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We discuss the ability of a dark fluid becoming relevant around the time of matter-radiation equality
to significantly relieve the tension between local measurements of the Hubble constant and cosmic
microwave background (CMB) inference, within the ΛCDM model. We show that the gravitational
impact of acoustic oscillations in the dark fluid balance the effects on the CMB and result in an
improved fit to CMB measurements themselves while simultaneously raising the Hubble constant.
The required balance favors a model where the fluid is a scalar field that converts its potential to kinetic
energy around matter-radiation equality, which then quickly redshifts away. We derive the requirements
on the potential for this conversion mechanism and find that a simple canonical scalar with two
free parameters for its local slope and amplitude robustly improves the fit to the combined data by
Δχ2 ≈ 12.7 over ΛCDM. We uncover the CMB polarization signatures that can definitively test this
scenario with future data.
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I. INTRODUCTION

The ΛCDM model of cosmology has been tested by an
extensive number of independent probes, showing its
general robustness and remarkable ability to explain a
wide range of observational data with only six parameters.
Despite its indubitable success, ΛCDM seems to fail in
reconciling distance-redshift measurements when anchored
at high redshift by cosmic microwave background (CMB)
anisotropies to the same measurements anchored at low
redshift by the local distance ladder.
This discrepancy is commonly quantified as tension

between the inferences for the Hubble constant (H0), and
its statistical significance has been steadily increasing with
increasing experimental precision. The most recent local
estimate of the Hubble constant places its value at H0 ¼
74.03� 1.42 km s−1Mpc−1 [1], showing a4.4σ tensionwith
the value inferred by the Planck 2018 CMB data, H0 ¼
67.4� 0.5 km s−1Mpc−1, assuming the ΛCDM model [2].
This tension is mainly a discrepancy between the

anchors for the absolute distance scale rather than an
indicator of missing physics between the anchors. Once
anchored at one end, the same ladder of intermediate
redshift measurements from baryon acoustic oscillations
(BAOs) to supernovae type IA (SN) predict the anchor at
the other end, leaving little room for missing cosmological
physics in between (for a recent assessment and discussion,
see Refs. [3,4] and references therein). On the high redshift
side, the anchor is the CMB sound horizon rs. Under

ΛCDM, the shapes of the CMB acoustic peaks calibrate the
sound speed and all of the energy densities of species
relevant around recombination and thus determine the
physical scale of rs. Measurements of its angular scale
in the CMB then fix the remaining parameter, the cosmo-
logical constant or equivalently H0. Even beyond ΛCDM,
this measurement determines the distance to recombination
and anchors the inverse distance ladder from which H0 can
again be inferred so that even the most general dark energy
or modified gravity model can only moderately alter its
value [5–8].
Altering the high redshift anchor requires modifying

cosmological physics at recombination. Adding extra
energy density raises the expansion rate before recombi-
nation and lowers the sound horizon rs. For example, an
extra sterile neutrino or other dark radiation has long been
considered as a possible solution [9–20]. However, such a
component would also change the driving of the acoustic
oscillations and damping scale [21], which is now disfa-
vored by increasingly precise CMB data, leaving little
ability to raise H0 (see Refs. [2,22] for recent assessments).
The problem with the damping scale arises because

these additions affect the background expansion like
radiation. As pointed out in Ref. [23], this problem can
be avoided by making the dark component only important
transiently near the epoch of recombination. Speci-
fically, Ref. [23] introduces a component of so-called
“early dark energy” (EDE) where a scalar field oscillates
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anharmonically around the minimum of a periodic poten-
tial and finds that the Hubble tension can be efficiently
relieved. On the other hand, Ref. [24] finds that for a
monomial EDE model, which coincides with the periodic
potential [23] at the minimum, the Hubble tension is only
partially relieved. Due to the behavior of its perturbations,
these EDE scenarios change the amplitudes and phases of
the CMB acoustic peaks in complex ways, leading to
questions as to the robustness of this method for relieving
the Hubble tension.
To build a more robust method to relieve the Hubble

tension, we study the general phenomenology of perturba-
tions in a dark fluid which similarly becomes transiently
important, here around matter-radiation equality. Since its
impact on the CMB comes through the gravitational effects
of its own acoustic oscillations, we call this species acoustic
dark energy (ADE) and in particular uncover the critical
role its sound speed plays in relieving the Hubble tension.
We find that the sound speed must vary with the equation of
state in the background in a manner consistent with the
conversion of potential to kinetic energy for a minimally
coupled scalar with a general kinetic term [25]. Unlike the
oscillatory EDE models, once released from Hubble drag,
the scalar remains kinetic energy dominated until it red-
shifts away. Indeed, for a simple canonical kinetic term, this
allows for H0 ¼ 70.60� 0.85 with a better fit than ΛCDM
even for the CMB alone and a better total χ2 by 12.7 for two
extra parameters. This method is also robust and can be
exactly realized in a wide class of potentials. We provide
both the required conditions on the potential and explicit
examples.
This paper is organized as follows. In Sec. II, we

introduce the ADE fluid model, its parameters, and the
datasets that we use in the analysis. In Sec. III, we discuss
the phenomenological impacts of ADE, especially its
sound speed, on acoustic driving and CMB polarization.
In Sec. IV, we show that ADE models that can relieve the
Hubble tension correspond to scalars that convert potential
to kinetic energy suddenly upon Hubble drag release and
construct a canonical scalar model as proof of principle. In
Sec. V, we discuss the relation to the previous work, and we
conclude in Sec. VI.

