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Constraining graviton non-Gaussianity through the CMB bispectra
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Tensor non-Gaussianities are a key ingredient to test the symmetries and the presence of higher spin
fields during the inflationary epoch. Indeed, the shape of the three point correlator of the graviton is totally
fixed by the symmetries of the de Sitter stage and, in the case of parity conservation, gets contributions only
from the ordinary gravity action plus a higher derivative term called the (Weyl)? action. We discuss current
and future bounds on the three point tensor contribution from the (Weyl)? term using cosmic microwave
background (CMB) bispectra. Our results indicate that forthcoming experiments, such as LiteBIRD, CMB-
S4, and CORE, will detect the presence of the (Weyl)? term if M4 L* ~ 10'77~*, where L parametrizes the
strength of the (Weyl)® term and r is the tensor-to-scalar ratio, which corresponds to L 2 3.2 x 105M,",
while the current upper limit is M3L* = (1.1 +4.0) x 10"r~* (68% CL).
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I. INTRODUCTION

Current observational evidences suggest that the uni-
verse experienced a period of accelerated expansion in its
early stages which goes under the name of cosmological
inflation [1]. In this phase the spacetime geometry is
approximately described by the de Sitter (dS) metric.
One of its main unknown features is its particle content,
which one could be able to specify looking at signatures in
the present day observables with current/future experi-
ments. Additionally, since inflation could have taken place
at energies much higher than the ones reachable by collider
experiments, it provides a unique opportunity to test high
energy physics [2-6].

One very important property of inflation is that, by being
described by an approximately de Sitter metric, it enjoys all
its background symmetries. As we shall see, those sym-
metries are so powerful that allow to predict the properties
of many observables. During this period, the spacetime
isometries form an (approximate) SO(4,1) group which can
be identified with the conformal group of a CFT}; acting on
perturbations extending on scales larger than the Hubble
radius. One of the signatures of the inflationary epoch that
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could have reached us is given by the gravitational waves
and, in particular, the graviton non-Gaussianities (NGs),
which are dictated by symmetry arguments. Thus, any
observational confirmation of the graviton NG would pave
the way to a deeper understanding of the theory of gravity
and particle content during inflation. Indeed, symmetry
arguments (better to say the isometries of de Sitter)
constrain the three point correlator (dubbed sometime
the bispectrum) of the graviton to be conformal invariant.
Its shape is fixed (when parity is preserved) by two
interacting terms, the ordinary Einstein-Hilbert gravity
action and the higher-order derivative action called the
(Weyl)? term.

Since a sizable contribution of the (Weyl)? term has been
related to possible causality violation [7], which are
supposedly cured by the presence of a tower of higher-
spin states, an experimental confirmation of a large higher
derivative tensor NG would suggest the presence of an
infinite tower of higher spin (HS) particles during inflation.
Indeed, one particularly interesting setup where the power
of symmetries manifests itself is in theories with higher
spin fields. The possible signature of the presence of
massive (or partially massless) fields during inflation has
been extensively studied both theoretically [8—16] and
observationally [17-19]. In fact, in the massless case, there
are very strong theorems constraining the existence of
HS fields in Minkowski spacetime (see no-go theorems
[20-22]) which can be avoided in curved spacetime settings
[23]. A noticeable example is provided by the Vasiliev

Published by the American Physical Society


https://orcid.org/0000-0002-1444-5372
https://orcid.org/0000-0002-6892-9145
https://orcid.org/0000-0002-9561-5627
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.063535&domain=pdf&date_stamp=2019-09-24
https://doi.org/10.1103/PhysRevD.100.063535
https://doi.org/10.1103/PhysRevD.100.063535
https://doi.org/10.1103/PhysRevD.100.063535
https://doi.org/10.1103/PhysRevD.100.063535
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

VALERIO DE LUCA et al.

PHYS. REV. D 100, 063535 (2019)

theory, which describes the dynamics of interacting mass-
less higher spin particles in curved spacetime [24—-26] and
admits solutions which are asymptotically de Sitter (or anti
de Sitter) [27-29]. In general, the theory contains an infinite
tower of interacting massless gauge fields of any spin and,
since it accommodates a massless spin-2 particle, the
graviton, it is therefore an appealing theory of gravity.

