferred frame in a nontrivial way. Our results
are significantly different from previously reported results
for the mSME [69], where the changes to a cavities
resonant frequencies are effectively modeled by a velocity
dependent index of refraction between the plates. This
implies that the spacing between adjacent resonant frequen-
cies ωnþ1 − ωn is independent of n in the mSME (just as in
standard theory). In contrast, for our model involving
higher dimensional operators, ωnþ1 − ωn will generally
depend on n. Because our results are directly tied to the
existence of dimension 6 and higher operators in the
effective action, the effects of Lorentz violation at low
energies is exceedingly small if the speed of the cavity with
respect to the preferred frame is not too large. However, if
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the cavity speed approaches 1, then the energy levels of the
cavity become infinite.
This work can be extended in many ways: To make the

model more realistic, the behavior of electromagnetic fields
in a finite moving cavities should be considered. It would
also be interesting to determine the thermodynamic proper-
ties of a gas of quanta confined to a moving cavity
following [85]; i.e., solve the blackbody problem for this
system. One can also extend the calculation of the Casimir
effect in a cavity at rest in the preferred frame [86] to a
cavity with nonzero velocity. The dynamical Casimir effect,
where the mismatch between velocity of the two cavity
walls results in particle creation, could be interesting from
both a theoretical and experimental point of view. Finally, it
would be useful to apply the formalism of this paper to the
Unruh effect and black hole radiation. In the former case,
one would hope to get some physical insight into the main
result presented in Husain and Louko [50], which was that
certain Lorentz-violating dispersion relations lead to rad-
ically different behaviors for inertial particle detectors at
low energy.
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APPENDIX: EXISTENCE OF THE
BOGOLIUBOV TRANSFORMATION

In this Appendix, we show that if Ω is positive definite,
then we can find a Bogoliubov transformation T satisfying
the conditions [ii]–[i] from Sec. V. Here, the matricesR and
Ω are defined in Eqs. (65) and (68), respectively. Through-
out this Appendix, we assume all matrices are of finite
size 2N × 2N, which allows us to make liberal use of
elementary results from linear algebra. Our analysis loosely
follows the arguments presented in Xiao [80], which deals
with the Hamiltonian diagonalization problem given an
already orthogonal basis.
Lemma 1: The matrices R and Ω have the following

properties

R ¼ RH; ðA1Þ

Ω ¼ ΩH; ðA2Þ

ΓR�Γ ¼ −R; ðA3Þ

ΓΩ�Γ ¼ Ω: ðA4Þ

Proof.—These results can be verified from the defini-
tions (65) and (68) making use of the identities (22). ▪
Definition 1: TheR-inner product between two vectors

is defined by

hu; vi ¼ uHRv: ðA5Þ

Lemma 2: If vn is an eigenvector of D with eigenvalue
μn, then un ¼ Γv�n is also an eigenvector of D with
eigenvalue −μ�n. Furthermore, the eigenvectors satisfy

hvn; vmi� ¼ −hun;umi; hvn;umi ¼ −hvm;uni: ðA6Þ

Proof.—If vn and μn are solutions to the eigenvalue
problem for D ¼ R−1Ω, then it follows that

ðΩ − μnRÞvn ¼ 0: ðA7Þ

This can be rearranged to read

½ΓðΩ − μnRÞ�Γ�ðΓv�nÞ ¼ 0: ðA8Þ

Using (A3) and (A4), this can be recast as

ðΩþ μ�nRÞun ¼ 0; un ¼ Γv�n: ðA9Þ

Hence, un ¼ Γv�n is an eigenvector of D with eigenvalue
−μ�n. The relations (A6) follow directly from Lemma 1,
Definition 1, and un ¼ Γv�n. ▪
Definition 2: A normal mode transformation is a matrix

T such that
[i] THRT ¼ Σ,
[ii] T ¼ ΓT�Γ, and
[iii] T−1DT ¼ diagðμ1;…; μN;−μ1;…;−μNÞ≡ Λ.