II. METHODOLOGY

Acoustic dark energy is defined to be a perfect dark fluid
and is specified by its background equation of state wADE ¼
pADE=ρADE and rest frame sound speed c2s [26]. The latter is
only equivalent to the adiabatic sound speed _pADE=_ρADE for
a barotropic fluid so that in the general case the acoustic
phenomenology of linear ADE sound waves, which we
shall see is crucial for relieving the Hubble tension, is
defined independently of the background.
In order to have a transiently important ADE contribu-

tion, we model the ADE equation of state as

1þ wADEðaÞ ¼
1þ wf

½1þ ðac=aÞ3ð1þwf Þ=p�p : ð1Þ

The ADE component therefore changes its equation of
state around a scale factor a ¼ ac from wADE ¼ −1 to wf .
Additionally, p controls the rapidity of this transition, with
small values corresponding to sharper transitions. Since
this parameter does not qualitatively change our results, we
use p ¼ 1=2 unless otherwise specified. We shall see in
Sec. IV that this corresponds to a simple quadratic potential
for scalar-field ADE. This is a generalization of the
background of the EDE model [23], discussed in Sec. V,
where p ¼ 1 and the fluid description is approximate.
The ADE background energy density is fully specified

once its normalization is fixed, since wADE determines its
evolution. Defining the ADE fractional energy density
contribution

fADEðaÞ ¼
ρADEðaÞ
ρtotðaÞ

; ð2Þ

we choose fc ¼ fADEðacÞ as the normalization parameter.
The behavior of ADE perturbations is determined by

their rest frame sound speed c2sða; kÞ, which is, for an
effective fluid, a function of both time and scale [26]. In the
context of a perfect fluid with a linear dispersion relation, it
is scale independent. In particular, this holds for K-essence
scalar-field models [25], when treated exactly instead of in
a time-averaged approximation. We shall return to this
point in Sec. V.
The equations of motion for ADE acoustic oscillations

depend only on the value of c2s , not its time derivative.
Since the impact of ADE on cosmological observables is
extremely localized in time due to the parametrization of
wADE, we fix c2s to be a constant, effectively its value at ac.
In Sec. IV, we construct K-essence models where c2s is
strictly constant as a proof of principle, but our analysis
holds more generally if we interpret the constant c2s as
matching a suitably averaged evolving one.
In our most general case, the ADE model is therefore

characterized by four parameters fwf ; ac; fc; c2sg once p is
fixed. When varying these parameters, we impose flat,
range bound priors: −4.5 ≤ log10ac ≤ −3.0, 0 ≤ fc ≤ 0.2,
0 ≤ wf ≤ 3.6, and 0 ≤ c2s ≤ 1.5. We shall later see that the
Hubble tension can be relieved by varying just two of these
four parameters, fixing c2s ¼ wf ¼ 1, corresponding to
models where the ADE is a canonical scalar that converts
its energy density from potential to kinetic around matter-
radiation equality (see Sec. IV B). We refer to this particular
ADE model as cADE.
The full cosmological model also includes the six

ΛCDM parameters: the cold dark matter density is char-
acterized by Ωch2; the baryon density is characterized by
Ωbh2; the angular size of the sound horizon is characterized
by θs; the optical depth to reionization is characterized by τ;
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and the initial curvature spectrum is characterized by its
normalization at k ¼ 0.05 (wave numbers throughout are in
units of megaparsecs to the negative first power, which we
drop when no confusion should arise), As, and tilt ns. These
have the usual noninformative priors. We fix the sum
of neutrino masses to the minimal value (e.g., Ref. [27]).
We modify the CAMB [28] and COSMOMC [29] codes to
include all the models that we discuss, following Ref. [26].
We sample the posterior parameter distribution until the
Gelman-Rubin convergence statistic [30] satisfies R − 1 <
0.02 or better unless otherwise stated.
For the principal cosmological datasets, we use the

publicly available Planck 2015 measurements of the
CMB temperature and polarization power spectra at large
and small angular scales and the CMB lensing potential
power spectrum in the multipole range 40 ≤ l ≤ 400
[31–33]. To expose the Hubble tension, we combine this
with the latest measurement of the Hubble constant, H0 ¼
74.03� 1.42 (in units of km s−1 Mpc−1 here and through-
out) [1]. To these datasets, we add the Pantheon Supernovae
sample [34] and BAO measurements from BOSS DR12
[35], SDSS Main Galaxy Sample [36], and 6dFGS [37].
These datasets prevent resolving the Hubble tension by
modifying the dark sector only between recombination and
the very low redshift universe [4].
Our baseline configuration thus contains CMB temper-

ature, polarization, and lensing and BAO, SN, and H0

measurements. Unless otherwise specified, all of our results
will be for this combined dataset. We include all the
recommended parameters and priors describing systematic
effects for these datasets.
As we shall see, the CMB polarization data provide an

important limitation on the ability to raise H0, and future
polarization data can provide a definitive test of the ADE
models that alleviate the Hubble tension. We therefore also

consider the joint dataset without CMB polarization data.
We refer to this dataset as -POL.

III. ADE PHENOMENOLOGY

In this section, we discuss the phenomenology and
observational implications of ADE and their dependence
on its parameters.
At the background level, the addition of ADE increases

the total energy density before recombination that changes
the expansion history lowering the sound horizon rs. This
changes the calibration of distance measures not only for
the CMB but also the whole inverse distance ladder through
BAO to SN. Given the precise angular measurements of the
sound horizon θs, the inverse distance ladder scale is
reduced, and hence the inferred H0 rises.
The prototypical example of this method for relieving the

Hubble tension is an extra sterile neutrino that is at least
mildly relativistic at recombination. Neutrinos, however, do
not provide a good global solution (e.g., Ref. [22]) since
they behave as free-streaming radiation before recombina-
tion and therefore change the phase of the CMB acoustic
oscillations as well as the CMB damping scale, the distance
a photon random walks through the ionized plasma before
recombination, approximately as λD ∝ r1=2s [21]. A more
general dark fluid, on the other hand, can reduce the
fraction of the dark component vs normal radiation before
matter-radiation equality, allowing the two scales to change
in a proportional way [23].
Beyond these background effects, ADE and other dark

sector candidates for relieving the Hubble tension, gravi-
tationally drive photon-baryon acoustic oscillations chang-
ing the amplitudes and phases of the CMB peaks (e.g.,
Refs. [6,22]). ADE perturbations undergo their own acous-
tic oscillations under its sound horizon, leading to novel

TABLE I. Maximum likelihood parameters and constraints for the ΛCDM model, the cADE model, and the
general ADE model. Δχ2tot ¼ −2Δ lnL reflects the ratio between the maximum likelihood value and that of ΛCDM
for the joint data.

