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We show that peculiar velocities of Type Ia supernovae can be used to derive constraints on the sum of
neutrino masses, Xm,,, and dark energy equation of state, w = wy + w, (1 — a), from measurements of the
magnitude-redshift relation, complementary to galaxy redshift and weak lensing surveys. Light from a
supernova propagates through a perturbed Universe so the luminosity distance is modified from its
homogeneous prediction. This modification is proportional to the matter density fluctuation and its time
derivative due to gravitational lensing and peculiar velocity respectively. At low redshifts, the peculiar
velocity signal dominates while at high redshifts lensing does. We show that using lensing and peculiar
velocity of supernovae from the upcoming surveys WFIRST and ZTF, without other observations, we
can constrain m, < 0.31 eV, o(wy) <0.02, and o(w,) < 0.18 (1-6CL) in the Xm,-wy-w, parameter
space, where all the other cosmological parameters are fixed. We find that adding peculiar velocity
information from low redshifts shrinks the volume of the parameter ellipsoid in this space by ~33%.
We also allow Qcpy to vary as well as Zm,, wy and w,, and demonstrate how these constraints degrade

as a consequence.
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I. INTRODUCTION

The detection of nonzero neutrino masses [1,2] provides
conclusive evidence that the standard model of particle
physics is incomplete. The importance of this discovery
can be judged from the fact that two Nobel prizes have
been awarded for work leading to this conclusion.
Understanding the origin of their mass remains one of
the key open questions in modern physics (see for e.g., [3]).
Cosmology can shed light on this problem through the
dependence of the matter power spectrum [4] and growth
rate of density fluctuations [5] on neutrino masses. Another
open problem is the nature of dark energy. Since its
discovery in 1998 [6,7] there has been a lot of effort in
trying to explain what its nature is (for an observational
overview see for e.g., [8], and [9] for issues on the
theoretical side) but with limited success. In particular
the ACDM model that is considered the “standard” model
of cosmology [10,11] fails to explain the observed value
of A, the cosmological constant (see for e.g., [9]). One
interesting possibility is that it is driven by a scalar field
[12], in which case its equation of state must vary with
time. Upcoming surveys such as the Subaru Prime Focus
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Spectrograph (PFS) [13,14], Dark Energy Spectroscopic
Instrument (DESI) [15], Large Synoptic Survey Telescope
(LSST) [16], Euclid [17] and others will pursue a stringent
constraint on the sum of neutrino masses and time variation
of dark energy equation of state as primary science goals.
In these surveys, galaxy clustering and weak lensing will be
primarily employed to achieve it. However, recent studies
pointed out that Type la supernovae can also be used to
determine the sum of neutrino masses, complementary to
galaxy redshift and weak lensing surveys [18,19].

Type Ia supernovae are known to be standard candles
[20,21]. Their absolute luminosity can be accurately
calibrated and thus one can use their apparent brightness
to estimate distances to them, the so-called luminosity
distances. The luminosity distance is a function of the
background energy densities and the rate of expansion of
the Universe, as described in Sec. II, thus offering a probe
of these quantities. However, this dependence is limited to a
homogeneous Universe. In the presence of inhomogene-
ities, this relation between the background quantities and
luminosity distance is altered [22] and the luminosity
distance becomes a function of the degree to which the
Universe deviates from the homogeneous one. This can be
captured by the matter power spectrum and its time
derivative, because the shape of the power spectrum is
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altered at wavelengths smaller than the free-streaming scale
of neutrinos [4,5,23]. Since deviations from the homo-

geneous prediction are measured for individual supernovae,
the key advantage is that one does not need to worry about
issues of complicated modeling of bias and redshift space
distortion that plague constraints from galaxy redshift
surveys, or of intrinsic alignments and shape noise that
plague weak lensing surveys. Although supernova surveys
come with their own set of systematics, these are different
from the above and so can provide complementary con-
straints on neutrino mass.