The bispectrum of cosmic microwave background
(CMB) is one of the cleanest observables of graviton
NGs. So far, signatures of various NG shapes and their
detectabilities have been theoretically examined (e.g.,
Refs. [30-40]). Moreover, some of these shapes have
already been tested with the real CMB data [41-45]. No
detection of > 20 signal yields useful constraints on the
background theories (see Ref. [46] for a review).

This paper aims at constraining the graviton NG induced
by (Weyl)? term by employing the CMB bispectra. CMB
signatures of the same NG template have already been
analyzed in an early work [31], while how much they are
constrained from current and forthcoming CMB observa-
tions remains undiscussed." We here address these issues
for the first time.

Through the temperature data analysis, we find no
evidence of the graviton NG. This provides an upper
bound on M%L* as in Eq. (25). On the other hand, our
forecasted analysis shows that its minimal detectable size
shrinks by some orders of magnitudes by taking B-mode
polarization into account. This encourages follow-up inves-
tigations in next decadal B-mode experiments such as
LiteBIRD [47], CMB-S4 [48], and CORE [49].

The paper is organized as follows. In Sec. II we review
the tensor NG shapes as dictated by the dS symmetries and
discuss the particular example of the Vasiliev higher spin
gravity giving rise to such a scenario. In Sec. III we present
the observational test based on the currently available data
and the forecasted sensitivity with the next generation of
future experiments. The last section is devoted to the
conclusions.

II. GRAVITON NON-GAUSSIANITY
IN DE SITTER SPACETIME

During the inflationary epoch, the spacetime is approx-
imately described by a de Sitter metric

ds?

which is invariant under the symmetry group SO(4,1). In
the late-time limit (z — 0), the background isometries act as
a CFTj; group containing translations, rotations, dilatations

'In Ref. [31], a graviton NG from parity-violating (Weyl)?
cubic term f(¢)WW? has also been studied. This has already
been constrained using the CMB temperature bispectrum in
Ref. [42].

and special conformal transformations. This also goes
under the name of dS/CFT; correspondence. Under such
a symmetry, the structure of the two and three point
functions is completely fixed and their late-time limit is
naturally captured by the correlator structure in the CFT;
dual description. In the case of the graviton three point
correlator, it can be shown that the symmetries dictate the
shape of the bispectrum to be induced by an interacting
action [50] composed by the Einstein-Hilbert term

M2
Suu = / dedx /=GR - 6H?), 2)

plus an additional (Weyl)? term as’

274
ML

SW3 = / d’l’d:s)(f\/_gWabchCdmnWmnab' (3)

The length scale L determines the strength of the (Weyl)?
term. The explicit expression for the three point correlator
is given in Refs. [50,51]. The same structure is also found
working in the three dimensional CFT; dual description
[52-54].

One explicit example of the theory of gravity giving rise
to such a graviton NG is provided by the Vasiliev theory in
de Sitter spacetime, where the interactions between the
particles are fully dictated by the higher spin gauge group
and the spectrum is composed by an infinite tower of
massless higher spin fields. The theory depends only on a
free parameter identified with the ratio between the reduced
Planck mass and the Hubble rate during inflation, M ,/H.
The prediction regarding the tree-level late-time cosmo-
logical correlation functions of the graviton in such a theory
has been worked out in various works [55-58], while
the full nonlinear result can be computed with the aid of the
framework introduced in Ref. [57] making use of the
dS/CFTj; correspondence. In particular, one can analyze
the characteristic graviton non-Gaussianity through the
three point function predicted by the higher spin gravity
and obtained in Ref. [52]. The nice property of the higher
spin gravity is that the interactions between the particles are
completely fixed, thus also the additional scale L is a clear
prediction of the theory. In particular, it is given by [52]

g \ l/4
HL = | — ~04. 4
<270> 0 @

This means that in the Vasiliev theory the higher derivative
corrections to the GR graviton three point function are
sizable.

*One additional possible contribution to the graviton three
point function would come from the parity-violating interaction
term WW?2. From now on, we will consider only the parity-
conserving case.

063535-2



CONSTRAINING GRAVITON NON-GAUSSIANITY THROUGH THE ...

PHYS. REV. D 100, 063535 (2019)

Even though the structure of the graviton three point
function is robustly fixed by symmetries, different theories
of gravity could lead to the prediction of a different scale L
which would impact the possibility of a future experimental
confirmation through CMB observations. From now on, we
will consider L as a free parameter.