Model ΛCDM cADE ADE

100θMC 1.04115 (1.04110� 0.00028) 1.04062 (1.04064� 0.00031) 1.04072 (1.04081� 0.00035)
Ωbh2 0.02246 (0.02241� 0.00014) 0.02267 (0.02271� 0.00022) 0.02270 (0.02263� 0.00022)
Ωch2 0.1170 (0.1174� 0.0009) 0.1268 (0.1268� 0.0032) 0.1274 (0.1242� 0.0032)
τ 0.082 (0.075� 0.012) 0.064 (0.064� 0.012) 0.064 (0.067� 0.013)
lnð1010AsÞ 3.092 (3.079� 0.022) 3.078 (3.078� 0.023) 3.080 (3.081� 0.023)
ns 0.9726 (0.9701� 0.0039) 0.9833 (0.9833� 0.0065) 0.9873 (0.9832� 0.0071)

fc � � � 0.082 (0.082� 0.025) 0.086 (0.079� 0.033)
log10 ac � � � −3.45 (−3.46� 0.06) −3.52 (−3.50� 0.15)
wf � � � 1 (fixed) 0.87 (1.89� 0.86)
c2s � � � 1 (fixed) 0.86 (1.07� 0.25)

H0 68.58 (68.35� 0.42) 70.57 (70.60� 0.85) 70.81 (70.20� 0.88)
Δχ2tot 0 −12.7 −14.1
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CMB driving phenomenology. As detailed in Table I,
this modified phenomenology leads to a maximum like-
lihood (ML) solution with wf ≈ c2s and H0 ¼ 70.81, which
improves Δχ2tot ¼ −14.1 over ML ΛCDM, and more
generally a finite ADE fraction fc is detected at 2.4σ. In
the next section, we focus on the details of these physical
effects. We then address the impact of Planck polarization
data and the ability of future polarization data to test the
ADE solutions to the Hubble tension.
Finally, note that, although we do not consider mea-

surements of the amplitude of local structure here, the ML
and constraints for ADE are σ8Ω

1=2
m ¼ 0.4623ð0.4573�

0.0073Þ, whereas for ΛCDM with CMB, TT only has
nearly the same ML but larger errors 0.466 (0.466�
0.013). For our combined dataset, ΛCDM gives the value
0.4488 (0.4486� 0.0056), where the ML is lower since
raising H0 in ΛCDM lowers σ8Ω

1=2
m , unlike in ADE. If the

tension with weak lensing measurements of the amplitude
increases in ΛCDM in the future, it will disfavor not only
ΛCDM but these ADE models as well.

A. Acoustic driving

Under the sound horizon or Jeans scale of the ADE, its
density perturbations acoustically oscillate rather than
grow, leading to changes in the decay of the Weyl potential
ðΨþΦÞ=2. This decay drives CMB acoustic oscillations,
and the ADE impact is especially important for modes that
enter the CMB sound horizon near ac, roughly k ¼ 0.04 in
the ML ADE model from Table I. The excess decay is
countered by raising the cold dark matter through Ωch2

since it remains gravitationally unstable on the relevant
scales.
For ADE, at the parameter level, this effect is controlled

by the sound speed cs in conjunction with the equation of
state wADEðaÞ through wf . These two parameters are hence
strongly correlated, as shown in Fig. 1, reflecting degen-
erate effects on the CMB when they are raised or lowered
together. Near the ML solution, this requires wf ≈ c2s .
We explore this degeneracy in Fig. 2 by showing the

evolution of the Weyl potential for this mode in the ML
model (red) from Table I relative to the same model with no
ADE (ML, fc ¼ 0) as a baseline (black). The Weyl
potential is relatively suppressed at a < ac, enhanced at
a ∼ ac, and suppressed again at a ≫ ac due to ADE. The
enhancement and subsequent suppression correspond to the
first acoustic compression extremum in the ADE density
perturbation and the subsequent Jeans stabilization of the
perturbations. The net impact is a reduction in the Weyl
potential. This reduction is compensated by raising Ωch2.
For comparison, we also show the difference in reverting
the value of Ωch2 in the baseline model to the ML ΛCDM
value (cyan dashed). Since ac ∼ aeq, ADE becomes impor-
tant around the same epoch when radiation driving has the
maximal impact on the shape of the CMB acoustic peaks.

