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Effects of inhomogeneities on observations have been vastly studied using both perturbative methods,
N-body simulations and Swiss cheese solutions to the Einstein equations. In nearly all cases, such studied
setups assume vanishing spatial background curvature. While a spatially flat Friedmann-Lemaitre-
Robertson-Walker model is in accordance with observations, a nonvanishing curvature is not ruled
out. It is therefore important to note that, as has been pointed out in the literature, 1 dimensional averages
might not converge to volume averages in non-Euclidean space. If this is indeed the case, it will affect the
interpretation of observations in spacetimes with nonvanishing average spatial curvature. This possibility is
therefore studied here by computing the integrated expansion rate and shear, the accumulated density
contrast, and fluctuations in the redshift-distance relation in Swiss cheese models with different
background curvatures. It is found that differences in mean and dispersion of these quantities in the
different models are small and naturally attributable to differences in background expansion rate and
density contrasts. Thus, the study does not yield an indication that the relationship between 1 dimensional
spatial averages and volume averages depends significantly on background curvature.
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I. INTRODUCTION

The effects of inhomogeneities on light propagation are
of fundamental importance in cosmology as these form
the foundation for several useful observables including
e.g., cosmic shear and CMB temperature fluctuations. The
presence of structures in the Universe also represents a
nuisance though, as inhomogeneities can lead to biases in
mean values of observables, i.e., the mean of an observable
might not converge to that expected based on the back-
ground Friedmann-Lemaitre-Robertson-Walker (FLRW)
spacetime. (Except when otherwise explicitly mentioned,
cosmic backreaction [1–4] is not considered in the work
presented here and accordingly a well-defined FLRW
background is assumed to exist.) If such biases are not
taken into account when interpreting observations, it can
severely compromise parameter determinations in an era
of precision cosmology and e.g., hinder a correct identi-
fication of dark energy parameters (see e.g., [5] for an
example).
Biased means are especially relevant for observations

based on thin beams such as supernova observations where
there is a significant risk that light rays do not trace
spacetime fairly i.e., that the average expansion rate and
density along light rays deviate significantly from their
spatial averages [6,7]. Such situations have been studied

with exact solutions to the Einstein equations where light
rays are not permitted to sample regions of density above a
certain threshold [8–10] (see e.g., also [11]). If light rays on
the other hand are permitted to trace spacetime fairly, only
small biases in the mean of observables are expected. In
particular, when using different types of averages such as
area, angular, source and ensemble averages, certain
observables will be unbiased in their mean while observ-
ables depending nonlinearly on these will have small
biases. This has been shown with studies based on
perturbative expansions [12–18] and is consistent with
findings based on Swiss cheese models and similar [8,19–
25] and on N-body simulations [6,26].
Studies of effects of inhomogeneities on observations are

usually conducted in settings where the average spatial
curvature vanishes. This is reasonable since observations
are generally consistent with vanishing curvature [27].
However, as recently argued in [28], the possibility of a
small nonvanishing curvature should be considered since it
is not excluded by observations. The currently existing
literature on the topic of effects of inhomogeneities on
light propagation should therefore be complemented with
studies that take the possibility of nonvanishing average
spatial curvature into account. Specifically, as pointed out
in [29], it is not clear that 1 dimensional spatial averages
converge to volume averages in curved space because 1
dimensional line integrals and volume integrals have
different measures when space is not Euclidean. This is*sofie.koksbang@helsinki.fi
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important for observations since averages along light rays
are related to 1 dimensional spatial averages if structures
evolve slowly compared to the time it takes a light ray to
traverse the homogeneity scale (assuming statistical homo-
geneity and isotropy); if these conditions are fulfilled, the
time evolution can be neglected during such a time interval,
and hence the light ray average over such a distance simply
becomes a 1 dimensional spatial average (see also [29] and
e.g., [30] for detailed considerations on similar matters).
Thus, if 1 dimensional averages do not converge to volume
averages in curved space or if the convergence is much
slower than in flat space, then biases of mean values of
observations are possibly much larger and the dispersion
around the mean may be more significant than in the flat
(Euclidean) case. This could e.g., be important for studies
of mean and dispersion in the Hubble diagram which
have been conducted e.g., with focus on the H0-problem
[14,31–36]. Effects of nonvanishing curvature may indeed
be especially important for low-redshift observations since
studies indicate that cosmic backreaction may lead to the
emergence of spatial curvature at late times (see e.g., [37]).
The purpose of the presented work is to study if and

how a nonvanishing spatial background curvature affects
the relationship between volume averages and light path
averages with special emphasis on the effects on the mean
and dispersion of observables. This is done by considering
light propagation in Swiss cheese models with Lemaitre-
Tolman-Bondi (LTB) structures [38–40] placed in curved
FLRW backgrounds. Specifically, the mean and dispersion
of the redshift-distance relation will be sampled together
with light path averages of the density contrast and the
integrated expansion rate and shear in spacetimes with
different curvature.
The paper is organized as follows. Section II describes

the models used for the study while Sec. III gives a brief
review of light propagation. Results are presented and
discussed in Sec. IV while Sec. V provides a summary.