Traditionally Type Ia supernovae have only been
observed at low redshifts. For example, using the
Hubble Space Telescope, a few Type la supernovae have
been observed out to z ~ 1.4 [24], but the number of such
supernovae is extremely low for use as cosmological probes
of the perturbed Universe. Upcoming surveys such as Wide
Field InfraRed Survey Telescope (WFIRST) [25], however,
will observe thousands of Type Ia supernovae outto z < 1.7
allowing us to gain significant insight into neutrino mass
and dark energy using supernovae. In addition, surveys
such as the Zwicky Transient Facility (ZTF) [26] will
observe ~2000 supernovae out to redshift 0.1 allowing
one to probe neutrino mass and dark energy using a large
sample of low redshift supernovae too. Previous studies
of using the magnitude scatter to derive cosmological
constraints have focused on using either lensing or
peculiar velocities. For instance, peculiar velocities of
Type Ia supernovae have been used previously to derive
constraints on growth of structure (see [27-30] and
references therein). Here, we show for the first time that
using peculiar velocities in addition to lensing can
significantly improve not only the constraints on sum
of neutrino masses but also those on the time variation of
dark energy equation of state. One key point to note is
that the redshifts considered here are of cosmological
origin, but the total observed redshift of a given super-
nova includes a component from its local velocity in the
host galaxy. As such, the redshift of the host galaxy is
additionally measured to obtain the peculiar velocity of
cosmological origin, and that is the one we consider in the
rest of the paper. In case the galaxy is a member of a
cluster, the cluster redshift needs to be used, as galaxy
peculiar velocities are also significantly affected by local
velocities in a cluster [31].

The rest of the paper is organised as follows. Section II
describes the observed scatter in brightness (magnitude)
of supernovae coming from their peculiar velocities and
lensing along the line of sight (l.0.s.), both of which are
sourced by perturbations in the Universe. In Sec. Il A we
discuss how nonzero neutrino masses affect this scatter.
Finally, in Sec. III C we present the forecasts on neutrino
mass from the two surveys, described in Sec. III A, using
the Fisher matrix formalism, Sec. IIIB. We conclude
in Sec. IV.

II. THE MAGNITUDE-REDSHIFT RELATION

The starting point for extracting cosmological informa-
tion from observations of Type Ia Supernovae is the
magnitude-luminosity distance relation,

Meys(2) = 5 logody(z) + M, (1)

where M is the absolute magnitude of a supernova
(including all corrections such as dust and reddening).
The function dy (z) is the luminosity distance, given by

di(z) = (1 +2)x(2), (2)

where y(z) is the comoving distance at the same redshift,

r.sinh(r/r.), K <0
x(z)=4r K=0 (3)
resin(r/r.), K >0,

with r, = 1/(Hy\/|Qk|). r given by

e 1
10 =5 | a5 )

with

E*(2) = Q1+ 2)* + Qu(1 +2)* + Qx (1 +2)°
+ QA(I + 1)3(l+wo+w,,)e—3waz/(l+z)’ (5)

where Q,, Q,,, Q, Q, are the energy density fractions of
radiation, matter, curvature and dark energy, respectively,
and w=wy + w,(1 — a) is the time-varying equation of
state for dark energy, parametrized by w, which character-
izes the constant part, and w,, which represents the
amplitude of time variation [32,33]. Equations (2)—(3) only
hold for a supernova that lies in a host galaxy which has no
peculiar velocity and observer, in a Friedmann-Robertson-
Walker (FRW) universe, such that light from the supernova
propagates through a homogeneous and isotropic back-
ground. This is not the case for our Universe.

As light travels from a supernova to an observer, it gets
gravitationally lensed by the intervening matter along the
l.o.s. In addition, peculiar motion of the host galaxy of
the supernova changes the observed redshift of the light.
Other effects such as the integrated Sachs-Wolfe effect [34]
and gravitational redshifts also affect the observed magni-
tude and redshift of a given supernova. However, we do not
consider them in this paper because these are much weaker
than lensing and peculiar velocities [35]. At linear order in
metric perturbations, the total change in observed lumi-
nosity distance can then be written as [22,35,36]
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6dy (z.h) = [1 - Vv, -

asHs)(s] ven

3HZQ,0 [*s .- .