Along with other adjustments in ΛCDM parameters, in
particular ns and Ωbh2, these effects compensate for each
other.
This compensation leaves the CMB acoustic peaks

nearly unchanged despite raising H0 from 68.58 to
70.81. In Fig. 3, we show the data and model residuals
relative to the ΛCDM ML in Table I. As we can see, this
effect does not exacerbate the oscillatory residuals in the
data, where the acoustic peaks (vertical lines) are sup-
pressed relative to troughs, which would occur if H0 were
raised in ΛCDM. Note that the residuals are scaled to the
cosmic variance per l-mode for the ML ΛCDM model as

σCV ¼

8>>>>>><
>>>>>>:

ffiffiffiffiffiffiffiffi
2

2lþ1

q
CTT
l ; TT;ffiffiffiffiffiffiffiffi

1
2lþ1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CTT
l CEE

l þ ðCTE
l Þ2

q
; TE;ffiffiffiffiffiffiffiffi

2
2lþ1

q
CEE
l ; EE:

ð3Þ

We can better understand the origin of the ADE effects
and their impact on the CMB by varying wf and c2s
independently. Figure 2 (upper) also shows a þ0.4 varia-
tion in each with other parameters held fixed. Increasing c2s
makes the ADE acoustic oscillations and Jeans stability

FIG. 1. The joint marginalized distribution of the ADE param-
eters c2s and wf , obtained using our combined datasets. The darker
and lighter shades correspond respectively to the 68% C.L. and
the 95% C.L. The markers indicate the maximum likelihood
values for ADE (solid circle) from Table I and the intersection
between canonical models c2s ¼ 1 (solid line) and models which
convert potential to kinetic energy at the transition c2s ¼ wf

(dashed line), i.e., c2s ¼ wf ¼ 1 (open circle) as in cADE.
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occur earlier and as a consequence also cuts into the
enhancement. Raising wf has two effects. Before the first
compression peak and above the CMB sound horizon, the
comoving ADE density perturbation grows adiabatically so
that its amplitude grows relative to the photons approx-
imately as δADE ∝ ð1þ wADEÞδγ. For wf > 1=3, this first
causes a dip at a ≲ ac and then an enhancement in the Weyl
potential for a≳ ac, especially approaching the first com-
pression. A larger wf then suppresses fða > acÞ, which
also causes a relative enhancement at a > ac. Combined,
these effects imply that for a fixed amount of driving of
acoustic oscillations through the decay of the Weyl poten-
tial, raising c2s should be compensated by raising wf . This is
the leading order degeneracy that we see in Fig. 1.

In terms of the residuals, shown in Fig. 3, a positive
variation in c2s , when not compensated by wf, leads to a
sharp TT feature around l ∼ 500 near the second TT peak,
whereas along the degeneracy line the ML model TT
residuals remain small. The modes responsible for higher
multipoles are not sensitive to ADE perturbation param-
eters since the Weyl decay that drives them occurred before
the ADE became important a ≪ ac.
The degeneracy is truncated at low wf in Fig. 1. If

wf < 1=3, the ADE redshifts slower than the radiation and
thus has a large impact on the driving of CMB acoustic
oscillations between ac and recombination, which cannot
be balanced by the same variations in c2s .

B. CMB polarization

Even for the ML ADEmodel, the compensation between
Ωch2; c2s , and wf is imperfect for modes that enter the CMB
sound horizon between ac and recombination. These

FIG. 2. The Weyl potential evolution of the ML ADE model
from Table I for two modes: k ¼ 0.01 and 0.04 Mpc−1. Lower
subpanels show differences with respect to the baseline value of
Weyl potential for theΛCDM parameters of ML ADE but with no
ADE (fc ¼ 0), as displayed in the upper subpanels. Shown are
ML ADE (red solid) and parameter variations around it, c2sþ
(orange dashed) and wfþ (dark blue dashed) mean þ0.4
variations, while Ωch2− (cyan dashed) means lowering it to
the ML ΛCDM value in Table I. Relevant temporal scales
(matter-radiation equality aeq, ADE transition ac and recombi-
nation a�) are shown with vertical lines.

FIG. 3. The CMB model and Planck data residuals with respect
to the ML ΛCDM model. Shown are the ML ADE model (red
solid) and a Δc2s ¼ þ0.4 variation on it (orange dashed; see
Fig. 2). The upper, middle, and bottom panels correspond to TT,
EE, and TE residuals respectively, and vertical lines denote their
peaks in the ML ΛCDM model.
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modifications leave distinct imprints on the polarization
spectra that already limit the ability of ADE to raise H0

using the Planck data and, in the future, can definitively test
this scenario. Polarization provides the cleanest signatures
of driving on these scales, given that it isolates the acoustic
oscillations at recombination from the early integrated
Sachs-Wolfe that smooths out its signatures in the TT
spectrum.
In Fig. 2 (lower), we show the Weyl potential evolution

for such a mode, k ¼ 0.01 in the ML model. While
the qualitative behavior is similar to the higher k mode,
the balance between wf , c2s , and Ωch2 changes. First, the
impact of the change in Ωch2 is relatively higher since the
ADE redshifts faster than radiation. Second, the impact of
wf is also somewhat higher relative to c2s . These changes
lead to uncompensated sharp features in the polarization
residuals.
For the Planck data, where measurements of the EE

spectrum are still noisy, this makes the TE spectrum the
most informative for these features (see Fig. 3). In the
ΛCDM model, this sensitivity provides an important
constraint on Ωch2 and hence supporting evidence for a
low H0 from multipoles l < 1000. The region around
l ∼ 165 (between the first EE and TT peaks) is particularly
important due to the 2σ low point compared to the best fit
ΛCDM model shown in Fig. 3 [38]. Note that in ΛCDM
raising H0 requires lowering Ωch2, which raises TE there,
making the fit even worse.
In the ADE ML model, the impact of raising Ωch2

lowers TE in this region, providing a better fit to the data.
Even without direct H0 data, the CMB data favor the ADE
model (see Table II). However, raising H0 further than the
ADE ML would make TE too low at l≲ 500 for the data.
Indeed, for the -POL dataset, the ML model allows for a
larger Hubble constant H0 ¼ 72.27 compared with 70.81
for our joint dataset.
Raising c2s has the impact of making the ADE more

important for Weyl decay and counters the effect of raising
Ωch2. As we can see from Fig. 3, this has the effect of

raising TE in this region and degrading the fit. Thus, the TE
data are also important for disfavoring a canonical scalar
field with c2s ¼ 1 if wf is too low. We shall see in Sec. V that
this explains why previously considered models where a
canonical scalar field oscillates in its potential must have its
initial conditions set to avoid this region.
Finally, given the sharp features in the EE model,

residuals with up to approximately 0.3–0.4 amplitudes
relative to cosmic variance per multipole, all of these cases
whereH0 is raised by dark components that also change the
driving of the acoustic peaks can be tested to high
significance once EE measurements approach the precision
of TT measurements today.