II. MODEL SETUP

Swiss cheese models will be constructed to imitate statis-
tically homogeneous and isotropic universes with inhomo-
geneities modeled as mass-compensated voids mimicking
the large scale structures of the Universe. The structures are
described using the spherically symmetric LTB metric
corresponding to the line element

ds2 ¼ −c2dt2 þ A2
;rðt; rÞ

1 − kðrÞ dr
2 þ Aðt; rÞ2dΩ2: ð1Þ

Subscripted commas followed by a coordinate indicate
partial derivatives.
The time dependence of the LTB spacetimes is dictated

by A which has an evolution determined by

1

c2
A2
;t ¼

2M
A

− kþ 1

3c2
ΛA2: ð2Þ

The inhomogeneous dust density is given by

ρ ¼ c4
M;r

4πGNA2A;r
: ð3Þ

MðrÞ is an integration constant and GN is Newton’s
constant.
LTB models can be used to model central voids

surrounded by mass-compensating overdensities which
are again surrounded by a homogeneous FLRW spacetime
referred to as the background. When the big bang occurs at
the same value of the t-coordinate everywhere in space, the
structures will have no decaying modes [41] and the entire
LTB space will tend towards the FLRW background at
early times. The models used here are all specified by this
attribute and are further specified by Aðt1200; rÞ ¼ 1

1200
r,

where t1200 is the time at which the background scale factor
reaches 1

1200
. LTB models are covariant under transforma-

tions of the radial coordinate and specifying Aðt1200; rÞ as
above corresponds to fixing r. Setting Aðt1200; rÞ ¼ 1

1200
r is

a convenient way to ensure (for conceptual convenience)
that A ¼ ar in spacetime regions that are FLRW i.e., in the
region outside the LTB structure as well as the entire LTB
space at early times (asymptotically). The time t1200 is
chosen because setting initial conditions at early times was
found to give faster and more numerically stable results for
the specific models studied here. It should be noted though,
that LTB models are generally not appropriate for cosmo-
logical studies at early times where radiation is non-
negligible. However, there is no reason to expect that
neglecting radiation when setting initial conditions will
significantly affect the current study where the models are
only considered at late times. See e.g., [42,43] for consid-
erations of how pressure affects structure formation.
The final specification of the inhomogeneity profile is

determined by setting

k ¼
(
−kmax × 10−8r2ðð rrbÞp1 − 1Þp2 þ kbgr2 if r ≤ rb

kbgr2 if r > rb
;

ð4Þ
with rb ¼ 40 Mpc the comoving radius of the inhomoge-
neity and kmax a constant. The parameters p1 and p2

are discussed further below. The constant kbg is the
curvature parameter of the background i.e., kbg ¼ �1

R2
0

¼
H2

0

c2 ðΩtot;0 − 1Þ, where R0 is the background curvature radius
andΩtot;0 the total present time density parameter. Different
backgrounds are considered. These are specified by H0 ¼
70 km=s=Mpc and the density parameters given in Table I.
The specific values of the density parameters and hence of
the background curvature parameter, kbg, were chosen
based on two competing considerations: On one hand, to
ensure the detection of effects of background curvature, the
curvature parameters should be chosen somewhat larger
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than what can be expected to possibly be relevant for
the real Universe. On the other hand, the dynamics of the
background as well as the dynamics and size of the
inhomogeneities should be as similar as possible in all
the considered models to ensure that detected differences
are in fact due to curvature and not, say, differences
in background expansion rates. In relation to the latter
consideration, i.e., in order to quantify effects from
modifying the dynamics of the models, two different flat
models are considered.
Table I shows the values of kmax used in each model. The

specific values of kmax were chosen based on the following
considerations: First of all, the values should be similar
within each model in order for the models to differ as little
as possible aside from their background curvature but,
second of all, the values should not be chosen so small that
the density fluctuations are linear. The latter implies that
kmax cannot be chosen to be the same for all models as the
minimum kmax necessary to obtain nonlinear density
fluctuations in the models with largest background den-
sities is larger than the maximum possible value of kmax that
does not lead to shell crossings in the outer layers of the
LTB inhomogeneities in the models with the smallest
background densities. Based on these considerations,
kmax is chosen to be equal to 5.4 Mpc−2 for most models
since this value is just large enough to get the structures of
model ΩK;0 ¼ −0.2 into the clearly nonlinear regime at
present times (with a maximum density contrast of δ ∼ 10).
For the two models with ΩK;0 > 0, kmax has to be chosen
slightly smaller, namely as 5.3 Mpc−2 and 5.1 Mpc−2

while it has to be chosen as small as 4 Mpc−2 for the
modelΛCDM2 in order to avoid shell crossings at or before
present time.
Regarding the parameter choices for kðrÞ, note that the

details of the resulting LTB structure including e.g., the
density profile does not seem to have great affect on light
propagation over long distances at a statistical level. This is
e.g., illustrated in [25] where the distance to the CMB is
studied using four different Swiss cheese models based on
two LTB and two Szekeres ([44]) models. All four models
of [25] have kðrÞ similar to that used here but with different
values of p1 and p2. The study of [25] specifically indicates
that the values chosen for p1 and p2 only affect results

where high precision is very important. For instance,
choosing p1 ¼ 2 and p2 ¼ 4 or p1 ¼ p2 ¼ 6 both leads
to distributions in fluctuations in the angular diameter
distances to the CMB to cover intervals of order 0.01–0.1.
On the other hand, the mean values obtained from these
models are distributed in the interval 10−4–10−6, a differ-
ence which could be important for high-precision studies.
Here, it is more interesting to note that the present day
density profile of the resulting LTB structure becomes more
bucket-shaped when p1 and p2 increase and more cone-
shaped when they decrease. At the same time, larger values
of p1 and p2 makes it more time consuming to numerically
solve the ODEs describing light propagation. Larger values
of p1 and p2 also make the mass-compensating over-
densities surrounding the voids more prominent. Here,
p1 ¼ p2 ¼ 6 was chosen to give somewhat bucket-shaped
central voids surrounded by clearly nonlinear overdensities
without increasing computation time significantly com-
pared to choices with smaller values of p1 and p2.
When choosing the parameters for kðrÞ, rb is of central