III. OBSERVATIONAL TESTS OF TENSOR NON-
GAUSSIANITIES USING THE CMB BISPECTRA

Here we examine the detectability of a graviton NG from
the (Weyl)? cubic action (3), as a probe of the higher spin
gravity model, using CMB bispectra. Moreover, by con-
straining the graviton NG with the real CMB data, we test
this model.

A. CMB bispectra

Since the CMB fields are distributed on the 2 sphere,
their magnitudes are quantified through the spherical
harmonic decomposition. Tensor-mode harmonic coeffi-
cients of temperature and E/B-mode polarization fields
(X =T, E, B) take the form [30,59]

3% x R
b= i [ ST Y (5) 7. ©)

I=%2
0 (X=T.E)
1 (X=B)"’
representation of primordial GW, which is given by

. [ &k
J/ij(x) :/W

with the transverse and traceless polarization tensor
2Pk obeying (k) = el? (k) = e (~k) and

ij
el(.;)(fc)eg/)(fc) =28, _y. The linear transfer function
T%(k) expresses characteristic tensor-mode features, e.g.,
the integrated Sachs-Wolfe (ISW) amplification for temper-
ature and the reionization bumps for polarization [60]. The

CMB bispectrum then takes the form

(L) = [ 5

)
2 <> (*;>
x Di / &k, Y5 (K

A helicity-state expression of graviton bispectrum from
the (Weyl)? cubic action (3) (and also a formula of induced

where x = { and y%iz) is a helicity-state

kX A ()%
RNy el (k). (6)
A=42

o k2 dk

CMB bispectrum) has already been obtained in Ref. [31].
Here, we present a mathematically equivalent but alter-
native form where contractions between unit vectors and
polarization tensors are much simplified, reading

<Hy> (27)380 <§:

>fk loks 02, 1,00y 0

e (k)e P (hy)el ™ (k). (8)

where

H
fk1k2k3 = 5760 (M_

8
VML ke )
14

In a similar way to Ref. [31], inserting this into Eq. (7), we
compute angular integrals and helicity summations, and
simplify the resulting formula by employing the addition
rule of angular momenta. The bottom-line formula has a
rotational-invariant shape

3
<Haxn >:(f1 2 fs)
n=1 fatn i o M3

where

X1X2X3__(8”)3/2 7 NC\+Lr+E

Bylr,e, =" 5 g(_’) ’

(e) m 000
x 5x,+x2+x3+f,+f2+f3 E (_]) hL \LoLy
LiLyL;

X, X,X
Bf,lf;f; ) (10)

£ty O o
L Y
2 2 2 0

3
2 [oo .
X {H —/ k%zdknT)ff: (kn)j, (kn)’)} S ks s

11:171- 0
(11)

0 (I=odd)

: (e) _
with &, = { 1 (I =even) an

R8s — \/(211 + 1)(212 + 1)(213 + 1) ( ll 12 13 )

il 4 S| Sy S3
(12)

The angle-averaged bispectrum (11) takes a much simpler
form than the previous one in Ref. [31] (although both yield
identical result); hence, much more speedy numerical
analysis is realized. Note that parity-conserving nature
of the graviton bispectrum (8) restricts nonvanishing
signal to TTT, TTE, TEE, TBB, EEE, and EBB when
£+ ¢, + ¢ =even, and TTB, TEB, EEB, and BBB
when | + ¢, + ¢3 = odd.

063535-3



VALERIO DE LUCA et al.

PHYS. REV. D 100, 063535 (2019)

500 -

400 -

300

200 -

100 . 4

FIG. 1. Intensity distribution of the CMB temperature bispec-
trum in 3D #-space domain. Each axis corresponds to ¢, ¢, or
¢5. Red (blue) dense regions correspond to large positive
(negative) signal. Here, the bispectrum signal normalized by a
constant Sachs-Wolfe bispectrum template [61] is plotted and
hence dominant configurations are effectively highlighted.

Intensity distribution of the temperature bispectrum in
3D ¢-space domain is plotted in Fig. 1. One can confirm
there that the dominant signal comes from equilateral
configurations | ~ £, ~ £3 (see Ref. [46] for illustrations
of other shapes). However, it is highly suppressed for £ =
100 because of the cease of the ISW amplification. The
other bispectra including E-mode and/or B-mode polari-
zation, that are not described here, are also suppressed at
small scales (because of the damping nature of the GW
induced polarization field) and hence have similar intensity
distributions.