IV. POTENTIAL-KINETIC CONVERSION

The ADE phenomenology favored by the Hubble
tension can be concretely and exactly realized in the K-
essence class of dark energy models, where the dark
component is a perfect fluid represented by a minimally
coupled scalar field ϕ with a general kinetic term [25].
More specifically, the class of constant sound speed cs
models introduced in Sec. II is given by the Lagrangian
density [39]

PðX;ϕÞ ¼
�
X
A

�1−c2s
2c2s X − VðϕÞ; ð4Þ

where the kinetic term involves X ¼ −∇μϕ∇μϕ=2 and A is
a constant density scale. For a scalar with a canonical
kinetic term, c2s ¼ 1, and more generally wADE → c2s if the
kinetic term dominates, whereas wADE → −1 if the poten-
tial VðϕÞ dominates. The fluid correspondence holds when
∇μϕ remains always timelike; then, c2s ¼ δp=δρ in constant
field gauge or rest frame, where the momentum density of
the field vanishes and the potential energy is spatially
constant.
The correlation shown in Fig. 1 implies that around the

ML ADE model from Table I setting wf ¼ c2s provides
a good fit to the combined data. Since wADE → −1 for

TABLE II. H0 results for the ML cADE, ADE, and EDE models and posterior constraints with the joint dataset
and with CMB polarization data removed (-POL). ΔN is the number of additional parameters in addition to the
ΛCDM ones.

Model (data) ΔN H0 Δχ2tot Δχ2CMB Δχ2H0
cADE 2 70.57(70.60� 0.85) −12.7 −3.6 −8.8
ADE 3a, 4 70.81(70.20� 0.88) −14.1 −3.7 −9.6
EDE 4 71.92(71.40� 1.09) −16.6 −3.7 −12.5

cADE(-POL) 2 71.93(71.55� 1.05) −12.8 −0.4 −11.2
ADE(-POL) 3a, 4 72.27(71.30� 1.03) −15.1 −2.4 −11.8
EDE(-POL) 4 72.40(72.35� 1.25) −15.9 −2.9 −12.1

aNote that ML ADE in the potential conversion case where c2s ¼ wf is essentially the same as the general case but
with ΔN ¼ 3. The total Δχ2tot relative to the ΛCDM model is broken down into contributions from the Planck CMB
datasets and the local H0 measurement.
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a ≪ ac and wADE → wf for a ≫ ac, this suggests that the
best fitting PðX;ϕÞ models are those that suddenly convert
nearly all of their energy density from potential to kinetic at
ac. If we focus on a model that has such a potential to
kinetic energy conversion feature, we have c2s ¼ wf , and the
number of parameters of ADE reduces to 3. The ML of this
model gives c2s ¼ 0.84, H0 ¼ 70.84, and Δχ2tot ¼ −14.1,
which is nearly identical to ML ADE with one fewer free
parameter.
Indeed, the preferred region includes wf ¼ c2s ¼ 1,

which corresponds to the case of a canonical field,
cADE. From Table I, we see that the ML cADE model
has only a marginally smaller H0 ¼ 70.57 for a Δχ2tot ¼
−12.7 and more generally a higher significance to the
detection of a finite ADE fraction fc of 3.3σ given the
smaller set of parameters. We shall now consider how to
construct a corresponding potential VðϕÞ.

A. Canonical conditions

A canonical scalar which converts its potential to kinetic
energy around ac provides a simple, concrete example of
ADE that alleviates the Hubble tension. To explicitly
construct such a model that matches requirements on the
two remaining quantities ac and fc, we can determine the
equivalent requirements for the potential VðϕÞ.
At a ≪ ac, the ϕ field is stuck on its potential due to

Hubble friction and rolls according to

dϕ
dN

∼ −
V 0

H2
; ð5Þ

where N ¼ ln a denotes e-folds. For the purposes of this
qualitative discussion, we drop factors of order unity. After
ac, we want the field to be released from Hubble drag and
convert its potential energy to kinetic energy on the e-fold
timescaleΔN ∼ 1. Defining ϕc ¼ ϕðacÞ and linearizing the
change,

VðϕÞ ≈ VðϕcÞ þ V 0ðϕcÞΔϕ: ð6Þ

Therefore, around ϕc, we want�
V 0

H

�
2 ≳ V; ð7Þ

or in terms of fc ∼ V=ρtot,

ϵVfc ≳ 1; ϵV ≡M2
Pl

2

�
V 0

V

�
2

: ð8Þ

This is the main condition for the potential to kinetic
conversion.
For the linearization in Eq. (6) to be valid in the sense of

the second order term 1
2
ðΔϕÞ2V 00 not preventing the

conversion, we also want

V 00ðϕcÞ < −
V 0ðϕcÞ
Δϕ

ð9Þ

so

V 00 ≲H2: ð10Þ

Putting these two criteria together,

ηV ≲ 2ϵV; ηV ≡M2
pl
V 00

V
; ð11Þ

where we have restored a factor of 2 so as to match the
well-known condition for no tracking solution to exist [40].
Tracking potentials do not work since the scalar field
follows an equation of state that is determined by the
dominant component of the total energy density rather than
the kinetic energy dominated limit. A similar derivation
applies to the c2s ≠ 1 case with a modification to the Hubble
drag evolution (5) [39].
Finally, we want the field to maintain kinetic energy

domination until its energy density has largely redshifted
away. This excludes models where the field oscillates
around a minimum and so is different from those in
Refs. [23,24] as we shall discuss in the next section.
Furthermore, the fluid description is exact for our models,
whereas it is only approximate for oscillatory models.
Thus, our requirements on the potential are fairly generic

and correspond to setting the amplitude and slope of the
potential at the desired point of Hubble drag release, along
with the condition that the field remains kinetic energy
dominated until most of the energy density has redshifted
away. A wide class of potentials can satisfy these require-
ments, and we shall give concrete examples next.