—OTO/ dxw(l +2)8,,(z, R).
0

Xs
(6)

asHs)(s

Here 1 is the unit vector in the observed 1.0.s. direction, y,
is the comoving distance at observed redshift z, of a
supernova, a, is the scale factor corresponding to z,, H is
the Hubble rate at redshift z,, 6,,(z, i) is the matter density
fluctuation at redshift z(y) in the direction fi, and v, and v,
are the peculiar velocities of the observer and supernova,
respectively. Note that this equation has been derived
assuming smallness of metric perturbations but not its
derivatives. Therefore, it can still be used to account for
some nonlinearity in density and velocity perturbations
because they are second- and first- derivatives of the metric
perturbation, respectively (assuming a linear relation
between density and velocity).
Using Eq. (1) we can write [18,19,37]

Simgps (2, 1) = Slogo(1 + ddy (2, 1))

2m5dL(Z,n), (7)

where we have assumed that the fluctuation in luminosity
distance is small and linear theory holds. Using Eq. (7) we
can write

o) = | 5| ey ®

where the variance of the luminosity distance fluctuation
is given by the sum of the variances from lensing and
peculiar velocities,

(6L (2.10)) = (8} jon (2. 1)) + (8 (2. 1)). (9)

There is no cross-correlation term because the l.o.s.
velocities are integrated along the l.o.s. due to the lensing
kernel and so average out to zero [35]. In addition, we
assume that there is no cross correlation between the
lL.o.s. peculiar velocity of the supernova and the observer.
As shown in Ref. [35] this contribution is negligible for
upcoming surveys. The lensing contribution to the variance
is then given as

Glzens(z’ ﬁ) = <5di.lens (Z’ ﬁ)>

[P [ g e
0

2 Xs

x (1 +z)? /;—ﬁkPnl(z, k), (10)

where we have used Limber’s approximation and assumed
that the redshift bin is not too large. For more details please
refer to Appendix D of [35]. The velocity contribution is
given by

6361(2, ﬁ) = <5di,vel(z’ ﬁ)>

1 2
[z
aSHS)(S

< [ LDk PPulkz =0, (1)

where P, (k, z) is the nonlinear matter power spectrum at
redshift z, and D’ (k, z) = —H(z) %’Z@ is the growth rate of
matter fluctuations. Given the matter power spectrum as a
function of redshift, we define the growth factor, D(k, z),
as the square root of the ratio of the (nonlinear) power
spectrum at z to the one at z = 0, and the growth rate can
then be evaluated by numerically differentiation D with
respect to z.

Note that, in principle, the integrals over the power

spectrum in Egs. (10)—(11) range from O to oo. In practice,

we apply an exponential cutoff at large k values, e=*'/k(<)
[18,19], in order to exclude strong lensing from small scale
structures and also because of the uncertainty in modeling
the nonlinear matter power spectrum on small scales. The
cutoff scale k. is set as follows. First, we define a cutoff
mass M, corresponding to the smallest scale to be
excluded, R, = (3M,/4xp,,)"/3, where p,, is the average
matter density at z = 0. As argued in Ref. [18] the lensing
efficiency for supernovae at z ~ 2 peaks at z ~ 0.5, where it
is dominated by galaxies. Thus, we choose a mass so as
to eliminate lensing from galaxy-size dark matter halos.
Thus, following the discussion in Ref. [18], we set M, =
10'"" My which correspond to the typical mass of these
halos. Then, at each redshift z, we identify the size of the
largest structure that collapses to form a halo. To that end
we solve for the largest radius R(z) such that the amplitude
of the linear density field smoothed on the scale R, §z(z),
exceeds the threshold for spherical collapse, 5,/+/2. Then
we choose the smaller of R, and R(z) to define the cutoff
scale, k.(z) =2n/min(R., R(z)). This procedure is
explained in further detail in Ref. [18]. We have also
checked that this scale is in fact a conservative choice and
integrating the power spectrum down to smaller scales
tightens the constraints on neutrino mass as nonlinearities
on smaller scales are more sensitive to neutrino mass.

Cosmological information contained in the matter power
spectrum and the growth rate can help constrain funda-
mental physics using observations of Type la Supernovae
alone. In this paper we focus on constraining the sum
of neutrino masses and dark energy equation of state
using measurements of the luminosity distance of Type
Ia supernovae.
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Lensing- (blue solid) and velocity- (red dashed) induced scatter, 62, in magnitude as a function of the sum of neutrino masses,

m,, in eV for a source at z = 0.02 (top) and z = 1 (bottom). The velocity scatter has been rescaled to have the same amplitude as lensing
scatter at Xm, = 0.06 eV to enable better comparison of slopes. Lensing scatter has a larger slope, and so is more sensitive to the sum of

neutrino masses.