B. Detectability

In what follows, we focus on estimating a bispectrum
amplitude parameter M7 L* using the CMB bispectra (11).

Then, assuming
H\?2 x?
— ) =—7A 13

(MP) 2 : s ( )

with Ay the scalar amplitude and r the tensor-to-scalar ratio
(see e.g., Ref. [1]), we rewrite fy i, into

Fryhok, = 360m8ALr*MAL* (ky + ko + k3)75. (14)

We also fix Ag to be an observed value, 2.2 x 10~ [62,63],
and analyze the detectability of M}L* by varying r.

The Fisher matrices computed from auto bispectrum
only (T-only, E-only or B-only) and temperature and E-
mode polarization jointly (7 + E) read, respectively,

(BXXX, )?
FX — (_1>f1+f2+f3 12203 , (15)
2 sCrCiT e

Frip= Z(_l 'MZM}BX X2X3(C21)X1X/‘

016,85 1
X, X=T.E ¢,

AN =

1y RS
x (Cz) )XeXs (CZHY%B, L%, (16)

where CXX' is the CMB angular power spectrum, and
BYY2S = B2 /(M3 LY). Here, we have assumed that
any NG contribution to the covariance matrix is negligibly
small; thus, the covariance is diagonalized and given by the
power spectrum alone. This would be justified as long as the
Fisher matrices do not contain the information at very
small angular scales. According to the Planck team [45],
the diagonal covariance matrix approximation works for
¢ <2000 by using Planck component separated temper-
ature and polarization maps. For safety, our Fisher matrix
computations are performed for £ < 1000. The expected 1o
errors on MyL* from T-only, E-only, T + E, and B-only

are given by AMLLY|; =1/\/fayFr. AM;L* =

1/\/FayFe AMGLA g =1//f oy Frip and AM, LY p =
1/+/fsyF s, respectively, where fq, is a sky coverage
fraction. The B-mode power spectrum in Fjp is modeled
by the sum of primordial contribution proportional to r,
lensing B-mode one, and experimental noise spectrum,
i.e., CBB = CV"™(r) + C'¥™ 4+ N,. Here, we consider four
cleanhness levels of the B-mode data: a perfectly delensed
and noiseless full-sky case (i.e., C‘;'“S =N,=0 and
Sy = 1), a nondelensed and noiseless full-sky one (i.e.,
CILS‘“S #0, N, =0 and fgy, = 1), a perfectly delensed and
noisy partial-sky one (ie., C™ =0, N,#0 and
Sy = 0.5), and a nondelensed and noisy partial-sky one
(ie., C}JS“S #0, No#0 and fg, =0.5), are taken into
account. Since an achievable level of delensing in the
bispectrum analysis with future B-mode data has not been
fixed, we simply examine two extreme cases: the perfectly
delensed and nondelensed ones. The noise spectrum is
computed with experimental uncertainties due to beam,
noise, mask and residual foreground expected in the
LiteBIRD project [35,47,64,65].3 As was done in
Ref. [35], we assume that foregrounds arising from galactic
dust emission and synchrotron radiation are subtracted by
use of 9 channels planned in LiteBIRD (40-89 GHz and
280402 GHz), achieving 2% residual level in CMB maps.
On the other hand, we assume a noiseless full-sky meas-
urement of temperature and E-mode polarization and there-
fore CIT, CEE and CZF do not contain the information of
instrumental noise.

The left panel of Fig. 2 depicts AM},L* as a function of
Cmax At 7 =107, One can see there that AM,L*|;,
AML* g, AMSL*|;, . and AMjL*| of the nondelensed

3Comparable cleanliness level will also be achieved by other
proposed CMB missions as CMB-S4 [48] and CORE [49].
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FIG. 2. Expected 1o errors: AM‘;,L4 from T-only (blue lines), E-only (yellow lines), T + E (red lines) and B-only (cyan lines), as a
function of the maximum multipole number # ., (left panel) and the tensor-to-scalar ratio r (right panel). The results in the left and right
panels are computed with » = 1073 and #,,,, = 1000, respectively. Each line style of B-only (cyan line) discriminates the cleanliness
level of the B-mode data: a perfectly delensed and noiseless full-sky case (dot-dashed lines), a nondelensed and noiseless full-sky one
(solid lines), a perfectly delensed and LiteBIRD-like noisy one (dotted lines), and a nondelensed and LiteBIRD-like noisy one (dashed
lines). For temperature and E-mode polarization, we assume a noiseless full-sky measurement.