importance as it determines the size of the LTB structure.
As was also mentioned in [25], choosing rb ¼ 40 Mpc is
similar to the choices made in Swiss cheese studies by other
authors such as [19,21] and leads to present day void radii
of approximately 38 Mpc which is in agreement with
observations [45–47], albeit to the slightly larger side.
Note, however, that the observed size, volume fraction and
deepness of real voids depends much on the involved void
definition. Note also that the choice of rb determines the
homogeneity scale of the Swiss cheese model since the
considered LTB models reduce exactly to their FLRW
backgrounds at this point. With rb ¼ 40 Mpc, the present
time homogeneity scale of the model is 80 Mpc which is
close to the believed homogeneity scale of the real universe
of order of 100 Mpc. The reason a somewhat small
homogeneity scale is chosen here is that the homogeneity
scale is set by a single structure while it in the real universe
is determined by a complex network of structures on many
scales. Requiring a larger homogeneity scale for the
considered Swiss cheese models would thus e.g., lead to
introducing very large voids.
The present time density profiles of the considered

models and their background Hubble parameters are shown
in Figs. 1 and 2. In addition, the density profile along a
single light ray in the considered Swiss cheese model with
an ordinary ΛCDM background is shown in Fig. 3. The
light ray is chosen randomly amongst the studied light
rays in that particular Swiss cheese model (see the next
section for computational details). For comparison, the
reader may want to look at Fig. 3 in [26] which shows the
density profiles along a light ray in the Millennium
simulation [48] and in different inhomogeneous models
including two Swiss cheese models. The complexity in
the density contrast along the light ray traced through
the Millennium simulation specifically emphasizes the

TABLE I. Specification of backgrounds and kmax used for the
different Swiss cheese models considered. The models will be
referred to by the background values of ΩK;0 ≔ Ωm;0 þΩΛ − 1.

Model Ωm;0 ΩΛ kmax (Mpc−2)

ΛCDM 0.3 0.7 5.4
ΛCDM2 0.2 0.8 4
ΩK;0 ¼ 0.1 0.35 0.75 5.4
ΩK;0 ¼ 0.2 0.4 0.8 5.4
ΩK;0 ¼ −0.1 0.25 0.65 5.3
ΩK;0 ¼ −0.2 0.2 0.6 5.1
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simplicity of Swiss cheese models based on only a single
structure size. This simplicity may be problematic for some
studies but for the current purpose it is not an issue; using a
single structure size should be sufficient to determine if
observations in an inhomogeneous universe are affected by
background curvature at a statistical level.

A. Swiss cheese construction

The Swiss cheese models are constructed on the fly by
turning light rays around when they reach r ¼ rb þ 1 Mpc.
The choice of placing the turnaround point at r ¼ rb þ
1 Mpc is based on the desire to increase effects of
inhomogeneity: Choosing the turnaround point to be close
to the boundary rb leads to a high effective packing fraction
of the structures. At each turnaround point, the light rays

are directed towards the LTB inhomogeneity with a random
impact parameter. The series of impact parameters for each
light ray is saved and reused for the other studied models.
This is done because only 1000 light rays will be
considered for each model. Although this should be large
enough to obtain trustworthy results, there is a risk that
sample variance will be non-negligible. By providing the
same series of impact parameters for each model, the
sample variance should be similar between the models.
This should protect against false positives i.e., false
identifications of effects of background curvature that
are in reality just due to sample variance.
An alternative to constructing Swiss cheese models on

the fly is to construct a fixed Swiss cheese spacetime. This
can e.g., be done using the Jodrey-Tory algorithm [49,50]
(see e.g., [51] for a modification for curved space). There
are some disadvantages with this approach when working
with curved backgrounds though. Major disadvantages are
the memory consumption needed to store structure loca-
tions and the resources required to monitor the distances
between a light path and the structures of the spacetime
when propagating a light ray.1 These problems can be
remedied by considering a moderately sized spatial region

FIG. 1. Present time 1D density profiles of LTB structures.
Models are named according to Table I. The density profiles
cannot be distinguished at small values of r and are therefor not
shown for r < 20 Mpc. Note that the density profiles of the
models ΛCDM2 and ΩK;0 ¼ −0.2 lie almost exactly on top of
each other. Their combined graph therefore looks very similar to
that of the model with ΩK;0 ¼ −0.1 which, however, has a
slightly larger overdensity.

FIG. 2. Hubble parameters of backgrounds models. Models are
named according to Table I.

FIG. 3. Density contrast along fiducial light ray in the Swiss
cheese model with a ΛCDM background.