A. Effects of neutrino mass on luminosity distance

Massive neutrinos are known to free-stream out of
overdense regions and thus suppress growth of structure
on small scales, while contributing to growth on larger
scales (see e.g., Refs. [4,23]). The exact turnover point is
given by the neutrino free-streaming scale, kg [4,23]

0.677 m,

= T ey

(Q0)'2h Mpe™ (12)

where m,, is the mass of the v neutrino flavour. On wave
numbers k > ki the power spectrum is suppressed.
Moreover, this suppression increases with time since
regions smaller than the free-streaming length continue
to grow at a lower rate compared to those that are larger.
This results in the growth rate, D'(k, z) becoming sensitive
to neutrino mass as well. As a result both the lensing
dispersion, Eq. (10), and the peculiar-velocity dispersion,
Eq. (11), become sensitive to neutrino mass.

Figure 1 shows the effects of neutrino mass on these two
dispersions at two different redshifts, 0.02 (top) and 1
(bottom). All other cosmological parameters have been
kept constant here and we assumed a flat Universe so that
Q) = 1-Q, where Q,, = Q, + Q;, + Qg is the sum of
radiation, matter, and curvature densities. We can see that
both the lensing and velocity dispersions decrease mono-
tonically with increasing neutrino mass, a signature of the
suppressed growth of structure. Moreover, the slope of the
lensing dispersion has a larger magnitude than that of
velocity at both redshifts, even where peculiar velocity
contribution dominates. This indicates that lensing is a
more powerful probe of neutrino mass compared to
velocities. However, as we show below, the lensing
dispersion has a much smaller magnitude at low redshifts
and so using peculiar velocities can help in providing
information from these redshifts.

Figure 2 shows the expected scatter in magnitude as a
function of the source redshift z; from lensing, peculiar
motion, and intrinsic effects for a Type la supernova. We
assumed the PLANCK ACDM cosmology [10] here and
assumed a normal hierarchy with Xm, = 0.06 ¢V, and 1
massive neutrino and two of them still massless. The
nonlinear matter power spectrum was calculated using
the cLASs code [38], with a nonlinear halofit prescription
[39]. The intrinsic scatter in the observed magnitude, o,
arising from the intrinsic dispersion in supernova magni-
tudes, as well as errors due to photometry, light curve fitting
and so on is assumed to be o;,; = 0.12 in accordance with
the estimate in Ref. [25]. We can see that at higher source
redshifts the lensing contribution dominates, while at lower
redshifts the peculiar velocity contribution is more signifi-
cant. This is expected because at higher redshifts the
growth rate is much smaller and the scatter induced by

0.041 — lensing « intrinsic
i --- velocity
i
0.031
i
i
~ 1
© 0.021
1
1
.II ....................................................
0.011}
\
1
\
\\
0.00 -——==

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
z

FIG. 2. Dependence of magnitude scatter, o>, sourced by
lensing (blue solid), peculiar velocities (red dashed), and intrinsic
(green dotted) on source redshift (z), for 2m, = 0.06 eV. Lensing
produces a large scatter at higher source redshifts while velocities
produce a large scatter at lower source redshifts. The intrinsic
scatter is independent of source redshift.
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peculiar velocities in Eq. (11) is further suppressed by the
increase in y,. On the other hand, light travels through more
intervening matter when the supernova is at a higher
redshift and so the induced deviation from a homogeneous
background is larger. In particular, at low redshifts the
lensing scatter is even smaller than the intrinsic one and
becomes hard to disentangle.

The redshift dependence of the lensing and peculiar
velocity scatter is also useful to isolate it from the intrinsic
scatter [19]. From Fig. 2 it is also clear that a supernova
sample covering a wide range of redshifts allows one to
constrain cosmology much better than using only low or
high redshift supernovae. This will become clearer in
Sec. IIIC where we demonstrate the effect of adding
peculiar velocity information from supernovae at low
redshift where we show the constraints on sum of neutrino
masses from using both low- and high-z data and from
using high-z data alone.

III. FORECASTS
A. Surveys

In Sec. II A it was shown that a supernova sample
spanning a large range of redshifts, from the very low to the
very high, is optimal for constraining cosmology.
Therefore, to make forecasts for neutrino mass we consider
two surveys, the ZTF survey which will observe low
redshift supernovae out to z <0.1 [26], and WFIRST
which will observe high redshift supernovae in the range
0.2 <z < 1.7 [25]. Figure 3 shows the expected distribu-
tion of supernovae in different redshift bins for these
surveys. Note that the exact numbers for ZTF were not
available, so we estimated the numbers from the distribu-
tion given in Ref. [26] and the plot in Fig. 3 shows the
distribution used for forecasts.