Here, T−1 ¼ ΣTHR and μn > 0.
Definition 3: Aset of vectorsS ismutuallyR-orthogonal

if for all w1;w2 ∈ S, w1 ≠ w2 implies hw1;w2i ¼ 0.
Lemma 3: Suppose that

[a] there exists a set of N mutually R-orthogonal eigen-
vectors ofD given byB ¼ fvn;ungNn¼1 withun ¼ Γv�n;

[b] hvn; vni ¼ 1; and
[c] the eigenvalue associated with vn is positive.
Then there exists normal mode transformation T with the
μn given by the eigenvalues of D associated the vn eigen-
vectors.
Proof.—We need to show that conditions [i]–[iii] in

Definition 2 hold with these assumptions. To prove [i], we
note that since R is Hermitian, we have

hw;wi ¼ hw;wi�: ðA10Þ

Then, by Lemma 2, we have hun;uni ¼ −hvn; vni ¼ −1.
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If we then construct T according to

T ¼

0
BB@

j j
v1 � � � u1 � � �
j j

1
CCA; ðA11Þ

then we see that [i] is satisfied.
The proof of [ii] follows directly from the definition

(A11) and the fact that un ¼ Γv�n.
Finally, if we denote the positive eigenvalue associated

with vn as μn, we have from Lemma 2

DT ¼ TΛ: ðA12Þ

Equation [i] implies that T−1 exists and is equal to ΣTHR.
Hence, we have T−1DT ¼ Λ, which verifies [iii]. ▪
Lemma 4: Suppose that Ω is positive definite. Then, a

normal mode transformation exists.
Proof.—Because Ω is positive definite, we can write

Ω ¼ FHF where F is an invertible matrix. Since F is
invertible, then FH is also invertible. From this, it follows
that D is invertible and D−1 ¼ F−1ðFHÞ−1R. This implies
that the spectrum of D does not include zero.
Hence, if w is an eigenvector of D with eigenvalue μ, we

can write:

Qy ¼ μ−1y; y ¼ Fx; Q ¼ ðFHÞ−1RF−1: ðA13Þ

Since Q is obviously Hermitian, we are guaranteed that we
can find linearly independent eigenvectors yn ofQwith real
nonzero eigenvalues that are mutually orthogonal under the
Euclidean inner-product. This then implies that the eigen-
vectors of D (given by wn ¼ F−1yn) satisfy relations

wH
nΩwm ¼ 0 ⇒ hwn;wmi ¼ 0; ðA14Þ

when n ≠ m. Therefore,D possesses a set S of eigenvectors
that are mutually orthogonal under the R-inner product.
Furthermore, Lemma 2 and the fact zero is not an
eigenvalue of D implies that half of the eigenvectors in
S must be associated with positive eigenvalues, and the
other half must be associated with negative eigenvalues.
Now, if we denote the eigenvectors in S with positive

eigenvalues μn > 0 by ṽn, then we have

hṽn; ṽni ¼
ṽHnFHFṽn

μn
: ðA15Þ

The right-hand side is manifestly positive, so we conclude
that R-norm of ṽn is positive.

Hence, we can construct a new set of eigenvectors B ¼
fvn;ungNn¼1 with vn ¼ ṽn=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihṽn; ṽni
p

, un ¼ Γv�n, and

hvn; vni ¼ 1: ðA16Þ

Furthermore, since the vn are just scalar multiples of
vectors in S, they are mutually orthogonal under the R-
inner product. Lemma 2 then implies that the un vectors are
also mutually orthogonal.
The eigenvalue equations for vn and um are

0 ¼ ðΩ − μnRÞvn; ðA17Þ

0 ¼ ðΩþ μmRÞum: ðA18Þ

Combining these, we get

ðμn þ μ�mÞhvn;umi ¼ 0: ðA19Þ

Since the μn are strictly real and positive, this gives
hvn;umi ¼ 0.
Therefore, B ¼ fvn;ungNn¼1 is a set of mutually R-

orthogonal eigenvectors of D, the R-norm of vn is þ1,
and the eigenvalue of vn is positive; by Lemma 3, a normal
mode transformation exists. ▪
Lemma 5: Suppose that a normal mode transformation

exists. Then, Ω is positive definite.
Proof.—Since all the μn are positive when a normal

mode transformation exists, we can define a matrix Θ as
follows:

Θ2 ¼ ΣΛ;

Θ ¼ diagðμ1=21 ;…; μ1=2N ; μ1=21 ;…; μ1=2N Þ: ðA20Þ

Furthermore, properties [i] and [iii] of a normal mode
transformation can be combined to show

THΩT ¼ Θ2: ðA21Þ

This may be rearranged to yield

Ω ¼ FHF; F ¼ ΘT−1: ðA22Þ

F is obviously invertible, which implies that Ω is positive
definite. ▪
Lemma 6: A normal mode transformation exists if and

only if Ω is positive definite.
Proof.—This follows directly from Lemmas 4 and 5. ▪
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