B. Canonical solution

To make these considerations concrete, consider the
class of potentials:

VðϕÞ ¼
�
Aϕm; ϕ > 0;

0; ϕ ≤ 0:
ð12Þ

Then, for ϕ > 0,

2ϵV ¼
�
m
ϕ

�
2

; ηV ¼ mðm − 1Þ
ϕ2

; ð13Þ

and any m > 0 satisfies ηV < 2ϵV . The flat potential at ϕ ≤
0 prevents the kinetic energy from converting back to
potential energy. We choose A and ϕinitial to give the desired
fc and ac.
In Fig. 4 (upper), we show a worked example of this

matching. We fix cosmological parameters to the ML ADE
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model in Table I and take a quadratic potential with m ¼ 2.
We find a good match to the form of Eq. (1) with p ¼ 1=2.
This motivates our fixed fiducial choice in Sec. II.
To showcase the robustness of the potential to kinetic

conversion mechanism for relieving the Hubble tension,
we also consider a quartic potential m ¼ 4 (Fig. 4, lower).
The change in fADEðaÞ is itself small and, once a shift in ac
is absorbed, corresponds to a slight broadening of the
transition. Even this small change can be matched to
the general ADE form of Eq. (1) by adopting p ¼ 1.
For the linear m ¼ 1 case, p ≈ 0.1, corresponding to a
sharper transition. We have also tested that various values
of p in this range provide comparable ML solutions to our
fiducial p ¼ 1=2 case. Finally, we have tested that the
correspondence between p and m holds for noncanonical
values of c2s with the Lagrangian (4).
These simple canonical or cADE models still provide

good fits to the data as illustrated in Fig. 5 for the ML
cADE model of Table I. The main difference compared
with ML ADE is the slight lowering of H0 from 70.81 to
70.57. The total improvement over ΛCDM for two extra
parameters is Δχ2tot ¼ −12.7 with −3.6 actually coming
from the improved fit to the CMB as shown in Table II.
More concretely, ML cADE makes CMB lensing a little bit
worse by Δχ2lens ¼ þ1.1 but fits the TT and polarization
spectrum better by Δðχ2plik þ χ2lowTEBÞ ¼ −4.7. If compared
to ML ΛCDM fit to CMB only, the ML cADE fits CMB

lensing as well and fits the TT and polarization spectrum
better by Δðχ2plik þ χ2lowTEBÞ ¼ −1.6.1

Fig. 6 shows the parameter covariances and posteriors in
the cADE model. The centered values for the ML param-
eters is indicative of the nearly Gaussian posteriors and
reflects the fact that the parameters are constrained mainly
by the data rather than the priors. The one exception is ac
since if ac → 0 any fc is equivalent to ΛCDM so that the
prior volume begins to matter. Even in this case, ΛCDM is
sufficiently disfavored so that constraints on ac are data not

FIG. 4. Scalar-field potential VðϕÞmatch to the fractional ADE
energy density fADE of the ML cADE parameters in Table I.
Top: a locally quadratic potential with Eq. (12) compared with
p ¼ 1=2 in Eq. (1); bottom: a locally quartic potential vs p ¼ 1.

FIG. 5. Canonical scalar-field model and data residuals of ML
cADE (orange solid) and ML EDE (dark blue solid) models with
respect to the ML ΛCDM model as in Fig. 3. The model with
ΔΘi ¼ −0.5 from ML EDE (green dashed) is also shown.

1We have also explicitly checked that a direct solution for the
scalar-field Klein-Gordon equation is nearly indistinguishable
from a cADE model with the best matching parameters, e.g.,
Δχ2 ¼ 1.4 for a cosmic variance limited TT, TE, and EE
measurement to l ≤ 2000. This holds for these gravitationally
sourced, or adiabatic, field perturbations, whereas modeling
isocurvature fluctuations from initial field perturbations from
inflation would require matching the radiation dominated evo-
lution in the equation of state ð1þ wÞ ∝ a4 implied by Hubble
friction through Eq. (5) [39], which Eq. (1) does not do.
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prior driven. Correspondingly, the ADE fraction is signifi-
cantly detected with fc ¼ 0.082� 0.025.
This model also illustrates the main compensation

between raising the ADE fraction fc and raising the
CDM density Ωch2 as well as adjusting Ωbh2 and ns
slightly higher to minimize the data residuals (see Fig. 6).
The change in θ� to lower values is also notable. The
modifications in driving make a small change in the

phasing of the CMB acoustic peaks relative to its sound
horizon. Note that in ΛCDM θ� drifts lower once the high
multipoles l > 800 are included [41].
Finally, under the -POL dataset, the ADE canonical

model allows a higherH0 ¼ 71.55� 1.05 and ML value of
71.93. This is because of the limitations the TE spectrum
around l≲ 500 places on these solutions as discussed in
Sec. III B.

log

lo
g

log

Λ CDM

cADE  

FIG. 6. The marginalized joint posterior of the parameters of the cADE model, obtained using our combined datasets. ΛCDM results
are also added for comparison. The eight fundamental parameters are shown in the lower triangle, whereas the implications for H0 are
shown in the upper triangle. The darker and lighter shades correspond respectively to the 68% C.L. and the 95% C.L.
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V. RELATION TO PRIOR WORK

In Ref. [23], a canonical scalar-field component, referred
to as early dark energy, with a potential