B. Fisher matrix

We make use of the Fisher matrix formalism to obtain
forecasts for neutrino mass and dark energy constraints

0.06 0.08

FIG. 3.

from the two surveys described in Sec. IIl A. The Fisher
matrix is defined as (see for e.g., [40])

2

Far = _<gelgeﬁ>’

a%VYb

where L is the likelihood function, and 6, represents the ith
parameter we want to constrain. The likelihood function
gives the probability of finding a particular vector of data d
given a vector of parameters €. Thus, the Fisher matrix
characterizes how fast the probability of observing d falls
off as 0 is changed, which is then related to the confidence
with which we can estimate 6. To evaluate the Fisher matrix
we need the likelihood function.

In Refs. [19,37] a log-normal likelihood has been
assumed to describe the lensing-induced scatter in magni-
tude, motivated by findings that the convergence field is
well described by a log-normal distribution [41,42].
Additionally, the intrinsic scatter is assumed to be drawn
from a Gaussian distribution with a zero mean and variance
given by o2,. Then, the total likelihood is given as a
convolution of the log-normal and Gaussian distributions.
However, such an approach is hard to implement when
we add the contribution from peculiar velocities too. This is
because the lensing contribution for a fixed peculiar
velocity contribution is not independent of the fixed
value assumed for the peculiar velocity contribution. In
other WOI'dS, P<5dL,ICHS|5dL,VCI’5dL,inI) ?é P(édL.lens |5dL,i[1t)a
where the right hand side (r.h.s.) has been shown to be log-
normal distributed [41]. Therefore, in this paper we assume
that the likelihood function is given by a Gaussian
distribution for simplicity. Since a log-normal distribution
has two parameters, K, and (x?), that depend on cosmo-
logical parameters aside from the homogeneous magnitude
[19], constraints on cosmological parameters from using a
log-normal likelihood would be tighter than what we obtain
here. In other words, our forecast using the Gaussian
likelihood would provide more or less conservative con-
straints. Even if the likelihood were indeed non-Gaussian,

(13)
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Expected supernova distribution for ZTF [26] (top) and WFIRST [25] (bottom).
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we could still expand it around its maximum in a series and
the leading order term would be given by a Gaussian. Also,
as pointed out, for example, in [43] if we bin a large enough
number of supernovae from different parts of the sky at
similar redshifts we can treat the distribution of apparent
magnitudes as Gaussian, by the central limit theorem.

One other assumption we make is that the different
supernovae are uncorrelated, so that the total likelihood is
just given as a product of the individual likelihoods,

N N
nLo=l][Li=> I (14)
i=1

i=1

This assumption is motivated by the conclusions of [35]
which showed that for lensing the correlation between
different supernovae is subdominant compared to the
individual contribution. For peculiar velocities, though
the correlation is as important as the individual contribu-
tion, we do not have an exact distribution of the supernovae
in the sky and so calculating correlations is not feasible.
Hence, our results should be taken as the best constraints
possible in absence of the exact survey map. Equation (13)
is linear in In £ which implies that from Eq. (14)

N
]:ab,tot = Z]:ab,iv (15)
i=1

which is simply a sum of matrices. The constraints on
parameters are then obtained by inverting the Fisher
matrix, F g or-

With these assumptions, we can write the log-likelihood
for a single supernova observed to be at redshift z and in
direction i as
<m0b3<z’ ﬁ) - mhomo(a’ <, ﬁ))Z

Int=-—
! 2Gtzot(a’ < ﬁ)

1
—Elnatzot(ﬁz,ﬁ), (16)

where we have explicitly indicated the terms that depend on
cosmological parameters @, my,,,,, i the magnitude of the
supernova that would have been observed in the absence of
inhomogeneities, and o2, = 62 + 02, + 62, is the total
variance of the difference in observed and homogeneous
magnitudes. The average in Eq. (13) is to be taken over
Mgy, Where (mgps) = Mpomo- As a result, any terms linear
in mgyp, — Mpomo (@) in the second derivative of the log-
likelihood [see Eq. (13)] average out to 0. Carrying out the
second derivatives in Eq. (13), for a supernova at z;, we get