1The maximum packing fraction for a random close packing of
spheres is approximately 0.64 [52]. Therefore if, for instance, an
observer is permitted to look in any direction and required to see
an inhomogeneous universe out to at least 1 Gpc, a total number
of approximately 19,100 LTB structures are necessary (with rb ¼
40 Mpc). Each LTB structure is defined through the comoving
spatial coordinates of its center (three numbers of type double)
and possibly an integer identification number. All in all, this
corresponds to approximately 0.5 MB. This can be quite a lot for
a laptop (and can e.g., typically not be allocated on the stack),
especially when adding the fact that the same program has to save
data computed along each light ray, but should be manageable
when running on a cluster. However, the main difficulty with such
a large number of structures is the computation time required to
monitor the proximity of a light ray to structures during time
periods when the light ray propagates in the cheese.
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with periodic boundary conditions as was done in [25,53].
However, when dealing with a curved spacetime, choosing
appropriate boundary conditions and pairing of sides
becomes nontrivial (see e.g., [54] for a discussion and
examples for the hyperbolic plane). When wishing to
compare results based on differently curved spaces it is
especially an issue how to pair sides within each model to
obtain similar inhomogeneity distributions and identical
topologies of the different models. If this cannot be done
sensibly, there is a risk of increased effects of variance
between the computed data sets from the different models.
This is the main reason an on-the-fly construction of Swiss
cheese models is used here.

III. LIGHT PROPAGATION

Light propagation in LTB models is well documented in
the existing literature, including in some of the references
to Swiss cheese studies already given. This section there-
fore only gives a very brief description of the specific
method used here.
The redshift is defined by z ≔ ðkαuαÞe

ðkβuβÞ0
, with the subscript 0

implying evaluation at the point of observation and e at the
point of emission. The LTB models are given in a
synchronous and comoving foliation so uα ¼ ð1; 0; 0; 0Þ.
The null tangent vector kα can be found by solving the
geodesic equations

d
dλ

ðgαβkβÞ ¼
1

2
gμγ;αkμkγ; ð5Þ

where λ is the affine parameter of the null geodesic and gαβ
the metric tensor.
The angular diameter distance will be sampled along the

light rays together with the redshift. The angular diameter
distance is computed by solving the transport equation

d2Da
b

dλ2
¼ Ta

cDc
b: ð6Þ

The components of Tab are given in terms of the Riemann
tensor, Rαβμν, the Ricci tensor, Rμν, and the vectors
spanning the 2 dimensional Euclidean space orthogonal
to the light path in the observer rest frame, Eμ

1; E
μ
2,

combined as ϵμ ≔ Eμ
1 − iEμ

2:

Tab ¼
�
R − ReðFÞ ImðFÞ
ImðFÞ Rþ ReðFÞ

�
; ð7Þ

with R ≔ − 1
2
Rμνkμkν and F ≔ − 1

2
RαβμνðϵÞαkβðϵÞμkν.

It is also interesting to note that the redshift in a general
dustþ Λ spacetime with a comoving, synchronous space-
time foliation and well-defined FLRW background can be
written as (see e.g., [30])

1þ z ¼ e
R

t0
tðλÞ dtð

1
3
Θþc2σβαeαeβÞ

¼ e
R

t0
tðλÞ dtH · e

R
t0
tðλÞ dtð

1
3
ΔΘþc2σβαeαeβÞ

¼ ð1þ zbgÞ · e
R

t0
tðλÞ dtð

1
3
ΔΘþc2σβαeαeβÞ; ð8Þ

where H is the background Hubble parameter, zbg is the
background redshift, Θ is the local expansion rate and
σβαeαeβ the shear projected onto the spatial direction of the
light ray.
According to this expression, the observed redshift will

deviate from the background redshift if the integrals of the
fluctuations in the expansion rate, ΔΘ, and of the projected
shear do not cancel (individually or with each other) along
the light ray. For specific LTB models it has been found to
be the case that these two contributions cancel with each
other to a high precision [25,29]. This cancellation has also
been shown to occur for perturbed FLRWmodels [55]. The
cancellation was, however, not found to occur in the
recently presented (somewhat exotic) LTB Swiss cheese
model in [56].

IV. RESULTS

1000 light rays are traced for each model, all with the
observer placed at r ¼ rb þ 1 Mpc with random angle
between the observer’s line of sight and the radial direction
toward the LTB structure. Along each light ray, the
integrals in Eq. (8) are sampled together with the accu-

mulated density contrast,

R
λe
λ0

δdλ

λe−λ0
, and ΔDA ≔ DA−DA;bg

DA;bg
,

where DA;bg is the background angular diameter distance.
Each light ray is traced until z ¼ 0.35 is reached. At this
redshift, the light rays have traveled≳1 Gpc and at least for
a flat background, the mean values of the sampled
quantities should be fairly close to the background values.
Figure 4 shows the accumulated density contrast, red-

shift fluctuations and the local fluctuations in the angular
diameter distance for the two flat models. As seen, the
mean values are very similar despite the significant differ-
ence between the background Hubble parameters and their
density contrasts. The dispersions about the mean values
are also quite similar, with the dispersion intervals along
light rays in the model ΛCDM2 being slightly smaller for