VðϕÞ ∝ ½1 − cosðϕ=fÞ�n; ð14Þ
plays a similar role as our ADE. Unlike ADE, EDE
oscillates after being released from Hubble drag, and
Ref. [42] finds that the time-averaged background equation
of state can be modeled by Eq. (1) with p ¼ 1 and

wf ¼
n − 1

nþ 1
: ð15Þ

As we have discussed in the previous sections, wf is a
relevant parameter for the resolution of Hubble tension, so
its adjustment should be considered a parameter variation
in the EDE model in spite of n taking discrete integer
values.
The time-averaged behavior of perturbations is described

by a fluid approximation with a rest frame sound speed [42]:

c2sða; kÞ ¼
8<
:

1; a ≤ ac;
2a2ðn−1Þϖ2þk2

2a2ðnþ1Þϖ2þk2 ; a > ac:
ð16Þ

Unlike in our case, this fluid description is approxi-
mate, especially at ac. The time dependence of ϖ is fixed
by the parameters ac; wf and the initial field position Θi ¼
ϕi=f [42]:

ϖðaÞ ¼ G
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6P þ 2

8n
Θi

sinΘi

s
HðacÞa−3wf : ð17Þ

Here, P ¼ HðacÞt, and we approximate it as

Pðx ¼ ac=aeqÞ ¼
2

3

x2 − xþ 2
ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p
− 2

x2
; ð18Þ

while

Gðac; nÞ ¼
ffiffiffi
π

p
Γðnþ1

2n Þ
Γð1þ 1

2nÞ
2−

n2þ1
2n 3

1
2
ð1n−1Þa

3− 6
nþ1

c

× ½a
6n
nþ1
c þ 1�

1
2
ð1n−1Þ: ð19Þ

Note that for wf > 0;ϖ decreases with a, and so the sound
speed evolves from 1 at a ≤ ac back to 1 at late times, with
higher k exhibiting smaller amplitude deviations and a k-
dependent minimum c2sðac; kÞ.
The EDE model therefore has four parameters ac; fc;Θi,

and n. Following Ref. [42], we choose the best value n ¼ 3,
which corresponds to wf ¼ 1=2, and conduct a Markov
chain Monte Carlo likelihood analysis on the remaining
parameters. We treat ac and fc as in the ADE model and
impose a flat prior on 0 ≤ Θi=π ≤ 1. Because of the large
parameter volume of degenerate models around ΛCDM,
we only sample the posterior until R − 1 < 0.05 which

should give an adequate, but not perfect, estimate of
parameter constraints out to 95% C.L. The results are
compared with our ADE model in Table II. The EDE ML
model allows a slightly higher H0 ¼ 71.92 and hence a
better fit to the data Δχ2tot ¼ −2.5 for one extra parameter
over ML ADE with c2s ¼ wf or Δχ2tot ¼ −3.9 for two extra
parameters compared with the cADE ML. Note that with
the -POL dataset the EDE and ADE models have compa-
rable performances.
The main phenomenological difference between the

ADE and EDE models is the parametrization of the sound
speed. The sound speed was indeed also varied in Ref. [42],
but its impact was not discussed. As we have seen in our
ADE model, a low wf generally requires a low c2s. In the
EDE model, this translates into specific requirements for
the initial phase Θi. In Fig. 7, we show the relationship

FIG. 7. The marginalized distribution of the EDE initial phase
Θi and some other parameters, obtained using our combined
dataset. The darker and lighter shades correspond respectively to
the 68% C.L. and the 95% C.L. The orange circle indicates the
maximum likelihood values for EDE.
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between constraints on Θi, H0, and the minimum sound
speed at k ¼ 0.01; 0.04. As we can see, achieving a higher
value of H0 requires a large initial phase, and its ML value
is Θi=π ¼ 0.90. The 68% confidence region is 0.72 ≤
Θi=π ≤ 0.94, and Θi=π < 1=2 is excluded at 93% C.L.
Note that the upper range exceeds the value required for
the validity of the fluid mapping approximation, Θ=π ∼
0.96 [42].
The reason for this preference is that Θi controls the

minimum sound speed. Following the degeneracy line in
Fig. 1 to wn ¼ 1=2, we would expect that for a constant
sound speed c2s ≈ 0.77. Given the effective EDE sound
speed of Eq. (16), this represents an average over the
relevant timescales and wave modes. For the ML EDE
model, c2sðac; 0.01Þ ¼ 0.51 and c2sðac; 0.04Þ ¼ 0.63 as the
minimum value for each k-mode.
The scale dependence of the sound speed also explains

the slightly better fit to CMB data, specifically the TE data.
In Fig. 5, we compare the EDE and cADE residuals for
their respective ML models. Notice that the TT residuals
are very similar. However, in TE, by allowing the sound
speed to decrease in the k range associated with l < 500,
the EDE model exposes more of the driving reduction at
l ∼ 200 from raising Ωch2 as discussed above but now
without adverse consequences elsewhere. This in turn
better fits the low TE residuals and allows H0 to increase
further relative to the ADE model. We also show the impact
of reducing Θi in the ML EDE model, making the sound
speed closer to 1 at all times. The most significant effect is
localized to l < 500 and in particular destroys the pattern
of lower TE at l ∼ 200 vs l ∼ 400 compared with cADE.
We conclude that the small improvement of the EDE

over ADE fit requires a specific range in the initial phase
that lowers the sound speed in a scale-dependent way.
Comparing to the canonical ADE mode, this improvement
gives Δχ2tot ¼ −3.9 for two extra parameters wn;Θi and is
therefore marginal. In the future, polarization measure-
ments that approach the cosmic variance limit can distin-
guish between the EDE and ADE classes. For example, we
forecast that with cosmic variance TT, TE, and EE
measurements to l ≤ 2000, the current best fit EDE model
differs from the closest ADE model by Δχ2 ¼ 22.4.
Furthermore, the ADE model provides a general class of
exact solutions where the potential energy is converted
quickly to kinetic, whereas the EDE model requires a
specific set of initial conditions to achieve a similar
phenomenology with an approximation to an oscillating
field.
Relatedly, Ref. [24] considers a model where the scalar