case saturate at Z > 100. This is because the tensor
bispectrum (the numerator of F) rapidly decays for
¢ > 100, where the covariance (the denominator of F) is
still large due to the scalar-mode signal in C%7, CEE and
CTE, and the lensing signal in C22. The similar behavior is
seen in AM7L*|5 of the perfectly delensed and noisy case
because of the dominance of N, for Z 2 100. On the other
hand, AM%L*, of the perfectly delensed and noiseless
case can shrink as Z,,,, increases because of the absence of
the lensing signal and noise in C55.

The right panel of Fig. 2 presents AM},L* as a function
of rat £, = 1000. In the perfectly delensed and noiseless
case, AML*|; & r=5/2 holds for any r since By, 0, o r*
and CB8 = CU"™(r) o r. Regarding the other error bars,
since CIT o %, CEE o 10 and

prim
W= { G 7
the » dependences are expected to be
AMALY ;o r 7, (18)
AMG LA p o rt, (19)
AMALA |y p o 174, (20)
sy 5 e

These behaviors can be confirmed from each line in the
right panel. We find there that, at any level of delensing, the
graviton NG with

M3L* ~ 10777 (22)
is detectable by next decadal B-mode survey aiming at
hunting r < 1072 such as LiteBIRD, CMB-S4, and CORE,
and a smaller signal could be captured further in the future.

C. Observational constraints

Finally, we test this model with existing CMB data. We
then follow a bispectrum estimation pipeline adopted in
previous works on constraining other tensor NG shapes
[41-45].

Here, M;L4 is constrained from a coadded temperature
data using WMAP 9-years V and W bands [66,67]. The
Planck data is not adopted for this analysis, while we
expect from previous analyses of a very similar equilateral
NG shape [42,43,45] that almost an identical limit is
obtained from the temperature data, and it is slightly
tightened by adding E-mode polarization data. We then
employ an estimator [68]

s | Bl . Bl
M4L4 — (_1)f1+f2+f3 12223 10203 (23)
P TT ~IT (1T °
FT; 6C,, Cp, Cy,
where
O U
BITT E} : 3Vl 4l T
016505 - m, m, ms { Cymy Y lymy " Eymy
T T T
- (< t’lmlat’zm2>MCa1f3m3 +2 perm)] (24)
is the bispectrum reconstructed from maps, and
T T . .
(@ m Apym, e denotes  the  variance of = simulated
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Gaussian maps. This estimator properly works when the
covariance matrix is approximately diagonalized. Such a
situation is achieved by a recursive inpainting prefiltering
technique [69,70], which has been implemented in map
making for the Planck bispectrum estimation in order to
avoid a time-consuming full-inverse covariance weighting
process [43,45]. At the price of minimal (~5%) loss of
optimality, we adopt this. Note that estimates from Eq. (23)
rely on r, which however is singled out because of
Mj,‘,L4 x r 4.

The best-fit value and the 1o errors on MjL* are
obtained computing Eq. (23) with observed data and
500 Gaussian simulations, respectively. Experimental fea-
tures, i.e., beam shape and anisotropic noise, are added to
the simulations by means of the WMAP-team methodology
[71]. Moreover, both of the observed data and the simu-
lations are masked using the KQ75 mask, leading to
Sy = 0.688. All masked regions are inpainted after the
removal of monopole and dipole components. The
observed maps and the experimental tools are downloaded
from the Lambda website [72].