ΔDA and e
R

t0
tðλÞ dtð

1
3
ΔΘþc2σβαeαeβÞ. This is as expected due to the

smaller expansion rate of ΛCDM2 compared to ΛCDM; a
smaller expansion rate makes it easier for local fluctuations
in Θ to cancel along a given light ray.
It may also be noted that the accumulated density

contrasts both converge to approximately −0.083 rather
than exactly zero. This specific value may be subject to
sample variance since only 1000 light rays were consid-
ered. To estimate the relevance of sample variance, four
other realizations of 1000 light rays in the model with the
ΛCDM background have been studied. The results are
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shown in Appendix A. As can be seen in that Appendix, it
is e.g., found that all five realizations of the 1000 light rays
lead to a mean value very close to −0.08, deviating from
this value at the order of 1%–10%. The results in the
appendix therefore do not indicate that the mean values
found here are affected significantly by sample variance.
However, it is in principle possible that rare light rays
traversing mainly through overdense regions would change
the mean value significantly but that they are so rare that
they have not been adequately sampled through the 5000
light rays. It is important to note though that effects from
such rare light rays are not particularly important here since
the point here is not to determine the actual values of the
means but rather to compare these values between the
different models. As explained in Sec. II A, the sample
variance should be the same for each model studied here.
The size of the mean value of ΔDA seen in Fig. 4 is

similar to what has been found earlier in studies based on
much larger numbers of light rays. For instance, in [25]
where nearly 105 light rays were averaged over for each
model, the mean value of ΔDA at the surface of last
scattering was found to be of the order 10−4 for the models
with p1 ¼ 6 ¼ p2 as here, while the mean value was only
of order 10−6 for models with smaller values of p1 and p2.
For the two models studied in [19], mean values ofΔDA for
approximately 12000 light rays per model at the surface of
last scattering were of order 10−4–10−5. In [21], 1000 light
rays were considered in a Swiss cheese model with quasi-
spherical Szekeres structures. The mean fluctuation inΔDA

at z ¼ 1 was found to be of the order or 10−4.
Note again that sample variance may affect the mean

through special light rays too rare to have been sampled even
in the variance study in Appendix A. However, the particular
value and sign of the mean ΔDA is less important than the
(dis-)similarities between the values obtained from the two
different models. It is here worth mentioning that different
signs were found for ΔDA in [19,25] and that the results in
[19] were not statistically significant despite averaging over
12000 light rays. The results in [25] were significant to at
most 2σ despite considering nearly 105 light rays per model.
As discussed in Appendix A, the high packing fractions of
the models studied here may lead to relatively high statistical
significance in the obtained mean values despite the mod-
erate number of studied light rays per model.
Figure 5 shows the mean and dispersion of the accu-

mulated density contrasts along the studied light rays in
models with different background curvature. As seen, in all
five cases the mean converges to approximately −0.08. The
maximums and minimums are also very similar for the
different models. The dispersion for the model with ΩK;0 ¼
−0.1 is, however, prominently larger than the dispersion
obtained with the other models. This fits well with the
density contrast of that model being largest and does not
seem to be due to the background curvature as the

(a)

(b)

(c)

FIG. 4. Mean and dispersion of accumulated density contrast,
redshift fluctuations and local fluctuations in the angular diameter
distance along 1000 light rays in Swiss cheese models with two
different flat background models. Shaded areas indicate disper-
sions amongst light rays within the Swiss cheese model with a
standard ΛCDM background. Close-ups of the mean values are
included in the interval z ∈ ½0.3; 0.35�.
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dispersion would then be expected to be even more
significant for the model with ΩK;0 ¼ −0.2.
As mentioned above, the accumulated density contrast

along the lines of sight have been computed as

R
λe
λ0

δdλ

λe−λ0
.

Mainly due to metric measures in spatial averages in curved
space, it is not entirely clear how this quantity should be
related to neither 1 dimensional spatial averages nor
volume averages. Nonetheless, the quantity gives a mea-
sure of the accumulated density contrast experienced by the
given light ray, i.e., the light path averaged density contrast.
If the quantity tends towards the same mean value in each
model, then this is an indication that any differences
between the light path averaged and the volume averaged
density contrasts are not affected by background spatial
curvature. The main point with Fig. 5 is therefore that,

except at very small redshifts, the mean and dispersion of
the accumulated density contrasts for the different models
are very similar. Deviations at very low redshift are less
interesting as they are significantly affected by the exact
density contrasts of the individual models.
The fluctuations in the redshift along the light rays are

shown in Fig. 6. As seen, the means of the fluctuations are
very small. In Fig. 7, these fluctuations are split into
contributions from the projected shear and fluctuations
in the expansion rate. It is quite striking to see how the two
appear to cancel with each other almost exactly—a phe-
nomenon that, as mentioned earlier, has already been
demonstrated for other specific LTB models in [25,29].
As with the density contrast, the dispersion about the

mean behaves somewhat notably for the model with
ΩK;0 ¼ −0.1 compared to the dispersions of the other

FIG. 5. Mean and dispersion of accumulated density contrast
along 1000 light rays in different Swiss cheese models. The
shaded area indicates the dispersion amongst light rays within the
Swiss cheese model with a standard ΛCDM background. Close-
ups of the mean values are included in the interval z ∈ ½0.3; 0.35�.

FIG. 6. Mean and dispersion of fluctuations of the redshift
along 1000 light rays in different Swiss cheese models. The
shaded area indicates the dispersion for light rays within the
Swiss cheese model with a standard ΛCDM background. Close-
ups of the mean values are included in the interval z ∈ ½0.3; 0.35�.