field oscillates in a monomial potential,

VðϕÞ ∝ ϕ2n; ð20Þ

with parameters adjusted to reproduce the EDE phenom-
enology. This coincides with Eq. (14) only near the bottom

of the potential, Θi ≪ π=2, where the potential is convex
rather than concave. As pointed out in Ref. [24], the model
has significantly worse performances than the EDE model.
We identify here that this is related to the initial field being
in the concave rather than the convex part of the potential,
which raises the sound speed.
Finally, very recently, Ref. [43] proposed that a fast-roll

or kinetic energy dominated period in a two-field model
might relieve the Hubble tension.

VI. CONCLUSIONS

Acoustic dark energy, appearing around the epoch of
matter-radiation equality, can substantially relieve the
tension between CMB inference of H0 and local measure-
ments, exhibited in the ΛCDM model. The presence of
extra energy density lowers the CMB sound horizon that
anchors the inverse distance ladder for BAO and SN, while
its disappearance before and after equality allows for a
good fit to CMB data in the damping tail. Furthermore, by
introducing ADE at equality, the gravitational effects of
raising the cold dark matter density can be balanced by the
acoustic oscillations in the ADE itself.
Our main findings regarding the Hubble tension are

summarized in Table II and Fig. 8. In all cases, relieving the
Hubble tension requires ADE to be an approximately 8%

FIG. 8. The marginalized posterior distribution of the H0

parameter in the four models considered in Table II for two
different datasets: our combined dataset (upper panel) and the
same with CMB polarization data removed, -POL (lower panel).
The dashed vertical lines indicate the ML values for different
models.
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contribution to the total energy density around matter-
radiation equality, leading to at least a two parameter
extension to ΛCDM.
In the general ADE class of models, the acoustic

phenomenology is controlled by two additional parameters,
the asymptotic equation of state wf at late times and the
sound speed c2s . The sound speed plays a crucial role in the
gravitational driving of CMB acoustic oscillations through
its impact on the Weyl potential, leading to a strong
correlation between the two, consistent with wf ¼ c2s ≈ 1
around the maximum likelihood model.
Fixing these two parameters to the canonical model,

cADE, leads to only a minor degradation in the ability of
ADE to relax the Hubble tension in the ML model, H0 ¼
70.57 vs H0 ¼ 70.81. In fact, the two parameter model has
the advantage of providing a more significant detection of
the ADE fraction fc ¼ 0.082� 0.025 and thus allows less
parameter volume around the ΛCDM limit, producing a
posterior centered around the ML: H0 ¼ 70.60� 0.85 in
cADE vs the lower H0 ¼ 70.20� 0.88 shift in ADE.
Note that the fit to theCMBdata themselves improves and

combined with the higher H0 provided for an improvement
ofΔχ2tot ¼ −14.1 for three parameters (wf ¼ c2s) andΔχ2tot ¼
−12.8 for two parameters (wf ¼ c2s ¼ 1) respectively.
This class of wf ¼ c2s ∼ 1 ADE models corresponds to

scalar fields which convert their potential to kinetic energy
efficiently around their release from Hubble drag. By
setting this epoch to be around matter-radiation equality,
we obtain a robust mechanism for relieving the Hubble
tension in a wide class of potentials.
For canonical scalar fields, we explicitly determine the

requirements on the potential: that its slope allows for
Hubble drag release around equality where its amplitude is
set to the approximately 8% fraction required by the data.
Any potential that obeys this property and efficiently
converts potential to kinetic energy until the latter redshifts
away will satisfy these requirements. As a proof of
principle, we explicitly construct an example where the
potential is locally quadratic around its release. In this
model, the timing of the release to equality is not explained,
but the identification of this coincidence may lead to more
sophisticated models where it is.
The robustness and generality of this potential-kinetic

conversion mechanism for relieving the Hubble tension
separates it from similar models in the literature. In

Refs. [23,24], the EDE scalar field oscillates after Hubble
drag release, leading to an effective fluid described by time-
averaged values of wf and c2s . Converting our requirements
on the relationship between the two,we find that inRef. [23],
where the potential is periodic, the initial fieldmust be on the
concave part of the potential and near the maximum to best
relieve the Hubble tension. This also explains the poorer fits
in Ref. [24], where the potential is convex and matches the
periodic potential only near the minimum.
The periodic EDE model [23,24] allows for a slightly

higher H0 ¼ 71.40� 1.09 and better Δχ2tot ¼ −16.6 for
four parameters as compared with ADE. Most of this
improvement comes from the fit to the Planck polarization
data. As shown in Fig. 8, without these data, EDE and ADE
perform similarly at ML with H0 ¼ 72.27 vs 72.40
respectively. The reason is that between equality and
recombination changes in acoustic driving between raising
the CDM density and adding the dark component no longer
cancel. This is in fact a beneficial feature of both models
since the Planck TE data show low residuals with respect to
the ML ΛCDM model around l ∼ 200. By allowing the
effective sound speed to depend on the wave number, the
EDE model fits this region better without violating con-
straints elsewhere. However, when compared with our
cADE model, this extra improvement of Δχ2tot ≈ 3.9 comes
at the cost of two extra parameters and a less robust
mechanism for relieving Hubble tension.
Finally, in all cases, the predicted deviations in the EE

power spectrum, while not at a level testable by Planck
data, are highly significant compared with cosmic variance.
Future polarization data can provide key tests for these and
other dark component explanations of the Hubble tension.
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