L 8mhomo (Zl') amhomo (Zi)

F ab,i —
P e, 90, a6,
1 aatzot(zi)aotzot(zi) (17)
20t 00, 00, |

from which the total likelihood of a supernova sample
distributed in redshift is given as

O'tzot 86a aeb

1 a”tzot(zi) aatzot(zi)
26;‘0t 39a 891) '

u 1 (9171 omo \Zi am omo\Zi
fam_z[ oo (21) Ot ()

i=1

(18)

The likelihood is simply given by first derivatives of the
magnitude in a homogeneous universe and the variances
given by Eqgs. (10) and (11). These derivatives are easily
calculated using the central difference formula numerically,
and can then be used to build up the Fisher matrix.

C. Results

The first parameter combination we consider is Xm1,-wy,.
Figure 4 shows the 1- and 2-¢ contour plots obtained using
the full supernova sample from ZTF and WFIRST as well
as from using either of the two surveys, and keeping all
other cosmological parameters fixed. The dashed red
contours show the 1- and 2-c confident levels obtained
when considering scatter due to lensing alone, while the
filled blue contours show the effect of adding information
from scatter due to peculiar velocities. Neutrino mass

—0.96} I~ 71 lens only 1
lens+velocity

ALL ]

-1.04} .

—-0.96 | =

S~
~
~
-~
~

~

WFIRST

0.6 0.0 0.2 0.4 0.6
m, (eV)

FIG. 4. Expected constraints on wy and sum of neutrino masses
m, in eV from the full supernova samples of ZTF and WFIRST
(top left), ZTF alone (bottom left) and WFIRST alone (bottom
right). Red dashed curves show the 1- and 2-6 constraints when
using lensing scatter alone. Blue filled regions denote the same
when using both lensing and peculiar velocities. Note that all
other cosmological parameters have been fixed to their fiducial
values for these constraints. At low redshifts (bottom left)
peculiar velocities are crucial to derive any meaningful con-
straints on the sum of neutrino masses from supernovae alone.
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contributes to the Fisher information, Eq. (17), through the
derivative of the magnitude in a homogeneous Universe
as well as through the dependence of the matter power
spectrum via the second term of the equation. The
parameter w, also affects the Fisher matrix both through
the homogeneous magnitude, where it is anticorrelated with
neutrino mass [c.f. Eq. (5)], and through the magnitude
scatter, where a large neutrino mass and small wy serve to
suppress structure formation. Thus the overall slope of this
combination is negative. Adding peculiar velocities only
from z < 0.1 improves the constraint on neutrino mass by
about 0.04 eV, which is almost a 15% improvement over
the case without peculiar velocities. This represents our
best constraints.

In the bottom right panel of Fig. 4 we see that when using
only high redshift supernova data adding peculiar velocities
does not help at all. This is expected because as we showed
in Sec. I A the scatter from peculiar velocities is a sharply
decreasing function of redshift and so becomes negligible
when we include only the WFIRST sample which is
dominated by supernovae at z > 0.4.

In contrast, the bottom left panel of Fig. 4 shows what
happens when we restrict ourselves to low redshift infor-
mation alone. Here, as expected, the lensing contribution
hardly constrains the neutrino mass at all. Using peculiar
velocity information however, we find that neutrino mass