(a) (b)

FIG. 7. Mean and dispersion of fluctuations in the redshift split into contributions from the projected shear and fluctuations in the
expansion rate along 1000 light rays in different Swiss cheese models. The shaded area indicates the dispersion for light rays within the
Swiss cheese model with a standard ΛCDM background.
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models. This could be due to a more significant shearing
from the larger density contrast of that model. The larger
fluctuations in Δθ must follow from the larger shear if the
two contributions are to cancel as appears to be a general
phenomenon for many LTB models.
Figure 8 shows fluctuations in the angular diameter

distance along the light rays in the five models. The picture
is again the same as when considering the two flat models:
Differences between mean, maximum and minimum of the
five models are small and the dispersions become larger as
the background expansion rates do. The latter specifically
implies that the (small) differences are likely attributable to
the models’ different expansion rates rather than their
background curvatures.
Before moving on, it is important to stress that a possible

presence of e.g., sample variance in the results does not
affect the integrity of the study; as already mentioned, the
variance should be the same for each model. The main
point with the results presented in the figures so far is thus

FIG. 8. Mean and dispersion of ΔDA along 1000 light rays in
different Swiss cheese models. The shaded area indicates the
dispersion for light rays within the Swiss cheese model with a
standard ΛCDM background. Close-ups of the mean values are
included in the interval z ∈ ½0.3; 0.35�.

(a) (b)

(c) (d)

FIG. 9. Histograms showing the accumulated density contrast at z ¼ 0.35 for 1000 random light rays in different Swiss cheese models.
In each subfigure, results from the model with ΛCDM as the background is compared with results from a model with curved
background. Bin widths are approximately 0.006. To ease comparison of the individual subfigures, these have all been given the same
axis intervals.
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whether or not the mean quantities converge toward the
same values for each model—what the actual values are is
less interesting. If the means do not converge toward the
same values, then this could indicate an effect of back-
ground curvature. If, on the other hand, the means of each
model do converge toward the same values, then this
indicates that the background curvature does not affect
observations on average. This latter possibility seems to be
the case when considering the figures discussed so far.
Besides looking at the mean values (related to average

observations), it is also interesting to look at the distribu-
tions around the means. If the distributions have noticeable
differences, then this could be an effect of background
curvature. Maximums and minimums were shown in the
figures discussed so far and showed no indication of effects
of background curvature. The actual distributions around
the means are also worth considering and are therefore
shown in the following. Figure 9 shows histograms of the
distributions of the accumulated density contrast along the
light rays at z ¼ 0.35. The histogram of each curved model
is compared directly with the corresponding histogram of
the model with the ΛCDM background. As seen, the
distributions are very similar but become broader and
flatter as the background curvature parameter goes from
the most positive to the most negative. Especially notice-
able is the fact that the two models with negative curvature
parameters have small tails on their positive sides. These
findings are in good agreement with Fig. 5 which also
shows that the maximum values are greatest for these two
models. Although this result could in principle be a
consequence of the background curvature, it seems more
likely that the differences seen in the four histograms are
due to differences in density contrasts. In particular, the
histograms become broader and flatter the larger the present
day density contrast of the model is. This is also the case
when comparing the two flat models as seen in Fig. 10.

Figure 11 shows histograms of redshift fluctuations at
z ¼ 0.35. Note specifically that the redshift fluctuations are
in comparison to background redshift values (so it makes
sense to talk about redshift fluctuations at a specific redshift
value). These histograms are very similar, with a large
number of light rays in the central histogram bin and broad,
flat surrounding distributions. The histograms clearly show
that the redshift fluctuations are distributed over slightly
larger intervals when going from the most negative to the
most positive background curvature parameter. This is in
agreement with what should be expected based on the
models’ background expansion rates which therefore seems
the more likely explanation than a curvature effect. Indeed,
a comparison of the individual subfigures shows that the
model with the ΛCDM2 background is the most narrow
(although the interval is very close to that of model
Ωk;0 ¼ −0.2). This is also the model with the smallest
background expansion rate until present time.
The histograms in Fig. 11 are somewhat peculiar looking

with a large peak near 1 and the remaining parts of the
histograms being flat and broad. The broad, flat parts of the
histograms correspond to light rays that are inside LTB
structures at z ¼ 0.35 while the central parts of the histo-
grams correspond to light rays that are in the background at
z ¼ 0.35.2 This prominent difference between the fluctua-
tions inside and outside structures is alluded to in Fig. 3 of
[25] where the redshift fluctuations are traced along indi-
vidual light rays in Swiss cheese models based on LTB and
Szekeres structures. One may also note that the redshift fluc-
tuations are very small when light rays are outside structures,
indicating that the spherical symmetry of the LTB models
lead to an exceptional cancellation in the integrates Sachs-
Wolfe (ISW) [57] and Rees-Sciama [58] effects along light
rays. This was also suggested in [19] to explain the result that
temperature fluctuations in LTB Swiss cheese models were
found to be 1-3 orders of magnitude smaller than what would
be expected from linear perturbation theory (ISW) and a
combination of perturbation theory and N-body simulation
data (Rees-Sciama effect). From Fig. 3 in [25] it can be seen
that similar cancellations appear in quasispherical Szekeres
models so cannot be avoided by using these more compli-
cated models instead of LTB models.
Figure 11 shows “close-ups” of the central parts of the

histograms since these are not properly resolved in the main
histograms. These close-ups reveal that the redshift fluc-
tuations outside structures are nonvanishing with a distri-
bution that is skewed towards positive fluctuations.
Lastly, histograms of the distributions of ΔDA are shown

in Fig. 12. By comparing the six different histograms it is
seen that they become (slightly) broader in the sequence
ΛCDM2, ΩK;0 ¼ −0.2, ΩK;0 ¼ −0.1, ΛCDM, ΩK;0 ¼ 0.1,

FIG. 10. Histogram showing the accumulated density contrast
at z ¼ 0.35 for the two flat models. Bin widths are approximately
0.006.