The above estimation process, unfortunately, comes at an
unfeasibly high computational cost since a map-by-map
computation of Eq. (23) already requires O(5,,x) Numeri-
cal operations. This issue is actually solved if the summa-
tion in the 3D ¢-space domain is factorized as
Yo, Aviere, = 2o, al€)]Ds, b(£2)][22¢, ¢(£3)]. In
fact, in the usual scalar-mode bispectrum analysis, the
estimator sum is reduced straightforwardly since BL'} , is
given by a (partially) separable form [68]. In general
situations where BJ’!, has a nonseparable structure
(see Refs. [30—40] for tensor-mode NG cases), the modal
approach [61,73-76] gives a solution. There, a nonsepar-
able input bispectrum template is replaced by an approxi-
mated separable one generated via a modal decomposition
based on finite numbers of separable eigenfunctions. This
yields a fast estimator form imposing O(#73,,,) numerical
operations. In this paper, the modal approach is adopted
because the input bispectrum under examination (11) is
obviously nonseparable. We perform the modal decom-
position using 450 modal basis templates based on poly-
nomials, and a 99.9% reproduction of the input bispectrum
is achieved.

Prior to working with the real data, we test the validity of
our bispectrum estimation pipeline using simulations. We
then produce O(10%) NG maps including nonzero M L* by
means of the modal approach [61,73,74]. Implementing all
WMAP experimental features mentioned above in them, we
do a map-by-map computation of Eq. (23), and confirm that
the average of output values recovers the input M‘,‘,L“. Ina
similar manner, we also compute Eq. (23) from O(10%)
Gaussian simulations, and confirm that the standard
deviation of output values saturates a Cramér-Rao bound,
1/+/fsyFr (see Fig. 2 for values in a noiseless full-sky
measurement).

Since all validation tests are successfully passed as above
stated, the real data are implemented in our pipeline. An
analysis at a maximum angular resolution, £, = 500,
yields

MHL* = (1.1 £4.0) x 10"77*  (68% CL).  (25)

This comes from the foreground-cleaned data, while the
raw data result in a comparable value. This result is
unbiased by primordial scalar-mode bispectrum or secon-
dary one (i.e., ISW-lensing bispectrum [77,78]) because it
has a shape completely different from our template (11).
These make our result robust.

D. Physical interpretations

The prediction of the Vasiliev HS theory for the
parameter L is L ~0.4/H, as reported in Eq. (4), from
which it is clear that the signal is enhanced for a smaller
value of the Hubble rate H. We can also use the relation
between the tensor-to-scalar ratio and H in Eq. (13) as

2
rz9x1m<é§> (26)

p

to rewrite the condition allowing the signal to be above the
upper bound in Eq. (25) as

HZ2x1073M,~5x 10" GeV, (27)

which is already ruled out by current constraints on the
Hubble rate H < 6 x 103 GeV [79].

With future experiments, using Eq. (22), the observ-
ability limit will be set to

HZ5x107*M,~1x 10" GeV. (28)

In light of this, one can conclude that no observational
confirmation of the Vasiliev HS gravity can be expected
within the next generation of future experiments. This
difficulty in observing such a signature in the specific case
of the Vasiliev higher spin gravity theory is due to its
specific prediction of the combined product HL ~ 0.4. One
could in principle hope that inflation took place with a
lower Hubble scale H, enhancing the effect of the (Weyl)?
interaction onto the graviton NG, but that, in turn, would
decrease the amount of tensor modes reaching us (thus the
dependence of the expected 1o error on r) making any
observation out of reach even for the planned future
experiments.

However, a different theory of gravity predicting a
different contribution from the (Weyl)? term to the three
point function would turn out to be testable, provided that
the length scale L is predicted to be at least

HL 2 8, (29)
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where again we utilized the future detectability bound
shown in Eq. (22). Given the present bound on the
Hubble rate [79], then this condition translates into
L 2 3.2 x 10°M;". The nonobservation of such a signature
would, on the contrary, put an upper bound on the scale L
as L <8/H.

IV. CONCLUSIONS

We have investigated the capability of measured CMB
spectra to provide information on the strength of the (Weyl)?
term through the tensor NGs generated during inflation. Such
term is predicted to be relevant for the three point graviton
correlator since it provides a conformal invariant tensor
spectrum, together with the standard GR action.

If the strength of the (Weyl)® term is fixed by a length
scale L, we have concluded that, with the currently
available observations, an upper limit is set at M‘[‘,L4 =
(1.1 £4.0) x 10'%r7* (68% CL), while the new generation

of CMB experiments will be able to detect the presence
of the (Weyl)® term if M}L*>10"7r7* or HL X8
Unfortunately the well theoretically motivated higher spin
theory a la Vasiliev does not satisfy such a bound and
therefore will not be testable through the tensors NGs in the
forthcoming observations.
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