-0.96

~ N
£ -1.00 S N -
]
/’ /7
//
—”
-1.04} :
+ + T T T
0.5} + 1
Pl
~~~‘~ l, ’_“\:\\
£ 00 S3s- \ S
. SN T NN \ b
~ < ~__:\ \\\ \\\\\~—— ]
_________ f, \\ﬁ__—,/
-0.5f + :
0.0 0.4 0.8 -1.04 -1.00 -0.96
m, (eV) Wo
FIG. 5. Joint constraints on Xm,, wy, and w, with all other

cosmological parameters fixed, using the full supernova samples
of ZTF and WFIRST. As before, red dashed lines show
constraints when using lensing alone, while blue filled regions
show constraints when adding peculiar velocities. Note also
that varying w, weakens the neutrino mass constraint, as evident
from the larger range of m, (eV) compared to Fig. 4. There is no
improvement in w, but w, and m, are still better constrained
when peculiar velocities are added.

can still be constrained to <0.3 eV at 1-o level. In fact it is
crucial in this case to include peculiar velocity information,
otherwise there is almost no constraining power in lensing.
Note also that these constraints come from using less than
2000 supernovae from the ZTF sample. By combining with
the low-z data from LSST for example, these constraints
can be improved further.

Next we consider switching on the time variation of dark
energy, w, # 0. The constraints obtained when all three are
varied are shown in Fig. 5. Each panel shows joint
constraints on two parameters and the third parameter
has been marginalized over. All other parameters are fixed
to their fiducial values. The first striking feature here is that
once w, is allowed to vary, adding velocities does not help
at all in constraining w, [44]. Moreover, when we mar-
ginalize over the sum of neutrino masses, we see a
significant improvement in constraining w, on adding
peculiar velocities. Similarly, adding velocities when
marginalizing over w, or w, leads to improvement in
neutrino mass constraints. The impact of adding peculiar
velocity information can be quantified using the volume
of the parameter ellipsoid which « 1/y/detF,,. For
these three parameters, and the two surveys we consider,
det]:ablensing =5.54x10° whereas det fab,lensing-&-velocity =
1.24 x 107 which implies that adding velocities shrinks the
volume by ~33%.

Finally, in Fig. 6 we show the constraints obtained when
we also vary Qcpy.- As expected, the constraints degrade,

L
L L L L

0.250 0.275 0.0 0.4 0.8 -1.04 -1.00 -0.96

Qcpm m, (eV) wo

FIG. 6. Joint constraints on Qcpy, 21, Wy, and w, with all
other cosmological parameters fixed. As before, red dashed lines
show constraints when using lensing alone, while blue filled
regions show constraints when adding peculiar velocities. Vary-
ing Qcpy simultaneously degrades constraints by a factor of ~2,
and once again we scale the m, axis to account for the weaker
constraint.
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but we are still able to constrain —0.7 < w, < 0.7, which is
quite encouraging. However, now the sum of neutrino
masses that supernovae alone can constrain becomes much
larger, <1 eV. In general we find that the constraints
weaken by a factor ~2 if Qcpy is not well constrained.

Our results show that neutrino mass constraints always
improve when adding peculiar velocity information from
supernovae. Similar results have also been obtained for
galaxy redshift surveys [5]. While not quite as competitive
as the constraints obtained with galaxy redshift surveys, it
is still interesting to note that we can constrain neutrino
mass and dark energy equation of state to that accuracy
using ~4000 supernovae alone.

IV. CONCLUSION

We have calculated the expected constraints on the sum
of neutrino masses and equation of state of dark energy that
can be obtained using information from the lensing and
peculiar velocities of supernovae. Standard cosmological
analyses from supernovae assume that light propagates in a
homogeneous Universe. While this assumption holds good
for low-redshift supernovae, it is no longer true as we
observe supernovae at higher redshifts. Intervening matter
along the l.o.s. lenses the supernovae and makes them
appear brighter or fainter, thus leading to a deviation from
the ACDM prediction. At low redshifts, we also showed
that peculiar velocities contaminate the magnitude quite
significantly, and can be modeled to extract neutrino mass
information.

We derived the Fisher matrix for the observed magnitude
when itis given by a sum of the homogeneous magnitude and
corrections due to lensing and peculiar velocities, and used it
to make forecasts on the sum of neutrino masses and dark

energy equation of state for two future surveys, the ZTF
which is a low-redshift survey, and WFIRST which is a high-
redshift survey. Our results show that using data of about
4000 supernovae out to z ~ 1.7 from only these two surveys
can help constrain Xm, < 0.31 eV, 6(wy) < 0.02, and w, <
0.18 if all other parameters are fixed. We also showed that
peculiar velocity information is crucial to constraining the
sum of neutrino masses if we allow other cosmological
parameters to vary, or if we only focus on low-redshift
supernovae. When allowing a time-varying equation of state
for dark energy, we showed that peculiar velocities can allow
significant improvements in constraining w, if the sum of
neutrino masses is marginalised over. Interestingly, we do not
see improvement in constraints on w, once w, is allowed to
vary. Overall, adding peculiar velocities provides ~33%
reduction in volume in the Xm,-wy-w, parameter space.
Future surveys such as LSST will measure an even larger
number of supernovae, covering both low and high redshifts,
which will considerably shrink the error bars on neutrino
mass and dark energy equation of state, making supernovae a
competitive complementary probe to galaxy redshift surveys.
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