2This explanation was suggested by the anonymous referee
and later confirmed by the author by looking through the
numerical data.
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ΩK;0 ¼ 0.2. This is exactly the sequence of increasing
expansion rate and the histogram features are thus most
likely attributable to this factor. Hence, as with the other
histograms, no effect that can convincingly by attributed
the background curvature is found.

Overall, the results presented in this section do not
indicate any significant effects of the background spatial
curvature on the relation between volume and light path
averages that could be significant for the interpretation of
observations.

(a) (b)

(c) (d)

(e)

FIG. 11. Histograms showing the redshift fluctuations at z ¼ 0.35 for 1000 random light rays in different Swiss cheese models. In each
subfigure, results from the model with ΛCDM as the background is compared with results from a model with curved background. Bin
widths are approximately 0.000033. To ease comparison of the individual subfigures, these have all been given the same axis intervals.
Close-ups showing the distributions around the central part of the histograms have been included.
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If very determined to identify a possible effect of
background curvature, the most promising, based on the
presented result, seems to be the very small tails toward
high values of the accumulated density contrast seen for the
two models with negative curvature parameters. However,
these tails seem to be naturally attributable to statistical

flukes of tracing mainly overdensities along some light
rays. Such a situation would lead to more prominent tails in
the models with larger density contrasts and might not be
visible in the models with smaller density contrasts. In
relation to this suggested explanation, it may be noted that
similar tails were found in two of the studied realizations of

(a) (b)

(c) (d)

(e)

FIG. 12. Histograms showing fluctuations of DA at z ¼ 0.35 for 1000 random light rays in different Swiss cheese models. In each
subfigure, results from the model with ΛCDM as the background is compared with results from a model with curved background. Bin
widths are approximately 0.006. To ease comparison of the individual subfigures, these have all been given the same axis intervals.

LIGHT PATH AVERAGES IN SPACETIMES WITH NONVANISHING … PHYS. REV. D 100, 063533 (2019)

063533-11



1000 light rays in the model with the ΛCDM background.
This can be seen in histograms presented in Appendix A
where a discussion of this finding is also given.

V. SUMMARY

It was remarked in [29] that it is unclear whether or not 1
dimensional spatial averages converge toward volume
averages if space is not Euclidean. In a statistically
homogeneous and isotropic spacetime with slowly evolv-
ing structures, light paths can be approximated through 1
dimensional spatial averages. Hence, if 1 dimensional
averages do in fact not converge to volume averages in
curved space, it can lead to important biases in observations
if the real Universe has a small, nonvanishing curvature.
This possibility was here studied by computing the red-
shift-distance relation, accumulated density contrast and
redshift fluctuations through the integrated expansion rate
and shear along 1000 light rays in each of a series of Swiss
cheese models with LTB structures and FLRW back-
grounds of different spatial curvature.
Small differences between the models in mean values

and the dispersion of the computed quantities were found.
These differences were identified as being likely due to
small differences in expansion rates and density contrasts
rather than to the background curvatures being different.
This assessment is supported by comparing to the same
computations in two models with different flat back-
grounds. Thus, the results presented here indicate that
results obtained for models with flat backgrounds regarding
e.g., mean and dispersion in H0 studied in relation to the
H0-problem are valid even if the Universe has a small
nonvanishing curvature (possibly emerging only at late
times due to cosmic backreaction).
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APPENDIX: SAMPLE VARIANCE

Any possible sample variance should be irrelevant for the
purpose of the study in the main text. Estimating its impact
on the presented mean values and distributions is

nonetheless enlightening and interesting in its own right
and is helpful for understanding the results in the main text.
This Appendix therefore serves to study the significance of
sample variance for the study in the main text where only
1000 light rays were studied per model. In order to asses
this significance, the study has been replicated four times
for the model with the standard ΛCDM background. The
results from the five obtained data sets with the ΛCDM
background are compared in the following.
Figure 13 shows the accumulated density contrast along

1000 light rays for the five different realizations of these.
As seen from especially the close-up, the mean values are
almost identical in each model at the higher end of the
considered redshift interval, indicating that sample variance
has low impact on the mean values at these redshifts. It is

FIG. 13. Mean and dispersion of the accumulated density
contrast along light rays based on five different realizations of
1000 random light rays. The shaded area indicates the dispersion
amongst light rays with the same realization as that used in the
main text. Close-ups of the mean values are included in the
interval z ∈ ½0.3; 0.35�.

FIG. 14. Mean and dispersion of fluctuations in the redshift
along light rays with five different realizations of 1000 random
light rays. The shaded area indicates the dispersion for light rays
with the same realization as in the main text. Close-ups of the
mean values are included in the interval z ∈ ½0.3; 0.35�.
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curious though, that the accumulated density contrast is
negative since a light ray can sample an LTB model’s
overdensity without also sampling its underdensity, but not
vice versa. The sign of this mean value could be due to a
lack of rare-events light rays that sample mainly over-
densities but which are so rare that they have not been
sampled (sufficiently) by the 5000 light rays.
Figure 14 shows the fluctuations of the redshift com-

pared to its background value. The fluctuations are shown
for five different realizations of 1000 light rays and as seen,
the results obtained from each model are very similar.
Especially the mean values do not deviate much from each
other. A similar result is seen in Fig. 15 which shows the
fluctuations in the angular diameter distance along the same
light rays. One may note that the mean shift in the angular
diameter distance is positive. This is in agreement with the
general expectation that the most significant contribution to
ΔDA is the gravitational convergence which is given by the
negative of an integral over the weighted density contrast

FIG. 15. Mean and dispersion of ΔDA along light rays with five
realizations of 1000 random light rays. The shaded area indicates
the dispersion amongst light rays with the same realization as that
used in the main text. Close-ups of the mean values are included
in the interval z ∈ ½0.3; 0.35�.

(a) (b)

(c) (d)

FIG. 16. Histograms showing the accumulated density contrast at z ¼ 0.35 for five different realizations of 1000 random light rays. In
each subfigure, results from the realization used in the main text is compared with results obtained with one of the other realizations. The
particular realization that was used in the main text is labeled as ΛCDMwhile the other realizations are labeled as v1, v2, v3 and v4. Bin
widths are approximately 0.006. To ease comparison of the individual subfigures, these have all been given the same axis intervals as
each other and as in the equivalent figure in the main text.
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along the given light ray. The sign of the mean values of
ΔDA found here are thus in agreement with the sign of the
mean accumulated density contrasts. Note however, that
such a comparison is not entirely accurate due to the
differences in the weights on the density contrast in the
integral of the gravitational convergence and the accumu-
lated density contrast computed here. In addition, it was
recently shown in [53] that e.g., the lowest order Born
correction to ΔDA can become numerically larger than the
gravitational convergence along some lines of sight. This
contribution is second order in perturbation theory though,
so if one averages over “enough” light rays, this contri-
bution should vanish according to [12]. Note lastly that the
sign of the mean value of ΔDA found here is in agreement
with what is expected for ensemble averages based on
second order perturbation theory [12].
In addition to studying the impact of sample variance

on the mean and dispersion of the accumulated density

contrast, redshift fluctuations and fluctuations in the red-
shift-distance relation, the impact of sample variance on the
actual distributions of these quantities has also been
studied. Specifically, histograms as those in the main text
are here shown for the different realizations of 1000 light
rays in the model with the ΛCDM background.
In figure 16, the distribution of the accumulated density

contrast at z ¼ 0.35 is shown. The figure contains four
subfigures, each comparing the distribution of a given
realization with that of the realization used in the main text.
Although the five distributions are quite similar, they show
noticeable differences such as some having small positive
tails with maximum value in the accumulated density
contrast almost twice as large in some realizations com-
pared to some of the other realizations. A similar situation
was found in the main text where it was suggested to be the
result of different density contrasts of the studied models.
Here, only a single model is studied and hence the only

(a) (b)

(c) (d)

FIG. 17. Histograms showing the redshift fluctuations at z ¼ 0.35 for five realizations of 1000 random light rays. In each subfigure,
results from the model with the same realization as in the main text is compared with results based one of the other realizations. The
particular realization that was used in the main text is labeled as ΛCDMwhile the other realizations are labeled as v1, v2, v3 and v4. Bin
widths are approximately 0.000033. To ease comparison of the individual subfigures, these have all been given the same axis intervals as
each other and as in the equivalent figure in the main text.
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explanation is sample variance. The reason for having
positive tails in the accumulated density contrast without
any similar negative tails must be due to the fact that, as
mentioned above, a light rays can sample the overdensity of
a structure without sampling it underdensity while the
opposite is not possible for the specific Swiss cheese
models studied here.
Note that it does not constitute an inconsistency that the

tails are here attributed variance while they in the main text
are attributed the size of density contrasts. Indeed, the
specific setups in the main text and in this Appendix each
exclude the explanation given in the other part of the text.
As such, the tails found here would be expected to be even
greater for the particular realizations of 1000 light rays in
the models that already for the realization used in the main
text exhibit tails.
Figure 17 shows the distributions of the fluctuations

(compared to the background value) of the redshift at

z ¼ 0.35. The differences between the different realiza-
tions’ distributions are quite small. It is especially notice-
able that the maximum and minimum values of the
fluctuations are nearly identical in each realization.
A similar result is found in Fig. 18 which shows the
distribution in the angular diameter distance at z ¼ 0.35.
This could be an indication that the main quantity respon-
sible for these dispersions is the background expansion rate
since this quantity is the same for the studied realizations.
This suggestion fits well with the equivalent results shown
in the main text.
Lastly, it may be noted that the similarities in the mean

values and the distributions about the means indicate a
relatively high statistical significance of the results. This is
somewhat surprising considering that very low statistical
significances were obtained in both [19,25] despite those
studies being based on a much larger number of light
rays. A relatively large statistical significance was also

(a) (b)

(c) (d)

FIG. 18. Histograms showing fluctuations in DA at z ¼ 0.35 for five realizations of 1000 random light rays in different Swiss cheese
models. In each subfigure, results from the realization used in the main text is compared with results from one of the other realizations.
The particular realization that was used in the main text is labeled as ΛCDMwhile the other realizations are labeled as v1, v2, v3 and v4.
Bin widths are approximately 0.006. To ease comparison of the individual subfigures, these have all been given the same axis intervals
as each other and as in the equivalent figure in the main text.
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found in [21] which also only considered 1000 light rays (in
Swiss cheese models based on the quasispherical Szekeres
model). As noted in [25] this seeming inconsistency could
be due to the much larger packing fractions obtained when

constructing Swiss cheese models on the fly (as here and in
[21]) compared to the maximum packing fraction of ∼0.64
obtainable for fixed Swiss cheese models with a random
distribution of structures of a single size (see e.g., [52]).
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